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Abstract We present a cost-effective method for 
improving data availability during restart recovery 
of a data base management system (DBMS) after 
a failure. The method achieves its objective by 
enabling the processing of new transactions to be- 
gin even before restart recovery is completed by 
exploiting the Comnlt-rs~V concept. It supports fine- 
granularity (e.g., record) locking with semantically- 
rich lock modes and operation logging, partial roll- 
backs, write-ahead logging, and the steal and 
no-force buffer management policies. The over- 
head imposed by this method during normal trans- 
action processing is insignificant. We require very 
few changes to an existing DBMS in order to sup- 
port our method. Our method can be implemented 
with different degrees of sophistication depending 
on the existing features of a DBMS. 

1. Introduction 

Increased demands are being placed on data base 
management systems (DBMSs) to provide improved 
data availability to user transactions [Moha93c]. 
Our motivation for designing the algorithms pre- 
sented in this paper stems from our knowledge of 
some customers who very regularly produce many 
tapes worth of log records as a result of the exe- 
cution of a stngle transactfon! As can be easily 
imagined by the reader, if such a transaction’s ex- 
ecution were to be interrupted by a DBMS failure, 
then even after the DBMS is restarted it would be 
a very long time before the processing of new trans- 
actions will begin, assuming that the DBMS does 
not start handling new transactions until all of re- 
start recovery (i.e., both the redo and the undo 
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passes) is completed. Today, in almost all DBMSs, 
all restart recovery work is done by a single process 
and, at least, all read I/OS are performed 
synchronously, one page at a time! 

Over the years, various solutions to provide im- 
proved data availability have been proposed with 
different continual system operational costs and 
DBMS development costs. One of the solutions is 
the concept of hot standby as implemented in Tan- 
dem’s NonStopn architecture [Tand87], and IBM’s 
XRF (extended Recovery Facility) for IMS [IBM871 
and CICS [IBM89, ScRi88]. More recently, propos- 
als have been made which exploit nonvolatile mem- 
ory to improve data availability [CKKS89, LeCa87, 
Levygl]. Compared to them, our solution is much 
cheaper to implement for the DBMS implementers. 
It is also much more cost effective to operate and 
support for the users of the DBMS. We desired a 
solution which supports the ARIES [MHLPS92] re- 
covery method’s features like fine-granularity (e.g., 
record) locking with semantically-rich lock modes 
and operation logging, partial rollbacks, write- 
ahead logging, and the steal and no-force buffer 
management policies. The no-force buffer manage- 
ment policy states that it is not required that before 
a transaction is allowed to commit, all pages mod- 
ified by that transaction must be forced to disk. 
The steel policy states that a page with unconmtltted 
updates may be written to disk. We did not want 
a solution that required that all data be versioned 
and that the force policy be followed, as [Ston87] 
does for POSTGRES. The numerous advantages of 
no-force and steal are discussed in detail in 
[MHLPS92]. 

The rest of this paper is organized as follows. In 
the remainder of this section, we discuss the prob- 
lems that need to be dealt with in permitting new 
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transaction processing to begin before the comple- 
tion of restart recovery and the assumptions that 
we make in proposing our method. Section 2 
presents our method in two parts. The first sub- 
section presents the method for permitting new 
transaction processing to be initiated only after the 
undo pass of restart recovery begins. The second 
subsection extends the method to permit the pro- 
cessing of new transactions to begin even earlier 
- from the start of the redo pass itself. The third 
subsection discusses the applicability ofour method 
to the shared disks (data sharing) environment. 
Section 3 discusses related work as implemented 
in systems like IMS/XRF, CICS/XRF and Tandem’s 
Nonstop. We conclude with section 4. 

I. I. hproving Data Availability 

One way to improve data availability would be to 
permit new transaction processing to start as soon 
as the DBMS is brought up after a failure, instead 
of waiting for all of the DBMS recovery to be com- 
pleted. The latter is the case in almost all DBMSs 
(e.g., DB2n, Informixn, Oraclen, . ..). The difficulty 
in permitting new transaction activity to occur even 
before restart recovery is completed comes from 
the fact that some of the pages that the new trans- 
actions want to access might be in such states that 
permitting those accesses may lead to data incon- 
sistencies. The undesirable states are: 

Undesirable State I A page on disk at restart may 
not contain some updates for which log records 
exist. These updates might be the ones that were 
performed by uncommitted and/or committed trans- 
actions. Permitting accesses to such a page might 
lead to a new transaction reading an older version 
of a piece of data (e.g., a record) to which one or 
more log records written by one or more ccnmitted 
transactions remain to be applied. Assuming that 
record locking is being used with flexible storage 
management,’ even if the new transaction were to 
access the page for updating or inserting some 
record for which no unapplied log records exist, 
permitting that operation to proceed before com- 
pletion of recovery might result in some space on 
the page being consumed. The latter might result 
in a state in which it is impossible to redo some 
of the unapplied log records’ changes relating to 
other records on the sene puge. With ARIES, redo 

is not performed logically across pages [MHLPS92], 
but is page oriented (i.e., the same page as the 
originally updated page gets updated during redo 
also). Whether a particular log record’s update 
needs to be redone is determined by comparing 
the LSNs of the log record and the data base page 
referred to in the log record. Given these proper- 
ties, it is an unacceptable situation to allow a new 
transaction to read or modify a page to which some 
log records remain to be applied. 

