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Abstract 

In this paper, we propose the concept of using query 
execution feedback for improving database buffer man- 
agement. A query feedback model which adaptively 
quantifies the page fault characteristics of all query ac- 
cess patterns including sequential, looping and most im- 
portantly random, is defined. Based on this model, a 
load control and a marginal gain ratio buffer allocation 
scheme are developed. Simulatidn experiments show 
that the proposed method is consistently better than 
the previous methods and in most cases, it significantly 
outperforms all other methods for random access refer- 
ence patterns. 

1 Introduction 

The topic of buffer management in database manage- 
ment systems has been long investigated in the past. 
The goal of such research is to develop a buffer manager 
suitable for the database system in order to enhance the 
system performance. Early works [Ftei76, Kap80, EB84] 
accomplished this goal by adapting conventional alloca- 
tion and replacement strategies for virtual memory sys- 
tem to database management systems. Recently, an- 
other class of algorithms [CD85, SS86, NFSSI] based 
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on the prediction of page access pnl6cnrs exhibited by 
queries were proposed. Taking into account the acces!! 
patterns helps the latter methods to outperform the 
earlier ones in terms of system throughput. 

Although algorithms based on prediction of access 
patterns capture some of the behavior of database 
queries, they still have some major deficiencies. First, 
the strategies proposed were eligible only for wry spr- 
cific patterns; they did not fit welt for general pat!.crn 

(which was classifiad as random accesses). And scco~ttl, 
in complicated queries, it is not cnsy 1.0 pwtlicl. ;t Iwiori 

the invoked access patterns. To remedy these, a gcnc>ral 
mechanism capable of automatically characterizing the: 
access behaviors is desired. 

In this paper, we propose a framework of tlatabaw~ 
buffer management featured with query feedback. ‘I’hcr 
purpose is to characterize access patterns automaticillly 

and refine the buffer allocation from prior qurry ex- 
ecutions, in order to achieve better buffer utilization, 
and, hence, improve the overall system throughput. A 
quantitative model of characterizing query access bc- 
havior is presented and used for adjusting buffer alloca- 
tion. We also show the results of our simulation which 
compares the performance improvement of thca proposctl 
work over the existing ones. 

The rest of this paper is organized as follows. In 
Section 2, WC review previous work and rnotivatc 1.11~ 
approach of using query feedback for tlat;ll)a.<c: blrfli-r 
management. In Section 3, Wc introduce t.lw ~~lli~l~til.iL- 

tive model for characterizing query access behavior, and 
describe the mechanism of feedback and adaptation to 
fulfill the model. Section 4 describes a buffer manage- 
ment system using query feedback for both load control 
and buffer allocation. A set of simulation results arc 
given in Section 5, which show the advantages of us- 
ing feedback in database buffer ma.nagemc:nt. Section 6 
summarizes this work. 
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Table 1: Buffer Management Algorithms 

2 Related Work and Motivation 

‘l’he problem of hukr management could bc formulated 
in short as follows. In a database environrneut where 
coucurrcnt queries arrive and compete for limited buffer 
rosourccv, the buffer manager’s task is to reduce the disk 
operations and enhance the system’s throughput by uti- 
lizing a dcdicat,cd buffer pool for caching the relation 
pages. When buffers are available, the buffer manager 
~~rretls to decide whether to activate a query in the wait- 
ing queue, how many buffers to allocate to this query 
and/or to caach relation accessed in this query, and fi- 
nally, how to replace buffers. Therefore, there are three 
tasks conducted hy the manager: load control, buffer 
allocation, and bufler replacement. 

The first class of database buffer management algo- 
rithms [Rei76, SB76, Tue76, Kap80, EI184] used vari- 
ations of traditional replacement techniques such as 
LRU (Least-Rcccnt,ly-Used) and Working-Set directly 
applied to the database buffer pool. Bowever, because 
of the: less page reference locality found in database 
systcnls Ihan thal found in virtual memory systems 
[II lt7fi, 151184], autl tluc> to thr: lack of e~nbc~tltlctl load 
c.olltrol ilw~chilllislll, lhosc: co~~vcntional stratcgic3 do 1101 
p4orIn satisfactorily and might cause severe system 
throughput degradation when buffer congestion occurs 
[C1)85]. 

The abovc techniques failed to take advantage of spe- 
cilic page reference behavior exhibited by database al- 
gorithms such as nested-loop joins, hash joins, and etc. 
This was corrected in another group of buffer manage- 
nlent algorithms [SS82, SS86, CD85, NFS91, FNSSl] 
based on the page reference characteristics exhibited 
by database queries. In this class of algorithms, load 
control and buffer allocation are incorporated. 

