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Abstract 
In this paper we propose and evaluate an approach to DBMS 
memory management that addresses multiclass workloads with 
per-class response time goals. It operates by monitoring per- 
class database reference frequencies as well as the state of the 
system relative to the goals of each class; the information that 
it gathers is used to help existing memory allocation and page 
replacement mechanisms avoid making decisions that may jcop- 
ardize performance goals. 

1 Introduction 
A widening range of application areas, as well as requirements 
for data sharing and continuous operation, are contributing to 
an increase in the diversity of workloads that a DBMS must be 
able to cope with. However, providing adequate performance for 
each class in a multiclass DBMS workload is still an open prob- 
lem [Pirahesh 90, Brown 92, DeWitt 921. A multiclass workload 
is characterized by distinct classes of work that may have widely 
varying resource demands, each with its own performance ob- 
jective. A DBMS that is unaware of these performance objcc- 
tives may penalize one class or another in an unpredictable way. 
Consider the issue of buffer page replacement, for example. A 
replacement policy based on recency of reference will tend to 
penalize workload classes with low locality; one based on fre- 
quency of reference may be biased against workload classes with 
low arrival rates; and a policy which uses hints about the relative 
value of pages based on their type (e.g. index or data) will be 
biased against whatever workload class uses the “wrong” page 
type. In order to avoid such “hard-wired” biases, a DBMS must 
be able to accept performance objectives for each class as inputs, 
and to use those goals as the basis for its resource management 
decisions. 

Given a set of performance objectives for each class, there 
are a number of mechanisms that a DBMS can use to achieve 
them: load control, CPU scheduling, disk scheduling, and mem- 
ory management. While a complete solution to the problem of 
satisfying performance goals in a multiclass environment would 
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likely include all of these options, in this paper we invcstigatc 
the use of memory allocation and page replacement mechanisms 
for this purpose. It is well known that memory management 
is a critical factor in database system performance. which ac- 
counts for the large volume of ongoing research in this arca 
[Chou 85, Sacco 86, Cornell X9, Robinson 90, Ng 9 I, Palou 9 I, 
Yu 93, O’Ncil 931. However, none of the previous work specili- 
tally addresses how memory management can be used to achieve 
per-class performance objectives for a multiclass workload. 

There are two ways that memory can be used to improve 
DBMS performance: for buffering disk pages, and for work.- 
ing storage areas (join hash tables, sort work areas, etc.). AI 
any point in time, some number of pages are being used for 
disk buffers (the disk buffer region), and some are being used 
for working storage (the working storage region). A DBMS 
memory allocation policy is responsible for two decisions: it 
must decide how many pages to devote to disk buffers versus 
working storage, i.e. it must logically “draw a line” between the 
disk buffer region and the working storage region; and it must 
allocate memory within the working storage region among com- 
peting lransactions.’ A page replacement policy is rcsponsihlc 
for deciding which specific disk pages should reside in IIIC disk 
buffer region at any point in time. 

In a multiclass environment these decisions need to he driven 
by per-class performance goals, as stated earlier. For workloads 
that vary over time, they need to be dynamic as well. Otherwise, 
the response time goals will at best he satislicd only on avcragc, 
where the average is defncd over a large enough interval of time 
to eliminate any workload variance. For many workloads, this 
time frame would have to be extended to days, or even weeks. 
In contrast we would like performance goals to he satislicd over 
time frames on the order of tens of seconds or minutes. 

In this paper, we propose and evaluate an approach to DBMS 
memory management called frrpmt jhcirtg that spccilically 
addresses multiclass workloads with per-class performance ob- 
jectives. It is designed to be used in conjunction with existing 
page replacement and allocation mechanisms and acts to prc- 
vent allocation or replacement decisions that could violate the 
performance objectives of a class. Fragment fencing operalcs 
by periodically monitoring per-class database rcfcrcncc frcqucn- 
ties as well as the state of the system relative to the goals 01 
each class; it then uses this information to dyuamically SCI the 
boundary between the disk buffer and working storage regions 

’ II would nlso he responsible for allocating nlenu)ry within lhc disk butfcl 
region as well, if a fornl allucntion policy is used thele. More conmouly. a 
~lohcrl allocntion policy is used for the disk buffer region. and individual disk 
buffer pages nrc never explicitly nssi&!nett lo any individual Irnnsaclion 
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ot IIICIIIOI’~, uutl IO guitlc ~hr ;~lloc;ltiotl of pages within the disk 
l~uI‘I’~~r region IO clil’lill.ctl(j~tr~~n~c~rrr.s 01’ the tlaIahusc. 

‘I’hc tcni;liiiclcr 01‘ the paper is organized as I’ollows: Wc hc- 
gin by rcvicwing existing memory managcmcnt techniques in 
Srclion 2. ‘l’hc frngmcnt fencing algorithm is then presented in 
Section 3. Wc dcscribc the simulation model used lo evaluate 
fragment fencing in Section 4, and we show the results of that 
cvalualion in Section 5. Section 6 discusses some additional 
issues and possible cxtcnsions to fragment fencing, and our con- 
clusions and future plans arc summarized in Section 7. 

2 Related Work 
With rcspccl to database memory management, the only rele- 
vanI work which spccilically uddrcsscs multiclass workloads arc 
commcrci;ll systems. such as IBM’s DB2 [Chcnp 84, Tcng 841, 
which provitlcs basic mechanisms to partition its hul’fcr pool and 
IO place tlil’fcrcnt portions of the datahasc in specific partitions. 
Dl~2’s pugc rcplaccmcnt policy is local within each partition, so 
compclilion hc~wccn Ihc different pools is climinatcd. While 
in Ihcory, this mechanism could he used lo satisfy multiclass 
pcrl’ormancc ohjcctivcs, thcrc arc IWO prohlcms in using it for 
this purpose. IGrst, it is static in nature, so it cannot respond to 
workloud variance and shifts. Second, the corm&on between 
rcsponsc time goals for each workload class and which parts of 
the datuhasc IO place in each partition, as well as the relative 
sizes of each partition, must be somehow determined manually 
hy the daI&asc administrator. Ideally, we would like the DBMS 
IO perform these tasks dynamically, based on the current system 
stale illld the rcsponsc lime goals. 

WC categorize rcccnt dcvclopmcnts in database buffer man- 
agcmcn~ into Ihrec catcgorics: modified globul LRU, jkequency- 
htrsc~tl,v~l /OCYI/ c/liery ~tttu1,y.k. The modified global LRU ap- 
proachcs cxtcnd a basic global LRU allocation and replacement 
mechanism hy permitting query operators to provide hints to 
lhc huffcr liianagcr ahout the relative “value” of a page. For 
cxaln~~lc. index IXIgcs could he considered more valuahlc than 
~I;II;I p;~ges. as in lhc Domain Separation algorithm 1 Rcitcr 76); 
r;uulomly ;~cccssctl pabl*s could hc trcatctl IIS more valuahlc 
Iluul sc1lucnti;llly acccsscd ~U~CS, as in the DD2 I3ufI’er Man- 
agcr [Chcng 84, ‘I’cng 841; or the inner relation of a nested loop 
join could be preferred over the outer, as in the Starburst Buffer 
Manager [ Haas 901. Information on the value of a page is then 
combined with information on recency of reference and used as 
input to guide page rcplaccment decisions. These approaches 
ilrc altractivc bccausc they address the major limitations of pure 
global I.RU with a minimum amount of work. However, the 
hints arc hased on static heuristics that are unrelated to response 
time goals, and thercforc may be inappropriate in a multiclass 
cnvironmcnl. 

‘I’hc second category of memory management approaches 
comhincs informution on frequency of reference with recency 
of rcfcrcncc into the replacement criteria. This is logical be- 
cuusc rcccncy of rclrcnce is a good basis for replacement when 
tlaIahasc rcfcrcnccs cxhihit temporal locality, while frequency of 
rcfcrcncc is best when references are skewed, but uncorrelated 
lCoffm;ln 731. Real dalahasc reference behavior is a combina- 
tion of both. The Frequency Based Replacement policy (FBR) 
IRohinson 901 und the LRIJ-K algorithm [O’Ncil 931 arc exam- 
plcs of this approuch. trucking frequency statistics on a page-hy- 
page hasis. The 13uhhapurallcl database prototype IBoral 901 can 
hc placed in this category us well, but unlike FBR and LRU-K, 
which arc both dynamic, Buhba statically determined a bound- 
ary hc~wccn that portion of memory which is managed by fre- 

quency of rcfercncc (the lilt cache), and that which is managed 
hy rccincy (normal global LRIJ). This boundary is dctcrmincd 
off-Iinc hy a “5 Minute Rule” ~ypc of analysis [Gray 871. The 
Bubba scheme tracks frequency information on a per-file basis 
and uses a size-normalized frequency metric called temperature 
[Copcland 881 (references per second per megabyte). Entire 
files are statically placed in the file cache in decreasing order of 
temperature. By statically or dynamically combining frequency 
and rccency into the replaccmcnt policy, these approaches each 
provide better performance than pure LRU while avoiding any 
requirements for “hint-passing”. 

