
Managing Memory to Meet
Multiclass Workload Response Time Goals*

Kurt P. Brown+ Michael J. Carey Miron Livny

Computer Sciences Department, University of Wisconsin, Madison

Abstract
In this paper we propose and evaluate an approach to DBMS
memory management that addresses multiclass workloads with
per-class response time goals. It operates by monitoring per-
class database reference frequencies as well as the state of the
system relative to the goals of each class; the information that
it gathers is used to help existing memory allocation and page
replacement mechanisms avoid making decisions that may jcop-
ardize performance goals.

1 Introduction
A widening range of application areas, as well as requirements
for data sharing and continuous operation, are contributing to
an increase in the diversity of workloads that a DBMS must be
able to cope with. However, providing adequate performance for
each class in a multiclass DBMS workload is still an open prob-
lem [Pirahesh 90, Brown 92, DeWitt 921. A multiclass workload
is characterized by distinct classes of work that may have widely
varying resource demands, each with its own performance ob-
jective. A DBMS that is unaware of these performance objcc-
tives may penalize one class or another in an unpredictable way.
Consider the issue of buffer page replacement, for example. A
replacement policy based on recency of reference will tend to
penalize workload classes with low locality; one based on fre-
quency of reference may be biased against workload classes with
low arrival rates; and a policy which uses hints about the relative
value of pages based on their type (e.g. index or data) will be
biased against whatever workload class uses the “wrong” page
type. In order to avoid such “hard-wired” biases, a DBMS must
be able to accept performance objectives for each class as inputs,
and to use those goals as the basis for its resource management
decisions.

Given a set of performance objectives for each class, there
are a number of mechanisms that a DBMS can use to achieve
them: load control, CPU scheduling, disk scheduling, and mem-
ory management. While a complete solution to the problem of
satisfying performance goals in a multiclass environment would

*This work was partially supported by the IBM Corporation through n Re-
search Initiation Grant.

t Supported by an IBM Resident Study Fellowship.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distrituted for direct commerciul advantage,
the VLDB copyright notice ond the title of the publication and its date appeas
and notice is fiivrn that copying: is by permission of the Very Large Data &tse
Btdowwmt. To copy othtvwise, or to republish, requirrs a fee uncl/or spwictl
permission frnm the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993

likely include all of these options, in this paper we invcstigatc
the use of memory allocation and page replacement mechanisms
for this purpose. It is well known that memory management
is a critical factor in database system performance. which ac-
counts for the large volume of ongoing research in this arca
[Chou 85, Sacco 86, Cornell X9, Robinson 90, Ng 9 I, Palou 9 I,
Yu 93, O’Ncil 931. However, none of the previous work specili-
tally addresses how memory management can be used to achieve
per-class performance objectives for a multiclass workload.

There are two ways that memory can be used to improve
DBMS performance: for buffering disk pages, and for work.-
ing storage areas (join hash tables, sort work areas, etc.). AI
any point in time, some number of pages are being used for
disk buffers (the disk buffer region), and some are being used
for working storage (the working storage region). A DBMS
memory allocation policy is responsible for two decisions: it
must decide how many pages to devote to disk buffers versus
working storage, i.e. it must logically “draw a line” between the
disk buffer region and the working storage region; and it must
allocate memory within the working storage region among com-
peting lransactions.’ A page replacement policy is rcsponsihlc
for deciding which specific disk pages should reside in IIIC disk
buffer region at any point in time.

In a multiclass environment these decisions need to he driven
by per-class performance goals, as stated earlier. For workloads
that vary over time, they need to be dynamic as well. Otherwise,
the response time goals will at best he satislicd only on avcragc,
where the average is defncd over a large enough interval of time
to eliminate any workload variance. For many workloads, this
time frame would have to be extended to days, or even weeks.
In contrast we would like performance goals to he satislicd over
time frames on the order of tens of seconds or minutes.

In this paper, we propose and evaluate an approach to DBMS
memory management called frrpmt jhcirtg that spccilically
addresses multiclass workloads with per-class performance ob-
jectives. It is designed to be used in conjunction with existing
page replacement and allocation mechanisms and acts to prc-
vent allocation or replacement decisions that could violate the
performance objectives of a class. Fragment fencing operalcs
by periodically monitoring per-class database rcfcrcncc frcqucn-
ties as well as the state of the system relative to the goals 01
each class; it then uses this information to dyuamically SCI the
boundary between the disk buffer and working storage regions

’ II would nlso he responsible for allocating nlenu)ry within lhc disk butfcl
region as well, if a fornl allucntion policy is used thele. More conmouly. a
~lohcrl allocntion policy is used for the disk buffer region. and individual disk
buffer pages nrc never explicitly nssi&!nett lo any individual Irnnsaclion

328

ot IIICIIIOI’~, uutl IO guitlc ~hr ;~lloc;ltiotl of pages within the disk
l~uI‘I’~~r region IO clil’lill.ctl(j~tr~~n~c~rrr.s 01’ the tlaIahusc.

‘I’hc tcni;liiiclcr 01‘ the paper is organized as I’ollows: Wc hc-
gin by rcvicwing existing memory managcmcnt techniques in
Srclion 2. ‘l’hc frngmcnt fencing algorithm is then presented in
Section 3. Wc dcscribc the simulation model used lo evaluate
fragment fencing in Section 4, and we show the results of that
cvalualion in Section 5. Section 6 discusses some additional
issues and possible cxtcnsions to fragment fencing, and our con-
clusions and future plans arc summarized in Section 7.

2 Related Work
With rcspccl to database memory management, the only rele-
vanI work which spccilically uddrcsscs multiclass workloads arc
commcrci;ll systems. such as IBM’s DB2 [Chcnp 84, Tcng 841,
which provitlcs basic mechanisms to partition its hul’fcr pool and
IO place tlil’fcrcnt portions of the datahasc in specific partitions.
Dl~2’s pugc rcplaccmcnt policy is local within each partition, so
compclilion hc~wccn Ihc different pools is climinatcd. While
in Ihcory, this mechanism could he used lo satisfy multiclass
pcrl’ormancc ohjcctivcs, thcrc arc IWO prohlcms in using it for
this purpose. IGrst, it is static in nature, so it cannot respond to
workloud variance and shifts. Second, the corm&on between
rcsponsc time goals for each workload class and which parts of
the datuhasc IO place in each partition, as well as the relative
sizes of each partition, must be somehow determined manually
hy the daI&asc administrator. Ideally, we would like the DBMS
IO perform these tasks dynamically, based on the current system
stale illld the rcsponsc lime goals.

WC categorize rcccnt dcvclopmcnts in database buffer man-
agcmcn~ into Ihrec catcgorics: modified globul LRU, jkequency-
htrsc~tl,v~l /OCYI/ c/liery ~tttu1,y.k. The modified global LRU ap-
proachcs cxtcnd a basic global LRU allocation and replacement
mechanism hy permitting query operators to provide hints to
lhc huffcr liianagcr ahout the relative “value” of a page. For
cxaln~~lc. index IXIgcs could he considered more valuahlc than
~I;II;I p;~ges. as in lhc Domain Separation algorithm 1 Rcitcr 76);
r;uulomly ;~cccssctl pabl*s could hc trcatctl IIS more valuahlc
Iluul sc1lucnti;llly acccsscd ~U~CS, as in the DD2 I3ufI’er Man-
agcr [Chcng 84, ‘I’cng 841; or the inner relation of a nested loop
join could be preferred over the outer, as in the Starburst Buffer
Manager [Haas 901. Information on the value of a page is then
combined with information on recency of reference and used as
input to guide page rcplaccment decisions. These approaches
ilrc altractivc bccausc they address the major limitations of pure
global I.RU with a minimum amount of work. However, the
hints arc hased on static heuristics that are unrelated to response
time goals, and thercforc may be inappropriate in a multiclass
cnvironmcnl.

‘I’hc second category of memory management approaches
comhincs informution on frequency of reference with recency
of rcfcrcncc into the replacement criteria. This is logical be-
cuusc rcccncy of rclrcnce is a good basis for replacement when
tlaIahasc rcfcrcnccs cxhihit temporal locality, while frequency of
rcfcrcncc is best when references are skewed, but uncorrelated
lCoffm;ln 731. Real dalahasc reference behavior is a combina-
tion of both. The Frequency Based Replacement policy (FBR)
IRohinson 901 und the LRIJ-K algorithm [O’Ncil 931 arc exam-
plcs of this approuch. trucking frequency statistics on a page-hy-
page hasis. The 13uhhapurallcl database prototype IBoral 901 can
hc placed in this category us well, but unlike FBR and LRU-K,
which arc both dynamic, Buhba statically determined a bound-
ary hc~wccn that portion of memory which is managed by fre-

quency of rcfercncc (the lilt cache), and that which is managed
hy rccincy (normal global LRIJ). This boundary is dctcrmincd
off-Iinc hy a “5 Minute Rule” ~ypc of analysis [Gray 871. The
Bubba scheme tracks frequency information on a per-file basis
and uses a size-normalized frequency metric called temperature
[Copcland 881 (references per second per megabyte). Entire
files are statically placed in the file cache in decreasing order of
temperature. By statically or dynamically combining frequency
and rccency into the replaccmcnt policy, these approaches each
provide better performance than pure LRU while avoiding any
requirements for “hint-passing”.

Examples of the local query analysis approach are Hot Set
[Sacco 861, DBMIN [Chou 851, Marginal Gains [Ng 911, Pre-
dictive Load Control [Falou 913, and Threshold [Yu 931. All
of thcsc algorithms use information in the query plan to de-
tcrminc the optimal amount of memory to allocate on a local
basis (to queries, subqueries, or query/file combinations). The
Hot Set, DBMIN, Marginal Gains, and Predictive Load Con-
trol approaches all address disk buffer memory allocation, and
the Threshold algorithm addresses working storage allocation.
However, none of them address the trade-off between the two
types of memory. Interestingly, although some of these algo-
rithms use response time predictions internally (e.g. Predictive
Load Control and Threshold), none of them are driven by re-
sponse time goals. An obvious question is whether these ap-
proaches can be modified to be driven by their response time
predictions instead of just using them as a means to another
end. Unfortunately, the difficulty with trying to drive them by
their response time predictions is that they can be quite inaccu-
rate when trying to predict transient response times, especially
in a multiclass environment where each class has widely vary-
ing resource demands. Buffer hit rates, communication delays,
lock waits, and queuing at the disk and CPU are all factors that
can significantly affect the performance of a query when it runs
concurrently with other work.

