
Adaptive Database Buffer Allocation Using Query Fcedbacl~* .

ChungMin Melvin Chen Nicholas Roussopoulos

(min, nick)@cs.umd.edu
Department of Computer Science

University of Maryland
College Park, MD 20742

Abstract

In this paper, we propose the concept of using query
execution feedback for improving database buffer man-
agement. A query feedback model which adaptively
quantifies the page fault characteristics of all query ac-
cess patterns including sequential, looping and most im-
portantly random, is defined. Based on this model, a
load control and a marginal gain ratio buffer allocation
scheme are developed. Simulatidn experiments show
that the proposed method is consistently better than
the previous methods and in most cases, it significantly
outperforms all other methods for random access refer-
ence patterns.

1 Introduction

The topic of buffer management in database manage-
ment systems has been long investigated in the past.
The goal of such research is to develop a buffer manager
suitable for the database system in order to enhance the
system performance. Early works [Ftei76, Kap80, EB84]
accomplished this goal by adapting conventional alloca-
tion and replacement strategies for virtual memory sys-
tem to database management systems. Recently, an-
other class of algorithms [CD85, SS86, NFSSI] based

‘This research was sponsored partially by NASA under con-
tracts NAS5-31351 and USRA 550-81, by the National Science
Foundation under grant IRI-8719458, and by the University of
Maryland Institute for Advanced Computer Studies (UMIACS).

Permisrion to copy without fee all or part of this material id

granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and ito date appear, and notice is given
that copying ir by permission of the Very Large Data Bade En-
dowment. To copy otherwise, or to republish, requires a fee
and/or special permission jrom the Endowment.

I’roccedings of the 19th VLDD Conference
Dublin, Ireland, 1993

on the prediction of page access pnl6cnrs exhibited by
queries were proposed. Taking into account the acces!!
patterns helps the latter methods to outperform the
earlier ones in terms of system throughput.

Although algorithms based on prediction of access
patterns capture some of the behavior of database
queries, they still have some major deficiencies. First,
the strategies proposed were eligible only for wry spr-
cific patterns; they did not fit welt for general pat!.crn

(which was classifiad as random accesses). And scco~ttl,
in complicated queries, it is not cnsy 1.0 pwtlicl. ;t Iwiori

the invoked access patterns. To remedy these, a gcnc>ral
mechanism capable of automatically characterizing the:
access behaviors is desired.

In this paper, we propose a framework of tlatabaw~
buffer management featured with query feedback. ‘I’hcr
purpose is to characterize access patterns automaticillly

and refine the buffer allocation from prior qurry ex-
ecutions, in order to achieve better buffer utilization,
and, hence, improve the overall system throughput. A
quantitative model of characterizing query access bc-
havior is presented and used for adjusting buffer alloca-
tion. We also show the results of our simulation which
compares the performance improvement of thca proposctl
work over the existing ones.

The rest of this paper is organized as follows. In
Section 2, WC review previous work and rnotivatc 1.11~
approach of using query feedback for tlat;ll)a.<c: blrfli-r
management. In Section 3, Wc introduce t.lw ~~lli~l~til.iL-

tive model for characterizing query access behavior, and
describe the mechanism of feedback and adaptation to
fulfill the model. Section 4 describes a buffer manage-
ment system using query feedback for both load control
and buffer allocation. A set of simulation results arc
given in Section 5, which show the advantages of us-
ing feedback in database buffer ma.nagemc:nt. Section 6
summarizes this work.

tullfcr rtlarlrgcnlcrlt
iltl;oriltlttls I e-e altocalioti/repl;lccnlellt Policy adnlission

seciuei1- looping I rantloln DOliCV
I rL...L.-1, rpl [lmin I r?Li, rpl [~min,Lt]v rd ’ ” _

L-l -,’ b,$ MRU 0, II, RAN,):Lin I A
[I, 119 - [z% * t, t], MRU
[L 119 - 0,

[l,y], RAN
[f(load), byao], RAN

Table 1: Buffer Management Algorithms

2 Related Work and Motivation

‘l’he problem of hukr management could bc formulated
in short as follows. In a database environrneut where
coucurrcnt queries arrive and compete for limited buffer
rosourccv, the buffer manager’s task is to reduce the disk
operations and enhance the system’s throughput by uti-
lizing a dcdicat,cd buffer pool for caching the relation
pages. When buffers are available, the buffer manager
~~rretls to decide whether to activate a query in the wait-
ing queue, how many buffers to allocate to this query
and/or to caach relation accessed in this query, and fi-
nally, how to replace buffers. Therefore, there are three
tasks conducted hy the manager: load control, buffer
allocation, and bufler replacement.

The first class of database buffer management algo-
rithms [Rei76, SB76, Tue76, Kap80, EI184] used vari-
ations of traditional replacement techniques such as
LRU (Least-Rcccnt,ly-Used) and Working-Set directly
applied to the database buffer pool. Bowever, because
of the: less page reference locality found in database
systcnls Ihan thal found in virtual memory systems
[II lt7fi, 151184], autl tluc> to thr: lack of e~nbc~tltlctl load
c.olltrol ilw~chilllislll, lhosc: co~~vcntional stratcgic3 do 1101
p4orIn satisfactorily and might cause severe system
throughput degradation when buffer congestion occurs
[C1)85].

