Managing Memory to Meet
Multiclass Workload Response Time Goals*

Kurt P. Brown!

Michael J. Carey

Miron Livny

Computer Sciences Department, University of Wisconsin, Madison

Abstract

In this paper we propose and evaluate an approach to DBMS
memory management that addresses multiclass workloads with
per-class response time goals. It operates by monitoring per-
class database reference frequencies as well as the state of the
system relative to the goals of each class; the information that
it gathers is used to help existing memory allocation and page
replacement mechanisms avoid making decisions that may jeop-
ardize performance goals.

1 Introduction

A widening range of application areas, as well as requirements
for data sharing and continuous operation, are contributing to
an increase in the diversity of workloads that a DBMS must be
able to cope with. However, providing adequate performance for
each class in a multiclass DBMS workload is still an open prob-
lem [Pirahesh 90, Brown 92, DeWitt 92]. A multiclass workload
is characterized by distinct classes of work that may have widely
varying resource demands, each with its own performance ob-
jective. A DBMS that is unaware of these performance objec-
tives may penalize one class or another in an unpredictable way.
Consider the issue of buffer page replacement, for example. A
replacement policy based on recency of reference will tend to
penalize workload classes with low locality; one based on fre-
quency of reference may be biased against workload classes with
low arrival rates; and a policy which uses hints about the relative
value of pages based on their type (e.g. index or data) will be
biased against whatever workload class uses the “wrong” page
type. In order to avoid such “hard-wired” biases, a DBMS must
be able to accept performance objectives for each class as inputs,
and to use those goals as the basis for its resource management
decisions.

Given a set of performance objectives for each class, there
are a number of mechanisms that a DBMS can use to achieve
them: load control, CPU scheduling, disk scheduling, and mem-
ory management. While a complete solution to the problem of
satisfying performance goals in a multiclass environment would

*This work was partially supported by the IBM Corporation through a Re-
search Initiation Grant.
TSupported by an IBM Resident Study Fetlowship.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data Buse
Endowment. To copy otherwise, or to republish, requires a fee and/or special
permission from the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993

likely include all of these options, in this paper we investigate
the use of memory allocation and page replacement mechanisms
for this purpose. It is well known that memory management
is a critical factor in database system performance, which ac-
counts for the large volume of ongoing research in this arca
{Chou 835, Sacco 86, Cornell 89, Robinson 90, Ng 91, Falou 91,
Yu 93, O’Neil 93]. However, none of the previous work speciti-
cally addresses how memory management can be uscd to achieve
per-class performance objectives for a multiclass workload.

There are two ways that memory can be used to improve
DBMS performance: for buffering disk pages, and for work-
ing storage areas (join hash tables, sort work areas, ctc.). At
any point in time, some number of pages are being used for
disk buffers (the disk buffer region), and some are being used
for working storage (the working storage region). A DBMS
memory allocation policy is responsible for two decisions: it
must decide how many pages to devote to disk buffers versus
working storage, i.c. it must logically “draw a line” between the
disk buffer region and the working storage region; and it must
allocate memory within the working storage region among com-
peting transactions.! A page replacement policy is responsible
for deciding which specific disk pages should reside in the disk
buffer region at any point in time.

In a multiclass environment these decisions need (o be driven
by per-class performance goals, as stated earlier. For workloads
that vary over time, they need to be dynamic as well. Othcrwise,
the response time goals will at best be satisficd only on average,
where the average is defined over a large enough interval of time
to eliminate any workload variance. For many workloads, this
time frame would have to be extended to days, or even weeks.
In contrast we would like performance goals to be satisfied over
time frames on the order of tens of seconds or minutes.

In this paper, we propose and evaluale an approach to DBMS
memory management called fragment fencing that specifically
addresses multiclass workloads with per-class performance ob-
Jjectives. It is designed to be used in conjunction with existing
page replacement and allocation mechanisms and acts to pre-
vent allocation or replacement decisions that could violate the
performance objectives of a class. Fragment fencing operalcs
by periodically monitoring per-class database reference frequen-
cies as well as the state of the system relative to the goals of
each class; it then uses this information (o dynamically sct the
boundary between the disk buffer and working storage regions

1t would also be responsible for aiocating memory within the disk buffer
region as well, if a focal allocation policy is used theie. More commonly, a
global allocation policy is used for the disk buffer region, and individual disk
buffer pages are never explicitly assigned to any individual transaction.