3 Fragment Fencing
Before we can explain how fragment fencing works, we must Iirst
dclinc the terms pe$trtncmce goal and frugment. While thcrc
arc many possible ways to specify a performance goal, it will be
delined for our purposes as follows: for each workload class, the
DBMS will attempt to maintain a user specified average response
time. Of course, some response times will exceed the goal and
some will be below it, but the average of all response times for
a class should approach the goal as the number of transaction
completions increases. If a response time goal is not specified
for a workload class, then we expect the DBMS to “do its best”
with respect to that class. In addition, because we are primarily
interested in allocation and replacement policies in this study,
we do not allow any work to be postponed by a load controller;
it must be allowed to execute upon arrival, even if it has no goal
specified.

A fragment is a statically determined set of database pages
that have relatively uniform access probabilities. It is simply a
generalization of any distinct external storage structures used by
a DBMS, and its actual definition would be DBMS-specific. A
fragment could correspond to the operating system files that store
the database, or it could be composed of a subset of file pages.
One example of a file that could be broken up into multiple
fragments is a tree-structured index. Each level of the index
tree could be a separate fragment because the pages in each level
have distinct access probabilities. A relational DBMS that stored
multiple relations in the same operating system file would likely
dcIine each relation as a fragment. For the rest of the paper, we

329

assume that the term fragment refers either 10 a single index lcvcl
or an entire data file.

Given a set of response time goals for each workload class,
and a set of fragments that each class references, the basic idea
behind fragment fencing is to achieve the response time goals for
a class by individually controlling the hit rates on the fragments
referenced by the class. For each fragment, the algorithm dctcr-
mines a target resiliency, which is the minimum number of the
fragment’s pages that should remain memory resident in order
to meet response time goals. Response times for each class arc
continuously checked by the algorithm at well defined intervals
and if a class is not meeting its goal, then the target residcn-
ties for fragments referenced by that class arc increased. If a
class is over-performing relative to its goal, the target rcsidcncics
are decreased. The actual amount of each liagmcnl lo retain in
memory is determined using two inputs: the obscrvcd access I’rc-
quencies of each fragment (those with higher access frequcncics
are favored for memory residency), and a “best guess” as to the
response time improvement that will result when the liagmcnl’s
memory residency is increased. The details of this process arc
discussed in Section 3.3.

Target residencies for each fragment are enforced by modi-
fying the existing (base) replacement policy to avoid stealing a
page if that would bring the number of memory rcsidcnt pages
below the target for a fragment. Enforcing target rcsidencics
thus provides a passive way to “fence off” fragments from the
possibility of replacement when they would otherwise bc chosen
by the existing replacement criteria.

Any individual fragment may transiently be in one of three
states: in deficit (below target), on target, or in surplus (cxcecd-
ing its target). A fragment can be in deficit immediately after i1s
target residency increases, and will remain so until enough pages
are faulted in to mee1 its target. If the demand for memory is low,
fragments may exceed their targets and will then bc susceptihlc
to s1ealing by the normal page replacement mechanism when Ihe
demand for memory rises. Just like fragments, the system as a
whole can be in one of three states: it is in d&it when one or
more fragments are in deficit, in surplus when no fragments arc
in deficit and one or more are in surplus, and on furget when no
fragments are in deficit or surplus.

At any particular moment, the sum of the target residencies for
cvcry fragment in the database is called the resident volume, iII]d
~hc size of the remaining portion of memory is called the wire-
served volume. The resident volume dynamically determines a
“line” that sets a minimum size for the disk buffer region of mcm-
ory. The resident volume should obviously not grow so large as
to consume all of available memory. At the very least, enough
must be set aside to satisfy the minimum requirements of the av-
erage set of concurrently executing transactions. Therefore, WC
limit the resident volume to 80% of available memory.” Mem-
ory which is not reserved for caching fragments can bc allocated
either for working storage or for additional disk buffer pages, as
determined by the base allocation policy. The base allocation
policy is responsible for insuring that the sum of all allocated
working storage does not exceed the unreserved volume. Fig-
ure I illustrates these concepts. Note that the line separating
the memory reserved for caching fragments and the unreserved
memory is dynamic, whereas the line which defines the amount
of memory set aside for minimum transaction requircmcnts is
static.

‘Athough this cons~nn~ would be DBMS dependenl, for this stutly WC chow
X0% as n rcawnablr hmil.

I .
M- -w

Resident volume I
Unrescrvcd vulume

I;igurc I : I.,opic;ll Memory I,ayout

Maximum
rcsidcnt
v1aH11c
limil

Set-nsidc
liar minimum
transaclion
rcquirciirnts

3.1 Implementation Details

Fragmcn1 fencing maintains the following S(;UC data ;I~WI~ ~lassrs

and fragments:

Global data:

$:;,;
#of fragments in dclicir (obscrvcd)
of fragments in surplus (obscrvctl)

1t:.sa01 Residenl volume (c;llclll;lk!ll)

For each fragment f:
Size/ Size, in pilgt.3 (input)

;;:F.‘;C I
Current #of memory rcsidcnl pages (ohscrvccl)

Target # of memory resident pages (calcula~ctl)

Lli.rkRc~s~ Si.zc~~ - Rw~““” (C~llClllillCd)

For each workload class C:
~pl

I,.’
Rcsponsc time goal (inpu0
Ohscrvation in1crval length (input)

[(V”” Avg # disk I/OS (buffer misses) per transacdou
during ohscrvation inlcrval I,. (ohscrvcd)

Rhll
, Avg transaction rcsponsc time

during observation interval I,. (obscrvcd)
For each fragment/class combination f, c

Re ~.sJ,~ # rcfcrenccs to frag j by an avg class f: xact
during obscrva1ion interval I, (ohscrvcd)

Hits/,, # buffer hits on frag j hy ;III ilvg class (: XXI

during observation inlcrval I,. (obscrvctl)
hl%ssl!sf~,. Rl*js,f,r - Iritsf,, (CillClllillCCl)

The observation interval length I,. indicates Ihc frequency ;II
which rcsponsc time goals should bc chcckcd hy 1hc algori1hm.
For example, with an interval of 100 complclions, each group ol
100 individual transaction response times arc avcragcd logcthcr
10 form an intervcd resporlse time, which is then compared against
the user specified response time goal. I,. is aclually maincaincd
as two values: one is a number of transaction completions, and
the other records the number of seconds that clapscd during
those completions. Shorter intervals result in more rcsponsivc
behavior and longer intervals resul1 in more stable hchavior.
Ideally, the tradeoff between stability and rcsponsivencss should
perhaps be decided by the user and not Ihc DBMS, hut in the
initial version of fragmcnl fencing, wc explici1ly set the inlerval
size by hand for each workload (see Section 4.3).‘i ?‘IIc obscrvccl
I/OS and rcsponsc times (10,“““” and I$lh”“) as WCII as the
refcrcnce and hit counts (Rc jsl,,. and Hzts,,,) arc all rclativc
to the current observation inlerval only, and arc rcscl 10 %cro at

330

1 hC StillI 01‘ cvcry interval.

On cvcry bul’fcr rcfcrcncc lo a fragment j from a class C,
the algorilhm incrcmcnts Zt~fs,,,. For a huffcr hit or miss it
incrcmcnlb ff its/,,. or I OfJsv, rcspcctivcly. hks~“’ is also

uptlaled li)r chc currcnl l’ragmenl, if necessary, as well as for
any liagmcnt whose page was rep&cd. N,l,, and N,V,,, are
also updated if any page movement hctwecn disk and memory
changes the sta~c of a fragmenl.

On every transaction completion for a class c which has a
rcsponsc lime goal specilicd, the observed response time for the
Iransaction is added IO the running average for the class. If the
currcnl inlcrval, I,., has expired, then the next action to take is
hsctl on the currcnl job class state:

l Warmup: The class is waiting for the buffer to fill up after
a syslcm cold start. All job classes enter the warmup state
OII syslcm initialization, and they all leave the warmup state
simultaneously when the replacement policy first kicks in,
moving IO the hisfor), build state. No action is taken on this
lransition except to reset all stalislics.

l Transition Up: A class enters this state if any target res-
idency was incrcascd in order to satisfy its goal. When
rhe system leaves the deficit state (Ndrf = 0), the class is
moved lo the hisrory build stale. No action is taken except
lo rcsel ill1 statistics.

l ‘hnsition Down: This state is similar to transition up,
hut is cntcrcd when target rcsidencics wcrc decrcascd. The
clitss is moved to (hc hisror,y build state when N,,,, = 0.
No action is lakcn except to reset all statistics.

l Ilktory Ikild: A class cnlers this state from the warmup,
trtrrrsitiorr up, or transition down stares. Movement to the
hislory build state is required in order to achieve a sta-
tistically significant sample of the newly obtained system
sk~tc (a rcccntly changed resident volume). The time in
[his stale is se1 to a number of transaction completions that
provides slalislical significance. We currcnlly set it to 50 in
all cases, hut this length could also be dynamically deter-
mined for each class using sampling techniques [Haas 911.
It’ rcsponsc time goals arc being met at the end of 50 com-
pletions. then the class is moved lo ste& state, olherwise
IICW target rcsidcncics are set, statistics are reset, and the
ClilSS 11iovcs lo tmrtsitiorr up Or transition down.

l Steady Statu: A class enters steady slate when its rcsponsc
lime goals arc hcing met. The goals are checked again after
I,. completions; if they are still being met, then this stale
is cnlcrcd once again to wait another I, completions. I1
the goals are oat being met, new target residencies arc sel,
slalistics are reset, and the class moves to rrunsition up or
trrrrrsitiorr down.