The abovc techniques failed to take advantage of spe-
cilic page reference behavior exhibited by database al-
gorithms such as nested-loop joins, hash joins, and etc.
This was corrected in another group of buffer manage-
nlent algorithms [SS82, SS86, CD85, NFS91, FNSSl]
based on the page reference characteristics exhibited
by database queries. In this class of algorithms, load
control and buffer allocation are incorporated.

In [SS82, SSXS], the authors suggested that in order
1.0 run a query efficiently, a minimum number of buffers,
callcwl idol scl size, must be provided during execution.
‘l’he apl)roach of the hot set based algorithm is improved
;u~tl refined in following papers [CD85, NFS91, FNSVl]
Li.4 011 the cliLLisificati011 of refercuce patters. ‘I%ey
ilrc: sllm~~~arizetl ia Table 1, where a sequential pattern
RCCCSR~S a scqucnce of distinct pages, a looping pat-
I,cbrn accesses a set of pages iteratively, and anything

else is called a random pattern. Each pattern is as-
sociated with an allowable range of allocated buffers
[/“ain, I,,,], and a suggested replacement strategy rpl.
Essentially, algorithms in this class only differ in deter-
mining the range [Imin, Ima=]. For all algorithms, MRU
(Most-Recently-Used) replacement is adopted for loop-
ing pattern, RAN replacement-which randomly selects
a page for replacement-is used for random pattern,
and no explicit replacement strategy is needed for se-
quential pattern since only one buffer page is allocated.

For the algorithm DBMIN proposed in [CD85], each
pattern is allocated with a fix number of buffers (called
locality set), this is reflected by l,,,i,, = &,,,, for all pat-
terns. For looping pattern, the locality set size 2 is the
number of distinct pages referenced in the loop. An in-
coming query is activated only if the current available
buffers, A, is greater than C l,,,i,, - the sum of the min-
imum buffer requirement of each access pattern induced
by the query. While DBMIN was shown to outperform
the conveutional algorithms, its strict allocation policy
might not result in best buffer utilization. For example,
a looping pattern query with locality set size of 100 will
not bc adlnittcd to execution even if there arc 90 buffer
pages avai lablo.

A more flexible allocation algorithm MC-x-y was pro-
posed in [NFSSI]. MG-x-y is similar to DBMIN except
on the load control decision and hence the number of
buffers allocated. As shown in Table 1, MG-x-y al-
lows a looping pattern to be executed if at least t% * 1
buffers a.re available; it allocates up to y buffers to a
random pattern, as long as the expected marginal gain’
is still positive and there are still available buffers. It
was shown in the same paper that MG-x-y has better
throughput improvement than DBMIN due to its flexi-
ble allocation. However, keeping 2 and y as global con-
stants for all queries may not be adequate, since differ-
ent reference strings, though of same reference patterns,
can have completely different faulting behaviors.

In a more recent paper by the same authors [FNSSl],
a class of predictive load control algorithms were pro-
posed. Subject to the current buffer availability, an

‘The expected marginal gain is the expected number of page
faults reduced per extra buffer allocated.

343

incoming query is activated only if doing so, it will re-
sult in better expected system performance. In other
words, l,,,i,, = f(load) is computed as the minimum
buffers needed for a waiting query to be activated in
order to enhance the performance of the current load.
For random pattern, I,,, = byao is the expected num-
ber of distinct pages referenced based on Yao’s formula
[Yao77]. This approach was shown to be more adap-
tive to different query loads than MG-x-y. However,
the computation of byao and the expected system per-
formance is based on the assumption of uniform page
access2, which in general is not true3.

Obviously, the main weakness of the algorithms men-
tioned above lies in their inability of characterizing dif-
ferent random reference strings. In these schemes, all
reference strings, other than sequential and looping, are
categorized as random, and are treated equally based on
the assumption of uniform page accesses. As a conse-
quence, when a query with random reference strings on
its accessed relations is admitted, these algorithms will
try to allocate as many buffers as possible to each rela-
tion since the ezpecled marginal gain is usually positive
for a wide range of buffer sizes. This neglects the benefit
of allocating more buffers to the relations which reduce
the most page faults and less to the others.

Another problem is that for complex queries, the
prediction of reference patterns may not be accurate
due to their non-trivial access methods. For exam-
ple, in a multi-relation join where non-clustered in-
dices or hash tables are used, according to the clas-
sification scheme, the reference strings on these rela-
tions will be simply classified as random, while in fact
the real page navigation may turn out to be of certain
locality instead of uniformity. Another class of com-
plex queries are those found in deductive databases or
object-oriented databases. They have totally different
access paths from standard relational algebra paths and
unpredictable page reference behaviors. In deductive
database systems, recursive queries usually generate ref-
erence strings which are not sequential or looping. In
object-oriented databases, dereferencing of pointers due
to its hierarchical structure also generate more “ran-
dom” page visits.

To cope with these problems, we propose a feedback
mechanism to capture query page reference behavior
by collecting information during query executions. In
this feedback model, al1 reference strings are associated
with a few characteristic values. Buffer management

2The assumption of uniform page ~CCCJJ assumes that a se-
quence of page references to a relation are distributed uniformly
among all pages of the accessed relation.

