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ABSTRACT - This paper studies the problem ol 
memory allocation and scheduling in a multiple query 
workload with widely varying resource requirements. 
Several memory allocation and scheduling schemes are 
presented and their performance is compared using a 
detailed simulation study. The results demonstrate the 
inadequacies of static schemes with fixed scheduling and 
memory allocation policies. A dynamic adaptive scheme 
which integrates schedtiling and memtiry allocation is 
developed and is shown to perform effectively under 
widely varying workloads. 

1. Introduction 
An important reason for the popularity of relational 

database systems is their ability to process ad-hoc queries 
posed by the users. Past research on query processing has 
dealt with issues of query optimikatiod, scheduling, and 
resource allocation. Unfortufiately, most of the work in 
this area has concentrated on processing single qucrics 
and does not consider multi-user issues. A particularly 
important issue that has largely been ignored is memory 
allocation for multiple-query wotkioads. 

In the past, the majority of the memory allocation 
policies proposed have concentrated on allocating the 
‘proper amount’ of memory to a single operator or query 
and have ignored the presence of other concurrently 
executing queries. Such ‘localized’ allocation techniques, 
which ignore global system behavio;, can lead to poor 
performance and reduced throughput as the appropriate 
memory allocation for a query cannot be determined in 
isolation. Another drawback is that the memory 
allocation policy is largely independent of the query 
scheduling policy. To the best of our knowledge each 01 
these schemes schedules queries in a first-come, first- 
served manner, delaying the actual execution only until 
sufficient memory becomes available (e.g. DBMIN 
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[Chou85I). As WC will demonstrate, this decoupling ol 
query scheduling from memory allocation can have 
disastrous effects on the overall performance of the 
system. 

The problem of processing multiple-query workloads 
becomes even more complex when the workload consists 
of different types of queries, each with widely varying 
memory requirements. As we will dcmonstratc, each 
type of query has a different sensitivity to how memory is 
allocated, and an effective memory allocation policy must 
carefully consider these differences if the overall 
performance of the system is to be maximized. 

In this paper, we study the relative perlbrmancc ol 
various query scheduling and memory allocation policies. 
We compare schemes that perform scheduling and 
memory allocation independently IO a new dynamic 
algorithm that integrates the two decisions. Thl! 
pcrformancc of all the politics is compared using ;I 
detailed simulation model. 

The rest of the paper is organized as Ibllows. Section 
2 discusses related work. The workloads studied in the 
paper arc presented in Section 3 followed hy a discussion 
of the metric used to compare the various politics in 
Section 4. Sections 5 and 6 describe the various 
scheduling and memory allocation policies, rcspcctivcly. 
Section 7 presents the simulation model. The 
pcrformancc of the politics under various workloads is 
presented in Section 8 which is followed hy our 
conclusions and future work in Section 9. 

2. Related Work 
The subject of memory allocation in database systems 

has been studied extensively. A significant portion of this 
work is related to allocating buffers to queries in order to 
minimize the number of disk accesses. The hot set model 
[Sacc86] d&es the notion of a hot set for nested-loop 
join operations and tries to pre-allocate iI join’s hot-set 
prior to its cxccution. The DBMIN algorithm IChouXSl 
extends the idea of a hot-set by estimating the huffcr 
allocation per lilt hased on the cxpectcd pattcrn of usage. 
The DBMIN algorithm was further extended in Marginal 
Gains allocation [Ng9l] and later it was cmploycd to 
perform predictive load control based on disk utilization 
[Falo91 j. Each of these schemes, with the exception of 
[Falo91], ignore the effects of other concurrently 
executing ,queries and thus make locnlizeci decisions for 
each query. In addition, none of these algorithms handle 
the allocation,of memory to hash joins. 
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‘I’hc only work, to our knowledge, that directly handles 
memory iilhiciiti~iii iiiiiong concurrently cxccuting hash- 
join qucrics is lCornX9, Yu9Rl. The authors introduce the 
concepts of nrcwrory cmsunlption and return on 
consutnption which arc used to study the overall 
reduction in response times due to additional memory 
allocation. A heuristic algorithm based on these ideas is 
proposed for memory allocation. The algorithm’s 
pcrlormaucc is determined by three runtime parameters. 
The problem with the heuristic is that the performance of 
the algorithm is very sensitive to the value of these 
parameters and the authors do not discuss how to set their 
paramctcr values. Also, the performance is based on 
average response times which, as discussed in Section 4, 
is not an appropriate metric for multiple class workloads. 

All these schemes use a first-come first-served policy 
IO service ~hc arriving queries. As will be shown later, 
this can lcad to bad performance for a multi-query 
workload. 

Query scheduling algorithms proposed in [Chcn92a, 
Schn9Ol handle scheduling of only single complex join 
qucrics and do not consider multiple queries. The batch 
scheduling algorithms studied in [Meht93a] cannot be 
directly applied as batch scheduling algorithms attempt 
only to maximize overall throughput and do not consider 
the impact on query response times. 

Adaptive hash join algorithms, which can adapt to 
changing memory requirements have been proposed by 
l7ell90]. The implications of adapting to memory 
changes have 1101 been investigated in the context of a 
multiple query workload. It is not very evident as to 
when taking memory from an executing query and giving 
it to some other query benefits the overall performance of 
the system. The same drawback lies in other schemes 
which dynamically change query plans at run-time 
lGrac:XOa]. 

3. Workload Description 
In this study we consider only queries involving a 

single join and two selections. This simple workload 
allowed us to study the effects of memory allocation and 
load control without considering other complex query 
scheduling issues like pipelining and intra-query 
parallelism. For example, while there are several 
different cxccution strategies for complex queries such as 
Icft-deep. right-deep, and bushy scheduling [Schn90], 
nothing is known about their relative performance in a 
multiuser environment. Including queries with multiple 
ioins would have made it impossible to separate the 
cflccts of memory allocation from other query scheduling 
issues. III addition most database systems (with the 
exception of Gamma ]DeWi90] and Volcano [Grae89b]), 
cxecutc multiple-query joins as a series of binary joins 
and do not pipeline tuples between adjacent joins in the 
query tree. Such simplified workloads have also been 
used previously in [Falo91, Ng91, Yu93]. 