3.2 Checking the Goals

If the observed average response time for a class c is within plus
or minus SWIIC perccnlagc of the user-specified response time
goal (i.e. within some tolerance band, T, of the goal), then the
goals arc considcrcd to he satisfied. Otherwise, if the observed
response times arc higher than the goal, target residencies for
one or more fragments rcfcrenced by class c are increased and
the class is placed in the trunsition up state. If the observed
response time is lower then the goal, then one or more target

rcsidcncics are decreased and the class is placed in the trunsition
clown state. While our definition of performance goals allows a
class IO over-achieve, we still want to lower target residencies
if we can. The motivation for this is to insure that the amount
of memory available for working storage is always as large as
possible.

As is typical of any feedback mechanism, T, turns out to be
the most sensitive parameter for fragment fencing. If there is a
large amount of “nalural” variance in the class’s response times,
then T, must be wide enough to prevent the algorithm from
attempting to manage natural statistical fluctuations. A narrow
T, should bc used with lower variances in order to reduce the
number of interval response times that violate the goals.

The value of T, cannot be set a priori, as it depends on the
workload and the dynamic state of the system. Therefore, the al-
gorithm computes it dynamically based on the observed standard
deviation across multiple intervals. Given a sufficient number of
samples, the distribution of average interval response times can
hc approximated by a normal distribution. We therefore set T,
such that it includes 90% of the area under a normal distribution
curve (i.e. T, is plus or minus 1.65 times the observed standard
deviation). However, we must take care in the standard devia-
tion calculation to avoid including any observations that occur
during transitions in resident volume. These observations would
act to inflate the algorithm’s estimation of natural variance in the
workload, and T, would then become excessively large (loose).
Therefore, observations are only added to the running compu-
tation of standard deviation if the workload class has observed
some consecutive number of steady state intervals. A default
tolcrancc band (currently set to plus or minus 10%) is used until
T, can be computed from actual response time observations.

In addition to insuring that we record only “natural” variance,
we must also recompute the standard deviation for a class after
it undergoes any transition in target residencies. This is because
the existing sums and sums of squares used to compute the
standard deviation are all relative to a previous set of target
residencies, and therefore they are all relative to a different mean
response time as well. Combining observations previous to the
transition with observations after the transition will also result in
a higher estimation of variance than is occurring naturally in the
workload. Thus, on any transition, the running sums and sums
of squares used to compute the standard deviation are reset,
and the previous T, is used temporarily until there have been
enough consecutive steady state intervals under the new target
residencies to allow the standard deviation to be recomputed.

3.3 Changing Target Residencies

If a class is not meeting its goals, then the fragment fencing
algorithm makes an “informed guess” regarding new target res-
idencies that would move it towards its goal. Its guesses are
based on a simplistic model of transaction behavior that consists
of two assumptions:

I. Transaction response times are directly proportional to the
number of I/OS that they require (the l/O dominance as-
sumption) .

2. Hit rates observed on a particular fragment will be equal to
the percentage of that fragment which is memory resident
(the hit rate assumption).

The most common reason for a violation of the first assumption
(I/O dominance) is that the bottleneck resource for a particular

331

workload class may be something other than the disk. The
extent to which the second (hit rate) assumption holds depends on
the degree to which accesses within the fragment are uniformly
distributed and on how the base replacement policy deals with
different access patterns. Because the algorithm is continually
observing the system and readjusting target residencies based on
those observations, violations of these two assumptions arc not
critical. However, extreme cases can cause the algorithm to “try
too hard,” meaning that it could increase the resident volume
even when there is very little benefit in terms of response time
improvements.

Using the state data maintained for each class and fragment,
together with the model of transaction behavior just described,
new target residencies for a class c are determined in two steps:
calculating the change in I/OS required for the class, and setting
target residencies in order to achieve that I/O increase or reduc-
tion. The change in the number of I/OS for an average transaction
of class c is computed using the I/O dominance assumption as
follows:

Iotarget

LO,

= ,O;bsv/(,~bsv/,~oal)

= Io,Obsv _ Ioywt

Note that AIO, will be positive if I/OS are to be reduced, or
negative if they are to be increased. In order to dampen the feed-
back mechanism, we limit AIO, to at most 20% of 10,Yb”” on
any individual change in target residencies (thus I/O deltas larger
than 20% require multiple observation intervals to be achicvcd).

Setting Target Residencies

Every fragment has a certain observed frequency of reference
by the transactions of a class, and the fragments with higher ref-
erence frequencies should be favored for memory residency over
those with lower frequencies. On the other hand, some fragments
are much larger than others; therefore, for a given frequency of
reference, small files should be favored over larger ones, as their
per-page reference frequencies will be higher. The notion of
temperature [Copeland 881 combines both of these factors into
a single number of references per second per megabyte. We
extend the definition of temperature to record access frequencies
for a specific class instead of for the system as a whole, and we
call the resulting metric class temperature. Each fragment has a
class temperature for every class that references it.

If a class is not meeting its response time goals, AIO, will be
positive, and target residencies will need to be increased. In this
case, fragments are sorted in decreasing order of class tempcra-
ture (“biggest bang for the buck” first). If a class is exceeding its
goals, AI0, will be negative, and target residencies will riced to
be dccrcased. Here, fragments will be sorted in increasing order
of class temperature (“lowest bang for the buck” first).

Each fragment f is then processed in sorted order. First, the
absolute change in the fragment’s hit rate (as compared to its
current hit rate) that is required to achieve AIO, is computed
as:

Ahit~ate~,, =
{

min(l.O, AIO,/Misses~,,) AIO, > 0
maz(- 1 .O, AIO,/Hitsf,,) otherwise

If the absolute value of Ahitratef,, is greater than 1.0, this
means that fragment f is not currently experiencing enough
buffer misses (hits) from class c to completely satisfy the rcquircd
AIO,, so the next fragment in the sorted list will need to bc
investigated as well. Otherwise, fragment f can accomplish the

change in I/O by itself; in this cast, the incrcosc (or tlccrcasc) in
hit rate is simply equal to the ratio of AIO,. to Mi.s.w.~~,,. (or
Hitq,, for a hit rate decrease). Finally, the hit rate assumption
is used to translate hit rate changes into absolute target rcsidcncy
changes (as compared to the current target residency) as follows:

ARrs La?yrt _

f -
{

Disk Rc.q/ * Atritndr~J,,. Ahihl.tc~,,,. 1 o
Res ;o”g’L * Al&d:/,,. otherwise

Changes in target residencies and total rcsidcnt volume arc lim-
ited to 10% of available memory, in order todampen the fecdhack
mechanism.

To illustrate the process just dcscribcd, consider a class (*
with a response time goal of I second and an ohscrvcd rc-
sponse time of I.5 seconds. Suppose that class (’ rcfcrcnccs
two fragments, fl and f2. with an avcragc of 5 huffcr misses
on fl and 25 misses on f2, for an average of 30 disk I/OS
per class (: transaction. We first compute a target numhcr 01
I/OS that would result in a I second (goal) rcsponsc time iIs
IOEn”@ = 10~bs”/(R~bs~/R~o~~~) = 30/(1.5/1.0) 7 20,
and thus AIO, = 10,“b”v - JOyget = 30 - 20 = 10. As-
suming that fragment fl has the higher class tcmpcraturc. we
compute the required increase in fl ‘s hit rate as Ahitmtc,,,. =
min(1, AIO,/Misses,,,) = min(1,10/S) = 1. Ikcilsc
Ahitratef,, = 1, fl cannot satisfy the change in I/O al1 by it-
self. WC make all of fl memory resident, taking cart of 5 out OI
the 10 I/OS that we are trying to eliminate, Icaving a AlO,. of S
which must be satisfied by fragment lz. The rcquircd ~II;~I~~c in
hit rate for f2 is GJL(1,5/Z) = 0.2. Suppose that fz is 20()0
pages and that it has a current target rcsidcncy of IO00 pages.
Therefore, if we need to increase fz’s hit rate by 20%. WC must
bring in 20% of its 1ooO disk resident pages, resulting in a new
target residency for f2 of 12(H) pages.

4 Simulation Model
The simulator that we USC for our performance study of fragment
fencing was built as part of an ongoing investigation into rc-
source allocation and scheduling for parallel database systems.
For this study, however, we delinc a very simple ccntralizcd
conliguration that consists of one processing dc with a sir&
CPU, memory, and two disks. The rcmaindcr of this section
provides a more detailed description of the relevant portions ol
the current simulation model, and concludes with a tahlc of the
simulation parameter settings used for this study.

4.1 Configuration Model

The simulated terminals model the cxtcrnal workload source
for the system. Each terminal submits a stream of transactions
of a particular class, one after another. As each transaction is
formulated, the terminal scolds it to the DBMS for cxccution
and then waits for a response before continuing on to the next
transaction. In between submissions, each terminal “thinks” (i.c.
waits) for some random (exponentially distributed) amount ol
simulated time. The numbcrof terminals and the think times used
in this study were chosen to insure an avcragc disk utilization 01
50 to 60% under normal operating conditions.

The simulated disks are modeled after the Fujitsu Mtdcl
M2266 (I GB, 5.25”) disk drive. This disk provides a 256
KB cache that we divide into eight 32 KB cache contexts for USC
in prefetching 8K pages for sequential scans. In our model of the
disk, which is a slight simplilication of the real disk, the cache is
managed in the following manner: Each I/O rcqucst, along with
the required page number, specilies whcthcr or not prcfctchmg is

332

lFilc~IIrccs I ret I # oarres I % of 1
1 name _V_~lOOO) 1 size 1 # i)a&s 1 mem 1

Tahlc I : Database characteristics

dcsirctl. If so. one conlcxl’s worth of disk blocks (4 blocks) are
read in1o a cache context af1cr the originally rcqucsted data page
has hcen Iransfcrrcd from 1hc disk to memory. The requester
is no1 relcascd until 1he cntirc cache context is loaded, however
(synchronous cache loading). Subscquenl rcqucsts to one of the
prcfctchcd blocks can the11 bc satisfied withoul incurring an I/O
opcra1ion. A simple round-robin replaccmcnt policy is used to
alltXatc cache con~cxts if the number of concurrent prcfetch re-
qucs~s cxcccds the number of available cache contexts. The disk
queue is numagcd using an elevator algorithm.