3b yao, in general, is much higher than the real number of page
referenced.

strategies (including load control and buffcr allociltion),
then are adjusted according to these fectlback valuc~s.
The exact size of buffers allocntc~d to each rc+:rcaucc>
string is determined by the current, butTor :~vailn.hilit.y
and the feedback values that charactcrizc~ the string.
A simple load control mechanisnl is also acloptcd iI1
the algorithm proposed here. However, the algoriLhnl
is basically an allocation-oriented approach as oppo.4
to a load-control-oriented one. Although ntlaptivr rc-
placement strategies based on (limited) rcfcrenrc! his-
tory have recently been explored for da.taba.se syskt~ls
[OOW93, Che92], in this paper we assume J,RU 1111lcss ii
looping pattern is detected in which caw we USC MR.lJ.
Simulation results have shown that the fccdhack is atl-
vantageous. J?urthermore, this approach is attractivr
and

l

practical for the following reasons:

Recurring and/or mutually-related qucrics (such a$
compiled queries, user-defined views, query cmhetl-
ded applications) are common, and, therefore, tho
use of the feedback information call significantly
improve their performance.

As we mention above, applications iu IIOW
relationrd database models make rcfcrcnce patt*orn
prediction inadequate since most, of the rc$crcncc>
strings will be classified aq random, and thcrcforc,
feedback is a proper way to collect knowledge ahout
page reference behaviors.

Most database systems have a software-h,asccI
buffer manager, which can be exbcndcd to include
the feedback mechanism with minimal ovcrhcnd.

The Feedback Model

In this section, we propose a feedback model which is
capable of characterizing the favlling behavior of any
reference string using query execution fc>cdhack. ‘I’hc
model is general in the sense that the b4avior of any
reference striug will be automatically qu;ulfAxl with :L
faulting characteristic record once it is esccut.etl.

3.1 The Faulting Characteristic Model

Definition 1 A reference siring 7Z = {VI, 1’2,. . ..) is a
finite sequence of page references, where each rrferencc
ri is denoted by the corresponding page number. We
use I7Z.l to denote the normalized length of R where COII-
secutive references to the same page are counted as one
reference; and let C(‘R) be the number ofdislincl pages
referenced in R. cl

As an example, suppose R = {3,2,2, I, 8,1), then
I’Rl = 5 because page 2 is referenced twice in a row and

344

should bc counted as only one reference. In this case,
C(R) = I.

Dcfieition 2 (iivfw in rcff~rf~ncc: string ‘R, and an em-
ploycd bull& riiariagernent algorithm 13, the /aulling
Junclion JR ,&b) is the number of page fuul1.s resulted
as a function of allocated buffer size 6. We will simply
denote it as f(b) when R and B are understood from
the context. cl

It follows from the above definitions that:

This cxprcsses the fact that when a reference string is
traced, no matter what buffer management strategy is
adopted, at least C(R) disk reads must be performed
to access all the distinct pages; and at most 1721 page
faults can occur when only one buffer page is allocated.
In general, there is no precise mathematical formula
to express the page faults as a function of buffer sizes,
even if the values of C(R) and (‘RI are known. Though
for ccrtaiu class of replacement algorithms [M+70], the
faulting function on any reference striug could be ob-
tained by tracing the string only once, the overhead of
computing and maintainiug the number of buffer faults
at every buffer size is large. For this reason, we intro-
duce a model to characterize the faulting function.

Definition 3 (The Faulting Character-
istic Model (FCM)) The fuvlting characieris2ics of
it faulting function fR,B(6) at buffer size be is a triple
f’b,, = (g, r, s), where

!I = &,B(l) - &,B(bo))/(bO - l),

c =
fn,B(l) - c(R)

* + (” - *) f&l) - fx,B(bO) ’

s = .thc mirhntrm 6 such that fx,~(b’) = f~,~(b)

for all 6’ > 6.

We call g the averuge marginal gain, c the critics1 size,
and s the sal~ralcd site. cl

Intuitively, /Q,” characterizes the general behavior of
j.R,~(b) in the range 1 < 6 < be. The idea is depicted
iu Figure 1, where a typical faulting function is plotted.
Suppose he buffers are allocated to the reference string,
aud as a result f(he) faults occur during the execution.
'I'hr average ma.rginal gain g is the slope of line Li
which counccts points (1, f(l)) and (60, f(be)), and it
rcprcsrnts the average page fault reduction per extra
buffer allocated in the range of 1 to 60 buffers. The sat-
urated size s is the smallest buffer size beyond which the

I i :\
* Ll I

bb c
I*

s C(R)
b

Figure 1: A Typical Faulting Function

slope becomes horizontal. Since s depends only on R
and B, but not 60, we use eR,J for clarity when needed.
It is easy to see that p(s) = f(C(R)) = C(R), and,
in general, s is smaller than C(R)4. Critical size c is
the x-axis value of the intersection point of line L1 and
Ls, where L-J is the horizontal line f = C(R). In other
words, critical size is the expected buffer size around
which the rate of reduction slows considerably.

We use FCM to quantify both the page access and
buffer fault behaviors of queries. For each relation ac-
cessed in a query, we associate it with a faulting charac-
teristic record. Also, for each query, a faulting charac-
teristic record is computed using the combined reference
string. Based on these values, we can tune the buffer
allocation in a more intelligent way. Before we go into
the detail of how this is done, we first explain how the
faulting characteristics are computed during execution,
and discuss how these values are used and refined.

3.2 Feedback Mechanism

Suppose reference string R is currently running under
buffer management algorithm B with dedicated buffer
capacity 60. According to the definition of FCM, there
arc four basic uumbers to be computed: fR,~(bc), 17Zl,
C(R), and SR,&
fip,g(60), number of page faults:

A counter for number of page faults is maintained.
This counter will simply increase each time when a page
fault occurs.