Examples of the local query analysis approach are Hot Set 
[Sacco 861, DBMIN [Chou 851, Marginal Gains [Ng 911, Pre- 
dictive Load Control [Falou 913, and Threshold [Yu 931. All 
of thcsc algorithms use information in the query plan to de- 
tcrminc the optimal amount of memory to allocate on a local 
basis (to queries, subqueries, or query/file combinations). The 
Hot Set, DBMIN, Marginal Gains, and Predictive Load Con- 
trol approaches all address disk buffer memory allocation, and 
the Threshold algorithm addresses working storage allocation. 
However, none of them address the trade-off between the two 
types of memory. Interestingly, although some of these algo- 
rithms use response time predictions internally (e.g. Predictive 
Load Control and Threshold), none of them are driven by re- 
sponse time goals. An obvious question is whether these ap- 
proaches can be modified to be driven by their response time 
predictions instead of just using them as a means to another 
end. Unfortunately, the difficulty with trying to drive them by 
their response time predictions is that they can be quite inaccu- 
rate when trying to predict transient response times, especially 
in a multiclass environment where each class has widely vary- 
ing resource demands. Buffer hit rates, communication delays, 
lock waits, and queuing at the disk and CPU are all factors that 
can significantly affect the performance of a query when it runs 
concurrently with other work. 

3 Fragment Fencing 
Before we can explain how fragment fencing works, we must Iirst 
dclinc the terms pe$trtncmce goal and frugment. While thcrc 
arc many possible ways to specify a performance goal, it will be 
delined for our purposes as follows: for each workload class, the 
DBMS will attempt to maintain a user specified average response 
time. Of course, some response times will exceed the goal and 
some will be below it, but the average of all response times for 
a class should approach the goal as the number of transaction 
completions increases. If a response time goal is not specified 
for a workload class, then we expect the DBMS to “do its best” 
with respect to that class. In addition, because we are primarily 
interested in allocation and replacement policies in this study, 
we do not allow any work to be postponed by a load controller; 
it must be allowed to execute upon arrival, even if it has no goal 
specified. 

A fragment is a statically determined set of database pages 
that have relatively uniform access probabilities. It is simply a 
generalization of any distinct external storage structures used by 
a DBMS, and its actual definition would be DBMS-specific. A 
fragment could correspond to the operating system files that store 
the database, or it could be composed of a subset of file pages. 
One example of a file that could be broken up into multiple 
fragments is a tree-structured index. Each level of the index 
tree could be a separate fragment because the pages in each level 
have distinct access probabilities. A relational DBMS that stored 
multiple relations in the same operating system file would likely 
dcIine each relation as a fragment. For the rest of the paper, we 
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assume that the term fragment refers either 10 a single index lcvcl 
or an entire data file. 

Given a set of response time goals for each workload class, 
and a set of fragments that each class references, the basic idea 
behind fragment fencing is to achieve the response time goals for 
a class by individually controlling the hit rates on the fragments 
referenced by the class. For each fragment, the algorithm dctcr- 
mines a target resiliency, which is the minimum number of the 
fragment’s pages that should remain memory resident in order 
to meet response time goals. Response times for each class arc 
continuously checked by the algorithm at well defined intervals 
and if a class is not meeting its goal, then the target residcn- 
ties for fragments referenced by that class arc increased. If a 
class is over-performing relative to its goal, the target rcsidcncics 
are decreased. The actual amount of each liagmcnl lo retain in 
memory is determined using two inputs: the obscrvcd access I’rc- 
quencies of each fragment (those with higher access frequcncics 
are favored for memory residency), and a “best guess” as to the 
response time improvement that will result when the liagmcnl’s 
memory residency is increased. The details of this process arc 
discussed in Section 3.3. 

Target residencies for each fragment are enforced by modi- 
fying the existing (base) replacement policy to avoid stealing a 
page if that would bring the number of memory rcsidcnt pages 
below the target for a fragment. Enforcing target rcsidencics 
thus provides a passive way to “fence off” fragments from the 
possibility of replacement when they would otherwise bc chosen 
by the existing replacement criteria. 

Any individual fragment may transiently be in one of three 
states: in deficit (below target), on target, or in surplus (cxcecd- 
ing its target). A fragment can be in deficit immediately after i1s 
target residency increases, and will remain so until enough pages 
are faulted in to mee1 its target. If the demand for memory is low, 
fragments may exceed their targets and will then bc susceptihlc 
to s1ealing by the normal page replacement mechanism when Ihe 
demand for memory rises. Just like fragments, the system as a 
whole can be in one of three states: it is in d&it when one or 
more fragments are in deficit, in surplus when no fragments arc 
in deficit and one or more are in surplus, and on furget when no 
fragments are in deficit or surplus. 

At any particular moment, the sum of the target residencies for 
cvcry fragment in the database is called the resident volume, iII]d 
~hc size of the remaining portion of memory is called the wire- 
served volume. The resident volume dynamically determines a 
“line” that sets a minimum size for the disk buffer region of mcm- 
ory. The resident volume should obviously not grow so large as 
to consume all of available memory. At the very least, enough 
must be set aside to satisfy the minimum requirements of the av- 
erage set of concurrently executing transactions. Therefore, WC 
limit the resident volume to 80% of available memory.” Mem- 
ory which is not reserved for caching fragments can bc allocated 
either for working storage or for additional disk buffer pages, as 
determined by the base allocation policy. The base allocation 
policy is responsible for insuring that the sum of all allocated 
working storage does not exceed the unreserved volume. Fig- 
ure I illustrates these concepts. Note that the line separating 
the memory reserved for caching fragments and the unreserved 
memory is dynamic, whereas the line which defines the amount 
of memory set aside for minimum transaction requircmcnts is 
static. 

‘Athough this cons~nn~ would be DBMS dependenl, for this stutly WC chow 
X0% as n rcawnablr hmil. 

I . 
M- -w 

Resident volume I 
Unrescrvcd vulume 

I;igurc I : I.,opic;ll Memory I,ayout 
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rcsidcnt 
v1aH11c 
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Set-nsidc 
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transaclion 
rcquirciirnts 

3.1 Implementation Details 

Fragmcn1 fencing maintains the following S(;UC data ;I~WI~ ~lassrs 

and fragments: 

Global data: 

$:;,; 
#of fragments in dclicir (obscrvcd) 
# of fragments in surplus (obscrvctl) 

1t:.sa01 Residenl volume (c;llclll;lk!ll) 

For each fragment f: 
Size/ Size, in pilgt.3 (input) 

;;:F.‘;C I 
Current #of memory rcsidcnl pages (ohscrvccl) 

Target # of memory resident pages (calcula~ctl) 

Lli.rkRc~s~ Si.zc~~ - Rw~““” (C~llClllillCd) 

For each workload class C: 
~pl 

I,.’ 
Rcsponsc time goal (inpu0 
Ohscrvation in1crval length (input) 

[(V”” Avg # disk I/OS (buffer misses) per transacdou 
during ohscrvation inlcrval I,. (ohscrvcd) 

Rhll 
, Avg transaction rcsponsc time 

during observation interval I,. (obscrvcd) 
For each fragment/class combination f, c 

Re ~.sJ,~ # rcfcrenccs to frag j by an avg class f: xact 
during obscrva1ion interval I, (ohscrvcd) 

Hits/,, # buffer hits on frag j hy ;III ilvg class (: XXI 

during observation inlcrval I,. (obscrvctl) 
hl%ssl!sf~,. Rl*js,f,r - Iritsf,, (CillClllillCCl) 

The observation interval length I,. indicates Ihc frequency ;II 
which rcsponsc time goals should bc chcckcd hy 1hc algori1hm. 
For example, with an interval of 100 complclions, each group ol 
100 individual transaction response times arc avcragcd logcthcr 
10 form an intervcd resporlse time, which is then compared against 
the user specified response time goal. I,. is aclually maincaincd 
as two values: one is a number of transaction completions, and 
the other records the number of seconds that clapscd during 
those completions. Shorter intervals result in more rcsponsivc 
behavior and longer intervals resul1 in more stable hchavior. 
Ideally, the tradeoff between stability and rcsponsivencss should 
perhaps be decided by the user and not Ihc DBMS, hut in the 
initial version of fragmcnl fencing, wc explici1ly set the inlerval 
size by hand for each workload (see Section 4.3).‘i ?‘IIc obscrvccl 
I/OS and rcsponsc times (10,“““” and I$lh”“) as WCII as the 
refcrcnce and hit counts (Rc jsl,,. and Hzts,,,) arc all rclativc 
to the current observation inlerval only, and arc rcscl 10 %cro at 
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1 hC StillI 01‘ cvcry interval. 

On cvcry bul’fcr rcfcrcncc lo a fragment j from a class C, 
the algorilhm incrcmcnts Zt~fs,,,. For a huffcr hit or miss it 
incrcmcnlb ff its/,,. or I OfJsv, rcspcctivcly. hks~“’ is also 

uptlaled li)r chc currcnl l’ragmenl, if necessary, as well as for 
any liagmcnt whose page was rep&cd. N,l,, and N,V,,, are 
also updated if any page movement hctwecn disk and memory 
changes the sta~c of a fragmenl. 