‘I’hc CPU is scheduled using a round-robin policy with a 5
IIISCC time slice. The buffer pool models a set of main memory
pdgc frames, 8K bytes each. We use two base replacement and
allt~ation policies in this study: pure global LRU, and a modi-
ficd global LRU scheme augmented with 3 levels of hints. The
hints arc given by the query execution operators when a page
is unlixcd, and define. 3 lcvcls of value as follows: index pages
arc considcrcd more valuable than data pages, and randomly ac-
ccssed tla1a pages arc considered more valuable than sequentially
acccsscd data pages. Pages arc chosen for replacement in the
li)llowinp order: unused frames (not mapped to any database
page), scqucntially accessed data pages using an MRU criteria,
riuldolllly acccsscd data pages using an LRU crileria, and finally,
index pages using a11 LRU criteria. A memory reservation mech-
illlislll illlOWS query cxeculion operators to reserve memory for
their working storage, prcvcnting those rcscrved frames from
being stolen while the reservation is in effect. This function is
used by Ilash join opcralors 10 reserve memory for their hash
tables.

4.2 Database Model

‘I’hr tl;~I~~b~~Sc is nwdclcd as a set of lilts, each of which can can
have OIIC or more associated B+ tree indices. All of the indices
used in this study arc unclustcred secondary indices, implying
IhaI ;ICCCSSCS to 1hc data pages through an index scan occur in a
random (versus scqucntial) pattern. Key sizes are 12 byles, and
kcy/pointcr pairs arc I6 bytes. Tahlc I lists the tiles and indices
used for all of the cxpcrimenls in this study. The large, medium,
sn~all, and 1iny liles arc used by the transaction and batch classes
(which arc dcscribcd in the next section). The query fiks con-
sist of iI set of 200 identical files and reside on a different disk
than the transaction/batch files to limit any competition at the
disk from 1hc query class. There will be a small amount of disk
inccrfcrcncc hetwecn the query class and the other classes, how-
cvcr, hccause i1s hash join intermediate bucket files are written
IO randomly chosen disks. There are also two sets of the trans-
action/ba1ch files. each on a separate disk, to climinatc the disk
intcrfcrcncc between transaction and batch classes or between
mulliplc transaction classes.

4.3 Workload Model

Since WC arc primarily interested in the effects of page replace-
men1 decisions and working storage allocation on transaction
performance, the key workload characteristics are page refcr-
cnce patlcrns and working storage requirements. Therefore, our
simulated workload classes are relatively simple examples of
variations in these two characteristics. For the purposes of this
paper, we define a workload as any pair of the following classes:
transactions, queries, or batch.

Transactions

The transaction workload class models page reference behav-
iors typical of transactions in the TPC-A benchmark [Gray 911.
They perform nonclustered, single record index selects on 4 files:
big, medium, small, and tiny (see Table I above). Since all of
our indices are 2 levels deep, this adds up to a total of 12 random
page references per transaction. Although each file is accessed
the same number of times per transaction, their differing sizes
insures that some will have higher per-page access rates (i.e.
higher temperatures) than others. Transactions require no work-
ing storage, and the key factor in their performance is their buffer
hit rate.

For every experiment in the performance analysis section that
includes transactions, we fix the number of terminals submit-
ting transactions at a population of 100. Their think times are
exponentially distributed with 15 second means. These two val-
ues were chosen such that average disk utilizations remain in
the SO-60% range. The resulting transaction throughput is ap-
proximately 5 completions per second, and depending on the
response times experienced, there are an average of 0.5 to I.5
transactions resident in the system at any moment with peaks of
IO- 12. Enough memory is set aside to insure that at no point is
a transaction forced to wait for memory, as we do not wish to
address load control issues in this initial study.

The interval over which the average transaction response times
arc computed is set to 300 completions (about 60 seconds). This
interval represents a balance point that allows the fragment fenc-
ing algorithm to provide a high degree of responsiveness while
a1 the same time exhibiting very stable behavior with respect to
changes in target residencies. As mentioned earlier, we will ex-
plore the effect of varying observation interval lengths in section
5.2.

Batch

The batch workload class consists of a single sequential scan
of the medium data file. Obviously, the medium file has a fairly
high temperature for this class. Because of this one hot file,
the word “batch” is somewhat of a misnomer; while real batch
workloadscan normally be characterized by sequential scans, the
liles they reference are typically of a fairly low temperature. For
this study, however, straight sequential scans of low temperature
files are uninteresting because their buffer hit rates are near zero.
This class is actually more of a stand-in for any type of workload
that can be characterized by sequential accesses to a small portion
of the database and very low working storage requirements. As
before, because we wish to exclude load control issues from this
study, WC fix the number of terminals submitting batch queries
to one, and we set its think time to zero.

The in1erval over which average batch response times is com-
putcd is set at 30 completions in length (about 60 seconds). The
rationale for this interval is the same as that for the transactions:
it represents a good balance point between responsiveness and

333

stability.

Queries

We model a query workload using binary relational join op-
erators on two randomly chosen query files (set Table I). Since
we want to ignore any possible effect of query optimization dc-
cisions, the inner and outer join tiles are always of the same size
here. We use the hybrid hash join algorithm [Dewitt 841 bccausc
it is generally accepted as a good ad hoc join method. Since the
query files are nearly the same size as the configuration memory,
allocating all of available memory to a join query will allow it to
execute the with the minimum number of I/OS (a single scan 01
each relation). Allocating less memory (down to a minimum 01
28 pages for these files) increases the number of I/OS required
in a linear fashion. Since the queries choose their two join liles
from a set of 200, no single query file will have a very high access
rate, and therefore the primary factor in their performance is the
amount of working storage allocated to them as opposed to their
buffer hit rates (which are essentially zero).

Since queries can demand and be allocated large portions of
memory, the potential for more than one simultaneous query
arrival would complicate our study of replacement policies with
issues related to load control. Setting aside memory to avoid
possible memory waits, as was done for the transaction class, is
not feasible for queries since they can use such large amounts
of memory. We therefore restrict the number of terminals that
submit queries here to one at all times. WC set the think time
for this terminal to zero when studying steady slate hchavior
(Section 5.1), because in this case it doesn’t really matter if
there are some points in time when a query is prcscnt or not -
only average values are of interest. In our analysis of fragment
fencing’s transient behavior (Section 5.2), we investigate the
effects of varying the query think time.

No average response time computation interval is needed for
the query class. Since query performance cannot he affected by
changes in disk buffer hit rates, we do not set any goals for them
and we expect the DBMS to “do its best” for this class.

4.4 Parameter Summary

The important parameters of the simulated DBMS are listed in
Tables 2 and 3. The MIPS rating is typical of high-end work-
stations or mid-range computers and was chosen so that CPU
utilizations could be kept below 10% in order to insure that the
two workload classes primarily compete for memory, not CPU
cycles. The number of terminals and think times were cho-
sen to insure that disk utilizations lie in the 50 to 60% range.
The memory size of 4 megabytes is obviously small, but was
chosen to limit the amount of simulation time required for the
performance studies. This does not limit the applicability of
our performance analyses however, since the important factor
is not the absolute size of memory but its size relative to the
database and the working sets of concurrent transactions. The
software parameters are based on instruction counts taken from
the Gamma parallel database prototype [Dewitt 901. The disk
characteristics approximate those of the Fujitsu Model M2266
disk drive, as described earlier.

5 Fragment Fencing Performance
In this section, we use the simulation model described previously
to examine the both the steady state and the transient performance
of fragment fencing. The steady state analysis addresses the ha-
sic question of how well fragment fencing can achicvc rcsponsc
time goals for various workloads and system conligurations. WC

Parameter --Tq - -----.-_-. __.... -
-#Transaction terminals

- -__-~_
I00

Mean tran think time (exponential) -is WC ~---.----
Query ternimals I
Querythinky---- 0 (varG!j--
Uatch terminals I
Batch think time

-----_._- ~- .-.~.
0

Number of CPUs
.---_.

I
CPU speed SO MIPS
Number of disks] -----7
Page size

--~--H .Kli

- ---
--- --- -

Memory size 4 Ml3 (5 I2 lJi\pcs) -- ___.__ -__--_- .--__
Disk cylinder size

._
S3 I)iI)JCS

Disk seek factor
---. -_-._ _ -

0.617
Disk rotation time 7-7 lnsec __---
Disk settle time 2.0 IIISCC
Disk transfer rate 3.00 MRlscc- -_____-
Disk cache context s~zc 4 pages
Disk cache size 8 c011tcxts

Table 2: Simulation parameter settings
Function # lnstr Function # iXJ

read record from write record to
buffer page 300 buffer page
insert in hash tbl 100 probe hash thl
test index entry 50 copy 8K msg
start an I/O -1000 apply predizr
initiate select
initiate jom 40000 tcrminit+in -- -----

Tahlc 3: Simularion instruction counts

explore four different pairings of the workload classes dcscrihctl
in Section 4.3: transactions with queries, batch with queries,
transactions with transactions, and transactions with hatch. Half
the cases specify goals for only one of the two classes, and the
other half specify goals for both. Besides varying workloads and
goals, WC also explore the effects of different base rcplaccmcnt
policies as well as varying lcvcls of competition al the disk OI
CPU hetwccn the two classes. The transient analysis section cx-
plores t hc hchavior of fragmcnl fencing over 1 ime and addrcsscs
questions of stability and rcsponsivcncss that arc always ;I con-
cern for systems that exploit fecdhack. Holding Ihc workload
and configuration constant thcrc, we cxplorc two paramctcrs:
the length of the observation inlcrval and the stability of the
workload.