328

of memory, and o guide the allocation of pages within the disk
buffer region 1o differemt fragments ol the database,

The remainder of the paper is organized as lollows: We be-

gin by reviewing existing memory management techniques in
Scction 2. The fragment fencing algorithm is then presented in
Scction 3. We describe the simulation model used to cvaiuate
fragment fencing in Section 4, and we show the results of that
evaluation in Section §,
issues and possible cxtensions to fragment fencing, and our con-
clusions and future plans are summarized in Section 7.

2 Related Work

With respect to database memory management, the only rele-
vant work which specifically addresses multiclass workloads are
commercial systems, such as IBM’s DB2 [Cheng 84, Teng 84|,
which provides basic mechanisms to partition its buffer pool and
to place different portions of the databasc in specific partitions.
DB2’s page replacement policy is local within each partition, so
competition between the dilferent pools is climinated. While
in theory, this mechanism could be used to satisfy multiclass
performance objectives, there arc two problems in using it for
this purpose. First, it is static in nature, so it cannot respond to
workload varance and shifts. Second, the connection between
response time goals for cach workload class and which parts of
the database to place in cach partition, as well as the rclative
sizes of cach partition, must be somchow determined manually
by the database administrator. Ideally, we would like the DBMS
to perform these tasks dynamically, based on the current system
stale and the response time goals.

Section 6 diccusses come additional
ection 6 discusses some additional

We categorize recent developments in database buffer man-
agement into three categorics: modified global LRU, frequency-
based,and local query analysis. The modified global LRU ap-
proaches extend a basic global LRU allocation and replacement
mechanism by permitting query operators to provide hints o
the buffer manager about the relative “value” of a page. For
example, index pages could be considered more valuable than
data pages, as in the Domain Separation algorithm {Reiter 76];
randomly accessed pages could be treated as more valuable
than sequentially aceessed pages, as in the DB2 Buffer Man-
ager [Cheng 84, ‘leng 84); or the inner relation of a nested loop
join could be preferred over the outer, as in the Starburst Buffer
Manager [Haas 90). Information on the value of a page is then
combined with information on recency of reference and used as
input Lo guide page replacement decisions. These approaches
arc attractive because they address the major limitations of pure
global 1.LRU with a minimum amount of work. However, the
hints are based on static heuristics that are unrclated to response
time goals, and thercfore may be inappropriate in a multiclass
environment,

The second category of memory management approaches
combines information on frequency of reference with recency
of reference into the replacement criteria. This is logical be-
causce recency of reference is a good basis for replacement when
database references exhibit temporal locality, while frequency of
reference is best when references are skewed, but uncorrelated
|Coftman 73]. Real database reference behavior is a combina-
tion of both. The Frequency Based Replacement policy (FBR)
[Robinson 90} and the LRU-K algorithm [O’Neil 93] are exam-
ples of this approach, tracking [requency statistics on a page-by-
page basis. 'The Bubba-paraliel database prototype | Boral 90] can
be placed in this category as well, but unlike FBR and LRU-K,
which are both dynamic, Bubba statically determined a bound-
ary between that portion of memory which is managed by fre-

quency of reference (the file cache), and that which is managed
by recency (normal global LRU). This boundary is determined
ofl-linc by a *5 Minute Rule” type of analysis {Gray 87]. The
Bubba scheme tracks frequency information on a per-file basis
and uses a size-normalized frequency metric called temperature
[Copeland 88] (references per second per megabyte).
files are statically placed in the file cache in decreasing order of
temperature. By statically or dynamically combining frequency
and recency into the replacement policy, these approaches cach
provide better performance than pure LRU whilc avoiding any
requirements for “hint-passing”.