In [SS82, SSXS], the authors suggested that in order 
1.0 run a query efficiently, a minimum number of buffers, 
callcwl idol scl size, must be provided during execution. 
‘l’he apl)roach of the hot set based algorithm is improved 
;u~tl refined in following papers [CD85, NFS91, FNSVl] 
Li.4 011 the cliLLisificati011 of refercuce patters. ‘I%ey 
ilrc: sllm~~~arizetl ia Table 1, where a sequential pattern 
RCCCSR~S a scqucnce of distinct pages, a looping pat- 
I,cbrn accesses a set of pages iteratively, and anything 

else is called a random pattern. Each pattern is as- 
sociated with an allowable range of allocated buffers 
[/“ain, I,,,], and a suggested replacement strategy rpl. 
Essentially, algorithms in this class only differ in deter- 
mining the range [Imin, Ima=]. For all algorithms, MRU 
(Most-Recently-Used) replacement is adopted for loop- 
ing pattern, RAN replacement-which randomly selects 
a page for replacement-is used for random pattern, 
and no explicit replacement strategy is needed for se- 
quential pattern since only one buffer page is allocated. 

For the algorithm DBMIN proposed in [CD85], each 
pattern is allocated with a fix number of buffers (called 
locality set), this is reflected by l,,,i,, = &,,,, for all pat- 
terns. For looping pattern, the locality set size 2 is the 
number of distinct pages referenced in the loop. An in- 
coming query is activated only if the current available 
buffers, A, is greater than C l,,,i,, - the sum of the min- 
imum buffer requirement of each access pattern induced 
by the query. While DBMIN was shown to outperform 
the conveutional algorithms, its strict allocation policy 
might not result in best buffer utilization. For example, 
a looping pattern query with locality set size of 100 will 
not bc adlnittcd to execution even if there arc 90 buffer 
pages avai lablo. 

A more flexible allocation algorithm MC-x-y was pro- 
posed in [NFSSI]. MG-x-y is similar to DBMIN except 
on the load control decision and hence the number of 
buffers allocated. As shown in Table 1, MG-x-y al- 
lows a looping pattern to be executed if at least t% * 1 
buffers a.re available; it allocates up to y buffers to a 
random pattern, as long as the expected marginal gain’ 
is still positive and there are still available buffers. It 
was shown in the same paper that MG-x-y has better 
throughput improvement than DBMIN due to its flexi- 
ble allocation. However, keeping 2 and y as global con- 
stants for all queries may not be adequate, since differ- 
ent reference strings, though of same reference patterns, 
can have completely different faulting behaviors. 

In a more recent paper by the same authors [FNSSl], 
a class of predictive load control algorithms were pro- 
posed. Subject to the current buffer availability, an 

‘The expected marginal gain is the expected number of page 
faults reduced per extra buffer allocated. 
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incoming query is activated only if doing so, it will re- 
sult in better expected system performance. In other 
words, l,,,i,, = f(load) is computed as the minimum 
buffers needed for a waiting query to be activated in 
order to enhance the performance of the current load. 
For random pattern, I,,, = byao is the expected num- 
ber of distinct pages referenced based on Yao’s formula 
[Yao77]. This approach was shown to be more adap- 
tive to different query loads than MG-x-y. However, 
the computation of byao and the expected system per- 
formance is based on the assumption of uniform page 
access2, which in general is not true3. 

Obviously, the main weakness of the algorithms men- 
tioned above lies in their inability of characterizing dif- 
ferent random reference strings. In these schemes, all 
reference strings, other than sequential and looping, are 
categorized as random, and are treated equally based on 
the assumption of uniform page accesses. As a conse- 
quence, when a query with random reference strings on 
its accessed relations is admitted, these algorithms will 
try to allocate as many buffers as possible to each rela- 
tion since the ezpecled marginal gain is usually positive 
for a wide range of buffer sizes. This neglects the benefit 
of allocating more buffers to the relations which reduce 
the most page faults and less to the others. 

Another problem is that for complex queries, the 
prediction of reference patterns may not be accurate 
due to their non-trivial access methods. For exam- 
ple, in a multi-relation join where non-clustered in- 
dices or hash tables are used, according to the clas- 
sification scheme, the reference strings on these rela- 
tions will be simply classified as random, while in fact 
the real page navigation may turn out to be of certain 
locality instead of uniformity. Another class of com- 
plex queries are those found in deductive databases or 
object-oriented databases. They have totally different 
access paths from standard relational algebra paths and 
unpredictable page reference behaviors. In deductive 
database systems, recursive queries usually generate ref- 
erence strings which are not sequential or looping. In 
object-oriented databases, dereferencing of pointers due 
to its hierarchical structure also generate more “ran- 
dom” page visits. 

To cope with these problems, we propose a feedback 
mechanism to capture query page reference behavior 
by collecting information during query executions. In 
this feedback model, al1 reference strings are associated 
with a few characteristic values. Buffer management 

2The assumption of uniform page ~CCCJJ assumes that a se- 
quence of page references to a relation are distributed uniformly 
among all pages of the accessed relation. 