On every transaction completion for a class c which has a 
rcsponsc lime goal specilicd, the observed response time for the 
Iransaction is added IO the running average for the class. If the 
currcnl inlcrval, I,., has expired, then the next action to take is 
hsctl on the currcnl job class state: 

l Warmup: The class is waiting for the buffer to fill up after 
a syslcm cold start. All job classes enter the warmup state 
OII syslcm initialization, and they all leave the warmup state 
simultaneously when the replacement policy first kicks in, 
moving IO the hisfor), build state. No action is taken on this 
lransition except to reset all stalislics. 

l Transition Up: A class enters this state if any target res- 
idency was incrcascd in order to satisfy its goal. When 
rhe system leaves the deficit state (Ndrf = 0), the class is 
moved lo the hisrory build stale. No action is taken except 
lo rcsel ill1 statistics. 

l ‘hnsition Down: This state is similar to transition up, 
hut is cntcrcd when target rcsidencics wcrc decrcascd. The 
clitss is moved to (hc hisror,y build state when N,,,, = 0. 
No action is lakcn except to reset all statistics. 

l Ilktory Ikild: A class cnlers this state from the warmup, 
trtrrrsitiorr up, or transition down stares. Movement to the 
hislory build state is required in order to achieve a sta- 
tistically significant sample of the newly obtained system 
sk~tc (a rcccntly changed resident volume). The time in 
[his stale is se1 to a number of transaction completions that 
provides slalislical significance. We currcnlly set it to 50 in 
all cases, hut this length could also be dynamically deter- 
mined for each class using sampling techniques [Haas 911. 
It’ rcsponsc time goals arc being met at the end of 50 com- 
pletions. then the class is moved lo ste& state, olherwise 
IICW target rcsidcncics are set, statistics are reset, and the 
ClilSS 11iovcs lo tmrtsitiorr up Or transition down. 

l Steady Statu: A class enters steady slate when its rcsponsc 
lime goals arc hcing met. The goals are checked again after 
I,. completions; if they are still being met, then this stale 
is cnlcrcd once again to wait another I, completions. I1 
the goals are oat being met, new target residencies arc sel, 
slalistics are reset, and the class moves to rrunsition up or 
trrrrrsitiorr down. 

3.2 Checking the Goals 

If the observed average response time for a class c is within plus 
or minus SWIIC perccnlagc of the user-specified response time 
goal (i.e. within some tolerance band, T, of the goal), then the 
goals arc considcrcd to he satisfied. Otherwise, if the observed 
response times arc higher than the goal, target residencies for 
one or more fragments rcfcrenced by class c are increased and 
the class is placed in the trunsition up state. If the observed 
response time is lower then the goal, then one or more target 

rcsidcncics are decreased and the class is placed in the trunsition 
clown state. While our definition of performance goals allows a 
class IO over-achieve, we still want to lower target residencies 
if we can. The motivation for this is to insure that the amount 
of memory available for working storage is always as large as 
possible. 

As is typical of any feedback mechanism, T, turns out to be 
the most sensitive parameter for fragment fencing. If there is a 
large amount of “nalural” variance in the class’s response times, 
then T, must be wide enough to prevent the algorithm from 
attempting to manage natural statistical fluctuations. A narrow 
T, should bc used with lower variances in order to reduce the 
number of interval response times that violate the goals. 

The value of T, cannot be set a priori, as it depends on the 
workload and the dynamic state of the system. Therefore, the al- 
gorithm computes it dynamically based on the observed standard 
deviation across multiple intervals. Given a sufficient number of 
samples, the distribution of average interval response times can 
hc approximated by a normal distribution. We therefore set T, 
such that it includes 90% of the area under a normal distribution 
curve (i.e. T, is plus or minus 1.65 times the observed standard 
deviation). However, we must take care in the standard devia- 
tion calculation to avoid including any observations that occur 
during transitions in resident volume. These observations would 
act to inflate the algorithm’s estimation of natural variance in the 
workload, and T, would then become excessively large (loose). 
Therefore, observations are only added to the running compu- 
tation of standard deviation if the workload class has observed 
some consecutive number of steady state intervals. A default 
tolcrancc band (currently set to plus or minus 10%) is used until 
T, can be computed from actual response time observations. 

In addition to insuring that we record only “natural” variance, 
we must also recompute the standard deviation for a class after 
it undergoes any transition in target residencies. This is because 
the existing sums and sums of squares used to compute the 
standard deviation are all relative to a previous set of target 
residencies, and therefore they are all relative to a different mean 
response time as well. Combining observations previous to the 
transition with observations after the transition will also result in 
a higher estimation of variance than is occurring naturally in the 
workload. Thus, on any transition, the running sums and sums 
of squares used to compute the standard deviation are reset, 
and the previous T, is used temporarily until there have been 
enough consecutive steady state intervals under the new target 
residencies to allow the standard deviation to be recomputed. 

3.3 Changing Target Residencies 

If a class is not meeting its goals, then the fragment fencing 
algorithm makes an “informed guess” regarding new target res- 
idencies that would move it towards its goal. Its guesses are 
based on a simplistic model of transaction behavior that consists 
of two assumptions: 

I. Transaction response times are directly proportional to the 
number of I/OS that they require (the l/O dominance as- 
sumption) . 

2. Hit rates observed on a particular fragment will be equal to 
the percentage of that fragment which is memory resident 
(the hit rate assumption). 

The most common reason for a violation of the first assumption 
(I/O dominance) is that the bottleneck resource for a particular 
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workload class may be something other than the disk. The 
extent to which the second (hit rate) assumption holds depends on 
the degree to which accesses within the fragment are uniformly 
distributed and on how the base replacement policy deals with 
different access patterns. Because the algorithm is continually 
observing the system and readjusting target residencies based on 
those observations, violations of these two assumptions arc not 
critical. However, extreme cases can cause the algorithm to “try 
too hard,” meaning that it could increase the resident volume 
even when there is very little benefit in terms of response time 
improvements. 

Using the state data maintained for each class and fragment, 
together with the model of transaction behavior just described, 
new target residencies for a class c are determined in two steps: 
calculating the change in I/OS required for the class, and setting 
target residencies in order to achieve that I/O increase or reduc- 
tion. The change in the number of I/OS for an average transaction 
of class c is computed using the I/O dominance assumption as 
follows: 

Iotarget 

LO, 

= ,O;bsv/(,~bsv/,~oal) 

= Io,Obsv _ Ioywt 

Note that AIO, will be positive if I/OS are to be reduced, or 
negative if they are to be increased. In order to dampen the feed- 
back mechanism, we limit AIO, to at most 20% of 10,Yb”” on 
any individual change in target residencies (thus I/O deltas larger 
than 20% require multiple observation intervals to be achicvcd). 

Setting Target Residencies 

Every fragment has a certain observed frequency of reference 
by the transactions of a class, and the fragments with higher ref- 
erence frequencies should be favored for memory residency over 
those with lower frequencies. On the other hand, some fragments 
are much larger than others; therefore, for a given frequency of 
reference, small files should be favored over larger ones, as their 
per-page reference frequencies will be higher. The notion of 
temperature [Copeland 881 combines both of these factors into 
a single number of references per second per megabyte. We 
extend the definition of temperature to record access frequencies 
for a specific class instead of for the system as a whole, and we 
call the resulting metric class temperature. Each fragment has a 
class temperature for every class that references it. 

If a class is not meeting its response time goals, AIO, will be 
positive, and target residencies will need to be increased. In this 
case, fragments are sorted in decreasing order of class tempcra- 
ture (“biggest bang for the buck” first). If a class is exceeding its 
goals, AI0, will be negative, and target residencies will riced to 
be dccrcased. Here, fragments will be sorted in increasing order 
of class temperature (“lowest bang for the buck” first). 

Each fragment f is then processed in sorted order. First, the 
absolute change in the fragment’s hit rate (as compared to its 
current hit rate) that is required to achieve AIO, is computed 
as: 

Ahit~ate~,, = 
{ 

min(l.O, AIO,/Misses~,,) AIO, > 0 
maz( - 1 .O, AIO,/Hitsf,,) otherwise 

If the absolute value of Ahitratef,, is greater than 1.0, this 
means that fragment f is not currently experiencing enough 
buffer misses (hits) from class c to completely satisfy the rcquircd 
AIO,, so the next fragment in the sorted list will need to bc 
investigated as well. Otherwise, fragment f can accomplish the 

change in I/O by itself; in this cast, the incrcosc (or tlccrcasc) in 
hit rate is simply equal to the ratio of AIO,. to Mi.s.w.~~,,. (or 
Hitq,, for a hit rate decrease). Finally, the hit rate assumption 
is used to translate hit rate changes into absolute target rcsidcncy 
changes (as compared to the current target residency) as follows: 

ARrs La?yrt _ 

f - 
{ 

Disk Rc.q/ * Atritndr~J,,. Ahihl.tc~,,,. 1 o 
Res ;o”g’L * Al&d:/,,. otherwise 

Changes in target residencies and total rcsidcnt volume arc lim- 
ited to 10% of available memory, in order todampen the fecdhack 
mechanism. 

To illustrate the process just dcscribcd, consider a class (* 
with a response time goal of I second and an ohscrvcd rc- 
sponse time of I.5 seconds. Suppose that class (’ rcfcrcnccs 
two fragments, fl and f2. with an avcragc of 5 huffcr misses 
on fl and 25 misses on f2, for an average of 30 disk I/OS 
per class (: transaction. We first compute a target numhcr 01 
I/OS that would result in a I second (goal) rcsponsc time iIs 
IOEn”@ = 10~bs”/(R~bs~/R~o~~~) = 30/(1.5/1.0) 7 20, 
and thus AIO, = 10,“b”v - JOyget = 30 - 20 = 10. As- 
suming that fragment fl has the higher class tcmpcraturc. we 
compute the required increase in fl ‘s hit rate as Ahitmtc,,,. = 
min(1, AIO,/Misses,,,) = min( 1,10/S) = 1. Ikcilsc 
Ahitratef,, = 1, fl cannot satisfy the change in I/O al1 by it- 
self. WC make all of fl memory resident, taking cart of 5 out OI 
the 10 I/OS that we are trying to eliminate, Icaving a AlO,. of S 
which must be satisfied by fragment lz. The rcquircd ~II;~I~~c in 
hit rate for f2 is GJL( 1,5/Z) = 0.2. Suppose that fz is 20()0 
pages and that it has a current target rcsidcncy of IO00 pages. 
Therefore, if we need to increase fz’s hit rate by 20%. WC must 
bring in 20% of its 1ooO disk resident pages, resulting in a new 
target residency for f2 of 12(H) pages. 