Entire
&ntre

Examples of the local query analysis approach are Hot Set
[Sacco 86], DBMIN [Chou 85]), Marginal Gains [Ng 91], Pre-
dictive Load Control [Falou 91], and Threshold [Yu 93]. All
of these algorithms use information in the query plan to de-
terminc the optimal amount of memory to allocate on a local
basis (to queries, subqueries, or query/file combinations). The
Hot Set, DBMIN, Marginal Gains, and Predictive Load Con-
trol approaches all address disk buffer memory allocation, and
the Threshold algorithm addresses working storage allocation.
However, none of them address the trade-off between the two
types of memory. Interestingly, although some of these algo-
rithms use response time predictions internally (e.g. Predictive
Load Control and Threshold), none of them are driven by re-
sponse time goals. An obvious question is whether these ap-
proaches can be modified to be driven by their response time
predictions instead of just using them as a means to another
end. Unfortunately, the difficulty with trying to drive them by
their response time predictions is that they can be quite inaccu-
ratc when trying to predict transient response times, especially
in a multiclass environment where each class has widely vary-
ing resource demands. Buffer hit rates, communication delays,
lock waits, and queuing at the disk and CPU are all factors that
can significantly affect the performance of a query when it runs
concurrently with other work.

3 Fragment Fencing

Before we can explain how fragment fencing works, we must first
define the terms performance goal and fragment. While there
arc many possible ways to specify a performance goal, it will be
defined for our purposes as follows: for each workload class, the
DBMS will attempt to maintain a user specified average response
time. Of course, some response times will exceed the goal and
some will be below it, but the average of all response times for
a class should approach the goal as the number of transaction
completions increases. If a response time goal is not specified
for a workload class, then we expect the DBMS to “do its best”
with respect to that class. In addition, because we are primarily
interested in allocation and replacement policies in this study,
we do not allow any work to be postponed by a load controller;
it must be allowed to execute upon arrival, even if it has no goal
specified.

A fragment is a statically determined set of database pages
that have relatively uniform access probabilities. It is simply a
generalization of any distinct external storage structures used by
a DBMS, and its actual definition would be DBMS-specific. A
fragment could correspond to the operating system files that store
the database, or it could be composed of a subset of file pages.
One cxample of a file that could be broken up into multipie
fragments is a tree-structured index. Each level of the index
tree could be a separate fragment because the pages in each level
have distinct access probabilities. A relational DBMS that stored
multiple relations in the same operating system file would likely
define each relation as a fragment. For the rest of the paper, we

329

assume that the term fragment refers either to a single index level
or an entire data file.

Given a set of response time goals for cach workload class,
and a set of fragments that each class references, the basic idea
behind fragment fencing is to achieve the response time goals for
a class by individually controlling the hit rates on the fragments
referenced by the class. For each fragment, the algorithm deter-
mines a target residency, which is the minimum number of the
fragment’s pages that should remain memory resident in order
to meet response time goals. Response times for each class are
continuously checked by the algorithm at well defincd intervals
and if a class is not meeting its goal, then the target residen-
cies for fragments referenced by that class arc increased. If a
class is over-performing relative o its goal, the target residencics
are decreased. The actual amount of each fragment to retain in
memory is determined using two inputs: the obscrved access fre-
quencies of each fragment (thosc with higher access frequencics
are favored for memory residency), and a *best guess” as to the
response time improvement that will result when the fragment’s
memory residency is increased. The details of this process arc
discussed in Section 3.3.

Target residencies for each fragment are enforced by modi-
fying the existing (base) replacement policy to avoid stealing a
page if that would bring the number of memory resident pages
below the target for a fragment. Enforcing target residencics
thus provides a passive way to “fence off” fragments from the
possibility of replacement when they would otherwisc be chosen
by the existing replacement criteria.

Any individual fragment may transicntly be in one of three
states: in deficit (below target), on target, or in surplus (cxcecd-
ing its target). A fragment can be in deficit immediately after its
target residency increases, and will remain so until enough pages
are faulted in to meet its target. If the demand for memory is low,
fragments may exceed their targets and will then be susceptible
to stealing by the normal page replacement mechanism when the
demand for memory rises. Just like fragments, the system as a
whole can be in one of three states: it is in deficit when one or
more fragments are in deficit, in surplus when no fragments arc
in deficit and one or more are in surplus, and on target when no
fragments are in deficit or surplus.