Undeshble State 2 A page on disk may contain 
some uncommitted updates. Such a page may not 
require any redo since it may contain all the updates 
logged for that page. Even if redo is not required, 
inconsistencies may be caused if the DBMS were 
to allow access by a new transaction to such a 
page. This is because the page may contain up- 
dates of (1) some transactions which are to be 
rolled back as part of restart (i.e., the so called 
h-fl/ght transactions) or (2) those transactions 
which will remain in the In-dodt state (oftwo-phase 
commit [MoL086]) at the end of restart recovery 
and for which locks will be reacquired during the 
course ofthe redo pass to protect their uncommitted 
updates (i.e., the so called In-doubt transectlonr). 
Allowing an access under these conditions might 
result in a new transaction reading some uncom- 
mitted data even though the new transaction will be 
acquiring locks. Of course, the second point would 
not be a concern if the new transaction’s access 
is happening during the undo pass since by then 
the in-doubt transactions would have reacquired 
locks to protect their uncommitted updates. Per- 
mitting updates by new transactions might make it 
impossible to undo updates of some in-flight trans- 
actions due to lack of space [MoHa93]. 

At the time of initialization of restart recovery, a 
given page on disk may be in both of the above 
undesirable states. Our method allows us to cost 
effectively determine when the above conditions 
could possibly exist for a given page in order to 
disallow access to such a page by a new transaction 
before one or more passes of restart recovery are 
completed. We require very few changes to an 
existing DBMS in order to support our method. Our 
method can be implement%d with different degrees 
of sophistication depending on the existing features 
of a DBMS. 

I Flrxfblr storuge nunagrnmnt meane that a given record may exist anywhere on the page. At different times, it may exist in different 
locations on the page. If the record is moved around within the page, then there is no need to lock it or log its movements. This 
allows efficient support of garbage collection which brings together to a contiguom area all the free space on the page. A# a 
consequence, varying length records can be managed efficiently. It also means that logging is logical within a page [MHLF’S92]. This 
ir the approach taken in System R, DB2, DB2/2, DB2/6000 and SQL/DS [Moha93b]. 
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1.2. Assumptions 

We assume that the DBMS supports distributed 
transactions and implements the write-ahead log- 
ging (WAL) based ARIES recovery method de- 
scribed in [MHLPSOP, MoLe92, MoNa93, MoPi91, 
RoMo89] or a similar method. ARIES has become 
very popular. It has been implemented in IBM’s 
DB2 family of products (082, DB2/2”, DB2/6000”) 
[Mohaglb], Starburst, Quicksilver, WDSF/VM and 
Message Queue Manager, Transarc’s Encina, and 
University of Wisconsin’s Gamma and EXODUS. 
ARIES has been extended by others also [FZTCD92, 
Lome92]. When ARIES is used, every data base 
page has a page_LSN field which contains the log 
sequence number (LSN) of the log record that de- 
scribes the most recent update to the page. Since 
LSNs monotonically increase over time, by com- 
paring at recovery time a page_LSN with the LSN 
of a log record for that page, we can unambiguously 
determine whether that version of the page contains 
that log record’s update. That is, if the page_LSN 
is Zess than the log record’s LSN, then the effect 
of the latter is not present in the page. ARIES 
supports fine-granularity (e.g., record) locking with 
semantically-rich lock modes (e.g., increment/ 
decrement-type locks), partial rollbacks, nested 
transactions, write-ahead logging, and the steal 
and no-force buffer management policies. 

In ARIES, restart recovery consists of three passes 
ofthe log: unoZys~s, redo and undo. While recovering 
from a system failure, ARIES first scans the log, 
starting from the first log record of the last complete 
checkpoint and continuing up to the end of the log. 
During this analysk pass, the information included 
in the checkpoint record about pages that were 
more up to date in the buffers than on disk (the 
so-called dirty pages) and about transactions that 
were in progress is brought up to date as of the 
end of the log by analyzing the log records in that 
interval. For each page in the dirtypages ht(DPL), 
the LSN of the log record (call it the dirty LSN) 
from which redo might have to be performed is 
also determined based on information in the check- 
point log record and the subsequent log records. 
DPL from the analysis pass determines the starting 
point (i.e., the RedoLSN = the minimum of the 
LSNs in DPL) for the log scan of the next pass, and 
acts as a filter to determine which log records and 
consequently which data base pages have to be 
examined to see if some updates need to be re- 
done. The analysis pass also provides the list of 
in-flight and in-doubt transactions, and the LSN of 
the latest log record written by each such transac- 
tion. 

Before Failure 

During Restart 

..-----..---.-_ . . . . -.--_ . . . . . . _ -.-..........................-...-...-..... 41 
I’ is the CLR for I. Only UndoNxtLSN chain fs shown (1’ has 
a NULL pointer). PrcvLSN chain should be obvious. 