Another simplification in the workload is that the 
sclcctions were exccutcd hy scanning the data file and do 
not USC indices. Also, the same join selectivity is used for 
each query - the number of output tuples produced by 
the join is one half of the number of the tuples in the outer 
relation. Inclusion of indices and varying join selectivity 
changes only the overall response time of the query and 
not the memory requirements of the queries. As a result, 
ignoring these simplifications does not affect the results 
qualitatively. 

All joins were executed using the hybrid-hash join 
algorithm * [DeWi84, Shap86]. This algorithm operates 
in two phases. In the first phase, called the build phase, 
the inner relation is partitioned into n buckets II, I,, . . . In. 
The tuples that hash into bucket I are kept in an m- 
memory hash table. Tuples that fi ash to one of the 
remaining buckets are written back to disk, with a 
separate file being used for each bucket. The number of 
buckets, n, is selected to be the minimum value such that 
each bucket Ii will fit into the memory space allocated to 
it at run time. 

In the second phase, called the probe phase, the outer 
relation is also partitioned into n buckets O,, 01, . . . 0 . 
Tuples that hash into bucket 01, are joined immediate y P 
with the tuples in 11. The other tuples are written to their 
corresponding bucket file on disk. If n=l, the algorithm 
terminates. Otherwise, the algorithms proceeds to join Ii 
and 0. for i=2 ,..., n. As the tuples from bucket I. are read, 
an inimemory hash table is constructed. Thkn, 0. is 
scanned and its tuples are used to probe the hash tiblc 
constructed from 1. looking for matching join attribute 
values. Results tupfes are written back to disk. If the size 
of the inner relation is K pages, then the amount of 
memory available for the join must be at least fi (also n 
is proportional to fi). 

In a multiquery environment (composed of join 
queries from a number of different users or even perhaps 
join operations from a complex query composed of 
multiple joins), the memory requirements of each query 
can vary widely. To facilitate our study, we decided to 
classify each join as one of three different types: small, 
medium, or large. The idea is simple. Small queries are 
ones whose operands will fit in memory in most 
workloads. Medium queries are those which could 
always run in one pass (i.e. n=l) if they are alone in the 
system. Large queries are those whose execution always 
require multiple buckets. The workloads studied in this 
paper consist of mixes of queries from these three classes. 
As WC will show later, in order to maximize the 
throughput of a system executing such a workload, it is 
necessary to carefully control the allocation of memory to 
queries from each of these different classes of queries. 

* In the conclusions, we discuss the application of our techniques 
when other join algorithms are used. 
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The following sections describe the classes in more detail. 

3.1. Small Query Class 
The first query class represents join queries with 

minimal memory requirements. As such, this class of 
queries can always be expected to execute in one pass of 
the hybrid hash algorithm (i.c. no disk buckets are created 
during the build phase of the algorithm). For our 
experiments, we set the average memory requirement for 
this class to be 5% of the size of main memory with the 
actual requirement varying from 1 to 10% of the memory. 

3.2. Medium Query Class 
The second class represents join queries whose 

operands are about the same size as main memory. For 
our experiments we assumed that medium queries range 
from 10% to 95% of memory so an average of two such 
queries can fit into memory simultaneously. Thus, the 
memory requirements of this class of queries are nearly 
an order of magnitude larger than the small class. 
However, since the memory requirements of these queries 
are substantial compared to the total amount of main 
memory available, in the presence of other concurrently 
executing queries, medium queries will frequently require 
multiple join passes (depending on the actual scheduling 
and memory allocation policy employed). 

3.3. Large Query Class 
The last class represents queries whose operands are 

larger than the amount of physical memory available and 
thus always require multiple buckets for their execution. 
The large query sizes varied from the size of the memory 
upto four times the memory size. 

4. Performance Objective and Metric 
This section describes the performance metric used to 

compare the various memory allocation and scheduling 
policies examined in this paper. The metric is presented 
here in order to simplify the presentation of the 
algorithms described in the following section. 

We spent a significant amount of time and effort trying 
to find a reasonable goal for a multi-class workload. The 
performance goals that are typically used for single class 
workloads are not adequate as they are biased towards 
one class or another. For example, combining the 
different query types into a single class and maximizing 
overall throughput biases the metric towards the smaller 
queries which have a higher throughput; algorithms that 
maximize the throughput of the smaller queries at the 
expense of the other classes will fare better. Similarly, 
minimizing the average response time is inadequate as the 
value of the metric is determined mainly by the large 
queries with long execution time and hence high response 
times. 

In the absence of any universally accepted relative 
importance of the three workload classes (such as might 
be defined by an organization like the TPC council), we 
wanted a performance goal that weights the relative 
priority of the different classes equally. The pcrformancc 

goal chosen for this study is fairness. 
The first step in measuring fairness is to obtain, for 

each class, the ratio of the observed average rcsponsc 
time to average response time of the class when instances 
of the class are executed alone in the system. This 
normalizes the effect on the metric of the actual values 01 
the response times of the different query types, which 

may differ by orders of magnitude.” Fairness is then 
defined as the standard deviation in the ratios obtained for 
each of the three classes in the first step. A higher 
standard deviation means a larger diffcrcnce in the 
response time changes. This implies that the pcrformancc 
of some class was disproportionately worst when 
compared to other classes in the system and that the 
system was unfair towards that class. 

In addition, we also measured the mean percentage 
change in response time across all three classes; a lower 
mean implies that, overall, the classes had better 
performance and that their observed response times were 
closer to their stand-alone response times. Whencvel 
necessary, the response times for each individual class are 
shown along with the Fairness metric. 