At any particular moment, the sum of the target residencics for
every fragment in the database is called the resident volume, and
the size of the remaining portion of memory is called the unre-
served volume. The resident volume dynamically determines a
“line” that sets a minimum size for the disk buffer region of mem-
ory. The resident volume should obviously not grow so large as
to consume all of available memory. At the very least, enough
must be set aside to satisfy the minimum requirements of the av-
erage set of concurrently executing transactions. Theretorc we
limit the resident volume to 80% of available memory.?2 Mem-
ory which is not reserved for caching fragments can be allocated
cither for working storage or for additional disk buffer pages, as
determined by the base allocation policy. The base allocation
policy is responsible for insuring that the sum of all allocated
working storage does not exceed the unreserved volume. Fig-
ure 1 illustrates these concepts. Note that the line scparating
the memory reserved for caching fragments and the unreserved
memory is dynamic, whereas the line which defines the amount
of memory set aside for minimum transaction requircments is
static.

2 Athough this constant would be DBMS dependent, for this study we chose
80% as a reasonable hmit.

I, Maximum
i resident
Transaction wolking | yojume
gstorage (hash taples, | [imi
sort work arcasiclc) 1
R

Scl-aside

for minimum
transaction

“ | requirciments

Unreserved volume

isc disk’ buffe pages
- fmgmcnts in su,'plus)

e |
Resident volume

Figure 1: Logical Memory Layout

3.1 Implementation Details

Fragment fencing maintains the following state data about classes
and fragments:

Global data:
Nyes # of fragments in deficit (observed)
Nour # of [ragments in surplus (observed)
Resvol Resident volume (calculated)
For each fragment f:
Sizes Size, in pages (input)
R(‘S?"w Current # of memory resident pages (observed)
Res ™ " Target # of memory resident pages (calculated)
DiskRes; Sizey — R(?.#'fa‘r”'" (calcutated)
For each workload class ¢:
Ryt Responsc time goal (input)
I Obscrvation interval length (input)
100 Avg # disk I/Os (buffer misses) per transaction
during observation interval /.. (observed)
Robsv Avg transaction response time
during observation interval /.. (observed)

For each fragment/class combination f, ¢:

Refsr. #references to frag f by an avg class ¢ xact
during observation interval I (observed)

Hitsg,, # buffer hits on frag f by an avg class ¢ xact
during observation interval /.. (observed)

Missesp,. Refspe- Hitsg, (calculated)

The observation interval length . indicates the frequency at
which response time goals should be checked by the algorithm.
For cxample, with an interval of 100 completions, cach group of
100 individual transaction responsc times are averaged together
to form an interval response time, which is then compared against
the user specified response time goal. 1, is actually maintaincd
as two values: one is a number of transaction completions, and
the other records the number of seconds that clapsed during
those completions. Shorter intervals result in more responsive
behavior and longer intervals result in more stable behavior.
Ideally, the tradeoft between stability and responsiveness should
perhaps be decided by the user and not the DBMS, but in the
initial version of fragment fencing, we explicitly set the interval
size by hand for cach workload (sce Section 4.3).3 The observed
I/Os and responsc times (JO?*" and R2**?) as well as the
reference and hit counts (Refsy . and Hitsy) are all relative
to the current observation interval only, and are resct to zero at

3we explore the sensitivity of fragment [eneing 1o different observation in-
terval sizes in Section 5.2,

330

the start of every interval,

On cevery butter reference 1o a fragment f from a class ¢,
the algorithin increments Re fsg .. For a buffer hit or miss it

increments Hitsg . or 1()‘(’""‘”, respectively. Res}“”' is also

updated for the current fragment, il necessary, as well as for
any fragment whosc page was replaced. Ny.p and Ny, are
also updated if any page movement between disk and memory
changes the state of a fragment.