Flgura 1: ARIES R~covwy Scanarlo - Log Records of a 
Single Transactlon 

In the redo pass, ARIES repeats h/story with respect 
to those updates logged on stable storage but 
whose effects on the data base pages did not get 
reflected on disk before the crash. This is done for 
the updates of all transactions, Lncludfng the 
updotes of fn-f Zfght trunsuctfons. This essentially 
reestablishes the state of the data base as of the 
time of the crash, as far as the actions represented 
in the log on stable storage as of the crash time 
are concerned. The redo pass also reacquires the 
locks needed to protect the uncommitted updates 
of the W-doubt transactions. 

The next pass is the undo pass during which all 
in-flight transactions’ updates are rolled back, in 
reverse chronological order, in a single sweep of 
the log. This is done by continually taking the max- 
imum of the LSNs of the next log record to be 
processed for each of the yet- 
to-be-completely-undone transactions, until no 
transaction remains to be undone. ARIES also logs, 
typically using compensation log records (CLRs), 
updates performed during partial or total rollbacks 
of transactions during both normal and restart pro- 
cessing. In ARIES, CLRs have the property that 
they are redo-only log records. By appropriate 
c/wining of the CLRs written by a rolling-back trans- 
action to log records written by that transaction 
during forward processing, a bounded amount of 
logging is ensured during rollbacks. The latter will 
be the case even in the face of repeated failures 
during restart recovery or of nested rollbacks. 
When the undo of a log record (nonCLR) causes a 
CLR to be written, the CLR is made to point, via 
the UndoPhtLSN field of the CLR, to the predecessor 
(i.e., setting it equal to the PrevLSN value) of the 
log record being undone (see Figure 1). 
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Log and its Contents 
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Flgura 2: Commit-LSN Example 

We assume that when a system failure occurs, all 2. A Cost-Effective Solution 
the locks held by the in-flight and in-doubt trans- 
actions are lost. That is, we do not assume that 
nonvolatile main memory is available to preserve 
the lock and buffer pool states across the DBMS 
failure. We are not assuming that during the redo 
pass locks are obtained to protect the uncommitted 
updates of in-flight (not in-doubt) transactions 
also. This means that the redo pass need not ex- 
amine all the log records of the in-flight transac- 
tions for locking purposes. We assume that latch- 
ing* of pages is performed as part of page accesses 
during the redo and undo passes, just as it is done 
during normal (forward and undo) processing in 
ARIES. 

There are two parts to our cost-effective solution 
for the improved data availability problem. We dis- 
cuss them in the next two subsections. Depending 
on the existing features of a DBMS, our method 
can be implemented to different degrees of sophis- 
tication with minimal changes to the DBMS. 

We use a global flag, called Restart, in the DBMS 
which can be tested to see if restart recovery is in 
progress. Restart is equal to ‘Y’ if restart recovery 
is still in progress; otherwise, Restart is equal to 
‘N’. When Restart is equal to ‘Y’, the system holds 
the Restart latch in the X mode and another field 
called Pass can be checked to see which pass of 
restart recovery is in progress (Analysis, Redo or 
Undo). When Pass is equal to ‘Redo’, the system 
holds the Redo latch in the X mode. The latter is 

2 A latch is like a semaphore and it is a cheaper implementation of a short-duration lock. It is typically used for ensuring the physical 
consistency of some object (typically, a page) that icr about to be read or modifted. Latch waits are not communicated to the deadlock 
detector and hence latch usage must be such that deadlocks are avoided. For more details on the differences between locks and latches, 
see [MHLPS92]. 

371 



released once the system completes the redo pass. 
The Restart latch is released only after restart re- 
covery is completed. We assume that at the end 
of the analysis pass, the current end-of-log LSN, 
call it tiBl/-LSrV (FLSN), is determined and the global 
variable FLSN is set to that value. 

2.1. Executing New Transactions Duving 
the Undo Pass 

First, we deal with the case where we admit new 
transactions into the system only after the DBMS 
finishes the redo pass. The first undesirable state 
described in the section “1.1. Improving Data Avail- 
ability” will no longer be a problem since the redo 
pass would have been completed. When new trans- 
actions’ read and write accesses to pages are pro- 
cessed, we use the Commit-LSN idea from 
[MohaSOa] in a novel way to determine efficiently 
when they are encountering pages in the second 
undesirable state. Commit_LSN is the mlntmum of 
the LSNs of the Begin-Transaction log records of 
all the in-flight transactions (see Figure 2). The 
interpretation of Commit-LSN is that no page with 
an LSN less than Commit-‘LSN can contain any 
uncommitted updates belonging to in-flight trans- 
actions. Originally, Commit-LSN was proposed to 
reduce or eliminate locking under certain condi- 
tions. It has been implemented in DB2 for those 
reasons [MohagBb]. Here, we use it to know when 
it is safe to let a new transaction read or modify a 
page before recovery is completed. 

For the purposes of this paper, the Commit-LSN 
value is computed at the end of the unuZysls pass. 
We need not worry about the in-doubt transactions’ 
uncommitted updates since those updates will be 
protected by locks. The needed locks would have 
been reacquired on behalf of those transactions by 
the time the undo pass starts. If new transaction 
activity is going to be permitted even during the 
redo pass (see the next subsection), then, durtng 
the redo pass alone, the Commit LSN that is used 
should be computed by taking-into account the 
in-doubt transactions also. The latter is necessary 
because, durfng the course of the redo pass, locks 
might not yet have been reacquired to protect the 
uncommitted updates of the in-dioubt transactions. 