1721, normalized length of ihe reference string:
To detect consecutive references to the same page,

two variables are maintained. The first variable records
the previous logical page reference and will be refreshed

‘In our experiments, if LRU is used and 72 is a random pattern,
then sR LRU ranges from C(R)/3 to C(R)

345

Figure 2: Faulting Functions of Sequential and Looping References

at each page request; the other is a counter for [al
which will be increased by one each time when a page
different from the previous reference (which is recorded
in the first variable) is requested.
C(R), number of distinct pages referenced in 72:

Either a static vector or a dynamic hashing data

C(Z)), the saturated size can still be computed accord-
ingly. In the case of insufficient stack size or the strategy
is not LRU, we can either simply set Sa,B = C(R) or
estimate/compute its value baaed on some other tech-
niques (refer to [Che92] for more detail).

structure has to be maintained so that when a page
fault occurs, the structure will be searched to see if the
faulted page is a new occurrence. A counter for C(32)
will increase by one whenever a new occurrence encoun-
tered .

s~,B, the saturated buffer size:
Saturated size depends both on the reference string

and the underlying buffering strategy. Its exact value
in general is not easy to calculate, simply tracing the
reference string repeatedly for all buffer sizes to find
the saturated size is impractical. However, for LRU
replacement, its saturated sizes can be found efficiently.

3.3 Use and Adaptation of Faulting
Characteristics

In this subsection, we discuss how the faulting charsc-
teristics can be used to differentiate the access patterns,
and show how they can be adaptively adjusted, over rc-
curring query executions, to reflect more informed fault-
ing behaviors.

According to [M+70], LRU is a special member of a
class of replacement algorithms called stack algorithms.
Suppose we accommodate a LRU-stack of size C(7t)
and trace 7Z under LRU replacement, then according to
that paper,

C(X) f~,r.Ru(b) = C(‘R) + c hit(i),
i=b+l

where hit(i) is the frequency of page hits on the i’th po-
sition relative to the top of the LRU-stack. According to
our definition, the saturated size is the minimum s such
that fie,L&s) = C(R), therefore, as a consequence of
the above equation, hit(i) = 0 for all (s+l) 5 i < C(Z).
We then have:

S~,LRU = max{ilhit(i) # 0,l < i 5 C(R)}.

Figure 2.a shows a sequential pattern, where the page:
faults do not reduce as buffers increase. Therefore, no
matter how many buffers are allocated to it, according
to our feedback mechanism, the resulting characteristic
record is always (g, c, s) = (0, 1,l). We can use this to
detect a sequential pattern. As for looping refercnccs,
its faulting function depends on the replacement strat-
egy. Figure 2.b shows the case of LRU replaccmcnt
under which each page reference results in a pagr fault,
unless C(7t) buffers are provided. Thercforc, if the fcccl-
back characteristic records of a reference strirlg ‘l?. turn
out to bc (g,c, s) = (0, 1, C(a)) for several difrerrnt
buffer sizes less than C(R), then the reference pdtern
is more likely looping and, thus, MRU should be tried
during its next execution. Actually, the detection of
a looping pattern can bc quickly confirmed by chcck-
ing if hit(C(R)) = I%!,1 - C(R) during the first trace,
i.e., every hit goes to the bottom of the LRU-stack.
On the contrary, Figure 2.c shows the faulting function
under MRU, where coefficients u, p, y are uniquely de-
termined from the values of 1x1 and C(R)5. Thcrcforc,

If we associate the trace of R with a LRU-stack of size
C(Z), S~,LRU can be obtained from the above expres-
sion. Actually, as long as the stack size allocated is
greater than or equal to the saturabed size (instead of

51n [NFSSl], the e a p ecfed marginal gain for looping patterns
is derived, whose value is a constant depending on lhe reference

string. The formula we give here computer the ernrf vahws in-
stead of expected value, Ihc detail of the derivations ran be fwmrl
in [Che92].

346

once a MRlJ is adopted for a looping reference string,
its faulting function could be expressed as an equation
with coeffhzients computed from the feedback values of
1721 and C(R).

Figure 3: An Example of Non-Representative Feedback

For all reference strings, the obtained faulting char-
acteristics depend on the initial allocated buffer sizes
bo. If the initial bo is too close to 1, the resulting char-
acleristic may not represent the average’ behavior over
a wider range of buffer sizes. This is illustrated in Fig-
ure 3 which results in c > s. Though this is a rare case,
we can simply set the critical size to be equal to the
saturated size, and adjust it in later executions. We
propose here a simple adaptive procedure for adjust-
ing the characteristic record to obtain a more informed
record.

For the marginal gain and the critical size, their val-
ucs are adjusted gradually to best reflect the faulting
behavior. Formally, let ~a be the current characteristic
record, where b is the buffer size from which pa is com-
puted. Now suppose b’ is the buffer size allocated for
t,hc next cxecut,ion, then Pbl replaces Pb if either

H) 6’ > b and Pb’ > 8, or

I,) b’ < b and rb: < 8,

whcrc rbl = l(b’)-c(Rj is the slope between the two
points (b’, f(b’)) t&g (s, c(R)). We call f)l the residual
gain at b’. 0 is a constant threshold set for all reference
strings. Intuitively, p&l is a more informed feedback
Lhnn Pb if b’ is closer to the size beyond which the resid-
ual gain becomes smaller than the pre-defined threshold
0. The first conditions in both cases guarantee that un-
der a stingiest buffer allocation, a less informed record
will not replace an earlier more informed one. This
assures us that the adaptation, starting from either a
uuder-allocation (case a) or an over-allocation (case b),
eventually converges to a well informed characteristic
record whose residual gain is close to 0.