4 Simulation Model 
The simulator that we USC for our performance study of fragment 
fencing was built as part of an ongoing investigation into rc- 
source allocation and scheduling for parallel database systems. 
For this study, however, we delinc a very simple ccntralizcd 
conliguration that consists of one processing dc with a sir& 
CPU, memory, and two disks. The rcmaindcr of this section 
provides a more detailed description of the relevant portions ol 
the current simulation model, and concludes with a tahlc of the 
simulation parameter settings used for this study. 

4.1 Configuration Model 

The simulated terminals model the cxtcrnal workload source 
for the system. Each terminal submits a stream of transactions 
of a particular class, one after another. As each transaction is 
formulated, the terminal scolds it to the DBMS for cxccution 
and then waits for a response before continuing on to the next 
transaction. In between submissions, each terminal “thinks” (i.c. 
waits) for some random (exponentially distributed) amount ol 
simulated time. The numbcrof terminals and the think times used 
in this study were chosen to insure an avcragc disk utilization 01 
50 to 60% under normal operating conditions. 

The simulated disks are modeled after the Fujitsu Mtdcl 
M2266 (I GB, 5.25”) disk drive. This disk provides a 256 
KB cache that we divide into eight 32 KB cache contexts for USC 
in prefetching 8K pages for sequential scans. In our model of the 
disk, which is a slight simplilication of the real disk, the cache is 
managed in the following manner: Each I/O rcqucst, along with 
the required page number, specilies whcthcr or not prcfctchmg is 
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lFilc~IIrccs I ret I # oarres I % of 1 
1 name _V_~lOOO) 1 size 1 # i)a&s 1 mem 1 

Tahlc I : Database characteristics 

dcsirctl. If so. one conlcxl’s worth of disk blocks (4 blocks) are 
read in1o a cache context af1cr the originally rcqucsted data page 
has hcen Iransfcrrcd from 1hc disk to memory. The requester 
is no1 relcascd until 1he cntirc cache context is loaded, however 
(synchronous cache loading). Subscquenl rcqucsts to one of the 
prcfctchcd blocks can the11 bc satisfied withoul incurring an I/O 
opcra1ion. A simple round-robin replaccmcnt policy is used to 
alltXatc cache con~cxts if the number of concurrent prcfetch re- 
qucs~s cxcccds the number of available cache contexts. The disk 
queue is numagcd using an elevator algorithm. 

‘I’hc CPU is scheduled using a round-robin policy with a 5 
IIISCC time slice. The buffer pool models a set of main memory 
pdgc frames, 8K bytes each. We use two base replacement and 
allt~ation policies in this study: pure global LRU, and a modi- 
ficd global LRU scheme augmented with 3 levels of hints. The 
hints arc given by the query execution operators when a page 
is unlixcd, and define. 3 lcvcls of value as follows: index pages 
arc considcrcd more valuable than data pages, and randomly ac- 
ccssed tla1a pages arc considered more valuable than sequentially 
acccsscd data pages. Pages arc chosen for replacement in the 
li)llowinp order: unused frames (not mapped to any database 
page), scqucntially accessed data pages using an MRU criteria, 
riuldolllly acccsscd data pages using an LRU crileria, and finally, 
index pages using a11 LRU criteria. A memory reservation mech- 
illlislll illlOWS query cxeculion operators to reserve memory for 
their working storage, prcvcnting those rcscrved frames from 
being stolen while the reservation is in effect. This function is 
used by Ilash join opcralors 10 reserve memory for their hash 
tables. 

4.2 Database Model 

‘I’hr tl;~I~~b~~Sc is nwdclcd as a set of lilts, each of which can can 
have OIIC or more associated B+ tree indices. All of the indices 
used in this study arc unclustcred secondary indices, implying 
IhaI ;ICCCSSCS to 1hc data pages through an index scan occur in a 
random (versus scqucntial) pattern. Key sizes are 12 byles, and 
kcy/pointcr pairs arc I6 bytes. Tahlc I lists the tiles and indices 
used for all of the cxpcrimenls in this study. The large, medium, 
sn~all, and 1iny liles arc used by the transaction and batch classes 
(which arc dcscribcd in the next section). The query fiks con- 
sist of iI set of 200 identical files and reside on a different disk 
than the transaction/batch files to limit any competition at the 
disk from 1hc query class. There will be a small amount of disk 
inccrfcrcncc hetwecn the query class and the other classes, how- 
cvcr, hccause i1s hash join intermediate bucket files are written 
IO randomly chosen disks. There are also two sets of the trans- 
action/ba1ch files. each on a separate disk, to climinatc the disk 
intcrfcrcncc between transaction and batch classes or between 
mulliplc transaction classes. 

4.3 Workload Model 

Since WC arc primarily interested in the effects of page replace- 
men1 decisions and working storage allocation on transaction 
performance, the key workload characteristics are page refcr- 
cnce patlcrns and working storage requirements. Therefore, our 
simulated workload classes are relatively simple examples of 
variations in these two characteristics. For the purposes of this 
paper, we define a workload as any pair of the following classes: 
transactions, queries, or batch. 

Transactions 

The transaction workload class models page reference behav- 
iors typical of transactions in the TPC-A benchmark [Gray 911. 
They perform nonclustered, single record index selects on 4 files: 
big, medium, small, and tiny (see Table I above). Since all of 
our indices are 2 levels deep, this adds up to a total of 12 random 
page references per transaction. Although each file is accessed 
the same number of times per transaction, their differing sizes 
insures that some will have higher per-page access rates (i.e. 
higher temperatures) than others. Transactions require no work- 
ing storage, and the key factor in their performance is their buffer 
hit rate. 

For every experiment in the performance analysis section that 
includes transactions, we fix the number of terminals submit- 
ting transactions at a population of 100. Their think times are 
exponentially distributed with 15 second means. These two val- 
ues were chosen such that average disk utilizations remain in 
the SO-60% range. The resulting transaction throughput is ap- 
proximately 5 completions per second, and depending on the 
response times experienced, there are an average of 0.5 to I.5 
transactions resident in the system at any moment with peaks of 
IO- 12. Enough memory is set aside to insure that at no point is 
a transaction forced to wait for memory, as we do not wish to 
address load control issues in this initial study. 

The interval over which the average transaction response times 
arc computed is set to 300 completions (about 60 seconds). This 
interval represents a balance point that allows the fragment fenc- 
ing algorithm to provide a high degree of responsiveness while 
a1 the same time exhibiting very stable behavior with respect to 
changes in target residencies. As mentioned earlier, we will ex- 
plore the effect of varying observation interval lengths in section 
5.2. 

Batch 

The batch workload class consists of a single sequential scan 
of the medium data file. Obviously, the medium file has a fairly 
high temperature for this class. Because of this one hot file, 
the word “batch” is somewhat of a misnomer; while real batch 
workloadscan normally be characterized by sequential scans, the 
liles they reference are typically of a fairly low temperature. For 
this study, however, straight sequential scans of low temperature 
files are uninteresting because their buffer hit rates are near zero. 
This class is actually more of a stand-in for any type of workload 
that can be characterized by sequential accesses to a small portion 
of the database and very low working storage requirements. As 
before, because we wish to exclude load control issues from this 
study, WC fix the number of terminals submitting batch queries 
to one, and we set its think time to zero. 

The in1erval over which average batch response times is com- 
putcd is set at 30 completions in length (about 60 seconds). The 
rationale for this interval is the same as that for the transactions: 
it represents a good balance point between responsiveness and 
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stability. 

Queries 

We model a query workload using binary relational join op- 
erators on two randomly chosen query files (set Table I). Since 
we want to ignore any possible effect of query optimization dc- 
cisions, the inner and outer join tiles are always of the same size 
here. We use the hybrid hash join algorithm [Dewitt 841 bccausc 
it is generally accepted as a good ad hoc join method. Since the 
query files are nearly the same size as the configuration memory, 
allocating all of available memory to a join query will allow it to 
execute the with the minimum number of I/OS (a single scan 01 
each relation). Allocating less memory (down to a minimum 01 
28 pages for these files) increases the number of I/OS required 
in a linear fashion. Since the queries choose their two join liles 
from a set of 200, no single query file will have a very high access 
rate, and therefore the primary factor in their performance is the 
amount of working storage allocated to them as opposed to their 
buffer hit rates (which are essentially zero). 

Since queries can demand and be allocated large portions of 
memory, the potential for more than one simultaneous query 
arrival would complicate our study of replacement policies with 
issues related to load control. Setting aside memory to avoid 
possible memory waits, as was done for the transaction class, is 
not feasible for queries since they can use such large amounts 
of memory. We therefore restrict the number of terminals that 
submit queries here to one at all times. WC set the think time 
for this terminal to zero when studying steady slate hchavior 
(Section 5.1), because in this case it doesn’t really matter if 
there are some points in time when a query is prcscnt or not - 
only average values are of interest. In our analysis of fragment 
fencing’s transient behavior (Section 5.2), we investigate the 
effects of varying the query think time. 