5. Memory Allocation Policies 
We begin this section by describing three different 

ways of allocating memory to a hash join operation: 
minimum, maximum, and avaihblr. Next, we discuss 
how these alternatives can be applied to each of the three 
query classes: small, medium, and large. The resulting 
combinations provide a wide range of alternatives for 
controlling the allocation of memory to queries in a 
multiuser environment. 

5.1. Join Memory Allocation 
The amount of memory allocated to a hybrid hash join 

can range from the square root of the sixc of the inner 
relation to the actual size of the relation [DeWig4]. In a 
multi-query environment, allocating more memory to a 
join reduces not only the execution time of the operation 
but also disk and CPU contention as the query performs 
fewer I/O operations. The drawback of allocating more 
memory is that it may cause other queries to wait longer 
for memory to become available. Allocating less memory 
has the opposite effect. It increases execution time and 
disk contention but it may reduce the waiting time of 
other queries. Also, the overall multi-programming level 
in the system may be higher as the memory requirement 
of each individual query is reduced and more of them can 
be executed in parallel. We studied the effect of three 
allocation schemes on query performance. 

3 Normalization cnn also be done using expected response times (;IS 
in [Ferg93]) or the optimizer estimate of the query response tinr. Since 
we did not want to invent arbitrary expected response limes lilr lhc 
queries WC did not choose the firs1 approach and the nhscncc of a real op 
timizer prevented us from using the second. 
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Minimum 
In Ihis schcmc, the join is always allocated the 
minimum memory required to process the join (i.e. 
Ihc square root of Ihc size of the inner relation). 
Ilcncc a parritioning phase and a joining phase arc 
always required. In effect, except for buckets II 
and 0 , hoIh relations get read twice and written 
once. k hts schcmc is lhe least memory intensive 
hur causes the most disk/CPU contention. 

Maximum 
In Ihc maximum scheme (which only works for 
small and medium queries), each join is allocated 
enough memory so that its inner relation (i.e. the 
temporary relation resulting from the sclcction) will 
fit in memory. No tuples from the inner or outer 
relations get written back to bucket files on disk 
and the join is processed hy reading each relation 
once. This allocation schcmc minimizes the 
response time of Ihe query but is also the most 
memory intcnsivc. Also, since enough memory 
may noI be available when the query enters the 
sysIem, it may have to wait longer to begin 
execution. Large queries cannot use this scheme as 
the size of their inner relations is much greater than 
the amount of main memory available. 

Available 
The previous Iwo schemes ignore how much 
memory is actually available at run-time. The 
Avuiluble scheme determines a query’s allocation 
at run-time by examining available memory when 
the query is ready for execution. The query is 
given whatever memory is available subject to the 
conslraint that the amount of memory allocated is 
al Icast the minimum required by the query (i.e. the 
square rooI of the size of the inner relation) and no 
more than the maximum. An allocalion between 
IWO thcsc cxtrcmcs is interesting because it 
incrcascs the number of ruplcs in bucket 1, and Ol 
and hcncc rcduccs the number of tuplcs that have to 
hc read twice from disk (and written back once). 

5.2. Impact of Memory Allocation on Each 
Class 

Combining Ihcsc schemes in all possible ways for each 
of Ihc Ihrcc query classes gives us I8 possible allocation 
schcmcs (3 small schemes * 3 medium schemes * 2 large 
schemes). As sIudying all possible combinations was not 
Ibasiblc, Ihc number of combinations was reduced by 
removing sonic schemes for the small and large queries 
IhiiI arc cithcr redundant or that we cxpecIed IO perform 
ba1lly. 

Qucrics in Ihc sninlf class require small amounts of 
memory IO cxccutc. From some preliminary experiments, 
we ohscrved that in most cases the queries always got the 
maximum memory required. Also, as the memory 
ncedcd by these queries is quite small (on the average 
1/2OIh the size of physical memory), the queries did not 

wait long for memory to become available. As a result, 
the Max&m allocation scheme was always superior to 
the other schemes for this class of queries. Hence, we 
elected IO only use this schcmc for small queries. 

Similarly, using Available for queries in the krr,~~r 

class is a very had idea as these queries can consume all 
of the memory, blocking out all other queries. Thus, 
only Minimum was used for these queries. 

6. Scheduling Policies 
The response time of a single query is determined not 

only by the execution time of the query but also by how 
queries are scheduled for execution. The scheduling 
decision gains added -significance if the response times of 
the queries vary significantly. We considered three 
schedule policies, ,FCFS, Responsible, and Adaptive, 
which are described below. 

6.1. FCFS 
This simple scheduling policy is illustrated in Figure I. 

Queries from all classes are directly sent to the memory 
queue as they arrive into the system. The memory queue 
is served in first-come first-served (FCFS) order and 
queries execute whenever sufficient memory is available. 
We present results for this scheduling policy in 
combination with all three medium-query memory 
allocation schemes - Maximum, Available and Minimum. 
The FCFS-Maximum combination can be particularly bad 
for small queries as they may need to wait behind large 
queries with much higher response times. The medium 
queries also suffer as the policy tends to restrict the 
multi-programming level (MPL) of medium queries. On 
the other hand, the FCFS-Minimum combination may 
cause very high system contention as a lot of queries can 
fit into the system if minimum memory is allocated to 
each. Moreover, all three schemes are inherently biased 
towards larger queries. The larger queries take up more 
memory and block out the smaller queries. In addition, 
the larger queries take longer to execute and thus are 
present in the system longer. This means that the average 
MPL of the larger queries could become 
disproportionately higher compared to the smaller queries 
as time progresses and larger queries tend to consume an 
increasing fraction of the system resources. 