4 Buffer Management based on
FCM

In this section, we describe the load control and buffer
allocation mechanisms based on FCM.

Load Control

Since the purpose of this paper is to demonstrate the
strength of adaptive buffer allocation based on feedback
information, a simple load control mechanism is used.
The load control depends on the critical size c of query
q. Note that we compute c using the combined reference
string of q. A query q is activated if

A 1 0.5 * c,

where A is the available buffers.

Buffer Allocation

In an environment where several concurrent reference
strings are traced, the buffer allocation algorithm is
used to allocate the buffers among the reference strings.
For example, buffers can be allocated among concur-
rent queries, and within each query, the buffers assigned
to this query can be again divided among all simul-
taneously referenced relations. DBMIN and MG-x-y
are examples of such allocation algorithms. However,
their allocation strategies for random reference strings
are based on the assumption of uniform page accesses.
As an alternative, we introduce an allocation algorithm
based on the FCM. Since FCM quantifies the reference
behavior from feedback, it provides a more accurate in-
formation than that based on uniformity.

Allocation based on the Marginal Gain Ratio
(MGR) Given n concurrent reference strings, we allo-
cate buffers proportional to their average marginal gains
subject to the following constraints:

a) never allocate more than the saturated size (avoid
waste), and

b) when the demand for buffers is high, never exceed
the critical size of each string. Cl

We demonstrate the MGR allocation policy, which
has been implemented in ADMS’, with a complete ex-
ample and show the adaptation process of the feedback
mechanism FCM. A 3-way join query which accesses

6ADMS, the Advanced Database Management System, is
a database danagement system developed at the Department
of Computer Science, University of Maryland, College Park,
[RES92].

347

three base relations simultaneously is taken as an
example:

select * from lOk1, lOk2, lOk3
wherelOkl.unl = lOk2.unl ‘and lOk2.un2 < ‘500’

and lOk1.5000 = lOk3.5000

Each relation contains 10,000 tuples spanning over
2,500 pages, while the query results in 1,000 tuples. The
query is chosen so that none of the reference strings on
the relations is of sequential or looping pattern.

Figure 4 tabulates the allocations and feedback values
for a sequence of query executions by MGR. Each table
denotes an execution, where A is the available buffers
and column b correpponds to the buffers allocated to
each relation. Column f(b) is the resulting page faults.
Column r denotes the residual gain computed based on
b and f(b) after the execution. Columns g, c and s are
the best so far informed faulting characteristic record,
they are adjusted properly after each execution. We
also keep b’, the buffer size of the best so fa.r informed
characteristic record, i.e. Pa* = (g,c,s), in the table.
b’ is used in the future execution to determine if new
feedback should replace the current one. Adaptation of
characteristic record is marked with an asterisk. The
threshold 0 for the residual gain is set to 1.0 in this
experiment.

Just before the first execution, since no feedback ia-
formation is available, MGR simply allocates the avail-
able A = 50 buffers evenly among all relations. After
the execution, f(b), I7Zl,C(R) and s are obtained, and
based on these, r, g, c are computed. Since it is the
first execution, all feedback will be kept. Note that
l7Zl, C(72) and s are kept unchanged thereafter.

At Execution 2, 100 buffers are available, MGR al-
locates buffers proportional to the marginal gains ob-
tained from previous execution, therefore, lOk1 is allo-
cated 100 * 2.75/(2.75 + 7.06 + 0) = 28 buffers, lOk2
is allocated 100 * 7.06/(2.75 + 7.06 + 0) = 71 buffers,
and lOk3 is allocated 1 buffer since its marginal ga.in
is 0. As a result of this execution, the residual gains
for lOk1 and lOk2 are computed to be 1.35 and 6.11,
both of which are still greater than the threshold value
1.0, and since they correspond to a.n execution with
more buffers than the previous, their characteristic
records are replaced by the new feedback. For example,
for lOk1, the characteristic record gets adjusted from
p17 = (2.75,196,372)of E xecution 1 to a more informed
one P2s = (2.62,206,372) of Execution 2. IIowever, for
lOk3, since the faulting characteristics at buffer size 1
are meaningless, the characteristics obtained from Ex-
ecution 1 ~16 = (0.00, 1,719) will remain unchanged.

At Execution 3, 300 buffers are available, according
to the marginal gain ratios obtained form Execution

Figure 4: Allocation and Adaptation of MGII

2, lOk1 is first allocntcd 300 * 2.62/(2.G2 + 7.67) = i6
buffers and lOk2 with 300 * 7.G7/(2.62 + 7.67) I;I 223
buffers. Ilowevcr, according to MGR, no allocation cm

exceed the satura.ted size, thus only 125 bufl’crs will IW
allocated to lOk2. The remaining 223- 125 = 98 hlfcrs
are then redistributed among lOk1 a.ntl IOk3, but sinccb
lOk3 has zero marginal gain and critical size of 1, 10k I
receives all the relnn.ining buffers and results in totally
76 + 98 = 174 bufli:rs. After the execution, the rc,sitlllirl
gain of lOk1 is 1.03, which is greater thi~ll i.hc thrcsh-
old, so the characteristic record is n.gain adjusted [ronI
pzs = (2.62,206,372) to p174 = (1.91,282,372). ‘I%~
characteristic record of lOk2 is not clm~gcd since its
residual gain 1’ = 0 is less than the threshold.