3b yao, in general, is much higher than the real number of page 
referenced. 

strategies (including load control and buffcr allociltion), 
then are adjusted according to these fectlback valuc~s. 
The exact size of buffers allocntc~d to each rc+:rcaucc> 
string is determined by the current, butTor :~vailn.hilit.y 
and the feedback values that charactcrizc~ the string. 
A simple load control mechanisnl is also acloptcd iI1 
the algorithm proposed here. However, the algoriLhnl 
is basically an allocation-oriented approach as oppo.4 
to a load-control-oriented one. Although ntlaptivr rc- 
placement strategies based on (limited) rcfcrenrc! his- 
tory have recently been explored for da.taba.se syskt~ls 
[OOW93, Che92], in this paper we assume J,RU 1111lcss ii 
looping pattern is detected in which caw we USC MR.lJ. 
Simulation results have shown that the fccdhack is atl- 
vantageous. J?urthermore, this approach is attractivr 
and 

l 

practical for the following reasons: 

Recurring and/or mutually-related qucrics (such a$ 
compiled queries, user-defined views, query cmhetl- 
ded applications) are common, and, therefore, tho 
use of the feedback information call significantly 
improve their performance. 

As we mention above, applications iu IIOW 
relationrd database models make rcfcrcnce patt*orn 
prediction inadequate since most, of the rc$crcncc> 
strings will be classified aq random, and thcrcforc, 
feedback is a proper way to collect knowledge ahout 
page reference behaviors. 

Most database systems have a software-h,asccI 
buffer manager, which can be exbcndcd to include 
the feedback mechanism with minimal ovcrhcnd. 

The Feedback Model 

In this section, we propose a feedback model which is 
capable of characterizing the favlling behavior of any 
reference string using query execution fc>cdhack. ‘I’hc 
model is general in the sense that the b4avior of any 
reference striug will be automatically qu;ulfAxl with :L 
faulting characteristic record once it is esccut.etl. 

3.1 The Faulting Characteristic Model 

Definition 1 A reference siring 7Z = {VI, 1’2,. . ..) is a 
finite sequence of page references, where each rrferencc 
ri is denoted by the corresponding page number. We 
use I7Z.l to denote the normalized length of R where COII- 
secutive references to the same page are counted as one 
reference; and let C(‘R) be the number ofdislincl pages 
referenced in R. cl 

As an example, suppose R = {3,2,2, I, 8,1), then 
I’Rl = 5 because page 2 is referenced twice in a row and 
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should bc counted as only one reference. In this case, 
C(R) = I. 

Dcfieition 2 (iivfw in rcff~rf~ncc: string ‘R, and an em- 
ploycd bull& riiariagernent algorithm 13, the /aulling 
Junclion JR ,&b) is the number of page fuul1.s resulted 
as a function of allocated buffer size 6. We will simply 
denote it as f(b) when R and B are understood from 
the context. cl 

It follows from the above definitions that: 

This cxprcsses the fact that when a reference string is 
traced, no matter what buffer management strategy is 
adopted, at least C(R) disk reads must be performed 
to access all the distinct pages; and at most 1721 page 
faults can occur when only one buffer page is allocated. 
In general, there is no precise mathematical formula 
to express the page faults as a function of buffer sizes, 
even if the values of C(R) and (‘RI are known. Though 
for ccrtaiu class of replacement algorithms [M+70], the 
faulting function on any reference striug could be ob- 
tained by tracing the string only once, the overhead of 
computing and maintainiug the number of buffer faults 
at every buffer size is large. For this reason, we intro- 
duce a model to characterize the faulting function. 

Definition 3 (The Faulting Character- 
istic Model (FCM)) The fuvlting characieris2ics of 
it faulting function fR,B(6) at buffer size be is a triple 
f’b,, = (g, r, s), where 

!I = &,B( l) - &,B(bo))/(bO - l), 

c = 
fn,B(l) - c(R) 

* + (” - *) f&l) - fx,B(bO) ’ 

s = .thc mirhntrm 6 such that fx,~(b’) = f~,~(b) 

for all 6’ > 6. 

We call g the averuge marginal gain, c the critics1 size, 
and s the sal~ralcd site. cl 

Intuitively, /Q,” characterizes the general behavior of 
j.R,~(b) in the range 1 < 6 < be. The idea is depicted 
iu Figure 1, where a typical faulting function is plotted. 
Suppose he buffers are allocated to the reference string, 
aud as a result f(he) faults occur during the execution. 
'I'hr average ma.rginal gain g is the slope of line Li 
which counccts points (1, f(l)) and (60, f(be)), and it 
rcprcsrnts the average page fault reduction per extra 
buffer allocated in the range of 1 to 60 buffers. The sat- 
urated size s is the smallest buffer size beyond which the 

I i :\ 
* Ll I 

bb c 
I* 

s C(R) 
b 

Figure 1: A Typical Faulting Function 

slope becomes horizontal. Since s depends only on R 
and B, but not 60, we use eR,J for clarity when needed. 
It is easy to see that p(s) = f(C(R)) = C(R), and, 
in general, s is smaller than C(R)4. Critical size c is 
the x-axis value of the intersection point of line L1 and 
Ls, where L-J is the horizontal line f = C(R). In other 
words, critical size is the expected buffer size around 
which the rate of reduction slows considerably. 

We use FCM to quantify both the page access and 
buffer fault behaviors of queries. For each relation ac- 
cessed in a query, we associate it with a faulting charac- 
teristic record. Also, for each query, a faulting charac- 
teristic record is computed using the combined reference 
string. Based on these values, we can tune the buffer 
allocation in a more intelligent way. Before we go into 
the detail of how this is done, we first explain how the 
faulting characteristics are computed during execution, 
and discuss how these values are used and refined. 