6.2. Responsible 
We term the second scheduling policy Responsible as 

it is biased in favor of the smaller queries. As shown in 
Figure 2, small queries are sent directly to the Memory 
queue as in the FCFS scheduling policy. Medium and 
large queries on the other hand are queued in separate 
queues to prevent them from blocking small queries. 
These scheduler calculates the average amount of 
memory consumed by the small queries and leave that 
amount of memory for use by the small queries. The 
leftover memory is divided among the medium and large 
queries according to their memory allocation policy (e.g. 
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MEMORY QUEUE 

< 
SMALL MEDIUM LARGE 

Figure 1: FCFS Scheduling Figure 2: Respumible Scheduling 

minimum for the large queries and available for the 
medium queries). In order to prevent starvation, each 
class has a minimum MPL of one. The amount of 
memory being used by small queries is calculated by 
multiplying the average MPL of the small queries by their 
average.memory requirement. Responsible is thus biased 
towards the small queries as the small queries arc sent 
directly to the memory queue while the medium and large 
queries wait in separate queues for execution. 

6.2.1. Adaptive 
FCFS scheduling lets the scheduling decision be 

determined by memory availability and is biased towards 
larger queries. Responsible is biased in favor of small 
queries. As we will demonstrate later, both schemes can 
exhibit very poor performance. The Adoptive scheduling 
scheme, on the other hand, tries to allocate resources such 
that the overall goal of fairness is achieved to the 
maximum extent possible. The basic mechanism used by 
Adaptive is the control of the MPL of each class of 
queries. For each class, an MPL queue is maintained in 
which incoming queries wait if the current MPL of the 
class is above a dynamically determined level (this level 
will fluctuate over time under the control of the Fairness 
Metric). Each MPL queue is serviced independently in 
FIFO order. When a query belonging to a particular class 
completes, the next waiting query in the queue is moved 
from the class’s MPL queue to the memory queue. 
Figure 3 illustrates the various queues managed by the 
Adaptive scheduling algorithm. 

As mentioned before, small queries always execute at 
maximum memory and large queries always execute at 
their minimum. Using these two properties, the algorithm 
calculates the average amount of memory consumed by 
queries from both classes. The remainder is then 
distributed among the medium queries. As an example, 
assume that there is 32 MB of memory available, that 
maximum MPL of the small class is 10 and that the small 
queries consume, on the average, 0.5 MB of memory. 
Similarly, assume that the large query MPL is 2 and that 
they require 3 MB on the average. Thus, the memory 

I MEMORY QUIWH 

I t I 

MRDIUM I.ARG15 

available to the medium queries is 21 MB (32 - lO*O.S - 
2*3). If the current maximum medium MPL is 5, then 
each medium query receives 4.2 MB of memory. 
Dividing the memory in this manner cnsurcs that the 
smaller queries are not blocked out hy the medium and 
large queries. Also, note that the memory allocated IO ;I 
query is r&ted directly fo the MPI. ol’ its class. Thl+ 
adaptive algorithm thus integrates query scheduling and 
memory allocation. 

The adaptiveness of the algorithm arises from the I&I 
that the MPLs of the query classes arc dctcrmincd 
dynamically based on system parameters. Periodically. 
the algorithm checks the average response times for each 
of the query classes and evaluates the Fairness Metric 
(Section 4). If the variance is high, implying that some 
class is doing much better than the other two. tha 
algorithm takes a compensating action so that the 
offending class is throttled bock. The decision may mean 
increasing the MPL of the class that is doing WCWSI so thiNI 
it receives more resources or decreasing the MPL ol’ lhc 
offending class to reduce its resource consumption. The 
actual algorithm is presented in more detail in Figure 4. 

QUEUES 

MPL R El 
ShiALI. M&JM 

Fire 3 - Adaptive Scheduling 

LARGE 

358 



calculate the average response times for each class 
calculate Fairness Metric (Dev) and mean Response Time change (MRT) 
calculalc difference of percentage change from the mean 

SP = difference in percentage change for small class 
MY = difference in percentage change for medium class 
LP = difference in percentage change for large class 

if (Dcv > DevThreshold) ( 
sort SP, MP and LP (a higher value means the corresponding class has poorer performance) 
switch ( 

SP > MP > LP - > increase small MPL 11 decrease large MPL II decrease medium MPL 
MI’ > SP > LP - > increase medium MPL II decrease large MPL II decrease small MPL 
LP>SP>MP - > decrease medium MPL II increase large MPL II decrease small MPL 
LP > MP > SP - > decrease small MPL II increase large MPL II decrease medium MPL 
SP>LP>MP - > increase small MPL II decrease medium MPL II decrease large MPL 
MP > LP > SP - > decrease small MPL II increase medium MPL II decrease large MPL 

1 

Figure 4: Pseudo Code of the Adaptive Algorithm 

WC followed a few general principles in deciding the 
action to bc taken in response to the state the system is in. 
The incrcasc and decrease of MPLs was done under the 
constraints that the MPL for a class can never be zero and 
Ihi\I the corresponding memory associated with the class 
citnuoI cxcced the total memory size. Also, when the 
algorithm must decide what class should have its 
maximum MPL adjusted, the algorithm always tries to 
change the MPL of the smaller query class first. This is 
bccausc the smaller queries have shorter response times 
and changing their MPL makes the system respond to the 
CllilllgC faster. 

As can hc seen in Figure 4, there are two parameters 
that control how often the adaptive algorithm adjusts the 
query workload. The algorithm is invoked every time the 
variable, Activate, is set to TRUE. If invoked too 
frequently, the algorithm is susceptible to transients in the 
workload; on the other hand infrequent activation makes 
the algorithm slow to respond to workload changes. For 
the purposes of this paper, Activate was set to TRUE at 
the completion of each medium query. 

The second parameter, DevThreshold, controls how 
much of a deviation the algorithm tolerates before making 
;I compensating action. A low threshold means that the 
system will respond to even very low changes in the 
deviation und thus may react too quickly to a transient 
change. A very high threshold means that the algorithm 
does not change the runtime parameters even if the 
deviation is very high and some class is performing 
relatively worst. The threshold value was set to 2.0 for 
the purposes of the performance study. A sensitivity 
analysis of the algorithm towards these two parameters 
can be found in Section 8.4. 