At Execution 4, 50 buffers are available, MGR. al-
locates buffers ba.sed on the a.djustcd characteristic

348

Excc. 1 Exec. 2 Exec. 3 Exec. 4 Exec. 5
available buffer size 50 100 300 50 100
page faults of MGH. 2727 2276 1685 2577 2243

page faults of MC-x-y 2727 2572 1951 2727 2572

Table 2: Page Faults Summary for HGR and MG-x-y

!\ .‘..,,
\ t.

~0 ‘i’
..I ._

‘..
P

t,.
',....,

. . .._

: ., : \ ‘, : i ‘, 4. MO-z-y
.. ‘<. . . I\

k ..+J

“.,,btoR -.. “..,. “....__ .’ . . .
OPT -...,. --..._ * “’ __--d-- ~

--L& - .---I so0 100 1

Figure 5: Page Faults Comparison among MGR, MG-x-y and OPT

records resulting from the prior three executions. As
a result, it produces 2577 page faults, which is less than
the 2727 page faults produced by Execution 1 where the
same buffer size is provided but no feedback is available.
No characteristic records are adjusted since the buffer
size allocated to each relation for this execution is less
thnll the IHIILT size associated with the best informed
c.bariLcl.r’risl.ic rc,cortl. For cxamplc, for lOk2, the al-
lod~l bulkr size 6 = 40 at Execution 4 is less than
6’ = 7 I at Execution 3.

AntI finally at execution 5, where 100 buffers are pro-
vi&d, it produces 2243 page faults, a number that is
slight.ly smaller than 2276, the one produced at Execu-
tion 2 with the same available buffer size. This can be
attributed to the ada.ptation of the characteristic record
1.hrough Execution 2 and 3. Also note that the charac-
i.cristic record of lOk2 is adjusted again after this execu-
tion, because its residual gain T = G.15 is greater than
I.hc threshold and its allocated buffer size 6 = 80 is also
grctat.rr than 6‘ = 71 (as recorded in Execution 4).

WC> also cxpcrimcnted the MG-x-y algorithm for the
S~IIIC SCC~IICIICC of executions above, for which it resulted
ill c~qual buff(:r allocation among the relat.ions since the
rctfcarcllcc- strings havr cqusl length and are random on
CV1llill size of relations. The page faults are compared
wit.11 t.host: of MGR in ‘I’n.ble 2. It. WII hc, seen that the
;ltl;~pt;tl)ilil.y of M(;It reduces the pagO faarrll,s.

WC ills<> plot 1.11v faulting curves for MGR and MG-
s-y for tliffcrc,llt. bulfer sizes, assuming that thr above

adjusted characteristic record is used for MGR. The
optimal replacement algorithm OPT [Be166], which re-
places the page that won’t be used in the longest future,
is also graphed for comparison. Figure 5.(a) compares
the number of page faults at different buffer sizes. Rel-
ative page faults with respect to OPT are drawn in
Figure 5.(b), with buffer size ranges from 1 to sOpT,
where SOpT is the saturated size under OPT replace-
ment strategy. It is not hard to see that MGR performs
IIIUC~I better than MG-x-y. Especially when buffer size
is around 200, the page fatilts are reduced to half of the
page faults over and above OPT.

5 Simulation Results

In this section we present a simulation for evaluating the
performance of different database buffer management
algorithms. The simulation is similar to the one used
in [CD85, NFSSl] which simulates a closed system with
concurrent queries competing for buffers.

For the purpose of baseline comparison, LRU is se-
lected as a representative since according to [EH84,
CD85], it makes no significant performance difference
from the other conventional strategies such as Working-
Set and Clock. Two schemes, local LRU (LLRU) and
global LRU (GLRU) are simulated. Local LRU main-
tains an LRU list for each relation of the concurrent
queries. Global LRU manipulates the whole buffer pool
uudcr a single LRU list for all queries. There is no load

349

control for global LRU, i.e., a query is admitted imme-
diately as it arrives; for local LRU, a query is admitted
only when there are still available buffers.

Since MG-x-y has been shown to outperform DBMIN
using a flexible allocation [NFS91], we do not include
DBMIN in the comparison. By trial and error, we have
adjusted the values of z and y in MG-x-y so that it
reached its best overall performance. Six pairs of (z, y)
are experimented: (50, loo), (50, 200), (50, 400), (100,
loo), (100, 200), and (100, 400). A query is admitted
if the available buffers are more than the sum of each
of its accessed relation’s minimum buffer requirement.
After a query is admitted, MG-x-y allocates as many
buffers as possible to each relation, but not exceeding
the specified upper bound. See Table 1 for detail.

Among the class of predictive load control algorithms
[FNSSI], the algorithm with the best overall perfor-
mance, called EDU, is chosen as a representative in
our simulation. Subject to the current available buffers,
EDU activates a query only if it will result in better ef-
fective disk utilization than the one of the current state.
After the query is admitted, it allocates buffers in the
same way as MG-x-y does.

In MGR, we use a simple load controller based on
FCM. As described earlier, a query is admitted only
when the available buffers are more than half of the
query’s critical size. MGR uses the marginal gain ra-
tios for buffer allocation for both queries and relations.
It uses LRU replacement unless a looping pattern is de-
tected, in which case MRU is used instead. During the
simulation, MGR uses the adjusted faulting character-
istics for each query. The overhead of characteristics
feedback computations is also estimated and included
in the simulation, though it is almost comparatively un-
perceptible to the query computations, according to our
experiments on ADMS where MGR is implemented.