No average response time computation interval is needed for 
the query class. Since query performance cannot he affected by 
changes in disk buffer hit rates, we do not set any goals for them 
and we expect the DBMS to “do its best” for this class. 

4.4 Parameter Summary 

The important parameters of the simulated DBMS are listed in 
Tables 2 and 3. The MIPS rating is typical of high-end work- 
stations or mid-range computers and was chosen so that CPU 
utilizations could be kept below 10% in order to insure that the 
two workload classes primarily compete for memory, not CPU 
cycles. The number of terminals and think times were cho- 
sen to insure that disk utilizations lie in the 50 to 60% range. 
The memory size of 4 megabytes is obviously small, but was 
chosen to limit the amount of simulation time required for the 
performance studies. This does not limit the applicability of 
our performance analyses however, since the important factor 
is not the absolute size of memory but its size relative to the 
database and the working sets of concurrent transactions. The 
software parameters are based on instruction counts taken from 
the Gamma parallel database prototype [Dewitt 901. The disk 
characteristics approximate those of the Fujitsu Model M2266 
disk drive, as described earlier. 

5 Fragment Fencing Performance 
In this section, we use the simulation model described previously 
to examine the both the steady state and the transient performance 
of fragment fencing. The steady state analysis addresses the ha- 
sic question of how well fragment fencing can achicvc rcsponsc 
time goals for various workloads and system conligurations. WC 

Parameter --Tq - -----.-_-. __.... - 
-#Transaction terminals 

- -__-~_ 
I00 

Mean tran think time (exponential) -is WC ~---.---- 
# Query ternimals I 
Querythinky---- 0 (varG!j-- 
# Uatch terminals I 
Batch think time 

-----_._- ~- .-.~. 
0 

Number of CPUs 
.---_. 

I 
CPU speed SO MIPS 
Number of disks ] -----7 
Page size 

--~--H .Kli 

- --- 
--- --- - 

Memory size 4 Ml3 (5 I2 lJi\pcs) -- ___.__ -__--_- .--__ 
Disk cylinder size 

._ 
S3 I)iI)JCS 

Disk seek factor 
---. -_-._ _ - 

0.617 
Disk rotation time 7-7 lnsec __--- 
Disk settle time 2.0 IIISCC 
Disk transfer rate 3.00 MRlscc- -_____- 
Disk cache context s~zc 4 pages 
Disk cache size 8 c011tcxts 

Table 2: Simulation parameter settings 
Function # lnstr Function # iXJ 

read record from write record to 
buffer page 300 buffer page 
insert in hash tbl 100 probe hash thl 
test index entry 50 copy 8K msg 
start an I/O -1000 apply predizr 
initiate select 
initiate jom 40000 tcrminit+in -- ----- 

Tahlc 3: Simularion instruction counts 

explore four different pairings of the workload classes dcscrihctl 
in Section 4.3: transactions with queries, batch with queries, 
transactions with transactions, and transactions with hatch. Half 
the cases specify goals for only one of the two classes, and the 
other half specify goals for both. Besides varying workloads and 
goals, WC also explore the effects of different base rcplaccmcnt 
policies as well as varying lcvcls of competition al the disk OI 
CPU hetwccn the two classes. The transient analysis section cx- 
plores t hc hchavior of fragmcnl fencing over 1 ime and addrcsscs 
questions of stability and rcsponsivcncss that arc always ;I con- 
cern for systems that exploit fecdhack. Holding Ihc workload 
and configuration constant thcrc, we cxplorc two paramctcrs: 
the length of the observation inlcrval and the stability of the 
workload. 

5.1 Steady State Behavior 

The performance metric we adopt for judging steady SLIIC IX*- 
havior is the avcragc response lime for each workload Class. All 
of the expcrimcnts in this section exccutc the workload for SO 
simulated minutes and collect statistics for only the final 30 min- 
utes of simulated time in order to remove warm-up transients 
from the averages. We insure a minimum of 15,000 transaction 
completions, 500 batch job completions, and 50 query complc- 
tions. 

The results of each experiment in this section are prescntcd 
in tables of a similar format, with a column for Ihc avcragc 
response time of each class. Every row reprcscnls a diffcrcnt 
response time goal. For comparison purposes, wc inclutlc rows 
labclctl “alone” chat show the rcsponsc time of C;IC~I l.liIss WIICII 
iC is cxccutctl illOllC in tllc syslclll, ils Well 11s rows IillWl~tl ‘%ilW” 
that show results when no goal is spccilictl li)r rithcr chss. ‘1’11~ 
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“alone” rows rcprescnt lower hounds on the rcsponsc Iimcs that 
CM 1)~ CXPCC~C~ for each class. and Ihc “hasc” rows show how 
tbc base rcplaccmcnl policy acts without any assisIancc from Ihc 
I’ragnicnI I’iancing algorithm. 

htldilionillly, if lhc query class is prcscnl. wc add a column 
sIlowing the amount of working storage nllocatcd IO the hash join 
under the guidance of fragment fencing. Wc also riced Io split 
the “hc” row into two casts when qucrics arc present, because 
wilhoul any guidance from Ihc fragment fencing algorithm, Ihc 
hasc allocation policy is free to decide on its own how much 
working storage to alltwatc to a hash join operator. WC explore 
two casts: minimunl, which is Ihc minimum allocation required 
for the join to cxccutc. and maximum, which is all of memory 
cxccpl for IhaI portion which is SCI aside for “system” use and to 
insure that no transiIClion memory waits occur (20% of memory, 
or about IO0 frames). 

‘lhnsactions & Queries 

WC hcgin this scclion with a set of four cxpcrimcnts using 
a mix of transadions and queries. The dctailcd behavior and 
paramctcrs of each workload class were descrihcd previously in 
Section 4.3. The lirsI cxpcrimcnt isolates the CITCCIS of adding 
I’lXpllK!llt fcncinp to an cxisling memory manager. Pure globill 
I.KU is used ti lhc hasc memory manager to show the cffccts 
01’ fragmcnl fencing as disIincI from any other “hints” about the 
rclativc value of a page. WC also insure lhat memory is Ihe only 
rcsourcc whcrc the two classes compete IO any significant degree. 
‘Ibis is accomplished by scgrcgating the data referenced by each 
class onto scparalc disks and by setting the CPU speed such 
thaI prtKcssor utihzations arc 10% or below (SO MIPS). Table 4 
shows the rcsuhing response times and memory allocations for 
this lirst cxpcriment. 

I~\;unining Ihc lirst Iwo rows in Table 4, we see the impact ol 
adding qucrics IO iI Iransaction workload: transaction rcsponsc 
tinics douhlc - cvcn when those qucrics arc allocated the ab- 
SO~IIC minimum amount of working storage. Since thcrc is no 
signilicant contention at the disk or CPU in this cxpcrimcnl, the 
only rcnson for Ihc change is a drop in transaction buffer hit rates 
when qucrics arc added, rcsuhing in an incrcaqc in Ihc avcragc 
I/OS per transaction from about 2 IO about 4. This hit rate dc- 
crcasc is due IO Ihc inabiliIy of pure global LRU to distinguish 
the more I’rcqucntly acccsscd transaction pages from the less 
villtlilhlc pilgcs acccsscd hy Ihc qucrics. 

‘I’hc second and third rows of Table 4 show Ihe effects 01 
adding fragment fencing to a pure global LRU memory manager. 
While the 60 mscc goal is not achievable for the transactions, 
their avcragc rcsponsc Iime of 7 t msecs under fragment fencing 
approacllcs their stand-alollc pcrformancc of 64.5 msecs. The 
reason is. of course, Ihc incrcasc in huffcr hit rates provided 
by fragment fencing. In thcsc same two rows WC can see Ihat 
query pcrformancc improves ils well, even though Ihc amount 
of memory illh~atcd lo the queries is the same (28 pages) wiIh 
or without I’KlglllCllt fencing. This is because the transaction 
rcsponsc times, with fragment fencing trying to enforce a 60 
mscc goal, arc nearly halved relative lo Ihc pure LRU case. 
‘I’bc rcsponsc time improvcmcnt for the transactions lowers their 
avcragc number in the system from 0.9 ~00.5, reducing what little 
competition the qucrics cxpcricnce at the CPU and disk from the 
transactions (hash join buckets are written to a randomly chosen 
disk. which occasionally causes some intcrfcrcnce at the disk 
hctwccn the two classes). 1,ooking aI the remaining rows, we 
ciII1 see that fragment fencing manages to meet the goals fairly 
well. with iIt most a I % violation for the 80 and 150 mscc cases. 