During cxccution, the adaptive algorithm needs to 
compute the average observed response times for each of 

the three query classes in order to calculate the 
percentage change from the ideal case. This requires that 
the algorithm be’ provided with the response time of a 
representative query from each class, run with the MPL 
set to 1. Also, if the activation frequency of the algorithm 
is such that an activation can occur before a single query 
of some class has completed execution, the algorithm 
needs a way of calculating the expected response time of 
the class. The solution used in this study is to require as 
input two numbers for each class when the queries are run 
in a multi-user mode: Response Time and the observed 
Disk Read Response Time. If the system is I/O bound, the 
response time is in most cases proportional to the disk 
response time so that we can compare the current Disk 
Read Response Time to the above number and estimate 
the expected response time accordingly. This technique 
could be replaced by another estimation technique 
without changing the algorithm. Even if the estimate is 
quite inaccurate, the penalty is not severe as the estimate 
is no longer needed once a single query from the class 
has completed. 

7. Simulation Model 
The simulator used for this work was derived from a 

simulation model of the Gamma parallel database 
machine which had been validated against the actual 
Gamma implementation. The simulator is written in the 
CSIM/C++ process-oriented simulation language 
[Schw’iO]. 

The simulator models a centralized database system. 
The system consists of a single processing node, 
composed of one CPU, memory, one or more disk drives, 
and a set of external terminals from which queries are 
submitted. As queries arrive in the system they are first 
routed to a special scheduler task that controls the 
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scheduling and execution of all transactions present in the 
system. The database is modeled as a set of relations that 
are declustered [Ries78, Livn87] over all the disk drives. 
The simulator models the database system as a closed 
queueing system [Reis801. 

7.1. Terminals 
The terminals model the external workload source for 

the system. Each terminal sequentially submits a stream 
of queries of a particular class. After each query is 
formulated, the terminal sends it to the scheduler task for 
execution and then waits for a response before submitting 
another query. 

7.2. Processing Node 
The processing node in the system is modeled as a 

single CPU, four disk drives, and a buffer pool. The CPU 
uses a round-robin process scheduling policy. The buffer 
pool models a set of main memory page frames. Page 
replacement in the buffer pool is controlled via the LRU 
policy extended with love/hate hints (like those used in 
the Starburst buffer manager [HaasgO]). These hints are 
provided by the various relational operators when fixed 
pages are unpinned. For example, love hints are given by 
the index scan operator to keep index pages in memory; 
hate hints are used by the sequential scan operator to 
prevent buffer pool flooding. In addition, a memory 
reservation system under the control of the scheduler task 
allows memory to be reserved in the buffer pool for a 
particular operator. This memory reservation mechanism 
is used by the join operators to ensure that enough 
memory is available to prevent their hash table frames 
from being stolen by other operators. 

The simulated disk models a Fujitsu Model M2266 (1 
GB, 5.25”) disk drive. This disk provides a 256 KB 
cache that is divided into eight 32 KB cache contexts for 
use in prefetching pages for sequential scans. In the disk 
model, which slightly simplifies the actual operation of 
the disk, the cache is managed as follows: each I/O 
request, along with the required page number, specifies 
whether or not prefetching is desired. If so, one context’s 
worth of disk pages (4 blocks) are read into a cache 
context as part of transferring the page originally 
requested from the disk into memory. Subsequent 
requests to one of the prefetched blocks can then be 
satisfied without incurring an I/O operation. A simple 
round-robin replacement policy is used to allocate cache 
contexts if the number of concurrent prefetch requests 
exceeds the number of available cache contexts. The disk 
queue is managed using an elevator algorithm. 

The key parameters of the processing nodes, along 
with other configuration parameters, are listed in Table 1. 
The system memory which is 4MB is obviously small but 
was chosen only to keep the simulation time low. The 
crucial factor for performance is not the actual size of the 
memory but the relative size of the queries to the the 
system memory which was scaled accordingly. The 
software parameters are based on actual instruction 

counts taken from the Gamma prototype. The disk 
characteristics approximate those of the Fujitsu Model 
M2266 disk drive described earlier. 

I ConfiguratiouDMe Parameter 
Number of Disks 
CPU Speed 
Memory 
Page Size 
Disk Seek Factor 
Disk Rotution Time 
Disk Settle Time 
Disk Transfer Rate 
Disk Cache Context Size 
Disk Cache Size 
Disk Cylinder Size 
Tuple Size 
CPU Cost Parameter 
Initiate Join 
Terminate Join 
Terminate Select 
Apply a Predicate 
0.617 
Write Tuple into Output Buffer 
Probe Hash Table 
Insert Tuple in Hash Table 
Start an I/O 
Copy a Byte in Memory 

t 

Value -- 
2 disks 

_-.. _ 

20 MIPS 
4 MB (varied) 
8 Kl3 

16.667 mscc 
2.0 mscc 
3.09 MB&c 
4 pages 
8 contexts 
83 pages 
200 bytes 
No. Iustructions 
40000 
10000 
moo 
100 
Read Tuplc 
100 
2On 
loo 
1 ooo 
I 

Table 1: Simulator Parameters and Values 

7.3. Scheduler 
The scheduler task accepts queries from terminals and 

implements the scheduling and memory allocation 
algorithms discussed in Sections 5 & 6. A query may 
wait either in it’s MPL queue if the MPL is too high or 
for memory in the Memory queue. The scheduling policy 
determines the order in which these queues arc serviced. 
Once the query is scheduled for operation, the scheduler 
also coordinates the startup and termination of all the 
operators in the query. 

7.4. Operators 
The queries in the work reported here USC only two 

basic relational operators: se&t and join. Results tuples 
are stored back in the database after the queries complete. 
Each select process also spawns an addilionnl scan 
process that reads pages from the disk and passes thcnl on 
to the select process. The select process then applies the 
filtering predicate(s) on the scanned pages and passes the 
qualifying tuples on to the join process. The simulator 
models the actual execution in detail with accurate 
modelling down to tuple-level operations. 