The reference strings are collected from executing a
number of queries against the Wisconsin Benchmark
database [BDT83] on ADMS. Each base relation con-
tains 10,000 tuples spanning over 2,500 pages. The
number of participating relations in each query vary-
ing from 1 to 3. Table 3 shows the access patterns for
each of the queries we chose. To illustrate the impact
of database buffer management, the queries have been
chosen such that they access various’numbers of dis-
tinct pages ranging from 100 to 1,500. Ql accesses 250
different pages, Q2 accesses 10 pages of the outer rela-
tion and has a looping access on a set of 98 pages of
the inner relation. Q3 and Q4 have random accesses
on their relations, with totally 1110 and 1416 distinct
pages referenced, respectively.

Three different query mixes are used in the simula-
tion and shown in Table 4. Ml simulates the situa-

r query 1 no. of result 1 no. of base refercrlcc? I

Table 3: Query Types

Table 4: Query Mixes

tion where most of the reference strings arr nithcr s(‘-
quential or looping, M2 simulates the situation whcrc~
random references dominate, whereas in M3, all query
types have the same frequeucy.

The number of concurrent queries (concurrency Icvcl)
varied from 1 to 32. Initially, the queries are generated
until the concurrency level is reached, and thereafter, no
new query will be generated until a query fiuishcs and
leaves the system. Concurrent queries arc schedulctl by
round robin for CPU. Unless mentioned otherwise, the
size of the buffer pool is 1,000 pages. In all cases, the
query mixes along with the configurations simulate au
IO-bound closed system.

The simulations have beeu performed under different
levels of data sharing. In no data sharing, all concur-
rent queries a.ccess different copies of the relations or
completely different databases. In partial data s/taring,
every two of the concurrent queries access the same copy
of database. And in full data sharing, all queries access
the same database. The higher the sharing, the hct-
ter buffer utilization due to the fact tllat pagc~s in the
buffers are used by several concurrent qucrics. llowever,
due to the presence of concurrent queries on JifTercnt
copies of the database, even if a large number of buffers
is available, it is not possible to load all the pages OH
demand into main memory simultaneously.

In the rest of this section, we interpret the results of
the simulation. In all the presented figures, the throagh-
put refers to the average number of qucrics finished per
minute.

It should be pointed out that for the first time query
runs, MGR simply uses MG-x-y strategy for allocation
since no feedback is available yet. However, after the
first query feedback, MGR uses the faulting charactcr-
istics to adjust the allocations for recurring queries. Be-
cause MGR uses more information about the behavior
of the queries, it is expected to do better tha.u all other
techniques.

350

Numba of comrnntclwrh

Figure 6: M3, no Data Sharing

if

--- --
9.J ,“.

* *.
9.t ,: ‘%. 1

5.5 -

5.t

i; :.d&:,d

4.5
_- --.*-__ ---.

4.
-

NumbadC -1 Qudr

Figure 7: Ml, no Data Sharing

Equal F’requcncy Query Mix
Figure 6 depicts the result of running query mix M3,

where sequential and looping references occur as fre-
quently as random references. In this case, MGR per-
forms much better than all other strategies. The group
of MG-x-y and EDU algorithms have similar perfor-
mance which is significantly better than the LLRU and
GLRU. As can be seen, MGR using FCM outperforms
the probabilistic method used in MG-x-y and EDU, and
the* inferior LItUs.

Effect of Sequential aud Looping Refereuccs
Figure 7 compares the throughput of evaluating

query mix M 1 using differcut algorithms. Since sequen-
tial and looping references dominate, the use of pat-
tcru prediction and flexible allocation makes MG-x-y
perform better than EDU. Load control does not has
as much impact as buffer allocation in sequential and
loopiug query mix. Rowever, MGR performs even bet-

P 2&a-

:
2.40-

NM,,,& of Con-t Queria

Figure 8: M2, no Data Sharing

Figure 9: M3, Partial Data Sharing

ter than MG-x-y.

Effect of Random References
Query mix M2 simulates the effect of random refer-

ences. Figure 8 shows the throughputs. In this case,
the improvement of MG-x-y over LRUs is less substan-
tial when compared to the previous figure. This is at-
tributed to its inability to characterize random refer-
ences. On the contrary, EDU now outperforms MG-x-y
due to its ability of blocking a random reference when
available buffers are not sufficient to increase or keep
the system performauce, thus avoid the performance
degradation. MGR, ‘however, still provides substantial
performance improvement, due to its ability to correctly
characterize random access behavior.

Effect of Data Sharing
We used query mix M3 in this set of experiments.

Figure 9 shows the result of partial data sharing. EDU
now again performs fairly better than MG-x-y after con-

351

Figure 10: M3, Full Data Sharing, (a) 1000 buffers, (b) 600 buffers

currency level reaches 12. MGR remains a lot better which is more accurate than the pattern prediction and
than all the others. probabilistic methods.

Figure 10.a shows the effect of full data sharing. For
concurrency levels between 1 to 8, GLRU outperform all
other strategies including MGR. This is because in full
data sharing, it is easy for global LRU to keep the local-
ity sets of a few queries in buffers. However, when the
number of concurrent queries increases, this advantage
disappears because the overall locality set becomes too
large to be accommodated by the buffer pool, and thus
MGR and EDU win again. In this simulation, EDU
is close to MGR, which indicates that when data shar-
ing increases, the impact of buffer allocation decreases.
Overall GLRU and MG-x-y perform roughly the same.