The second experiment dealing with transactions and queries 
retains Ihc workload and configuration of the previous one. This 
time. howcvcr, the base memory manager uses a 3-Icvel global 
LKU policy instead of pure LRU. Table 5 shows the resulIs 
of this cxpcrimcnt. If WC cxaminc thr first two rows of Ihi:, 
table and compare them to the previous cxperimcnl (‘Table 4), 
WC can set that adding hints on page type and reference patterns 
signilicantiy reduces the impact of adding queries to a transaction 
workload relative to the pure LRU case. This is largely because 
scqucntial Hooding4 is eliminated via the hints. The second and 
third rows of Table 5 show that the additional guidance provided 
by fragment fencing still results in improved transaction response 
limes. Even though the 3-level LRU base replacement policy can 
now distinguish the more valuable transaction data from the less 
valuable query data, it still does not discriminate between more 
frequently accessed and less frequently accessed data within the 
transaction class. The rest of Table 5 shows results similar to 
the previous experiment with pure LRU, except that all of the 
query response times are correspondingly lower. Looking at 
the query memory allocation column of Tables 4 and 5, we see 
that transaction response time goals under a 3-level LRU policy 
can hc aehieved with much less memory, leaving more left over 
to allocate to the queries. This shows clearly how fragment 
fencing’s feedback approach allows it to adapt to the behavior 01 
Ihc base memory manager. The fencing algorithm doesn’t know 
Ihat rcsponsc times are improved because the base replacement 
policy is smarter; it just knows that it has to keep less data in 
memory here to achieve the response time goals. For the rest of 
the paper, we will adopt a 3-level LRU replacement policy since 
it is clearly superior to pure LRU. 

The final two experiments with a transaction/query workload 
examine the effects of increased competition between the two 
workload classes at resources other than memory: CPU and 
disk. Table 6 shows the effects of the increased disk competition 
that results from placing all the data of both classes on a single 
disk. Table 7 shows the effects of increased CPU competition 
by decreasing the MIP rating from 50 to 8. CPU utilizations rise 
from IO% or less in the previous experiments to between 50 and 
75%. 

Both tables 6 and 7 show a similar phenomenon. Response 
times rise uniformly relative to the more powerful system con- 
@ration used in Table 5, and the more aggressive response 
time goals in the top few rows become unachievable. Both of 
~hcsc cffccIs are due to the incrcascd competition between the 
IWO classes at the CPU or the disk (disk response times nearly 
double due to queucing delays). The amount of memory made 
available to the queries drops as well, indicating that the fencing 
algorithm is trying to compensate for the response time increases 
by retaining more and more of the database in memory. Similar 
IO Ihc pure LRU versus 3-level LRU case, the fragment fencing 
algorithm only knows that response times are higher for some 
reason, and the only thing it can do is to increase the memory 
resident portion of the database. Even though goal oriented CPU 
scheduling might be a more effective way to control response 
times in this case, we can see that fragment fencing still pcr- 
forms better for 60th classes than the base 3-level LRU strategy 
dots by itself (“Base (min)” row). 

ISeyucnricr/flr,odi/~~: is B problem characteristic of a pure LRU replacement 
policy. Processes performing sequential scans can flood the buffer pool with 
pages that are not likely to be reaccessed, displacing pages with a much higher 
prohability of reaccess. 
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Avg tran ( Avg qry 1 Qry mem 1 
resp (msec) rcsp (set) (pages) 

Tran alone 64.5 
Base (min) 138.4 33.7 28 
Goal 60 ms 71.0 30.5 28 
Goal 80 ms 80.8 2.5.3 loo 
Goal 100 ms 98.8 21.8 203 
Goal 150 ms 151.6 16.6 350 
Goal 200 ms 196.9 15.6 392 
Base (max) 232.3 15.6 412 
Qry alone 11.7 1 412 

Table 4: Pure LRU, separate disks 

Avg tran Aw qry Qv mem 
resp (msec) resp (set) bws) _ 

Tran alone 55.0 
Base (min) 135.8 58.9 28 
Goal 60 ms 112.8 53.2 28 
Goal 80 ms 112.8 53.2 28 
Goal 100 ms 112.8 53.2 28 
Goal 150 ms 11 146.7 1 44.3 1 174 
Goal 200 ms II 201.0 I 43.2 I 280 

L 

Base (max) 11 333.2 1 43.5 1 41241 
Orv alone II I 11.7 I 412 

Table 6: 3-level LRU, disk interference Table 7: 3-icvel LRU. slow CPU 

I 11 Avg Batch I Avg qry 1 Qry mem 1 

Batch alone 
Base (min) 
Goal 1.3 set 
final 1 63 Q-r 

resp (set) resp (set) (pages) 
0.80 
3.12 37.7 28 
1.42 37.7 28 
171 32.8 58 -- . c _ .^ 

-* -._ I-_ _._ - 28.4 140 
-112.5 set 2 65 

2:86 
22.6 284 _ 

Goal 2.8 set 22.5 300 
Base (max) 3.27 17.0 412 
Qry alone 1 11.7 412 

Table 8: Batch & Queries 

B resp T resp 
(set) (msec) 

Tran alone 

~1 

Batch alone (1 0.80 ) - 
Base 11 2.70 1 60.8 

I Tran alone 54.9 
Base (min) 

II- 

7s. I -jy---T”‘.HI-- Bi- ~ I_-- -- .__ 
Goal 60 ms 
Goal 80 ms 

60.H- 30.0 t -------?ii 
77.6 -7.1 -73-i 

Goal 100 ms 
--- . 

101.2 IV. 273 
I 

Goal I50 ms 
(;oal 

Base (max) 182.1 
-2 

14.5 412 
Qry alone Il.7 412 

Table 5: 3-level LRU, separate disks 

I Avg tran 1 Avg qry I Qry mcm 1 

Tran alone 
Base (min) 
Goal 60 ms 
Goal 80 ms 

rcsp (msec) rcsp (see) (pages) J -- 
68.7 

103.0 36.8 -m 
91.0 76.1 28 
91.0 36.1 28 

I 

Goal 100 ms loo.1 29.2 
Goal 150 ms 

--- 
153.8 22.9 Rue 

Goal 200 ms 100.0 i9.x -%Z@ax) II6 1 _~~---m- -. .-. 230X ----i% .-_.- - 412 ._ .- 
.L ---. ---- 

412 i 
I 

Qry aione is.7 -__ 

Ti alone 

Ti rcsp T2 rcsp 
(mscc) (mscc) 

550 -1 -. . 
T2 alone 
Tl Goal I50 mscc 
Ti Goal I25 msec 
Ti Goal 100 msec 
T I Goal 80 msec 
Base 

131.1 
126.3 

55.0 
hOh 
60.6 

I 

102.2 60. I 
91.4 64.8 

106.4 106.0 

Table 9: Trans I & Trims 2 (60 mscc goal) 

I 11 B resp I T resp 1 
1 (set) 1 (msec) 

Tran alone . 1 55.0 

Batch alone II 0.80 I - 
Base II 2.70 I 60.8 

I I 

Table 10: Trans (I 50 ms) & Batch Table 11: Trans ( 100 ms) & Batch Table 12: Trans (80 ms) & Batch 
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Batch & Queriw 

The sccontl w~~rkl~~itd that we examine is a combination of 
“bi~tch”,jObs, which consist of lilt scan operations, and hash join 
qucrics (see section 4.3 for detailed workload descriptions and 
paramctcrs). Iiccausc the batch jobs access a”hot” tilt, fragment 
fencing con he el’fcctivc in controlling their response times. Nor- 
mally, a hint-based memory manager would consistently penalize 
this batch workload because all of its data is accessed sequen- 
tially. On the other hand, a frequency-based memory manager 
would consistently favor a batch workload of this sort, because it 
understands that retaining frcqucntly accessed data will increase 
overall hit rates. Table 8 shows the results of this experiment. If 
WC look al the first lwo rows, we set a phenomenon that is iden- 
lical lo the lirst cxpcrimcnt (Table 4). where queries were added 
to a transaction workload under the pure LRU replacement strat- 
cgy: rcsponsc times for the batch class arc more than doubled. 
In the lirst experiment, transaction response times doubled be- 
cause the hasc replacement policy couldn’t distinguish between 
lhc pages of each workload class, and buffer hit rates for the 
transactions thus dropped signilicantly. By adding hints on page 
rcfcrencc patterns to the replacement policy, the problem with 
the Iransaclion/query workload was fixed. However, those same 
hints arc useless for the batch/query workload in this experiment 
hccausc both classes access the same type of data with the same 
rcfcrcncc pattern (sequential data file scans). 

Looking at the average response times for the batch workload 
in Table 8, we see that fragment fencing can achieve the goals 
reasonably well for this workload, with at most a 6% violation 
in the 2.5 second case. 

lkansactions & lkansactions 

The third workload that WC examine here is a combination of 
twoTPC-A-like transaction classes, each with theirown response 
time goals. The behavior of both workload classes is identical 
10 that which was described in Section 4.3, except that each 
rcfcrenccs an identically sized but distinct set of files lo eliminate 
&Iil sharing effects. The data used by the two transaction CI~.SSCS 
is scgrcgatcd on scparatc disks as well, so there is no competilion 
;II the disk hctwccn the IWO classes. 

This cxpcrimcnt invesligatcs the behavior of fragment fencing 
when Ihc goals for both classes can be achieved, and also when 
they cannot. Tahlc 9 shows the response times that result. Class 
‘1’2’s goals arc lixed :II 60 msecs, which is very close to the lower 
bound 01’55 msccs. Class Tl ‘s goals are progressively tightened 
until they become impossible to achieve, which occurs at the 80 
mscc goal. Because the behavior of each class in this workload is 
very similar, goals for both classes are violated when either one 
cannot be achieved. Class T2’s performance suffers a bit more 
relative to class TI, however. It turns out that this is purely a 
matter of chance. Since fragment fencing does not have a notion 
of priority between classes, the first class to violate its goals will 
win the race for any remaining memory; which class violates 
its goal first simply Jcpcnds on the random arrival processes of 
each class. 