Basically, any time a page access is attempted by 
a new transaction in forhfurd processing (i.e., not 

rolling back), V Resturt = ‘Yl* then the transaction 
is allowed to access the page (for read or write) 
only if the following condition, called the Undo-Pass 
Condition, holds: 

page_LSN < Comtt-LSN 

If the above condition does not hold, then the trans- 
action requests the Restart latch in the S mode, 
thereby waiting for restart recovery to finish.3 The 
reason for waiting in this case is that it is possible 
that the page has some (uncommitted) changes 
which are not yet undone. Note that the action that 
is taken in this case is a conservative one. Just 
because the page_LSN is not smaller than 
Commit-LSN it does not mean that the page defi- 
nitely has some uncommitted changes. 

We can do better than the above conservative ap- 
proach if we log at checkpoint time, as 082 does 
for example, for each active transaction, the list of 
objects (e.g., at the gross granularity of file or ta- 
ble) that have its uncommitted updates. We call 
the union of these lists the Uncommitted Objects 
List (UOL). During the analysis pass, this list could 
be brought up to date as of the end of the log. In 
fact, although durtng the redo pass UOL has to 
contain even objects for which there are uncom- 
mitted updates by only in-doubt transactions (i.e., 
objects for which there are no uncommitted updates 
by W-flight transactions), at the end of the redo 
pass such objects may be safely removed from 
UOL since by then the in-doubt transactions would 
have reacquired their locks on such objects. Fur- 
thermore, as the undo pass progresses, UOL could 
be kept up to date. That is, once 022 the in-flight 
transactions which had, as of the failure of the 
system, uncommitted updates in a particular object 
are completely undone, that object can be removed 
from UOL. 

Assuming UOL is available, ff Restart = ‘Y’, then 
a new transaction in forward processing is allowed 
to access a page (for read or write) only if the 
following (modfffed) Undo-Pass Condition holds: 

(puge belongs to object not fn UOL) OR 

((page belongs to object In UOL) AND 
(page_LSN ( Comnt t_LSN)) 

Instead of using the above (global) Commit-LSN, 
an even better method would be to compute, for 
each object in UOL, the object-specific Commit-LSN 

3 In order to avoid deadlocks involving the restart latch, any other latches that are held (e.g., on the page that has been accessed and, 
in the case of an index access, possibly the latch on the parent of the current page [Moha90b, MoL.e92]) must be released L~forr 
waiting on the Restart latch. Once the Restart latch is obtained, the previously released page latches must be reacquired and the 
previously inferred information must be revalidated. Such revalidations are discussed in [Moha90b, MoLe921. 
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[MohaSOa]. That is, for each object, consider only 
those transactions that have uncommitted updates 
on it and compute the minimum of the 
Begin Transaction LSNs of only those transactions. 
Then,% the Undo-Pass Condition, use the object- 
specific Commit-LSN for that object, instead of the 
global Commit LSN. The advantage of an object- 
specific Commc-LSN over the global Commit-LSN 
is that in general the former will be greater than 
the latter (in the worst case they will be equal), 
thereby allowing more page accesses by new trans- 
actions. The former reduces the negative impact 
of some long running transactions accessing private 
or semi-private data [MohaSOa]. It has been im- 
plemented in DB2. Object-specific Commit-LSNs 
can also be computed at the end of the unolysis 
pass. Similar to what was said earlier with reference 
to UOL, note that for computing the object-specific 
Commit-LSN for thts purpose, during the redo 
pass, we must take into account, apart from the 
in-flight transactions, even those transactions that 
were in the in-doubt state at the time of the failure. 
On the contrary, during the undo pass, we need to 
consider only the in-flight transactions that are be- 
ing undone as part of that pass. 

The unfortunate aspect of the above mentioned test 
involving the Commit-LSN is that once a page of 
an object in UOL is found to have its page_LSN < 
Commit-LSN and the ftrst updute to that page is 
performed by a new transaction, no subsequent 
update or read by new transactions in forward pro- 
cessing will be possible on that page until restart 
recovery is finished or the object is removed from 
UOL, whichever happens first. This is because that 
first update would make the page_LSN be greuter 
than Commit LSN (global or object-specific), 
thereby violating the Undo Pass Condition that 
must be satisfied for permit&g access by a new 
transaction in forward processing. Unfortunately, 
as a result of that first update, we lose track of the 
fact that the page does not contain any uncommitted 
updates of the transactions being rolled back in 
the undo pass. Preserving the latter information 
requires having a bit called the 
un/ocked_uncommltted_dclts_blt (UUO-Sit) on ev- 
ery page of the data base. If the bit is ‘1’ then that 
means that the page may contain some uncommitted 
updates which are not protected by locks. If the 
bit is ‘0’ then the page definitely does not contain 
any uncommitted updates which are not protected 
by locks. Note that if the bit is ‘0’ the page may 
still contain some unccHrmf tted updates. The crucial 
distinction is that in the latter case the uncommitted 
updates will definitely be protected by locks. 