3.2 Feedback Mechanism 

Suppose reference string R is currently running under 
buffer management algorithm B with dedicated buffer 
capacity 60. According to the definition of FCM, there 
arc four basic uumbers to be computed: fR,~(bc), 17Zl, 
C(R), and SR,& 
fip,g(60), number of page faults: 

A counter for number of page faults is maintained. 
This counter will simply increase each time when a page 
fault occurs. 

1721, normalized length of ihe reference string: 
To detect consecutive references to the same page, 

two variables are maintained. The first variable records 
the previous logical page reference and will be refreshed 

‘In our experiments, if LRU is used and 72 is a random pattern, 
then sR LRU ranges from C(R)/3 to C(R) 
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Figure 2: Faulting Functions of Sequential and Looping References 

at each page request; the other is a counter for [al 
which will be increased by one each time when a page 
different from the previous reference (which is recorded 
in the first variable) is requested. 
C(R), number of distinct pages referenced in 72: 

Either a static vector or a dynamic hashing data 

C(Z)), the saturated size can still be computed accord- 
ingly. In the case of insufficient stack size or the strategy 
is not LRU, we can either simply set Sa,B = C(R) or 
estimate/compute its value baaed on some other tech- 
niques (refer to [Che92] for more detail). 

structure has to be maintained so that when a page 
fault occurs, the structure will be searched to see if the 
faulted page is a new occurrence. A counter for C(32) 
will increase by one whenever a new occurrence encoun- 
tered . 

s~,B, the saturated buffer size: 
Saturated size depends both on the reference string 

and the underlying buffering strategy. Its exact value 
in general is not easy to calculate, simply tracing the 
reference string repeatedly for all buffer sizes to find 
the saturated size is impractical. However, for LRU 
replacement, its saturated sizes can be found efficiently. 

3.3 Use and Adaptation of Faulting 
Characteristics 

In this subsection, we discuss how the faulting charsc- 
teristics can be used to differentiate the access patterns, 
and show how they can be adaptively adjusted, over rc- 
curring query executions, to reflect more informed fault- 
ing behaviors. 

According to [M+70], LRU is a special member of a 
class of replacement algorithms called stack algorithms. 
Suppose we accommodate a LRU-stack of size C(7t) 
and trace 7Z under LRU replacement, then according to 
that paper, 

C(X) f~,r.Ru(b) = C(‘R) + c hit(i), 
i=b+l 

where hit(i) is the frequency of page hits on the i’th po- 
sition relative to the top of the LRU-stack. According to 
our definition, the saturated size is the minimum s such 
that fie,L&s) = C(R), therefore, as a consequence of 
the above equation, hit(i) = 0 for all (s+l) 5 i < C(Z). 
We then have: 

S~,LRU = max{ilhit(i) # 0,l < i 5 C(R)}. 

Figure 2.a shows a sequential pattern, where the page: 
faults do not reduce as buffers increase. Therefore, no 
matter how many buffers are allocated to it, according 
to our feedback mechanism, the resulting characteristic 
record is always (g, c, s) = (0, 1,l). We can use this to 
detect a sequential pattern. As for looping refercnccs, 
its faulting function depends on the replacement strat- 
egy. Figure 2.b shows the case of LRU replaccmcnt 
under which each page reference results in a pagr fault, 
unless C(7t) buffers are provided. Thercforc, if the fcccl- 
back characteristic records of a reference strirlg ‘l?. turn 
out to bc (g,c, s) = (0, 1, C(a)) for several difrerrnt 
buffer sizes less than C(R), then the reference pdtern 
is more likely looping and, thus, MRU should be tried 
during its next execution. Actually, the detection of 
a looping pattern can bc quickly confirmed by chcck- 
ing if hit(C(R)) = I%!,1 - C(R) during the first trace, 
i.e., every hit goes to the bottom of the LRU-stack. 
On the contrary, Figure 2.c shows the faulting function 
under MRU, where coefficients u, p, y are uniquely de- 
termined from the values of 1x1 and C(R)5. Thcrcforc, 

If we associate the trace of R with a LRU-stack of size 
C(Z), S~,LRU can be obtained from the above expres- 
sion. Actually, as long as the stack size allocated is 
greater than or equal to the saturabed size (instead of 

51n [NFSSl], the e a p ecfed marginal gain for looping patterns 
is derived, whose value is a constant depending on lhe reference 

string. The formula we give here computer the ernrf vahws in- 
stead of expected value, Ihc detail of the derivations ran be fwmrl 
in [Che92]. 
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once a MRlJ is adopted for a looping reference string, 
its faulting function could be expressed as an equation 
with coeffhzients computed from the feedback values of 
1721 and C(R). 