8. Performance Results 
This section presents the results of our performnncc 

evaluation of the different scheduling and memory 
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allocation politics. First. we describe the characteristics 
of the base workload and the results obtained. Then a 
variety of other workloads are examined. 

8.1. Base Workload 
The workload parameters used for all the experiments 

are shown in the Table 2. The think times for the query 
classes wcrc chosen arbitrarily cxccpt that the larger 
classes have larger think times to keep their MPL 
relatively low. The number of terminals for each class 
was varied such that the system moved from a lightly 
loaded state to a heavily loaded state. In addition, results 
are also prcscnted where the ratio of the terminals of 
different classes was varied to change the mix of the 
workload. 

class 1 Number of Terminals ) Think Time 
Small I O-loo I 20 set 
Medium O-80 I50 SW 
Large O-10 450 set 

Table 2: Experimental Parameters 

The terminal ratio for the first experiment was set at 
10:X: I (small:mcdium:large). However, this does, not 
rcprcscnt the ratio of the MPLs; due to differences in 
think times and execution times, the actual ratio is closer 
to S:2: I. Furthermore, the MPL per class varies with the 
different algorithms. Figures 5-7 show the response times 
of the different classes as the number of small terminals is 
varied from IO to 50; the medium class terminals change 
accordingly from 8 to 40 and the large class terminals 
rilllgc from I to 5. 

As discussed in Section 6, each FCFS scheme (solid 
lines) is hiased towards larger queries. Thus, the small 
qucrics show very high response times as they get 

blocked behind the larger queries as the load increases. 
FCFS-Maximum, which gives most memory to the 
medium queries blocks the most small queries and 
performs the worst. FCFS-Minimum, which gives the 
least memory to the medium queries, blocks the small 
queries the least and performs better while FCFS- 
Available performs in between the two schemes. The 
medium queries fart similarly under each of the FCFS 
policies. The response times increase as the load 
increases in each case. The effect on the large queries is 
very different; FCFS-Maximum, which minimizes disk 
contention (by limiting the number of small and medium 
queries in the system), has the best response time among 
the three FCFS schemes followed by FCFS-Available and 
FCFS-Minimum. 

The Responsible schemes (dashed lines) all do a very 
good job handling the small queries while making the 
medium queries suffer. The reason is that these schemes 
leave memory for the smaller queries. This leaves less 
memory for medium queries which get queued up. The 
large queries also get queued up but the response times do 
not increase correspondingly because of two reasons. 
Firstly, there are less number of large queries in the 
system and secondly, the low medium query MPL 
reduces disk contention significantly. Consequently, the 
large queries have low execution times leading to smaller 
response times. 

The Adaptive scheme behaves responsibly towards the 
small queries and prevents excessive blocking behind 
larger queries. Also, unlike the Responsible schemes, the 
algorithm is able to keep the medium queries from being 
penalized by carefully controlling class MPLs. Adaptive 
leads to highest response times for the large queries. 
Since large queries have much higher base response times 

IS00 

81000 

ii 

-o- FCFS-Maximum 
-8- FCFS-Available 
+ FCFS-Minimum 
- - + -. Adaptive 
-a- Responsible-Maximum 
- 1- Responsible-Available 
- + - Responsible-Minimum 

System Load System Load 

Figure 5: Small Query Class Figure 6: Medium Query Class 
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Figure 7: Large Query Class 

compared to the small and medium queries, a high 
response time for large queries is desirable for fairness. 

The performance of the various schemes with regard 
to the fairness metric is shown in Figure 8. The FCFS 
schemes do poorly as they are unfair towards the small 
query class while the Responsible schemes are bad 
because of their unfairness towards queries from the 
medium query class. The adaptive algorithm is the fairest 
among all the schemes across the entire load range as it 
prevents the smaller queries from being blocked and at 
the same time does not penalize the larger classes. 

We now present a series of six other workloads and 
compare the performance of the algorithms for each. 

8.2. Doubling the Terminals 
In this section we examine the performance of the 

algorithms for three workloads in which the number ot 
terminals for a particular query class is douhled compared 
to the base case above. These workloads vary the ratio of 
the various queries in the workload and test how well the 
algorithms adapt to various workloads. Only the fairness 
metric numbers are presented for these three workloads. 
Most of the response time numbers were qualitatively 
similar to the base case; any differences are explicitly 
mentioned in the discussion of each workload. 

8.2.1. Doubling Small Terminals 
In this workload, we increased the ratio of small to the 

medium terminals from 10:8 to 20:8 (the reader should 
keep in mind that due to the difference in think times of 
the two classes the actual MPLs are more in the range of 
10:2). Figure 9 shows the performance of the various 
schemes on this workload. 

The FCFS schemes, which aE unfair towards the 
smaller queries, perform relatively worse for this 
workload compared to the base case because this 

--w- FCFS-Maximum 
- --#- FCFS-Available 
- + FCFS-Minimum 

I50 - - - + -. Adaptive 
. - l - Responsible-Maximum 

s 
- u- Responsible-Available 

. - +- Responsible-Minimum 
&o- 

P 

ii!! 

SO- 

o--v-r...... 
0 10 20 30 40 so 

System Load 

Figure 8: Fairness 

workload has more small queries, so the penalty ol 
blocking smaller queries is cvcn higher. Since the 
Responsible schemes are biased towards small queries, 
this workload makes them even more unfair to the 
medium queries and their performance also worsens. The 
Adaptive algorithm, which is able to do a fair job of 
distributing memory among among the classes, shows rhc 
hest overall performance. 

I 

-c FCFS-Maximum ,+ 
+ FCFS-Available I’ 
+ FCFS-Minimum / 

300 - +- Adaptive 
If 

I I’ 
d- Responsible-Maximuin /I / 

*a + Responsible-Available 
G -+- Responsible-Minimum 

,#’ /I’ 

5 200 
’ ,I 

I’ .’ 