5.1 Steady State Behavior

The performance metric we adopt for judging steady SLIIC IX*-
havior is the avcragc response lime for each workload Class. All
of the expcrimcnts in this section exccutc the workload for SO
simulated minutes and collect statistics for only the final 30 min-
utes of simulated time in order to remove warm-up transients
from the averages. We insure a minimum of 15,000 transaction
completions, 500 batch job completions, and 50 query complc-
tions.

The results of each experiment in this section are prescntcd
in tables of a similar format, with a column for Ihc avcragc
response time of each class. Every row reprcscnls a diffcrcnt
response time goal. For comparison purposes, wc inclutlc rows
labclctl “alone” chat show the rcsponsc time of C;IC~I l.liIss WIICII
iC is cxccutctl illOllC in tllc syslclll, ils Well 11s rows IillWl~tl ‘%ilW”
that show results when no goal is spccilictl li)r rithcr chss. ‘1’11~

334

“alone” rows rcprescnt lower hounds on the rcsponsc Iimcs that
CM 1)~ CXPCC~C~ for each class. and Ihc “hasc” rows show how
tbc base rcplaccmcnl policy acts without any assisIancc from Ihc
I’ragnicnI I’iancing algorithm.

htldilionillly, if lhc query class is prcscnl. wc add a column
sIlowing the amount of working storage nllocatcd IO the hash join
under the guidance of fragment fencing. Wc also riced Io split
the “hc” row into two casts when qucrics arc present, because
wilhoul any guidance from Ihc fragment fencing algorithm, Ihc
hasc allocation policy is free to decide on its own how much
working storage to alltwatc to a hash join operator. WC explore
two casts: minimunl, which is Ihc minimum allocation required
for the join to cxccutc. and maximum, which is all of memory
cxccpl for IhaI portion which is SCI aside for “system” use and to
insure that no transiIClion memory waits occur (20% of memory,
or about IO0 frames).

‘lhnsactions & Queries

WC hcgin this scclion with a set of four cxpcrimcnts using
a mix of transadions and queries. The dctailcd behavior and
paramctcrs of each workload class were descrihcd previously in
Section 4.3. The lirsI cxpcrimcnt isolates the CITCCIS of adding
I’lXpllK!llt fcncinp to an cxisling memory manager. Pure globill
I.KU is used ti lhc hasc memory manager to show the cffccts
01’ fragmcnl fencing as disIincI from any other “hints” about the
rclativc value of a page. WC also insure lhat memory is Ihe only
rcsourcc whcrc the two classes compete IO any significant degree.
‘Ibis is accomplished by scgrcgating the data referenced by each
class onto scparalc disks and by setting the CPU speed such
thaI prtKcssor utihzations arc 10% or below (SO MIPS). Table 4
shows the rcsuhing response times and memory allocations for
this lirst cxpcriment.

I~\;unining Ihc lirst Iwo rows in Table 4, we see the impact ol
adding qucrics IO iI Iransaction workload: transaction rcsponsc
tinics douhlc - cvcn when those qucrics arc allocated the ab-
SO~IIC minimum amount of working storage. Since thcrc is no
signilicant contention at the disk or CPU in this cxpcrimcnl, the
only rcnson for Ihc change is a drop in transaction buffer hit rates
when qucrics arc added, rcsuhing in an incrcaqc in Ihc avcragc
I/OS per transaction from about 2 IO about 4. This hit rate dc-
crcasc is due IO Ihc inabiliIy of pure global LRU to distinguish
the more I’rcqucntly acccsscd transaction pages from the less
villtlilhlc pilgcs acccsscd hy Ihc qucrics.

‘I’hc second and third rows of Table 4 show Ihe effects 01
adding fragment fencing to a pure global LRU memory manager.
While the 60 mscc goal is not achievable for the transactions,
their avcragc rcsponsc Iime of 7 t msecs under fragment fencing
approacllcs their stand-alollc pcrformancc of 64.5 msecs. The
reason is. of course, Ihc incrcasc in huffcr hit rates provided
by fragment fencing. In thcsc same two rows WC can see Ihat
query pcrformancc improves ils well, even though Ihc amount
of memory illh~atcd lo the queries is the same (28 pages) wiIh
or without I’KlglllCllt fencing. This is because the transaction
rcsponsc times, with fragment fencing trying to enforce a 60
mscc goal, arc nearly halved relative lo Ihc pure LRU case.
‘I’bc rcsponsc time improvcmcnt for the transactions lowers their
avcragc number in the system from 0.9 ~00.5, reducing what little
competition the qucrics cxpcricnce at the CPU and disk from the
transactions (hash join buckets are written to a randomly chosen
disk. which occasionally causes some intcrfcrcnce at the disk
hctwccn the two classes). 1,ooking aI the remaining rows, we
ciII1 see that fragment fencing manages to meet the goals fairly
well. with iIt most a I % violation for the 80 and 150 mscc cases.

The second experiment dealing with transactions and queries
retains Ihc workload and configuration of the previous one. This
time. howcvcr, the base memory manager uses a 3-Icvel global
LKU policy instead of pure LRU. Table 5 shows the resulIs
of this cxpcrimcnt. If WC cxaminc thr first two rows of Ihi:,
table and compare them to the previous cxperimcnl (‘Table 4),
WC can set that adding hints on page type and reference patterns
signilicantiy reduces the impact of adding queries to a transaction
workload relative to the pure LRU case. This is largely because
scqucntial Hooding4 is eliminated via the hints. The second and
third rows of Table 5 show that the additional guidance provided
by fragment fencing still results in improved transaction response
limes. Even though the 3-level LRU base replacement policy can
now distinguish the more valuable transaction data from the less
valuable query data, it still does not discriminate between more
frequently accessed and less frequently accessed data within the
transaction class. The rest of Table 5 shows results similar to
the previous experiment with pure LRU, except that all of the
query response times are correspondingly lower. Looking at
the query memory allocation column of Tables 4 and 5, we see
that transaction response time goals under a 3-level LRU policy
can hc aehieved with much less memory, leaving more left over
to allocate to the queries. This shows clearly how fragment
fencing’s feedback approach allows it to adapt to the behavior 01
Ihc base memory manager. The fencing algorithm doesn’t know
Ihat rcsponsc times are improved because the base replacement
policy is smarter; it just knows that it has to keep less data in
memory here to achieve the response time goals. For the rest of
the paper, we will adopt a 3-level LRU replacement policy since
it is clearly superior to pure LRU.

The final two experiments with a transaction/query workload
examine the effects of increased competition between the two
workload classes at resources other than memory: CPU and
disk. Table 6 shows the effects of the increased disk competition
that results from placing all the data of both classes on a single
disk. Table 7 shows the effects of increased CPU competition
by decreasing the MIP rating from 50 to 8. CPU utilizations rise
from IO% or less in the previous experiments to between 50 and
75%.

Both tables 6 and 7 show a similar phenomenon. Response
times rise uniformly relative to the more powerful system con-
@ration used in Table 5, and the more aggressive response
time goals in the top few rows become unachievable. Both of
~hcsc cffccIs are due to the incrcascd competition between the
IWO classes at the CPU or the disk (disk response times nearly
double due to queucing delays). The amount of memory made
available to the queries drops as well, indicating that the fencing
algorithm is trying to compensate for the response time increases
by retaining more and more of the database in memory. Similar
IO Ihc pure LRU versus 3-level LRU case, the fragment fencing
algorithm only knows that response times are higher for some
reason, and the only thing it can do is to increase the memory
resident portion of the database. Even though goal oriented CPU
scheduling might be a more effective way to control response
times in this case, we can see that fragment fencing still pcr-
forms better for 60th classes than the base 3-level LRU strategy
dots by itself (“Base (min)” row).

ISeyucnricr/flr,odi/~~: is B problem characteristic of a pure LRU replacement
policy. Processes performing sequential scans can flood the buffer pool with
pages that are not likely to be reaccessed, displacing pages with a much higher
prohability of reaccess.

335

Avg tran (Avg qry 1 Qry mem 1
resp (msec) rcsp (set) (pages)

Tran alone 64.5
Base (min) 138.4 33.7 28
Goal 60 ms 71.0 30.5 28
Goal 80 ms 80.8 2.5.3 loo
Goal 100 ms 98.8 21.8 203
Goal 150 ms 151.6 16.6 350
Goal 200 ms 196.9 15.6 392
Base (max) 232.3 15.6 412
Qry alone 11.7 1 412

Table 4: Pure LRU, separate disks

Avg tran Aw qry Qv mem
resp (msec) resp (set) bws) _

Tran alone 55.0
Base (min) 135.8 58.9 28
Goal 60 ms 112.8 53.2 28
Goal 80 ms 112.8 53.2 28
Goal 100 ms 112.8 53.2 28
Goal 150 ms 11 146.7 1 44.3 1 174
Goal 200 ms II 201.0 I 43.2 I 280

L

Base (max) 11 333.2 1 43.5 1 41241
Orv alone II I 11.7 I 412

Table 6: 3-level LRU, disk interference Table 7: 3-icvel LRU. slow CPU

I 11 Avg Batch I Avg qry 1 Qry mem 1

Batch alone
Base (min)
Goal 1.3 set
final 1 63 Q-r

resp (set) resp (set) (pages)
0.80
3.12 37.7 28
1.42 37.7 28
171 32.8 58 -- . c _ .^

-* -._ I-_ _._ - 28.4 140
-112.5 set 2 65

2:86
22.6 284 _

Goal 2.8 set 22.5 300
Base (max) 3.27 17.0 412
Qry alone 1 11.7 412

Table 8: Batch & Queries

B resp T resp
(set) (msec)

Tran alone

~1

Batch alone (1 0.80) -
Base 11 2.70 1 60.8

I Tran alone 54.9
Base (min)

II-

7s. I -jy---T”‘.HI-- Bi- ~ I_-- -- .__
Goal 60 ms
Goal 80 ms

60.H- 30.0 t -------?ii
77.6 -7.1 -73-i

Goal 100 ms
--- .