Figure 3: An Example of Non-Representative Feedback 

For all reference strings, the obtained faulting char- 
acteristics depend on the initial allocated buffer sizes 
bo. If the initial bo is too close to 1, the resulting char- 
acleristic may not represent the average’ behavior over 
a wider range of buffer sizes. This is illustrated in Fig- 
ure 3 which results in c > s. Though this is a rare case, 
we can simply set the critical size to be equal to the 
saturated size, and adjust it in later executions. We 
propose here a simple adaptive procedure for adjust- 
ing the characteristic record to obtain a more informed 
record. 

For the marginal gain and the critical size, their val- 
ucs are adjusted gradually to best reflect the faulting 
behavior. Formally, let ~a be the current characteristic 
record, where b is the buffer size from which pa is com- 
puted. Now suppose b’ is the buffer size allocated for 
t,hc next cxecut,ion, then Pbl replaces Pb if either 

H) 6’ > b and Pb’ > 8, or 

I,) b’ < b and rb: < 8, 

whcrc rbl = l(b’)-c(Rj is the slope between the two 
points (b’, f(b’)) t&g (s, c(R)). We call f)l the residual 
gain at b’. 0 is a constant threshold set for all reference 
strings. Intuitively, p&l is a more informed feedback 
Lhnn Pb if b’ is closer to the size beyond which the resid- 
ual gain becomes smaller than the pre-defined threshold 
0. The first conditions in both cases guarantee that un- 
der a stingiest buffer allocation, a less informed record 
will not replace an earlier more informed one. This 
assures us that the adaptation, starting from either a 
uuder-allocation (case a) or an over-allocation (case b), 
eventually converges to a well informed characteristic 
record whose residual gain is close to 0. 

4 Buffer Management based on 
FCM 

In this section, we describe the load control and buffer 
allocation mechanisms based on FCM. 

Load Control 

Since the purpose of this paper is to demonstrate the 
strength of adaptive buffer allocation based on feedback 
information, a simple load control mechanism is used. 
The load control depends on the critical size c of query 
q. Note that we compute c using the combined reference 
string of q. A query q is activated if 

A 1 0.5 * c, 

where A is the available buffers. 

Buffer Allocation 

In an environment where several concurrent reference 
strings are traced, the buffer allocation algorithm is 
used to allocate the buffers among the reference strings. 
For example, buffers can be allocated among concur- 
rent queries, and within each query, the buffers assigned 
to this query can be again divided among all simul- 
taneously referenced relations. DBMIN and MG-x-y 
are examples of such allocation algorithms. However, 
their allocation strategies for random reference strings 
are based on the assumption of uniform page accesses. 
As an alternative, we introduce an allocation algorithm 
based on the FCM. Since FCM quantifies the reference 
behavior from feedback, it provides a more accurate in- 
formation than that based on uniformity. 

Allocation based on the Marginal Gain Ratio 
(MGR) Given n concurrent reference strings, we allo- 
cate buffers proportional to their average marginal gains 
subject to the following constraints: 

a) never allocate more than the saturated size (avoid 
waste), and 

b) when the demand for buffers is high, never exceed 
the critical size of each string. Cl 

We demonstrate the MGR allocation policy, which 
has been implemented in ADMS’, with a complete ex- 
ample and show the adaptation process of the feedback 
mechanism FCM. A 3-way join query which accesses 

6ADMS, the Advanced Database Management System, is 
a database danagement system developed at the Department 
of Computer Science, University of Maryland, College Park, 
[RES92]. 
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three base relations simultaneously is taken as an 
example: 

select * from lOk1, lOk2, lOk3 
wherelOkl.unl = lOk2.unl ‘and lOk2.un2 < ‘500’ 

and lOk1.5000 = lOk3.5000 

Each relation contains 10,000 tuples spanning over 
2,500 pages, while the query results in 1,000 tuples. The 
query is chosen so that none of the reference strings on 
the relations is of sequential or looping pattern. 

Figure 4 tabulates the allocations and feedback values 
for a sequence of query executions by MGR. Each table 
denotes an execution, where A is the available buffers 
and column b correpponds to the buffers allocated to 
each relation. Column f(b) is the resulting page faults. 
Column r denotes the residual gain computed based on 
b and f(b) after the execution. Columns g, c and s are 
the best so far informed faulting characteristic record, 
they are adjusted properly after each execution. We 
also keep b’, the buffer size of the best so fa.r informed 
characteristic record, i.e. Pa* = (g,c,s), in the table. 
b’ is used in the future execution to determine if new 
feedback should replace the current one. Adaptation of 
characteristic record is marked with an asterisk. The 
threshold 0 for the residual gain is set to 1.0 in this 
experiment. 

Just before the first execution, since no feedback ia- 
formation is available, MGR simply allocates the avail- 
able A = 50 buffers evenly among all relations. After 
the execution, f(b), I7Zl,C(R) and s are obtained, and 
based on these, r, g, c are computed. Since it is the 
first execution, all feedback will be kept. Note that 
l7Zl, C(72) and s are kept unchanged thereafter. 