The following are the rules for manipulating the 
UUD-Bit: 

WonnaZ transaction updates (forward processing or 
normal undo (i.e., not undo during restart recovery)) 

Set to ‘0 

It is not incorrect to do this since we would allow 
an update to this page by a new transaction only if 
the page was definitely known not to have any 
unlocked uncommitted updates. If a system failure 
were to occur, thereby causing the loss of the lock 
information, the setting of the bit by the buffer man- 
ager during reads from disk (see below) will ensure 
the existence of the desired state for the bit at the 
appropriate time during restart. 

@Restart redo of an fn-flight transaction’s log 
record (assuming that in-doubt transactions reac- 
quire their locks before the start of the undo pass) 

Set to ‘1’ 

This is necessary since an update which is not 
being protected by a lock is being redone. As of 
this time, the UUD-Bit on the page may have the 
value ‘0 and in that case this update will be the 
first unprotected one for the page. 

*Restart redo of structure modification (page split 
and page delete) related log records for leaf pages 
in an index or record relocations in a hash-based 
storage method for all transactions 

IF log record’s LSN >= Comntt-LSN THEN 
Set to ‘1’ 

The above is needed because, with the high con- 
currency supported by index protocols like ARIES/ 
IM [MoLe92] and ARIEWKVL [MohaSOb], and hash- 
based storage’s recovery methods like ARIEWLHS 
[Moha93a] , one transaction’s uncomt tted updates 
on a certain page may be moved to a totally dif- 
ferent page by mother transaction. The second 
transaction may terminate or get into the in-doubt 
state even as the first transaction remains in the 
fn-flight state. Under these conditions, after a 
failure, the only way to ensure that the first trans- 
action’s uncommitted updates remain protected is 
to ensure that the mover of the uncommitted data 
to a different page causes the UUD-Bit to get set 
to ‘1’ on the second page. Again, Commit-LSN is 
taken advantage of to determine whether such a 
situation is a possibility. 

@Restart redo for a non-tn-f2lght transaction and 
the log record does not relate to structure modifi- 
cation as described in the last item 
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IF existing poge_LSN (i.e., page_LSN before redo 
is perfomd) < Comnit-LSN THEN Set to ‘0’ 

Here, we are trying to take advantage of the facts 
that the page is known to contain only committed 
updates before this update is redone (since 
page_LSN is less than Commit_LSN) and that this 
update itself is either a commltted update or an 
uncommitted update, by an in-doubt transaction, 
which will be protected by locks by the time the 
undo pass starts. Note that after the current log 
record’s update is redone, the page’s LSN may 
become greater than Commit-LSN since page_LSN 
will be set to the log record’s LSN. 

*Buffer manager when reading into the buffer pool 
a page from disk 

IF Restart = ‘Y’ THEN 
IF (puge_LSN >= Comit-LSN) AND 

(poge_LSN c FLSN) THEN Set to ‘1’ 

Setting the UUD-Bit to ‘1’ under the above condi- 
tions is a conservative action since the fact that 
the page is in that range does not necessarily 
mean that there is some uncommitted data on the 
page that is not protected by locks. Since a system 
failure could happen anytime, the burden is placed 
on the buffer manager to ensure that the correct 
UUD bit setting is present on a page when the 
page-is read from disk and restart recovery is still 
in progress. This is important since, during recov- 
ery after a failure, it is the disk version of the data 
base that recovery processing and new transactions 
will be dealing with. The buffer manager can use 
in this check the global Commit-LSN or, better still, 
the object-specific Commit-LSN. As mentioned be- 
fore, an object-specific Commit-LSN is always bet- 
ter than or at least as good as the global 
Commit-LSN [MohaSOa]. In any case, the impor- 
tant point to note is that the computation of those 
Commit LSN values must take into account only 
those tr&sactions that were active at the time of 
the last failure. 

The setting of the UUD-Bit, if required, by the buffer 
manager does not cause the page to become dirty. 
The buffer manager does not disturb the existing 
UUD-Bit setting on the page if the condition in the 
above test is not satisfied. If the page_LSN is 
greater than FLSN then it is incorrect to always 
assume that there is no uncovnnltted data on the 
page that is not protected by a lock and set the 
UUD-Bit to ‘0’. This is because this may be the 
second time that the page is being read from disk 
during this restart recovery and when it was read 
from disk (and before it was .subsequently written 
to disk) the first time, some t&flight transaction’s 

undo might have been performed on the page 
which caused the page_LSN to become greater 
than FLSN due to the writing of a CLR and the 
assignment of the CLR’s LSN to the page_LSN. 
Under these conditions, it is essential that the 
UUD-Bit remains at the value of ‘1’ since the page 
may still contain some uncommitted updates which 
are not protected by locks. If, on the other hand, 
the page LSN is greater than FLSN because, during 
the first time it was read in, a new transaction had 
modified it, then we would like to retain the UUD-Bit 
value of ‘0’ that would exist as a result. 

With the introduction of the UUD-Bit, the Undo-Pass 
Condltlon becomes: 

(page belongs to object not in LIOL) OR 

((pope belongs to object in UOL) AND 
(UUD-8ft = ‘0’)) OR 

((page belongs to object in UOL) AND 
(paggc_LSN < Comf t_LSN)) 

With the introduction of the UUD-Bit, in the unfor- 
tunate scenario discussed earlier, the first update 
by the new transaction will cause the UUD-Bit to 
be set to ‘0’ and so the condition for allowing ac- 
cesses to new transactions will still be true. 