101.2 IV. 273
I

Goal I50 ms
(;oal

Base (max) 182.1
-2

14.5 412
Qry alone Il.7 412

Table 5: 3-level LRU, separate disks

I Avg tran 1 Avg qry I Qry mcm 1

Tran alone
Base (min)
Goal 60 ms
Goal 80 ms

rcsp (msec) rcsp (see) (pages) J --
68.7

103.0 36.8 -m
91.0 76.1 28
91.0 36.1 28

I

Goal 100 ms loo.1 29.2
Goal 150 ms

153.8 22.9 Rue

Goal 200 ms 100.0 i9.x -%Z@ax) II6 1 _~~---m- -. .-. 230X ----i% .-_.- - 412 ._ .-
.L ---. ----

412 i
I

Qry aione is.7 -__

Ti alone

Ti rcsp T2 rcsp
(mscc) (mscc)

550 -1 -. .
T2 alone
Tl Goal I50 mscc
Ti Goal I25 msec
Ti Goal 100 msec
T I Goal 80 msec
Base

131.1
126.3

55.0
hOh
60.6

I

102.2 60. I
91.4 64.8

106.4 106.0

Table 9: Trans I & Trims 2 (60 mscc goal)

I 11 B resp I T resp 1
1 (set) 1 (msec)

Tran alone . 1 55.0

Batch alone II 0.80 I -
Base II 2.70 I 60.8

I I

Table 10: Trans (I 50 ms) & Batch Table 11: Trans (100 ms) & Batch Table 12: Trans (80 ms) & Batch

336

Batch & Queriw

The sccontl w~~rkl~~itd that we examine is a combination of
“bi~tch”,jObs, which consist of lilt scan operations, and hash join
qucrics (see section 4.3 for detailed workload descriptions and
paramctcrs). Iiccausc the batch jobs access a”hot” tilt, fragment
fencing con he el’fcctivc in controlling their response times. Nor-
mally, a hint-based memory manager would consistently penalize
this batch workload because all of its data is accessed sequen-
tially. On the other hand, a frequency-based memory manager
would consistently favor a batch workload of this sort, because it
understands that retaining frcqucntly accessed data will increase
overall hit rates. Table 8 shows the results of this experiment. If
WC look al the first lwo rows, we set a phenomenon that is iden-
lical lo the lirst cxpcrimcnt (Table 4). where queries were added
to a transaction workload under the pure LRU replacement strat-
cgy: rcsponsc times for the batch class arc more than doubled.
In the lirst experiment, transaction response times doubled be-
cause the hasc replacement policy couldn’t distinguish between
lhc pages of each workload class, and buffer hit rates for the
transactions thus dropped signilicantly. By adding hints on page
rcfcrencc patterns to the replacement policy, the problem with
the Iransaclion/query workload was fixed. However, those same
hints arc useless for the batch/query workload in this experiment
hccausc both classes access the same type of data with the same
rcfcrcncc pattern (sequential data file scans).

Looking at the average response times for the batch workload
in Table 8, we see that fragment fencing can achieve the goals
reasonably well for this workload, with at most a 6% violation
in the 2.5 second case.

lkansactions & lkansactions

The third workload that WC examine here is a combination of
twoTPC-A-like transaction classes, each with theirown response
time goals. The behavior of both workload classes is identical
10 that which was described in Section 4.3, except that each
rcfcrenccs an identically sized but distinct set of files lo eliminate
&Iil sharing effects. The data used by the two transaction CI~.SSCS
is scgrcgatcd on scparatc disks as well, so there is no competilion
;II the disk hctwccn the IWO classes.

This cxpcrimcnt invesligatcs the behavior of fragment fencing
when Ihc goals for both classes can be achieved, and also when
they cannot. Tahlc 9 shows the response times that result. Class
‘1’2’s goals arc lixed :II 60 msecs, which is very close to the lower
bound 01’55 msccs. Class Tl ‘s goals are progressively tightened
until they become impossible to achieve, which occurs at the 80
mscc goal. Because the behavior of each class in this workload is
very similar, goals for both classes are violated when either one
cannot be achieved. Class T2’s performance suffers a bit more
relative to class TI, however. It turns out that this is purely a
matter of chance. Since fragment fencing does not have a notion
of priority between classes, the first class to violate its goals will
win the race for any remaining memory; which class violates
its goal first simply Jcpcnds on the random arrival processes of
each class.

Another interesting result of this experiment is the behavior
of’ fragment fencing with extremely tight goals (the SO/60 msec
case) relative to the performance of the base 3-level LRU re-
placement policy. Although the base replacement policy gives
each class the same performance, it is significantly worse (see
the “Base” row of rhe table) than when fragment fencing is ac-
tivatcd. The reason is the same as in the second experiment
(‘l’ahlc 5): the base rcplacemcnt policy has no information about

the relative frequencies of rcfcrcnce among pages with the same
“hint” level. The situation becomes cvcn worse with two classes
bccausc of the interference berwecn them (external thrashing).
Because fragment fencing tracks the frequency of reference to
each fragment, it can guide the base replacement policy into
making more intelligcnl replacement decisions.

Transactions & Batch

The final workload that we investigate in this section is a
combination of TPC-A-like transactions and “batch” jobs that
consist of scans over “hot” files. Tables 10, 11, and 12 fix the
transaction glass goals at 150, 100 and 80 msecs respectively.
Transaction and batch response times in these tables are shown
under the “T resp” and “B resp” columns respectively. For
each oi the three transaction class goals, the batch class goals
are varied from loose to tight. Table IO shows the response
times that result with the loosest transaction class goal (150
msecs). In all cases, the batch class goals are met, and in all
exccpl the last row, the transactions out perform their 150 msec
target. This is because the base replacement policy is favoring the
transaction class’s pages over the batch class’s pages, allowing
the transaction class to use all of the memory that is not required
to meet the batch response time goals. Tables II and 12 show
the same experiment with the transaction class goals set at 100
and 80 msecs, respectively. In the 100 msec transaction case,
batch class goals are unattainable beyond 1.75 seconds. Under
the tightest transaction goals of 80 msecs (Table 12), the batch
goals are unattainable beyond 2 seconds.

An interesting aspect of this workload is how fragment fenc-
ing can modify the base replacement policy’s treatment of each
class: always favoring transactions over batch. With fragment
fencing, the base replacement policy can be “coerced” to favor
the transactions less and less, allowing the batch class to move
closer to its stand-alone response time.

We conclude our examination of steady state performance
by noting that fragment fencing seems capable of successfully
achieving steady state response time goals for these example
workloads, and that in many casts it can provide better perfor-
mance for the classes that do not specify any goal as well (relative
to the base buffer manager’s stand-alone performance). WC have
also seen that fragment fencing is able to adjust lo different de-
grees of intelligence in the base buffer manager, and to high
device utilizations which violate its simplistic model of transac-
tion behavior. Thus, fragment fencing appears quite promising
as a mechanism to provide users or system administrators with
the ability to automatically tune a DBMS according to a set of
application-level performance requirements.

5.2 Transient Behavior

There are many possible ways to satisfy an average performance
metric over some specified time interval. For example, a one
second average response time goal over some interval could
be satislied such that 80% of the transactions in the interval
experience a quarter second response time, while 20% of the
transactions experience 4 second response times. Since only the
average value of the metric and the interval over which it should
be computed were specified, we cannot say if this particular
way of satisfying the goal is good or bad. Most likely a more
complete performance specification would include more infor-
mation on the distribution of response times that are considered
“good,” perhaps by specifying standard deviations, percentiles,
or maxmiums.

Even though fragment fencing currently lacks mechanisms to

337

specify or act on a more detailed specification of response time
goals, we can state a simple requirement for its transient behavior
in any case: it should not introduce more variance in the work-
load than would exist if fragment fencing were not activated.
Since the only way fragment fencing can introduce variance is to
change the size of the resident database volume, we need to see
if there is excessive movement of the line separating the resident
volume from the non-resident volume. We explore two variables
which could cause the algorithm to adjust the resident volume
excessively: the length of the interval used to compute average
response times, and the length of the think time between arrivals
of resource intensive queries. Both experiments use the same
workload as in the first steady state experiment: TPC-A-like
transactions mixed with hash join queries (see Section 4.3 for
detailed workload descriptions).

The length of the observation interval can cause excessive
movement of the resident volume lint for basic statistical rea-
sons. When the interval is shorter, fcwcr transactions arc used
to compute the avcragc observed rcsponsc times at each interval
completion. As in any statistical sample of a large pOpUliltiOl1,

the smaller the sample size, the larger the variance that will be
observed between each sample. Small observation intervals can
therefore present a picture of a very unstable system to the frag-
ment fencing algorithm. The challenge is not to over-react and
try to manage what are purely statistical fluctuations in the sys-
tcm load. Larger observation intervals help to mask these natural
fluctuations in load, and thus provide a much more stable input
to the algorithm. In this case, the algorithm will be less likely to
attempt to over-manage the system.

To give an idea of the input that the fragment fencing algo-
rithm is attempting to deal with, Figure 2 shows a graph of the
average transaction response times over intervals of 50 comple-
tions with fragment fencing turned off. The X axis is a count of
transaction completions, and the Y axis is the average rcsponsc
time over each 50-transaction interval. The upper lint in the
graphs shows the behavior of transactions when the qucrics arc
allocated their maximum amount of working storage, leaving
very little for the transaction class data. The lower lint shows
the results of a minimum memory allocation to the queries, with
most of memory being allocated to transaction data. Note that
cvcn this picture shows less variance than is actually occurring
in the system, since it represents averages over SO transaction
completions. We use an interval length of 50 completions as our
lower bound since any smaller intervals start to lose statistical
significance.5 One phenomenon that can be seen in this graph is
the relationship between the amount of memory available to the
transactions and the resulting variance in their rcsponsc times.
The more memory, the lower the probability of disk I/OS. and the
lower the variance becomes. An interesting implication of this
phenomenon for fragment fencing is that as the rcsidcnt volume
increases because of tighter and tighter-response time goals, the
variance decreases. Surprisingly, this means that loose response
time goals are actually more difficult to manage than tight ones
are.