Another interesting result of this experiment is the behavior 
of’ fragment fencing with extremely tight goals (the SO/60 msec 
case) relative to the performance of the base 3-level LRU re- 
placement policy. Although the base replacement policy gives 
each class the same performance, it is significantly worse (see 
the “Base” row of rhe table) than when fragment fencing is ac- 
tivatcd. The reason is the same as in the second experiment 
(‘l’ahlc 5): the base rcplacemcnt policy has no information about 

the relative frequencies of rcfcrcnce among pages with the same 
“hint” level. The situation becomes cvcn worse with two classes 
bccausc of the interference berwecn them (external thrashing). 
Because fragment fencing tracks the frequency of reference to 
each fragment, it can guide the base replacement policy into 
making more intelligcnl replacement decisions. 

Transactions & Batch 

The final workload that we investigate in this section is a 
combination of TPC-A-like transactions and “batch” jobs that 
consist of scans over “hot” files. Tables 10, 11, and 12 fix the 
transaction glass goals at 150, 100 and 80 msecs respectively. 
Transaction and batch response times in these tables are shown 
under the “T resp” and “B resp” columns respectively. For 
each oi the three transaction class goals, the batch class goals 
are varied from loose to tight. Table IO shows the response 
times that result with the loosest transaction class goal (150 
msecs). In all cases, the batch class goals are met, and in all 
exccpl the last row, the transactions out perform their 150 msec 
target. This is because the base replacement policy is favoring the 
transaction class’s pages over the batch class’s pages, allowing 
the transaction class to use all of the memory that is not required 
to meet the batch response time goals. Tables II and 12 show 
the same experiment with the transaction class goals set at 100 
and 80 msecs, respectively. In the 100 msec transaction case, 
batch class goals are unattainable beyond 1.75 seconds. Under 
the tightest transaction goals of 80 msecs (Table 12), the batch 
goals are unattainable beyond 2 seconds. 

An interesting aspect of this workload is how fragment fenc- 
ing can modify the base replacement policy’s treatment of each 
class: always favoring transactions over batch. With fragment 
fencing, the base replacement policy can be “coerced” to favor 
the transactions less and less, allowing the batch class to move 
closer to its stand-alone response time. 

We conclude our examination of steady state performance 
by noting that fragment fencing seems capable of successfully 
achieving steady state response time goals for these example 
workloads, and that in many casts it can provide better perfor- 
mance for the classes that do not specify any goal as well (relative 
to the base buffer manager’s stand-alone performance). WC have 
also seen that fragment fencing is able to adjust lo different de- 
grees of intelligence in the base buffer manager, and to high 
device utilizations which violate its simplistic model of transac- 
tion behavior. Thus, fragment fencing appears quite promising 
as a mechanism to provide users or system administrators with 
the ability to automatically tune a DBMS according to a set of 
application-level performance requirements. 

5.2 Transient Behavior 

There are many possible ways to satisfy an average performance 
metric over some specified time interval. For example, a one 
second average response time goal over some interval could 
be satislied such that 80% of the transactions in the interval 
experience a quarter second response time, while 20% of the 
transactions experience 4 second response times. Since only the 
average value of the metric and the interval over which it should 
be computed were specified, we cannot say if this particular 
way of satisfying the goal is good or bad. Most likely a more 
complete performance specification would include more infor- 
mation on the distribution of response times that are considered 
“good,” perhaps by specifying standard deviations, percentiles, 
or maxmiums. 

Even though fragment fencing currently lacks mechanisms to 
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specify or act on a more detailed specification of response time 
goals, we can state a simple requirement for its transient behavior 
in any case: it should not introduce more variance in the work- 
load than would exist if fragment fencing were not activated. 
Since the only way fragment fencing can introduce variance is to 
change the size of the resident database volume, we need to see 
if there is excessive movement of the line separating the resident 
volume from the non-resident volume. We explore two variables 
which could cause the algorithm to adjust the resident volume 
excessively: the length of the interval used to compute average 
response times, and the length of the think time between arrivals 
of resource intensive queries. Both experiments use the same 
workload as in the first steady state experiment: TPC-A-like 
transactions mixed with hash join queries (see Section 4.3 for 
detailed workload descriptions). 

The length of the observation interval can cause excessive 
movement of the resident volume lint for basic statistical rea- 
sons. When the interval is shorter, fcwcr transactions arc used 
to compute the avcragc observed rcsponsc times at each interval 
completion. As in any statistical sample of a large pOpUliltiOl1, 

the smaller the sample size, the larger the variance that will be 
observed between each sample. Small observation intervals can 
therefore present a picture of a very unstable system to the frag- 
ment fencing algorithm. The challenge is not to over-react and 
try to manage what are purely statistical fluctuations in the sys- 
tcm load. Larger observation intervals help to mask these natural 
fluctuations in load, and thus provide a much more stable input 
to the algorithm. In this case, the algorithm will be less likely to 
attempt to over-manage the system. 

To give an idea of the input that the fragment fencing algo- 
rithm is attempting to deal with, Figure 2 shows a graph of the 
average transaction response times over intervals of 50 comple- 
tions with fragment fencing turned off. The X axis is a count of 
transaction completions, and the Y axis is the average rcsponsc 
time over each 50-transaction interval. The upper lint in the 
graphs shows the behavior of transactions when the qucrics arc 
allocated their maximum amount of working storage, leaving 
very little for the transaction class data. The lower lint shows 
the results of a minimum memory allocation to the queries, with 
most of memory being allocated to transaction data. Note that 
cvcn this picture shows less variance than is actually occurring 
in the system, since it represents averages over SO transaction 
completions. We use an interval length of 50 completions as our 
lower bound since any smaller intervals start to lose statistical 
significance.5 One phenomenon that can be seen in this graph is 
the relationship between the amount of memory available to the 
transactions and the resulting variance in their rcsponsc times. 
The more memory, the lower the probability of disk I/OS. and the 
lower the variance becomes. An interesting implication of this 
phenomenon for fragment fencing is that as the rcsidcnt volume 
increases because of tighter and tighter-response time goals, the 
variance decreases. Surprisingly, this means that loose response 
time goals are actually more difficult to manage than tight ones 
are. 

We show the effects on resident volume of varying the obser- 
vation interval lengths in Figures 3,4, and 5 for interval lengths 
of 50, 100, and 300 completions, respectively. The X axis of 
these graphs shows transaction completion counts (time), and 
the Y axis shows the resident volume in pages. The maximum 
resident volume allowed is ahout 400 pages (80% of the memory 

--- 
’ While the ~CIU;I~ numher ol’ samplers rquired hy imy slalis1ual anulysis 

depends on the mount 01 error Ihal can lx Iolerntcd, bumple sizes Icss Ihan 30 
or 40 are normally considered “small.” 

in the conliguration). Each lint in the graphs rcprcscnts a diffcr- 
cnt goal for the transaction class. Hiphcr lines (Iargcr rcsidcnt 
volumes) correspond to tighter response time goals, and lower 
lines correspond to looser goals. The throughput of the trans- 
actions in this experiment is approximately 5 per second. so the 
intervals of SO, 100, and 300 completions translate to IO. 20, ml 
60 seconds. While it is difficult to dcvclop a prccisc metric to 
gauge the relative “goodness” of each of thcsc graphs. they show 
how the stability of the algorithm improves as the ohscrv;ltion 
interval lengthens. Even though thcrc arc more lluctuations with 
smaller intervals, the algorithm seems lirmly anchored around a 
central point in each case. We also expcrimcntcd with intcrv;lls 
greater than 300, but the results were csscntially identical to lhr 
300 case and WC thercforc omit them hcrc. 

The implication of this analysis is that for a w~~rkl~~;ttl clws 
with suflicicntly high throughput (greater than 5 per second). illI 
observation interval of around one minute or larger provides very 
stable performance. For workload classes with lower throughput, 
however, thcrc is going to be a larger IradC-OfI hctwccn stilhility 
and rcsponsivcncss. While lower throughput workloads (c.p. 
batch jobs) seem likely to cxpcricncc much lower natltral v;lri- 
ante in response times, and can thcrcforc lwrhaps tIcal with a 
smaller ohscrvation interval, the proper setting of this param- 
eter for low throughput workloads remains an area for l’urthcr 
investigation. 

The second variable that we invcstigatc hcrc is the gap hc- 
tween query arrivals. We explore dctcrministic query class think 
times ranging from IO to I20 seconds for a transaction workkxltl 
with a response time goal ol’ 70 milliseconds. The transactions 
have a throughput of approximately 5 per second, so the numhcl 
of transaction completions that could occur during the gap hc- 
twcen query arrivals varies from SO to ISOO. The int<!rv;ll OVCI 
which we compute the average response times is IO0 complc- 
tions (20 seconds at 5 transactions per second). This interval six.r 
is smaller than that rccommcnded hy the previous analysis, hut 
it allows us to exaggerate the effects of query think time slightly 
by increasing the responsivcncss of the fencing algorithm. II 
WC look at query think time simply as another way to introduce 
variance in the system load, then obviously a Iargc enough obscr- 
vation interval could cancel the cffccts of any think time--rclatcd 
variunce ils well. For the purposes Al’ this cxpcrimcnt, howcvcr, 
WC want to limit the dampening cff~ct of ;I longer ohscrv~~ticm 
interval (even though it is a perfectly valid way to adtlrcss the 
problem). 