At Execution 2, 100 buffers are available, MGR al- 
locates buffers proportional to the marginal gains ob- 
tained from previous execution, therefore, lOk1 is allo- 
cated 100 * 2.75/(2.75 + 7.06 + 0) = 28 buffers, lOk2 
is allocated 100 * 7.06/(2.75 + 7.06 + 0) = 71 buffers, 
and lOk3 is allocated 1 buffer since its marginal ga.in 
is 0. As a result of this execution, the residual gains 
for lOk1 and lOk2 are computed to be 1.35 and 6.11, 
both of which are still greater than the threshold value 
1.0, and since they correspond to a.n execution with 
more buffers than the previous, their characteristic 
records are replaced by the new feedback. For example, 
for lOk1, the characteristic record gets adjusted from 
p17 = (2.75,196,372)of E xecution 1 to a more informed 
one P2s = (2.62,206,372) of Execution 2. IIowever, for 
lOk3, since the faulting characteristics at buffer size 1 
are meaningless, the characteristics obtained from Ex- 
ecution 1 ~16 = (0.00, 1,719) will remain unchanged. 

At Execution 3, 300 buffers are available, according 
to the marginal gain ratios obtained form Execution 

Figure 4: Allocation and Adaptation of MGII 

2, lOk1 is first allocntcd 300 * 2.62/(2.G2 + 7.67) = i6 
buffers and lOk2 with 300 * 7.G7/(2.62 + 7.67) I;I 223 
buffers. Ilowevcr, according to MGR, no allocation cm 

exceed the satura.ted size, thus only 125 bufl’crs will IW 
allocated to lOk2. The remaining 223- 125 = 98 hlfcrs 
are then redistributed among lOk1 a.ntl IOk3, but sinccb 
lOk3 has zero marginal gain and critical size of 1, 10k I 
receives all the relnn.ining buffers and results in totally 
76 + 98 = 174 bufli:rs. After the execution, the rc,sitlllirl 
gain of lOk1 is 1.03, which is greater thi~ll i.hc thrcsh- 
old, so the characteristic record is n.gain adjusted [ronI 
pzs = (2.62,206,372) to p174 = (1.91,282,372). ‘I%~ 
characteristic record of lOk2 is not clm~gcd since its 
residual gain 1’ = 0 is less than the threshold. 

At Execution 4, 50 buffers are available, MGR. al- 
locates buffers ba.sed on the a.djustcd characteristic 
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Excc. 1 Exec. 2 Exec. 3 Exec. 4 Exec. 5 
available buffer size 50 100 300 50 100 
page faults of MGH. 2727 2276 1685 2577 2243 

page faults of MC-x-y 2727 2572 1951 2727 2572 

Table 2: Page Faults Summary for HGR and MG-x-y 
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Figure 5: Page Faults Comparison among MGR, MG-x-y and OPT 

records resulting from the prior three executions. As 
a result, it produces 2577 page faults, which is less than 
the 2727 page faults produced by Execution 1 where the 
same buffer size is provided but no feedback is available. 
No characteristic records are adjusted since the buffer 
size allocated to each relation for this execution is less 
thnll the IHIILT size associated with the best informed 
c.bariLcl.r’risl.ic rc,cortl. For cxamplc, for lOk2, the al- 
lod~l bulkr size 6 = 40 at Execution 4 is less than 
6’ = 7 I at Execution 3. 

AntI finally at execution 5, where 100 buffers are pro- 
vi&d, it produces 2243 page faults, a number that is 
slight.ly smaller than 2276, the one produced at Execu- 
tion 2 with the same available buffer size. This can be 
attributed to the ada.ptation of the characteristic record 
1.hrough Execution 2 and 3. Also note that the charac- 
i.cristic record of lOk2 is adjusted again after this execu- 
tion, because its residual gain T = G.15 is greater than 
I.hc threshold and its allocated buffer size 6 = 80 is also 
grctat.rr than 6‘ = 71 (as recorded in Execution 4). 

WC> also cxpcrimcnted the MG-x-y algorithm for the 
S~IIIC SCC~IICIICC of executions above, for which it resulted 
ill c~qual buff(:r allocation among the relat.ions since the 
rctfcarcllcc- strings havr cqusl length and are random on 
CV1llill size of relations. The page faults are compared 
wit.11 t.host: of MGR in ‘I’n.ble 2. It. WII hc, seen that the 
;ltl;~pt;tl)ilil.y of M(;It reduces the pagO faarrll,s. 

WC ills<> plot 1.11v faulting curves for MGR and MG- 
s-y for tliffcrc,llt. bulfer sizes, assuming that thr above 

adjusted characteristic record is used for MGR. The 
optimal replacement algorithm OPT [Be166], which re- 
places the page that won’t be used in the longest future, 
is also graphed for comparison. Figure 5.(a) compares 
the number of page faults at different buffer sizes. Rel- 
ative page faults with respect to OPT are drawn in 
Figure 5.(b), with buffer size ranges from 1 to sOpT, 
where SOpT is the saturated size under OPT replace- 
ment strategy. It is not hard to see that MGR performs 
IIIUC~I better than MG-x-y. Especially when buffer size 
is around 200, the page fatilts are reduced to half of the 
page faults over and above OPT. 

5 Simulation Results 

In this section we present a simulation for evaluating the 
performance of different database buffer management 
algorithms. The simulation is similar to the one used 
in [CD85, NFSSl] which simulates a closed system with 
concurrent queries competing for buffers. 