We show the effects on resident volume of varying the obser-
vation interval lengths in Figures 3,4, and 5 for interval lengths
of 50, 100, and 300 completions, respectively. The X axis of
these graphs shows transaction completion counts (time), and
the Y axis shows the resident volume in pages. The maximum
resident volume allowed is ahout 400 pages (80% of the memory

’ While the ~CIU;I~ numher ol’ samplers rquired hy imy slalis1ual anulysis

depends on the mount 01 error Ihal can lx Iolerntcd, bumple sizes Icss Ihan 30
or 40 are normally considered “small.”

in the conliguration). Each lint in the graphs rcprcscnts a diffcr-
cnt goal for the transaction class. Hiphcr lines (Iargcr rcsidcnt
volumes) correspond to tighter response time goals, and lower
lines correspond to looser goals. The throughput of the trans-
actions in this experiment is approximately 5 per second. so the
intervals of SO, 100, and 300 completions translate to IO. 20, ml
60 seconds. While it is difficult to dcvclop a prccisc metric to
gauge the relative “goodness” of each of thcsc graphs. they show
how the stability of the algorithm improves as the ohscrv;ltion
interval lengthens. Even though thcrc arc more lluctuations with
smaller intervals, the algorithm seems lirmly anchored around a
central point in each case. We also expcrimcntcd with intcrv;lls
greater than 300, but the results were csscntially identical to lhr
300 case and WC thercforc omit them hcrc.

The implication of this analysis is that for a w~~rkl~~;ttl clws
with suflicicntly high throughput (greater than 5 per second). illI
observation interval of around one minute or larger provides very
stable performance. For workload classes with lower throughput,
however, thcrc is going to be a larger IradC-OfI hctwccn stilhility
and rcsponsivcncss. While lower throughput workloads (c.p.
batch jobs) seem likely to cxpcricncc much lower natltral v;lri-
ante in response times, and can thcrcforc lwrhaps tIcal with a
smaller ohscrvation interval, the proper setting of this param-
eter for low throughput workloads remains an area for l’urthcr
investigation.

The second variable that we invcstigatc hcrc is the gap hc-
tween query arrivals. We explore dctcrministic query class think
times ranging from IO to I20 seconds for a transaction workkxltl
with a response time goal ol’ 70 milliseconds. The transactions
have a throughput of approximately 5 per second, so the numhcl
of transaction completions that could occur during the gap hc-
twcen query arrivals varies from SO to ISOO. The int<!rv;ll OVCI
which we compute the average response times is IO0 complc-
tions (20 seconds at 5 transactions per second). This interval six.r
is smaller than that rccommcnded hy the previous analysis, hut
it allows us to exaggerate the effects of query think time slightly
by increasing the responsivcncss of the fencing algorithm. II
WC look at query think time simply as another way to introduce
variance in the system load, then obviously a Iargc enough obscr-
vation interval could cancel the cffccts of any think time--rclatcd
variunce ils well. For the purposes Al’ this cxpcrimcnt, howcvcr,
WC want to limit the dampening cff~ct of ;I longer ohscrv~~ticm
interval (even though it is a perfectly valid way to adtlrcss the
problem).

Figure 6 shows the size of the rcsidcnt volume its a function ol
time for each of four query think time values. The two str;iight
lines at the top of the graph arc the IO and 30 second think
time results. Since these think times arc similar in Icng~h IO
the observation interval, their effects arc complctcly dampcnctl
by the averaging that occurs over the ohservation interval. ;IS
explained in the previous analysis. The rcsidcnt volume I’m
the 30 second think time line is lower than the IO second think
time lint bccausc as the query think time increases, thcrc arc
more periods where the transactions do not have to compctc for
memory and thus their rcsponsc times improve as a result. The
fencing algorithm reacts to this hy reducing the rcsidcnt volu~nc
required to maintain the 70 mscc transaction rcsponsc time goal.

The next two (wobbly) lines in Figure 6 SIIOW 60 and 120
second query think times, in order ofdecrcasing avcragc rcsitlcnt
volume. The 60 second think time is just large enough for three
ohscrvation intervals to occur during the gilp in brtwccn qucrics.
‘I’hcse three ohscrvutions arc enough to convince the I’cncing
algorithm to rcducc the rcsidcnt volume rcquircd, only to raise

338

um query allocati 1

II loo
minimum query allocation

I1
0: . . . , , , ,

0 WOO 10000 I5000
trunsaction completions

Figure 2: Tran resp times: 50 completion interval

60 msec goal

\

80 msec goal

I50 msec goal
. . . ;,

0 sooo loo00 15000 20000
tran.saction completions

Figure 4: Res volume, 100 compl intervals (20 set) Figure 5: Res volume, 300 compl intervals (60 set)

10 set

transaction completions

100 msec goal

5000 10000 15000
transaction completions

Figure 3: Res volume, 50 compl intervals (10 set)

60 msec goal

150 msec goal
. . ..I.....>..‘.

0 5000 10000 15000 20000
transaction completions

loo

50

o! ..“..‘,‘,‘,” ;Tp=7:;!

5000 6000 7000
transaction completions

Figure 6: Resident volume: various think times Figure 7: Tran resp times: various think times

339

it again in the following interval. The 120 second think time
line is similar, but the time span between lowering and raising
the resident volume becomes larger. The 60 second think time
represents a worst case scenario for this experiment (with its 20
second observation interval length), a there is no benefit there
to lowering the resident volume - it will have to be raised again
almost immediately.

Figure 7 shows the effect of excessive movement of the rcs-
ident volume line on transaction response times. The line with
higher variance corresponds to the worst case 60 second query
think time, and the line with the lower variance corresponds to a
more favorable scenario involving a 10 second query think time.
The 10 second think time represents a favorable case because
the resident volume line is never moved here, and any variance
in response times is thus due to natural statistical fluctuations in
the transaction workload itself. Clearly, lowering the resident
volume in the 60 second think time case is a bad idea; the addi-
tional variance introduced could even cause the average response
time goals to be jeopardized. We plan on investigating this issue
further in our future work.

6 Issues and Extensions
In this section, we briefly discuss some important remaining
challenges for the fragment fencing approach and our current
thoughts on how we plan to address them. One key challenge
is to address violations of the algorithm’s assumption that the
hit rate for a fragment is equal to the fraction of the fragment
that is memory resident. Violations of this assumption could bc
caused either by non-uniform reference patterns (e.g. temporal
locality, correlated references, append-only access, etc.) or by
dcliciencies in the base replacement policy (e.g. LRU for a loop
that cannot fit in memory). Such violations currently can cause
fragment fencing to continue increasing the target rcsidcncy ol
a fragment even when little or no hit rate increase results from
doing so. However, the information needed to detect a violation
of this assumption is already collected by the algorithm (i.c., it
keeps the % residency and the observed hit rate for each frag-
ment), so it should not be too difficult to improve the algorithm
in this regard.

Another area for improvement is to address violations of the
algorithm’s assumption that a transaction’s response time is lin-
early related to the number of I/OS that it requires. As WC saw in
the steady state performance analysis (Tables 6 and 7), violations
of this assumption translate into a larger resident volume being
required to achieve a given goal. In fact, fragment fencing may
try too hard to achieve a goal when this assumption is violated,
increasing the resident volume by larger and larger amounts in
order to achieve only small improvements in response times.
As for the hit rate assumption above, the algorithm should bc
modified to check the validity of this I/O dominance assumption
before acting on it. This can be accomplished by monitoring the
average observed disk response time per class; by multiplying
this quantity by the average number of disk I/OS for a class, the
algorithm can identify classes for which I/O time is a relatively
small component of the overall average response time.

Still another challenge lies in addressing potential problems
caused by low temperature fragments, as these may also cause
the fragment fencing algorithm to increase the target residency
of a fragment by large amount for only a small return. If a
workload class performs a large number of I/OS, but on very
“cold” data, then even filling up all of available memory with the
claqs’s data would not significantly reduce the number of I/OS
required by transactions of the class. An example of this type ol

behavior would be a batch job that sequentially scanned a very
large database. An obvious approach to addressing this issue
is to check for some minimum temperature before increasing
the target residency. The algorithm already determines whether
a single fragment can completely salisfy any rcquircd change
in l/O, or if multiple fragmcnls are required. This tlccision can
easily be extended to determine if arrysct of fragments rcfcrcnccd
by the class can satisfy the required change in I/O.

Finally, as seen in the transient pcrlbrmancc analysis (t:igurc
6), long-runningc&cs with large working storage rcquircmcnts
(such as hash joins) can present special challcnpcs with rcspccc II)
the transient behavior of fragment fencing. Once fragment knc-

ing gives away some working storage to a long-running hash
join, it can suffer the consequences of that decision li)r long
time to come. The situation would be exaccrbaIcd further il
the relative response times of such queries arc many orders of
magnitude larger than those of the competing goal classes. (Our
performance analysis only considered response time ratios of up

to IO0 or so between claqses). While it is unlikely that frapmcnt
fencing can ever be prcventcd from making mistakes, thcrc ;Irc
certainly ways to limit the penalty of doing so. One promising
possibility is the exploitation of memory-adaptive query pro-
cessing algorithms, c.g. memory adaptive hash join and sorting
methods IZcller 90, Pmg 93a, Pang 93b]. Thcsc join mclhotls
can dynamically adapt to changes in the amount of available
working storage during execution, so frapmcnt fcncinp could
actually “take back” some of the working storage from long run-
ning queries when it is ncccssary increase lhe rcsidcnt volun~c
while such queries are active.

In summary, the primary pathology of fragment fencing is
the possibility of its attempting large incrcascs in the rcsidcnt
volume in return for small improvcmcnts in I/OS or rcslH)nsc
times for certain classes. By modifying the algorithm IO first
check its assumptions, and to rcacl lo violations that it dctcc~s.
it is likely that such problematic behavior can bc avoided. In
addition, memory-adaptive schemes appear promising ;LS a way
IO address the problem of long-running consumers of working
storage.