2.2. Executing New Transactions During 
the Redo Pass 

Allowing new transaction activity concurrently with 
redo processing also requires that we deal with 
both undesirable states described in the section 
“1.1. Improving Data Availability”. We do that by 
taking advantage of some information that typically 
gets logged at the time of a checkpoint. As in 
ARIES, first we assume that at the time of a check- 
point the dirty pages list (DPL) is logged and that 
during the analysis pass this DPL is brought up to 
date as of the end of the log. Many advantages of 
logging DPL are discussed in [MHLPS92]. DPL 
includes only those pages that might potentLaZZy 
be involved in redo operations. In particular, DPL 
may not include any (or some) pages on which undo 
may have to be performed (i.e., pages of objects 
in UOL). 

Assuming DPL is available, If Restart = ‘Y’ and 
Pass = ‘Redo’, then a new transaction is allowed to 
access a page (for read or write) only if the following 
RedoJbss Condition holds: 

(Undo-Pass Condition) AND (page not in DPL) 

Basically, these checks ensure that the page does 
not contain any uncommitted data and that it will 
not be modified in the redo pass, respectively. If 
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the Redo--Pass Condition does not hold, then the 
transaction requests the Redo latch in the S mode 
for instant duration, thereby waiting for the redo 
pass to finish. Once the Redo latch is granted, the 
new transaction has to check the Undo-Pass Con- 
dition. 

If, unlike in ARIES but like in DB2 [TeGu84], the 
buffer manager logs at checkpoint time the dirty 
object information only at the granularity of a file 
which is then brought up to date during the analysis 
pass, thereby providing the system with the dirty 
06Jects list (DOL), then the Redo-Pass Condition 
becomes 

(Undo-Pass Condf tion) AND 
(page belongs to object not in DOL) 

Even in those systems which do not log DPL during 
checkpoint time, if we would like to get the benefit 
of what something like DPL could provide, then we 
could implement a more expensive solution which 
involves scanning the log from the RedqLSN to 
the end ofthe log. This extra pass can be performed 
by a separate process. It is initiated when the redo 
pass is initiated and it uses DOL to determine what 
pages of the objects in DOL might need some log 
records’ updates to be redone on them. This is 
done just by noting the page numbers in the log 
records relating to the objects in DOL. Since no 
data page accesses are made, this extra pass 
would be completed long before the redo pass 
completes. As soon as this extra pass is finished, 
new transactions can be let into the system. DPL 
generated in this fashion will be equal to or be a 
superset of DPL that we would have obtained if the 
system were to log it at checkpoint time and bring 
it up to date during the analysis pass, as in ARIES. 

Since processing new transactions will result in 
the log growing continuously, in order to make sure 
that the redo pass terminates, we should terminate 
the redo pass when the FLSN point is reached. 

2.3. SJtared Disks Environment 

What we have discussed so far is usable in the 
single-system and partitioned (also called shared 
nothing) DBMS environments. In addition, our 
method is also usable in the shared disks (SD - 
also called the data sharing) environment [Haer88, 
Lome90. MoNa91, MoNagPa, MoNa92b, Rahm91, 
Reut86]. With SD, all the disks containing the data 
base are shared amongst the different systems. 
Every system that has an instance of the DBMS 
executing on it may access and modify any portion 
of the data base on the shared disks. Since each 
DBMS instance has its own buffer pool and because 

conflicting accesses to the same data may be made 
from different systems, the interactions amongst 
the systems must be controlled via various syn- 
chronization protocols. This necessitates global 
locking and protocols for the maintenance of buffer 
coherency. SD is the approach used in IBM’s IMS/ 
VS Data Sharing product and TPF, and in DEC’s 
Rdb/VMSn [ReSW89]. Fujitsu, Hitachi, INGRES and 
Oraclen Parallel Server have also adopted this ap- 
proach. 

In the SD context, when a system fails, the locks 
needed to protect the failed systems’ uncommitted 
updates may be retained in one or more other 
systems [MoNaSl, MoNaOSa]. In such an event, 
the still-operational systems will continue to be 
able to access the rest of the data. By using our 
method, even as the failed system is recovering, 
we would be able to allow new transaction pro- 
cessing to begin on the recovering system. De- 
pending on the level of sharing that was in effect 
at the time of the system failure, the granularity at 
which the other systems retain the failed system’s 
locks may vary all the way from table level to the 
record level, even if the locking being done by the 
transactions at the failed system was at the record 
level. The coarser the granularity at which the 
locks are retained the more beneficial our method 
would be. 

It should be noted that typically the locks are re- 
tained by the other systems with the failed system 
being identified as the owner of those locks rather 
than by using the identifiers of the individual 
trunsuctfons which caused those locks to be ac- 
quired [MoNaSl, MoNagPa]. As a result, the re- 
tained Zogtcul locks cannot be released until the 
failed system finishes its undo pass and the retained 
physica locks cannot be released until the failed 
system finishes its redo pass [MoNaSl]. Physical 
locks are acquired to ensure that at any given time 
only one system is modifying a given page. That 
is, the physical locks are used to assure coherency 
of the data in the different systems’ buffer pools. 
Logical locks are used to perform the more tradi- 
tional concurrency control amongst the different 
transactions. 