For the purpose of baseline comparison, LRU is se- 
lected as a representative since according to [EH84, 
CD85], it makes no significant performance difference 
from the other conventional strategies such as Working- 
Set and Clock. Two schemes, local LRU (LLRU) and 
global LRU (GLRU) are simulated. Local LRU main- 
tains an LRU list for each relation of the concurrent 
queries. Global LRU manipulates the whole buffer pool 
uudcr a single LRU list for all queries. There is no load 
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control for global LRU, i.e., a query is admitted imme- 
diately as it arrives; for local LRU, a query is admitted 
only when there are still available buffers. 

Since MG-x-y has been shown to outperform DBMIN 
using a flexible allocation [NFS91], we do not include 
DBMIN in the comparison. By trial and error, we have 
adjusted the values of z and y in MG-x-y so that it 
reached its best overall performance. Six pairs of (z, y) 
are experimented: (50, loo), (50, 200), (50, 400), (100, 
loo), (100, 200), and (100, 400). A query is admitted 
if the available buffers are more than the sum of each 
of its accessed relation’s minimum buffer requirement. 
After a query is admitted, MG-x-y allocates as many 
buffers as possible to each relation, but not exceeding 
the specified upper bound. See Table 1 for detail. 

Among the class of predictive load control algorithms 
[FNSSI], the algorithm with the best overall perfor- 
mance, called EDU, is chosen as a representative in 
our simulation. Subject to the current available buffers, 
EDU activates a query only if it will result in better ef- 
fective disk utilization than the one of the current state. 
After the query is admitted, it allocates buffers in the 
same way as MG-x-y does. 

In MGR, we use a simple load controller based on 
FCM. As described earlier, a query is admitted only 
when the available buffers are more than half of the 
query’s critical size. MGR uses the marginal gain ra- 
tios for buffer allocation for both queries and relations. 
It uses LRU replacement unless a looping pattern is de- 
tected, in which case MRU is used instead. During the 
simulation, MGR uses the adjusted faulting character- 
istics for each query. The overhead of characteristics 
feedback computations is also estimated and included 
in the simulation, though it is almost comparatively un- 
perceptible to the query computations, according to our 
experiments on ADMS where MGR is implemented. 

The reference strings are collected from executing a 
number of queries against the Wisconsin Benchmark 
database [BDT83] on ADMS. Each base relation con- 
tains 10,000 tuples spanning over 2,500 pages. The 
number of participating relations in each query vary- 
ing from 1 to 3. Table 3 shows the access patterns for 
each of the queries we chose. To illustrate the impact 
of database buffer management, the queries have been 
chosen such that they access various’numbers of dis- 
tinct pages ranging from 100 to 1,500. Ql accesses 250 
different pages, Q2 accesses 10 pages of the outer rela- 
tion and has a looping access on a set of 98 pages of 
the inner relation. Q3 and Q4 have random accesses 
on their relations, with totally 1110 and 1416 distinct 
pages referenced, respectively. 

Three different query mixes are used in the simula- 
tion and shown in Table 4. Ml simulates the situa- 

r query 1 no. of result 1 no. of base refercrlcc? I 

Table 3: Query Types 

Table 4: Query Mixes 

tion where most of the reference strings arr nithcr s(‘- 
quential or looping, M2 simulates the situation whcrc~ 
random references dominate, whereas in M3, all query 
types have the same frequeucy. 

The number of concurrent queries (concurrency Icvcl) 
varied from 1 to 32. Initially, the queries are generated 
until the concurrency level is reached, and thereafter, no 
new query will be generated until a query fiuishcs and 
leaves the system. Concurrent queries arc schedulctl by 
round robin for CPU. Unless mentioned otherwise, the 
size of the buffer pool is 1,000 pages. In all cases, the 
query mixes along with the configurations simulate au 
IO-bound closed system. 

The simulations have beeu performed under different 
levels of data sharing. In no data sharing, all concur- 
rent queries a.ccess different copies of the relations or 
completely different databases. In partial data s/taring, 
every two of the concurrent queries access the same copy 
of database. And in full data sharing, all queries access 
the same database. The higher the sharing, the hct- 
ter buffer utilization due to the fact tllat pagc~s in the 
buffers are used by several concurrent qucrics. llowever, 
due to the presence of concurrent queries on JifTercnt 
copies of the database, even if a large number of buffers 
is available, it is not possible to load all the pages OH 
demand into main memory simultaneously. 

In the rest of this section, we interpret the results of 
the simulation. In all the presented figures, the throagh- 
put refers to the average number of qucrics finished per 
minute. 