7 Conclusions and Future Work
In this paper we have explored the potential of using memory
allocation and page replacement mechanisms to implcmcnt pcr-
class performance goals for multiclass workloads. We described
an algorithm called fragment fetrcitt~ that takes as input a SCI
of per-class response time goals and a description of the data
and index fragments that make up the datahasc. The algorithm
that we described observes the per-class rcfcrcncc I’rcqucncics
and monitors the slate of the system rclativc IO ils stn~ctl goals;
the information that it gathers is used to help existing bul’l’cr
allocation and page replacement mechanisms IO avoid making
decisions that may violate the goals.

Using adetailed simulation model, WC studied hoth the s~cady
slalc and transient performance of fragmcnl fencing when il is
coupled with a modified global LRU memory manager with lhrcc
levels of “hints.” Our results showed fragment fcncinp to hc ca-
pablc of successfully achieving steady state response time goills
for a number of example multiclass workloads. For workloads
whcrc one of the classes did not specify any goals, fragment
fencing usually provided better performance Ihan the base huffcr
manager alone for the non-goal class as well. Morcovcr. by
coupling fragment fencing with a pure glObal LRU rcplaccmcnl
mechanism. we demonstrated that the approach is able lo coexist
with base buffer managers with varying degrees of intclligcncc.

340

I’I;I~IIICII~ li’ncing W~IS able IO achicvc ~hc same goals with an
I .HlJ SC~ICIIIC ils it did with IIIC more intclligcnt 3-1~~~1 LKIJ
SVII~*II~~. ~IIIIOII~II at iI higher cost in terms of the amount ol
memory JctlicaIcd IO fragment caching. Finally, we explored
violations of fragmcnl fencing’s simple assumptions regarding
transaction hchavior as well as possible enhancements to limit
the impact of these violations, WC conclude that fragment fenc-
ing appears quite promising as a way to provide users or system
administrators with lhc ability to tune a DBMS according to a
scl of ;IppliC~~liO~~-lcvcl performance rcquircmenls.

Bcsitlcs the cxtcnsions listed in the previous section, our fu-
lure work will cxplorc additional mechanisms for dcahng with
conllicting goals hctween classes, for allowing more detailed
spccilications ofrcsponse time goals (such as maximums and per-
ccntiles), and for limiting the penalty incurred as a result of work-
load shifts (via pcrsistcnt statistics). WC also plan on coupling
fragment fencing with algorithms that handle load control and
working storage allocalion among competing queries in order to
explore the performance of multiple concurrent queries compet-
ing wiIh transactions and hatch classes IMehta 931, and WC plan
on integrating fragment fencing with goal-oriented CPU and disk
scheduling mechanisms as well. The information collcctcd by
Ihc algorilhm on hit rates and percent residencies Ibr individual
fr;igmcnls could aIs0 hc a useful input to recently proIx)scd tech-
niques for run-tilncsclcction ofqucry plans [Hong 91, loann 921.
Finally, WC would like to exploit the capahilitics of memory-
;ttlaptivc query processing tcchniqucs, e.g., preemptible ha.h
join ilnd sorting methods [Pang 93a, Pang 93hl.

Acknowledgements

‘I’hc authors woukl like lo thank Manish Mehta, Mike Franklin,
tlwce-Hwa Pang, and JOC HellersIein for many helpful discus-
sions and COI~~~I~IS on previous versions of this paper.

References
l Iloral 901 I I. Horat cl al, “l’rolotyping Rubba: A Highly Parallel

I)atahasc System.” IEEE Trans. on Knowledge cmd IIufa Engi-
uevring. 2(I 1. March 1090.

]llrown 921 K. I3rown. M. Carey, D. Dewitt, M. Mehta, J. Naughton,
“Rrsourcc Allocation and Scheduling for Mixed Datahase Work-
loi\ds.” Computer Sciences Technical Report #1095, Department
01’ Compulcr Sciences, University of Wisconsin, Madison, July
I992 (availahlc via anonymous ftp fromSlp.cs.wisc.e~fu).

l(‘hcng X41 J. Chcng ct al. “IBM Datahosc 2 Performance: Design,
I ~l~I)lciilciilaliol~, :ird Tuning,” IBM Systems Journal, 2X2). 1984.

I(‘~oII X51 t I. Thou and D. DcWitt, “An Evaluation of Buffer Manage-
mcn~ Strarcgics t’or Relational Database Systems,” Proc. 1101 Int’l
W/)/I Co!!/:, Stockholm, Sweden, Aug. 19x5.

~('O~'~III;III 73 l IJ. (‘offinan and P. Denning, Operating Sysfems Theory,
I’rcnticc-I Iih11. linglewood Cliffs NJ, 1973.

[t’opclantl XXI G. Copela~~d. W. Alexander, E. Boughtcr, T. Keller,
“l)a~a f’laccment in Bubha.” Proc. ACM SIGMOD ‘88 Co&,
Chicago. II., June 1988.

](‘orncll X9] D. Cornell and P Yu, “Integration of Buffer Management
;III~ Query Optimization in a Relational Database Environment,”
I’roc. ISrh /nf’/ VLDB Cont. Amsterdam, The Netherlands, Aug.
I9XO.

]DcWitt X4] D. I)cWitt et al, “Implementation Techniques for Main
Memory Datahasc Systems,” Proc. A CM SIGMOI~ ConJ:, Boston,
MA, June 10x4.

I I)cWitl OO] D. DcWitl cl al. “The Gamma Database Machine Project,”
IIXi: Trurrs. on Knowledge and Duttr Engineering, 2(I), March
I900.

IDeWitt 921 D. DcWitt and J. Gray, “Parallel Database Systems: The
Future ol’ High Performance Dntahase Processing,” CACM. 35(h).
June, 1992.

[Falou Y I] C. Faloutsos. R. Ng, T. Sellis, “Predictive Load Control
for Flexihie Buffer Allocation,” Proc. 17th Inr’l VLDB Con&,
Barcelona, Spain, Sept. 1991.

[Graefe 891 G. Graefe and K. Ward, “Dynamic Query Evaluation
Plans,” Proc. ACM SIGMOD ‘89 Confi, Portland, OR, May 1089.

]Gray 871 J. Gray and F. Putaolu, “The 5 Minute Rule forTrading Mem-
orv for Disk Access and the IO Bvte Rule for Tradine Memorv for
CPU Time,” Proc. ACM SIGMO-D ‘87 Conf., San F;ancisco,‘CA,
1987.

[Gray 911 J. Gray ed., The Benchmark Handbook, Morgan Kaufmann,
San Mateo CA, 199 I.

[Haas 901 L. Haas et al, “Starburst Mid-Flight: As the Dust Clears,”
IEEE Trans. on Knowledge and Data Eng., 2(l), March 1990.

[Haas 911 P Haas, A. Swami, “Sequential Sampling Procedures for
Query Size Estimation,” Proc. ACM SIGMOD ‘92 Conf., San
Diego, CA, June 1992.

]Hong 911 W. Hong and M. Stonebraker, “Optimization of Parallel
Qucrv Execution Plans in XPRS.” Proc. 1st Int’l PDIS Conf. - - *
Miami, FL, Dee. 1991.

[loann 921 Y. loannidis, R. Ng, K. Shim, T. Sellis, “Parametric Query
Optimization,” Proc. /Bth Inf’l VLDB ConjI, Vancouver, B.C.,
Aug. 1992.

]O’Neil93] E. O’Neil, P O’Neil, G. Weikum, “The LRU-K Page Re-
placement Algorithm For Database Disk Buffering,” Proc. ACM
SIGMOD ‘93 Con&, Washington D.C., May 1993.

[Mchta93] M. Mehta and D. Dewitt, “Dynamic Memory Alloca-
tion for Multiole-Ouerv Workloads,” Proc. 19 Int’l VLDB ConfI.
Dublin, lrelanb, A& 1593.

.

]Ng9l] R. Ng, C. Faloutsos, T. Sellis, “Flexible Buffer Allocation
Based on Marginal Gains,” Proc. ACM SIGMOD ‘91 ConfY, Den-
vcr, CO, May I99 I.

]Pang 93a] *,H. Pang, M. Carey, M. kivny, “Partially Preemptible Hash
{‘;&I;, Proc. ACM SIGMOD 93 ConjI, Washington D.C., May

[Pang 93b] H. Pang, M. Carey, M. Livny, “Memory Adaptive External
Sorts and Sort-Merge Joins,” Proc. 19 Int’l VLDB Con& Duhlin,
Ireland, Aug 1993.

]Pirahcsh 901 H. Pirahesh, et al. “Parallelism in Relational Database
Systems: Architectural Issues and Design Approaches,” IEEE
2nd Int ‘I Symposium on Databases in Parallel and Distributed
Systems, Dublin, Ireland, July 1990.

[Reiter 761 A. Reiter, “A Study of Buffer Management Policies For
Data Management Systems,” MRC Technical Summary Report
#l619, Mathematics Research Center, University of Wisconsin,
Madison, March 1976.

[Robinson 90) J. Robinson and M. Devarakonda, “Data Cache Man-
agcmcnt Using Frcaucncv-Based Replacement,” Proc. SIGMET-
R?‘S ‘90 Co& Bo;lder,-CO, May Ib90.

]Sacco 861 G. Sacco and M. Schkolnick, “Buffer Management in Re-
lational Datahase Systems,” ACM TODS, 1 l(4), December 1986.

]Tcng X4] J. Tcng and R. Gumaer, “Managing IBM Database 2 Buffers
to Maximize Performance,” IBM Systems Journal, 23(2), 1984.

]Yu 931 P. Yu and D. Cornell, “Buffer Management Based on Return
on Consumption in a Multi-Query Environment,” VLDB Journal,
2(l), Jan 1993.

]Zcller90] H. Zeller, J. Gray, “An Adaptive Hash Join Algorithm
for Multiuser Environments” Proc. 16th Int’l VLDB Con&, Mel-
hourne, Australia, Aug. 1990.

341