If the physical locks are retained at the page level, 
then the list of such locks can be used to generate 
DPL and our method can be applied to allow new 
transaction processing during the redo pass. DPL 
will consist of exactly those pages for which physical 
locks have been retained. Under these conditions, 
if the logical locks had been retained at the same 
granularity at which the transactions were acquiring 
those locks, then we can use our method by pre- 
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tending that all the retained logical locks were ac- 
quired by a system transaction at the failed system 
and by treating the Undo-Pass Condition to be 
TRUE. What this means is that a new transaction 
will be able to access a page and make progress 
during the redo pass if the page is not in DPL and 
if the lock needed by the new transaction is not 
one of the retained locks. If either condition is not 
true, then the new transaction would wait for the 
retained locks to be released by the system trans- 
action. 

On the other hand, if the logical locks had been 
retained at a coarser granularity than the granu- 
larity at which the transactions were acquiring 
those locks, then we can use our method by using 
the techniques (Commit-LSN, UOL, DOL, generat- 
ing DPL via log analysis, . ..) described earlier for 
the single system (nonSD) case. 

2.4. Discussion 

The overheads of our method during normal pro- 
cessing are: 

l the extra check on every page access to see if 
restart is in progress 

l the manipulations of the UUD-Bit 

We consider these overheads to be insignificant 
since only simple comparisons of values are in- 
volved. 

The extent of the benefit of our method for executing 
new transactions during the undo pass would de- 
pend on the particular mix of transactions that is 
run by the users of a given DBMS installation. This 
is something that the DBMS would have no control 
over. The higher the number and the longer the 
duration of update transactions, the more would be 
the benefit to be derived. Under these circum- 
stances, new transaction processing will start much 
earlier with our method than otherwise. As we 
mentioned in the introduction, our motivation for 
doing the work reported here stems from our knowl- 
edge of some customers who very regularly pro- 
duce many tapes worth of log records as a result 
of the execution of a single trunsaction! For such 
users, our method would be of immense value. 

The extent of the benefit of our method for executing 
new transactions during the redo pass would de- 
pend on the speed at which the buffer manager 

writes dirty pages to disk. Of course, there is a 
trade-off here between reducing restart redo work 
versus impacting in a negative manner normal 
transaction processing work. The more quickly the 
buffer manager writes the pages, the lesser would 
be the amount of redo work to be performed in 
case of a system failure. But then, if there is any 
locality of reference amongst a set of pages across 
different transactions, then the quick writing of dirty 
pages would not allow us to amortize the cost of 
disk write of a page across multiple updates to the 
same page by different transactions or by a single 
long transaction. Frequent writing of hot spot pages 
would also cause concurrency problems if a page 
is not going to be allowed to be modified when it 
is being written to disk. Frequent writes may also 
impact negatively on being responsive to read I/O 
operations. Systems like DB2 delay doing writes 
also in order to accumulate multiple dirty pages 
for a single file so that the capability of the operating 
system to write multiple pages using a single start 
I/O command could be exploited to reduce the CPU 
and I/O overheads [TeGu84]. For reasons like 
these and also to reduce the lock holds times, all 
the IBM RDBMSs and many others follow the no- 
force buffer management policy. 

3. Related Work 

In [MHLPSg2], we discussed some techniques to 
reduce the time spent in restart recovery process- 
ing.4 Basically, they involved exploiting parallelism 
during the redo pass and subsequently during the 
undo pass. Essentially, these permitted I/O paral- 
lelism during the numerous I/OS that have to be 
performed during the redo and undo passes, and 
CPU parallelism during the processing of log 
records for different pages (during redo) and for 
different transactions (during undo). Unfortunately, 
during the undo pass, all the log records of a single 
transaction have to be processed by a single pro- 
cess in order to chain the CLRs properly. Similarly, 
during the redo pass, all the log records relating 
to a particular page must be processed by a single 
process to ensure that redo actions are performed 
in chronological sequence. To lessen the impact 
of these unfortunate situations and to improve data 
availability even further, in this paper, we intro- 
duced ways to permit parallelism between recovery 
processing and new transaction processing. 

4 Those techniques were extended to the remote backup context in [MoTOPJ]. 
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In IBM’s IMS/XRF [IBM871 and Tandem’s Nonstop 
architecture [Tand87], on the failure of a primary 
system, a hot standby (the backup system) takes 
over and it first reacquires, as part of the redo 
pass, the necessary locks to protect all the un- 
committed updates. This is possible since the 
backup system on a continuous basis keeps mon- 
itoring the primary, keeps analyzing the log records 
written by the primary and accumulates in virtual 
storage information about the transactions that are 
active in the primary and their update activities. 
Of course, the cost of doing this is very high in 
terms of extra processing capacity needed in the 
backup and in the primary. In Nonstop, the primary 
sends the log records directly to the backup, 
thereby imposing extra overhead in the primary 
system. In IMS, the backup reads directly from disk 
the log records written by the primary. This in- 
creases the contention on the log disk, thereby 
impacting the processing on the primary. 