6 Conclusion

If the buffer pool gets smaller, from 1,000 to 600, the
effect of full data sharing become less significant. This is
shown in Figure lO.b, where GLRU now degrades dras-
tically. Also, the performance improvement of MGR
over EDU now increases again. This indicates that
when buffer contention occurs, the buffer management
algorithm which can characterize the reference behavior
more accurately will result in better buffer utilization.

To summarize, our simulation results show that MGR
makes significant performance improvement over the
pattern prediction style algorithm MG-x-y and the
load-control-oriented algorithm EDU. In all cases of
query mixes with no data sharing, MGR outperforms
the second best strategy with 15% - 30% throughput
improvement in average. We also observed the effect
of data sharing, the results showed that, except for the
cases of full data sharing with a very large buffer avail-
ability and small concurrency level, MGR is still fa-
vored. In sum, the significant performance of MGR over
EDU and MG-x-y can be attributed to the advantage
of using query feedback in adjusting buffer ma.na.gcmcnt

In this paper, we propose the concept of using query
execution feedback for improving database bnffcr ~nan-
agement. A query feedback model which qnantilitx t.lw
page fault characteristics of all query access pi~t~lt*lWs in-
cluding sequential, looping and most importantly ran-
dom, is defined. Based on this model, a simple load
controller and a buffer allocation scheme using marginal
gain ratio are developed. The allocation scheme dis-
tributes the buffers among concurrent reference strings
according to their quantified characteristics. An oxtcw
sive set of simulations was conducted to coml)arcb the
performance in throughputs of the proposed method
with other existing ones. The simulations show t.l1at
the proposed method is consistently better than the
previous methods and in most cases, it significantly out-
performs all other methods for random access refcrcnccb
patterns.

The advantage of MGR. is tha tuning of 1.11~ bullibr
management techniques based on the real accws hc41nv-
ior obtained by query fcydback rather t,han probabilis-
tic query path analysis where crude assumptions such as
uniformity have to be made. Furthermore, since qucriw
are treated as reference strings, our approach is ;tpplici~-
ble not only to relational algebra access paths hut. also
to access pat115 of other more advanced tl;l.tal)il~c RYS-
tems sucli a.5 dctluctivc~ and ol).jrc6-oric,111.f~~l tliiI.;i.lww.

352

(BD’llKq

[Bel66]

[CD851

[Che92]

[EH84]

[FNSDl]

[Kw801

[M+70]

[NFS91]

D. Bitton, D.J. Dewitt, and C. Turbyfill.
Benchmarking database systems, a system-
atic approach. In Proceeding of 9’th Intl.
Conj on VLDB, 1983.

L. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems
Journal, 5(2):78-101,1966.

II. Chou and D. Dewitt. An evaluation of
buffer management strategies for relational
database systems. In Proceeding of the 11th
Intl. Conj on VLDB, pages 127-141, 1985.

C. Chen. Adaptive query optimization. The-
sis Proposal, Department of Computer Sci-
ence, University of Maryland, College Park,
Nov. 1992.

W. Effelsherg and T. Haerder. Principles of
database buffer management. ACM TODS,
9(4):560-595, 1984.

C. Faloutsos, R. T. Ng, and T. Sellis. Pre-
dictive load control for flexible buffer alloca-
tion. In Proceeding of the 17th Intl. Conj. on
VLDB, pages 265-274, 1991.

J. Kaplan. Buffer management policies in a
database environment. Master’s thesis, Uni-
versity of California, Berkeley, 1980.

R. Mattson et al. Evaluation techniques for
storage hierarchies. IBM Systems Journal,
!)(2):78-.-117, 1970.

R. T. Ng, C. Faloutsos, and T. Sellis. Flexi-
ble buffer allocation based on marginal gains.
In Proceeding of 1991 ACM-SIGMOD Intl.
Conj. on Management of Data, pages 387-
396, 1991.

[OOW93] E. J. O’Neil, I’. E. O’Neil, and G. Weikum.
The LRU-K page replacement algorithm for
database disk buffering. In Proceeding of
1993 ACM-SIGMOD Intl. Conj. on Manage-
ment of Data, pages 297-306, 1993.

[Rei76] A. Reiter. A study of buffer manage-
ment policies for data management sys-
tems. Technical Report TR-1619, Mathemat-
ics Research Center, University of Wisconsin-
Madison, 1976.

[RES!l2]

[RR761

[SB76]

[SSSZ]

[SSSS]

[Tue76]

[Yao77]

N. Roussopoulos, N. Economou, and A. Sta-
menas. Adms: A testbed for incremcntnl ac-
cess methods. To appear in IEEE pans. on

Knowledge and Data Engineering, 1992.

J. Rodriguez-Rosell. Empirical data refer-
ence behavior in data base systems. IEEE
Computer, 9(11), Nov. 1976.

S.W. Sherman and R.S. Brice. Performance
of a database manager in a virtual memory
system. ACM TODS, l(4), 1976.

G. Sacca and M. Schkolnick. A mechanism
for managing the buffer pool in a relational
database system using the hot set model. In
Proceeding of the 8th Intl. Conj. on VLDB,
pages 257-262, 1982.

G. Sacca and M. Schkolnick. Buffer manage-
ment in relational database systems. ACM
TODS, 11(4):474-498, 1986.

W. Tuel. An analysis of buffer paging in vir-
tual storage systems. IBM Journal of Re-
search and Development, 1976.

B.S. Yao. Approximating block accesses in
database organizations. Communications of
ACM, 20(4), 1977.

353