It should be pointed out that for the first time query 
runs, MGR simply uses MG-x-y strategy for allocation 
since no feedback is available yet. However, after the 
first query feedback, MGR uses the faulting charactcr- 
istics to adjust the allocations for recurring queries. Be- 
cause MGR uses more information about the behavior 
of the queries, it is expected to do better tha.u all other 
techniques. 
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Figure 6: M3, no Data Sharing 
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Figure 7: Ml, no Data Sharing 

Equal F’requcncy Query Mix 
Figure 6 depicts the result of running query mix M3, 

where sequential and looping references occur as fre- 
quently as random references. In this case, MGR per- 
forms much better than all other strategies. The group 
of MG-x-y and EDU algorithms have similar perfor- 
mance which is significantly better than the LLRU and 
GLRU. As can be seen, MGR using FCM outperforms 
the probabilistic method used in MG-x-y and EDU, and 
the* inferior LItUs. 

Effect of Sequential aud Looping Refereuccs 
Figure 7 compares the throughput of evaluating 

query mix M 1 using differcut algorithms. Since sequen- 
tial and looping references dominate, the use of pat- 
tcru prediction and flexible allocation makes MG-x-y 
perform better than EDU. Load control does not has 
as much impact as buffer allocation in sequential and 
loopiug query mix. Rowever, MGR performs even bet- 

P 2&a- 

: 
2.40- 

NM,,,& of Con-t Queria 

Figure 8: M2, no Data Sharing 

Figure 9: M3, Partial Data Sharing 

ter than MG-x-y. 

Effect of Random References 
Query mix M2 simulates the effect of random refer- 

ences. Figure 8 shows the throughputs. In this case, 
the improvement of MG-x-y over LRUs is less substan- 
tial when compared to the previous figure. This is at- 
tributed to its inability to characterize random refer- 
ences. On the contrary, EDU now outperforms MG-x-y 
due to its ability of blocking a random reference when 
available buffers are not sufficient to increase or keep 
the system performauce, thus avoid the performance 
degradation. MGR, ‘however, still provides substantial 
performance improvement, due to its ability to correctly 
characterize random access behavior. 

Effect of Data Sharing 
We used query mix M3 in this set of experiments. 

Figure 9 shows the result of partial data sharing. EDU 
now again performs fairly better than MG-x-y after con- 
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Figure 10: M3, Full Data Sharing, (a) 1000 buffers, (b) 600 buffers 

currency level reaches 12. MGR remains a lot better which is more accurate than the pattern prediction and 
than all the others. probabilistic methods. 

Figure 10.a shows the effect of full data sharing. For 
concurrency levels between 1 to 8, GLRU outperform all 
other strategies including MGR. This is because in full 
data sharing, it is easy for global LRU to keep the local- 
ity sets of a few queries in buffers. However, when the 
number of concurrent queries increases, this advantage 
disappears because the overall locality set becomes too 
large to be accommodated by the buffer pool, and thus 
MGR and EDU win again. In this simulation, EDU 
is close to MGR, which indicates that when data shar- 
ing increases, the impact of buffer allocation decreases. 
Overall GLRU and MG-x-y perform roughly the same. 

6 Conclusion 

If the buffer pool gets smaller, from 1,000 to 600, the 
effect of full data sharing become less significant. This is 
shown in Figure lO.b, where GLRU now degrades dras- 
tically. Also, the performance improvement of MGR 
over EDU now increases again. This indicates that 
when buffer contention occurs, the buffer management 
algorithm which can characterize the reference behavior 
more accurately will result in better buffer utilization. 

To summarize, our simulation results show that MGR 
makes significant performance improvement over the 
pattern prediction style algorithm MG-x-y and the 
load-control-oriented algorithm EDU. In all cases of 
query mixes with no data sharing, MGR outperforms 
the second best strategy with 15% - 30% throughput 
improvement in average. We also observed the effect 
of data sharing, the results showed that, except for the 
cases of full data sharing with a very large buffer avail- 
ability and small concurrency level, MGR is still fa- 
vored. In sum, the significant performance of MGR over 
EDU and MG-x-y can be attributed to the advantage 
of using query feedback in adjusting buffer ma.na.gcmcnt 

In this paper, we propose the concept of using query 
execution feedback for improving database bnffcr ~nan- 
agement. A query feedback model which qnantilitx t.lw 
page fault characteristics of all query access pi~t~lt*lWs in- 
cluding sequential, looping and most importantly ran- 
dom, is defined. Based on this model, a simple load 
controller and a buffer allocation scheme using marginal 
gain ratio are developed. The allocation scheme dis- 
tributes the buffers among concurrent reference strings 
according to their quantified characteristics. An oxtcw 
sive set of simulations was conducted to coml)arcb the 
performance in throughputs of the proposed method 
with other existing ones. The simulations show t.l1at 
the proposed method is consistently better than the 
previous methods and in most cases, it significantly out- 
performs all other methods for random access refcrcnccb 
patterns. 

The advantage of MGR. is tha tuning of 1.11~ bullibr 
management techniques based on the real accws hc41nv- 
ior obtained by query fcydback rather t,han probabilis- 
tic query path analysis where crude assumptions such as 
uniformity have to be made. Furthermore, since qucriw 
are treated as reference strings, our approach is ;tpplici~- 
ble not only to relational algebra access paths hut. also 
to access pat115 of other more advanced tl;l.tal)il~c RYS- 
tems sucli a.5 dctluctivc~ and ol).jrc6-oric,111.f~~l tliiI.;i.lww. 
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