When the XRF support was introduced in IMS, ex- 
isting log records’ contents had to be enhanced to 
identify what lock had to be reacquired in order to 
protect a given log record’s update. The previously 
existing contents were not sufficient to infer the 
lock name. In 082, on the other hand, from the 
beginning there was enough information available 
in the log records to determine the lock names. In 
fact, for in-doubt transactions, DB2 reacquires locks 
by accessing all their log records during the redo 
pass [Crus84, MHLPS921. In contrast, in SQUDS 
and R’ [MoL086], locks held by in-doubt transac- 
tions are included in their prepare log records. The 
information available in the update log records is 
not good enough to reacquire all the locks (e.g., 
no log records are written for index page changes 
and the next key lock names (see [MohaSOb, 
MoLe92]) cannot be computed using solely the in- 
formation in the log records for the data page 
changes). Even in ARIES/IM, which is implemented 
in DBU2 and DB2/6ooO, and which does log index 
changes, such information is not available in the 
index log records. 

On a takeover, in IMS/XRF and Nonstop, once the 
redo puss LS completed, the backup then starts pro- 
cessing new transactions in parallel with the undo 
pass. If no backup system is defined or it is not 
currently operational, then new transaction activity 
is begun only after the failed system is completely 
recovered (i.e., only after the undo pass is also 
completed). In spite of all the extra developmental 
and run-time expenses incurred in supporting the 
concept of hot standby in IMS/XRF and Nonstop, it 
should be noted that neither system allows the 

processing of new transactions during the redo 
pass, unlike in our much more cost-effective 
method. Since we are not reacquiring locks to 
protect the uncommitted updates, naturally we can- 
not support as much concurrency during the undo 
pass as IMS or Nonstop can. Of course, if one is 
willing to pay the price of reacquiring locks for 
in-flight transactions’ updates during the redo pass, 
which may involve starting the redo pass from an 
earlier point in the log and scanning many more 
log records, in our method also we can support 
the same amount of concurrency during the undo 
pass. Our method would still be better since it 
would support new transaction processing during 
the redo pass. 

In CICSIXRF [IBM89, ScRi88], the backup system 
does not continuously monitor the log records writ- 
ten by the primary. It only tracks the states of the 
terminals that are connected to the primary so that 
on a takeover the terminals can be quickly switched 
to use the backup sessions established to the 
backup system. As a result, on a takeover, the 
backup performs data recovery cmpZete2y before 
permitting new transaction activity. Since CICS fol- 
lows the force policy, the recovery work involved 
is just rolling back the in-flight transactions (i.e., 
there is no redo pass). In spite of that, in some of 
the measurements presented in [ScRi88], it has 
been reported that on an IBM 4381-2 machine 11% 
of the takeover time involved the undo pass and 
on an IBM 3084QX it was 19%. One of the primary 
reasons for these high percentages is that undo 
activities are highly I/O bound. Typically, the I/OS 
would be random ones necessitating significant 
disk arm movements. Also, opening all the files 
on which recovery needs to be performed takes a 
significant amount of time. These numbers should 
allow us to conclude that in a system which has to 
perform redo also, the percentage of time spent 
on data recovery would be more and that our 
method could be beneficial in a significant manner 
in the hot standby context as well as in the no- 
standby context. More modern systems like the 
DB2 family of products [Moha93b] follow the no- 
force policy. Hence the need for performing redo 
in those systems. Even in IMS, for Fast Path data, 
redo may be necessary since for such data a force 
ufter commit policy is followed [MHLPSgP]. 

4. Conclusions 

We presented a cost-effective method for improving 
data availability during restart recovery of a DBMS 
after a failure. The method achieves its objective 
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by enabling the processing of new transactions to 
begin even before restart recovery is completed. 
A partial implementation of the new method would 
enable new transaction processing to begin only 
at the start of the undo pass. A more complete 
implementation would enable it to begin at the start 
of the redo pass itself. The overhead imposed by 
our method during normal transaction processing 
is insignificant since very little additional processing 
is needed. The method does not require nonvolatile 
memory to accomplish its goals. Our method has 
applicability even if the DBMS supports the hot 
standby concept and/or the shared disks environ- 
ment. It supports fine-granularity (e.g., record) lock- 
ing with semantically-rich lockmodes and operation 
logging, partial rollbacks, write-ahead logging, and 
flexible buffer management policies. The method 
is easy to implement and requires few changes to 
an existing DBMS that uses the ARIES recovery 
method or a similar method. It is flexible in the 
sense that, depending on the affordable develop- 
ment cost, it can be implemented to different de- 
grees of sophistication. It takes advantage of the 
information which is logged by the buffer manager 
at the time of a checkpoint and the Commit-LSN 
concept which we developed originally for reducing 
locking overhead and for increasing concurrency 
during normal processing. We compared our 
method with the techniques employed in IBM’s 
IMS/XRF and CICS/XRF, and Tandem’s Nonstop 
architecture. 

We can extend our method’s effectiveness during 
the redo pass even further by associating with each 
page in the dirty page list (DPL) the LSN of the last 
log record (LastLSN) for that page. This information 
can be brought up to date during the analysis pass. 
With this additional information in hand, during the 
redo pass, a page can be removed from DPL when 
the page_LSN is found to have become equal to 
LastLSN. 

We have extended the results of this paper to the 
remote backup context in [MoT093]. As a result, 
when the primary system fails, even as a remote 
backup is taking over, processing of new transac- 
tions can be initiated. 
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