I! 
! I 

k 
loo- 

01 
0 20 40 60 so loo 

System Load 

Figure 9: Fairness Metric: Small Terminals Doubled 

8.2.2. Doubling the Medium Terminals 
In this workload we doubled the number of terminals 

for the medium class. The performance of the various 
schemes is shown in Figure IO. As in the two previous 
workloads, compared to the Adaptive algorithm, the 
FCFS and the Responsible schemes perform much worst. 
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System Load System Load 
Figure 10: Fairness metric: Medium Terminals Doubled Figure 11: Fairness Metric: Large Terminals Doubled 

The IFFS schemes block more small queries because the 
workload has a larger number of medium queries. The 
Responsible schemes, which exhibited poor performance 
for the medium queries in the base case above, just get 
worst as the number of medium queries increases. The 
adaptive algorithm adapts to the increased medium 
workload and is thus able to do a better job at reducing 
the vuriancc among the different query classes. 

8.2.3. Doubling the Large Terminals 
Pigurc I I shows the perfomrance of the different 

schemes for a workload in which the number of large 
terminals has been doubled. The numbers show that the 
FCFS and Responsible schemes are much worse than the 
Adaptive schcmc. The FCFS schemes do not explicitly 
control the MPL of the large query class and large queries 
are always able to execute with very little waiting for 
memory. The Rcsponsiblc schemes perform badly for the 
medium queries and also for the large queries. Since the 
nurnbcr of large terminals is now doubled, the large 
queries also get queued up leading to much higher 
response times. Adaptive is again the fairest algorithm as 
restricts the larger queries from dominating the system 
and prevents excessive queueing at the same time. 

8.3. Reduced Number of Query Types 
The previous three experiments varied the ratio of 

terminals among the different query classes, hut the 
workload always contained queries from all three classes. 
We next tried workloads in which only two of the three 
classes were present. The performance of the algorithms 
on these workloads is presented next. The Responsible 
schemes, which have been shown to perform quite badly 
in the previous workloads, have been omitted so that the 
differences between the other algorithms can be shown 
and discussed in more detail. The performance of the 
workload with only Small and Large queries has also 

been omitted because the FCFS and Adaptive schemes 
perform the same for this workload. The interested 
reader can look at [Meht93b] for the performance figures 
of this workload. 

8.3.1. Small-Medium Workload 
This workload consists only of small and medium 

queries. Figures I2 and I3 show the response times of 
the small and medium classes, respectively. 

The performance of the algorithms for the small class 
is the same as before. The Adaptive algorithm shows the 
best response time followed by FCFS-Minimum, FCFS- 
Available and FCFS-Maximum. The performance of 
these schemes on queries from the medium class is quite 
different though. FCFS-Maximum has the best response 
times for the medium queries. This is quite surprising 
because FCFS-Maximum makes the medium queries wait 
the longest for memory yet it has the best response time 
for the class. The reason is that making the medium 
queries wait for memory lets the queries execute in only 
one pass, reducing the disk contention significantly. The 
reduction in disk contention more than compensates for 
the time spent waiting for memory to become available. 
While FCFS-Available and FCFS-Minimum induce fewer 
memory waits for queries from the medium query class, 
they may cause the medium queries to execute with 
multiple join passes. As the system is already loaded 
with other small queries, the added disk contention causes 
the schemes to perform worse. Adaptive performs 
similar to FCFS-Minimum except at high loads where it 
penalizes the medium queries in order to achieve lower 
response times for small queries. 

The fairness metric for all the algorithms is shown in 
Figure 14. In addition, we also present the mean 
percentage change obtained for the two classes of queries 
in Figure 15. Not only does the adaptive scheme achieve 
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Figure 12: Small-Medium Workload, Small Class Figure 13: Small-Medium Workload, Medium Class 
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Figure 14: Small-Medium Workload, Fairness Figure 15: Mean Percentage Ratio 
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Figure 16: Medium-Large Workload, Medium Class 
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the best fairness hul it also nrovidcs the hest mean 
pcrcentagc change compared to all the FCFS algorithms. 

8.3.2. Medium-1,arge Workload 
The response times of Adaptive and FCFS schemes for 

the Medium-Large workload, which has no small queries, 
arc shown in Figure 16 and 17. Figure I8 presents the 
fairness achieved by the algorithms while the mean 
percentage change is shown in Figure 19. The graphs 
demonstrate that FCFS-Maximum performs well for 
medium queries at low loads since the execution times 
and queueing times are small due to a low number of 
queries in the system. However, at high loads, queueing 
times increase substantially as queries wait for memory 
leading to high response times. FCFS-Minimum, on the 
other hand, is the worst scheme for medium queries at 
low loads due to high execution times. As the load 
increases. FCFS-Minimum performs well because the 
queucing times remain low as more queries can be 
executed concurrently compared to other schemes. 
FCFS-Available performs similar to FCFS-Maximum for 
low loads and FCFS-Minimum for higher loads. The 
Adaptive algorithm also shows good performance 
throughout the range and behaves like FCFS-Maximum 
for low loads and like FCFS-Minimum for high loads. 

FCFS-Maximum is the best algorithm for large queries 
because low disk contention due to low medium MPLs 
lcads to low response times for large queries. FCFS- 
Minimum causes the most disk contention and is the 
worst scheme for large queries while FCFS-Available 
performs in between. The response times of the large 
queries for Adaptive algorithm increase rapidly as load 
increases and the algorithm performs the worst at high 
loads. The reason for this degradation is a drawback of 
the manner in which memory gets allocated to medium 
queries in Adaptive. Adaptive makes the large queries 

IO- 

8- 

.- E 
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2- 

wait in order to improve the performance of the medium 
queries. However, due to the manner in which medium 
queries are allocated memory, the extra memory is not 
utilized fully and the performance of the medium queries 
does not improve much. Medium query memory is 
divided equally among concurrent medium queries and 
,in several cases, there is not much of an improvement in 
allocating memory between the minimum and maximum 
needed by the query. We plan to investigate the 
performance of the heuristic proposed in [Yu93] where a 
query gets either the maximum or the minimum memory 
required in the future. Even though it leads to high mean 
percentage changes at high loads (figure 19), Adaptive is 
the best algorithm for fairness followed by FCFS- 
Minimum, FCFS-Available and FCFS-Maximum as 
shown in figure 18. 