Figure 6 shows the size of the rcsidcnt volume its a function ol 
time for each of four query think time values. The two str;iight 
lines at the top of the graph arc the IO and 30 second think 
time results. Since these think times arc similar in Icng~h IO 
the observation interval, their effects arc complctcly dampcnctl 
by the averaging that occurs over the ohservation interval. ;IS 
explained in the previous analysis. The rcsidcnt volume I’m 
the 30 second think time line is lower than the IO second think 
time lint bccausc as the query think time increases, thcrc arc 
more periods where the transactions do not have to compctc for 
memory and thus their rcsponsc times improve as a result. The 
fencing algorithm reacts to this hy reducing the rcsidcnt volu~nc 
required to maintain the 70 mscc transaction rcsponsc time goal. 

The next two (wobbly) lines in Figure 6 SIIOW 60 and 120 
second query think times, in order ofdecrcasing avcragc rcsitlcnt 
volume. The 60 second think time is just large enough for three 
ohscrvation intervals to occur during the gilp in brtwccn qucrics. 
‘I’hcse three ohscrvutions arc enough to convince the I’cncing 
algorithm to rcducc the rcsidcnt volume rcquircd, only to raise 
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it again in the following interval. The 120 second think time 
line is similar, but the time span between lowering and raising 
the resident volume becomes larger. The 60 second think time 
represents a worst case scenario for this experiment (with its 20 
second observation interval length), a there is no benefit there 
to lowering the resident volume - it will have to be raised again 
almost immediately. 

Figure 7 shows the effect of excessive movement of the rcs- 
ident volume line on transaction response times. The line with 
higher variance corresponds to the worst case 60 second query 
think time, and the line with the lower variance corresponds to a 
more favorable scenario involving a 10 second query think time. 
The 10 second think time represents a favorable case because 
the resident volume line is never moved here, and any variance 
in response times is thus due to natural statistical fluctuations in 
the transaction workload itself. Clearly, lowering the resident 
volume in the 60 second think time case is a bad idea; the addi- 
tional variance introduced could even cause the average response 
time goals to be jeopardized. We plan on investigating this issue 
further in our future work. 

6 Issues and Extensions 
In this section, we briefly discuss some important remaining 
challenges for the fragment fencing approach and our current 
thoughts on how we plan to address them. One key challenge 
is to address violations of the algorithm’s assumption that the 
hit rate for a fragment is equal to the fraction of the fragment 
that is memory resident. Violations of this assumption could bc 
caused either by non-uniform reference patterns (e.g. temporal 
locality, correlated references, append-only access, etc.) or by 
dcliciencies in the base replacement policy (e.g. LRU for a loop 
that cannot fit in memory). Such violations currently can cause 
fragment fencing to continue increasing the target rcsidcncy ol 
a fragment even when little or no hit rate increase results from 
doing so. However, the information needed to detect a violation 
of this assumption is already collected by the algorithm (i.c., it 
keeps the % residency and the observed hit rate for each frag- 
ment), so it should not be too difficult to improve the algorithm 
in this regard. 

Another area for improvement is to address violations of the 
algorithm’s assumption that a transaction’s response time is lin- 
early related to the number of I/OS that it requires. As WC saw in 
the steady state performance analysis (Tables 6 and 7), violations 
of this assumption translate into a larger resident volume being 
required to achieve a given goal. In fact, fragment fencing may 
try too hard to achieve a goal when this assumption is violated, 
increasing the resident volume by larger and larger amounts in 
order to achieve only small improvements in response times. 
As for the hit rate assumption above, the algorithm should bc 
modified to check the validity of this I/O dominance assumption 
before acting on it. This can be accomplished by monitoring the 
average observed disk response time per class; by multiplying 
this quantity by the average number of disk I/OS for a class, the 
algorithm can identify classes for which I/O time is a relatively 
small component of the overall average response time. 

Still another challenge lies in addressing potential problems 
caused by low temperature fragments, as these may also cause 
the fragment fencing algorithm to increase the target residency 
of a fragment by large amount for only a small return. If a 
workload class performs a large number of I/OS, but on very 
“cold” data, then even filling up all of available memory with the 
claqs’s data would not significantly reduce the number of I/OS 
required by transactions of the class. An example of this type ol 

behavior would be a batch job that sequentially scanned a very 
large database. An obvious approach to addressing this issue 
is to check for some minimum temperature before increasing 
the target residency. The algorithm already determines whether 
a single fragment can completely salisfy any rcquircd change 
in l/O, or if multiple fragmcnls are required. This tlccision can 
easily be extended to determine if arrysct of fragments rcfcrcnccd 
by the class can satisfy the required change in I/O. 

Finally, as seen in the transient pcrlbrmancc analysis (t:igurc 
6), long-runningc&cs with large working storage rcquircmcnts 
(such as hash joins) can present special challcnpcs with rcspccc II) 
the transient behavior of fragment fencing. Once fragment knc- 

ing gives away some working storage to a long-running hash 
join, it can suffer the consequences of that decision li)r long 
time to come. The situation would be exaccrbaIcd further il 
the relative response times of such queries arc many orders of 
magnitude larger than those of the competing goal classes. (Our 
performance analysis only considered response time ratios of up 

to IO0 or so between claqses). While it is unlikely that frapmcnt 
fencing can ever be prcventcd from making mistakes, thcrc ;Irc 
certainly ways to limit the penalty of doing so. One promising 
possibility is the exploitation of memory-adaptive query pro- 
cessing algorithms, c.g. memory adaptive hash join and sorting 
methods IZcller 90, Pmg 93a, Pang 93b]. Thcsc join mclhotls 
can dynamically adapt to changes in the amount of available 
working storage during execution, so frapmcnt fcncinp could 
actually “take back” some of the working storage from long run- 
ning queries when it is ncccssary increase lhe rcsidcnt volun~c 
while such queries are active. 

In summary, the primary pathology of fragment fencing is 
the possibility of its attempting large incrcascs in the rcsidcnt 
volume in return for small improvcmcnts in I/OS or rcslH)nsc 
times for certain classes. By modifying the algorithm IO first 
check its assumptions, and to rcacl lo violations that it dctcc~s. 
it is likely that such problematic behavior can bc avoided. In 
addition, memory-adaptive schemes appear promising ;LS a way 
IO address the problem of long-running consumers of working 
storage. 

7 Conclusions and Future Work 
In this paper we have explored the potential of using memory 
allocation and page replacement mechanisms to implcmcnt pcr- 
class performance goals for multiclass workloads. We described 
an algorithm called fragment fetrcitt~ that takes as input a SCI 
of per-class response time goals and a description of the data 
and index fragments that make up the datahasc. The algorithm 
that we described observes the per-class rcfcrcncc I’rcqucncics 
and monitors the slate of the system rclativc IO ils stn~ctl goals; 
the information that it gathers is used to help existing bul’l’cr 
allocation and page replacement mechanisms IO avoid making 
decisions that may violate the goals. 

Using adetailed simulation model, WC studied hoth the s~cady 
slalc and transient performance of fragmcnl fencing when il is 
coupled with a modified global LRU memory manager with lhrcc 
levels of “hints.” Our results showed fragment fcncinp to hc ca- 
pablc of successfully achieving steady state response time goills 
for a number of example multiclass workloads. For workloads 
whcrc one of the classes did not specify any goals, fragment 
fencing usually provided better performance Ihan the base huffcr 
manager alone for the non-goal class as well. Morcovcr. by 
coupling fragment fencing with a pure glObal LRU rcplaccmcnl 
mechanism. we demonstrated that the approach is able lo coexist 
with base buffer managers with varying degrees of intclligcncc. 
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I’I;I~IIICII~ li’ncing W~IS able IO achicvc ~hc same goals with an 
I .HlJ SC~ICIIIC ils it did with IIIC more intclligcnt 3-1~~~1 LKIJ 
SVII~*II~~. ~IIIIOII~II at iI higher cost in terms of the amount ol 
memory JctlicaIcd IO fragment caching. Finally, we explored 
violations of fragmcnl fencing’s simple assumptions regarding 
transaction hchavior as well as possible enhancements to limit 
the impact of these violations, WC conclude that fragment fenc- 
ing appears quite promising as a way to provide users or system 
administrators with lhc ability to tune a DBMS according to a 
scl of ;IppliC~~liO~~-lcvcl performance rcquircmenls. 

Bcsitlcs the cxtcnsions listed in the previous section, our fu- 
lure work will cxplorc additional mechanisms for dcahng with 
conllicting goals hctween classes, for allowing more detailed 
spccilications ofrcsponse time goals (such as maximums and per- 
ccntiles), and for limiting the penalty incurred as a result of work- 
load shifts (via pcrsistcnt statistics). WC also plan on coupling 
fragment fencing with algorithms that handle load control and 
working storage allocalion among competing queries in order to 
explore the performance of multiple concurrent queries compet- 
ing wiIh transactions and hatch classes IMehta 931, and WC plan 
on integrating fragment fencing with goal-oriented CPU and disk 
scheduling mechanisms as well. The information collcctcd by 
Ihc algorilhm on hit rates and percent residencies Ibr individual 
fr;igmcnls could aIs0 hc a useful input to recently proIx)scd tech- 
niques for run-tilncsclcction ofqucry plans [Hong 91, loann 921. 
Finally, WC would like to exploit the capahilitics of memory- 
;ttlaptivc query processing tcchniqucs, e.g., preemptible ha.h 
join ilnd sorting methods [Pang 93a, Pang 93hl. 
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