8.4. Sensitivity Analysis 
The performance of the Adaptive algorithm is 

controlled by the values of two parameters - 
DevThreshold and Activate. Activate determines the 
frequency with which the Adaptive algorithm is executed 
and DevThreshold determines the variance in response 
times tolerated by the Adaptive algorithm. The algorithm 
makes a change in MPLs only if the current fairness value 
is above the DevThreshold. The sensitivity of the 
algorithm to the values of these parameters is investigated 
in the next two experiments. The performance of the 
algorithm was studied for two workloads containing 
queries from all three classes. The first workload 
containing 20 small, 16 medium and 1 large terminal 
represents a lightly loaded system, while the second 
workload which has 50 small, 40 medium and 1 large 
terminal represents a heavily loaded system. 

+ FCFS-Maximum 
e FCFS-Available 
.+ FCFS-Minimum 
- - -+ - - Adaptive 

0 :.........,....‘.*...,.........,........I 
0 IO 20 30 40 

System Load System Load 

Figure 18: Medium-Large Workload, Fairness Figure 19: Mean Percentage Change 
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8.4.1. Sensitivity to Activate 
Figure 20 shows the sensitivity of the Adaptive 

algorithm to the frequency with which the algorithm is 
executed. The graphs show the performance of the 
algorithm as the execution interval is varied from 5 to 640 
seconds (simulated execution time) for the two workloads 
described before. Increasing the activation period implies 
that Adaptive is executed less often and reacts much more 
slowly to the workload. The algorithm does not fare 
badly for the lightly loaded system because the system 
load is so low that performance does not deteriorate even 
with the Adaptive scheme being activated less often. On 
the other hand, for the heavily loaded system, the 
performance is more sensitive to the activation period. If 
the activation period is low (less than IOO), the algorithm 
is over-reactive to the system state and the performance 
degrades. As the activation period increases the 
performance becomes less reactive and the performance 
improves. Increasing the period beyond 400 seconds 
again causes the algorithm to degrade as the algorithm is 
now under-reactive. The region of good performance 
corresponds to about the completion time of a medium 
query. Hence activating the algorithm on every medium 
query completion seems to be a good heuristic. 

8.4.2. Sensitivity to DevThreshold 
Figure 21 shows the performance of Adaptive as the 

DevThreshold is varied from 0.5 to 32. As the 
DevThreshold increases, Adaptive changes the MPLs of 
the classes less frequently and performance degrades. In 
the lightly loaded case, fairness decreases as 
DcvThreshold is increased to 8. As DevThreshold is 
increased further, Adaptive cannot perform any worse 
and the fairness value stablizes at 3.65. As expected, 
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Adaptive performs much worst for the heavily loadctl 
system. For a threshold values below 1.0 the algorithm 
takes actions very frequently and fairness deteriorates as 
the algorithm is unstable. As the threshold value is 
increased further the performance improves with 111~ 
lowest value achieved at 2.0. However, the algorithm 
degrades fast as the threshold value is incrcascd hcyond 
3. This shows that Adaptive is most sensitive IO the value 
of DevThreshold and reasonable performance can IX 
achieved if the value is between I and 3. 

The houndary hetween small and medium qucrics was 
fixed at 10% for the experiments prcscntcd so far. 
Additional experiments ahout the sensitivity of .~hc 
algorithm to the boundary hctwecn small and medium 
queries have been omitted here due to lack of space and 
the results can be found in [Meht93h]. 

9. Conclusions and Future Work 
This paper has investigated the problem of memory 

allocation for a multiple query workload consisting 01 
queries belonging to different classes with very different 
resource requirements. The results obtained demonstrate 
that the performance of the memory allocation policy is 
closely linked to the scheduling policy used IO scrvicc 
arriving queries. Three memory allocation politics and 
two scheduling policies were described. The three 
memory allocation and two scheduling policies can hc 
combined to produce six different schemes, each ol 
which makes separate allocation and scheduling 
decisions. Their performance was compared to that of a 
new adaptive algorithm that combines the two decisions. 
A simulation study demonstraicd that the adaptive 
algorithm provides excellent performance under a wide 
variety of workloads and, in several casts, performs much 

-f- ]ight)--‘..---.-‘4.-.-. 
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Figure 20: Sensitivity to Activate Figure 21: Sensitivity to DevThreshold 
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hcttcr than any of the other schemes. We also 
dcmonstratetl that an intelligent combination of allocation 
and scheduling decisions can give substantial gains in 
pcrlimnancc. 

Thcrc arc scvcral possible cxtcnsions to the adaptive 
algorithm prcscntcd in this paper. In several cases, 
lirirncss is not the only criteria when executing a multi- 
class workload. Often workloads consist of queries of 
diffcrcnt types with each type having a fixed response 
time or throughput goal. We want to investigate how the 
prcsenl scheme can be cxtendcd to handle such 
pcrformancc ohjcctives. All the queries in our workloads 
wcrc hash join qucrics. However, the adaptive algorithm 
can also hc applied to queries using other join methods. 
The Adaptive algorithm uses observed response time 
cstimatcs to control the MPL of each of the classes. This 
could bc used cvcn with other join methods like nested- 
loop and sort-merge. The division of queries into the 
three classes would also he valid for Sort-Merge and 
Neslcd Loop join. In the cast of sort-merge joins, queries 
could hc divided into small, medium and large classes 
hascd on the size of the memory needed for sorting the 
relations. The size of the inner relation could be used to 
make the division for Nested-Loop join queries. 

WC also want to investigate whether the policies that 
we have developed can be adapted to processing mixes of 
transactions and queries. Finally, an important future 
objective is to implement the adaptive scheme described 
in this paper and to measure its performance on some real 
datahase workloads. 
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