On every transaction completion for a class ¢ which has a
response time goal specified, the observed response time for the
transaction is added (o the running average for the class. If the
current interval, ., has expired, then the next action to take is
based on the current job class state:

e Warmup: The class is waiting for the buffer to fill up after
a system cold start. All job classes cnter the warmup state
on system initialization, and they all leave the warmup state
simultancously when the replacement policy first kicks in,
moving to the history build state. No action is taken on this
transition except to resct all statistics.

e Transition Up: A class enters this state if any target res-
idency was increased in order to satisty its goal. When
the system leaves the deficit state (Ngez = 0), the class is
inoved to the history build state. No action is taken except
to reset all statistics.

e Transition Down: This state is similar to transition up,
but is entered when target residencics were decrcased. The
class is moved 1o the history build state when Ny, = 0.
No action is taken except to reset all statistics.

o History Build: A class cnters this state from the warmup,
transition up, or transition down states. Movement to the
history build statc is required in order to achieve a sta-
tistically significant sample of the newly obtained system
statc (a recently changed resident volume). The time in
this state is sel to a number of transaction completions that
provides statistical significance. We currently set it to 50 in
all cases, but this length could also be dynamically deter-
mined for cach class using sampling techniques [Haas 91}.
If response time goals are being met at the end of 50 com-
pletions, then the class is moved to steady state, otherwise
new target residencics are set, statistics are resct, and the
class moves to transition up or transition down.

e Steady State: A class enters steady statc when its responsc
time goals arc being met. The goals are checked again after
1. completions; if they are still being met, then this state
is entered once again to wait another I, completions. If
the goals are not being met, new target residencies are set,
statistics are reset, and the class moves to transition up or
transition down.

3.2 Checking the Goals

11 the observed average response time for a class ¢ is within plus
or minus some percentage of the user-specified response time
goal (i.c. within some tolerance band, T, of the goal), then the
goals arc considered to be satisfied. Otherwise, it the observed
response times arc higher than the goal, target residencies for
one or more fragments referenced by class ¢ are increased and
the class is placed in the transition up state. If the observed
response time is lower then the goal, then one or more target

residencies are decreased and the class is placed in the transition
down state. While our definition of performance goals allows a
class to over-achieve, we still want to lower target residencies
if we can. The motivation for this is to insure that the amount
of memory available for working storage is always as large as
possible.

As is typical of any feedback mechanism, T, turns out to be
the most sensitive parameter for fragment fencing. If there is a
large amount of *natural” variance in the class’s responsc times,
then T, must be wide enough to prevent the algorithm from
attempting to manage natural statistical fluctuations. A narrow
T. should be used with lower variances in order to reduce the
number of interval response times that violate the goals.

The value of T, cannot be set a priori, as it depends on the
workload and the dynamic state of the system. Therefore, the al-
gorithm computes it dynamically based on the observed standard
deviation across multiple intervals. Given a sufficient number of
samples, the distribution of average interval response times can
be approximated by a normal distribution. We therefore set T,
such that it includes 90% of the area under a normal distribution
curve (i.e. T, is plus or minus 1.65 times the observed standard
deviation). However, we must take care in the standard devia-
tion calculation to avoid including any observations that occur
during transitions in resident volume. These observations would
act to inflate the algorithm’s estimation of natural variance in the
workload, and T, would then become excessively large (loose).
Thercfore, observations are only added to the running compu-
tation of standard deviation if the workload class has observed
some consecutive number of steady state intervals. A default
tolerance band (currently sct to plus or minus 10%) is used untif
T. can be computed from actual response time observations.

In addition to insuring that we record only “natural” variance,
we must also recompute the standard deviation for a class after
it undergoes any transition in target residencies. This is because
the existing sums and sums of squares used to compute the
standard deviation are all relative to a previous set of target
residencies, and therefore they are all relative to a different mean
response time as well. Combining observations previous to the
transition with observations after the transition will also result in
a higher estimation of variance than is occurring naturally in the
workload. Thus, on any transition, the running sums and sums
of squares used to compute the standard deviation are reset,
and the previous T is used temporarily until there have been
enough consecutive steady state intervals under the new target
residencies to allow the standard deviation to be recomputed.

3.3 Changing Target Residencies

If a class is not meeting its goals, then the fragment fencing
algorithm makes an “informed guess” regarding new target res-
idencies that would move it towards its goal. Its guesses are
based on a simplistic model of transaction behavior that consists
of two assumptions:

1. Transaction response times are directly proportional to the
number of I/Os that they require (the I/O dominance as-
sumption).

2. Hit rates observed on a particular fragment will be equal to
the percentage of that fragment which is memory resident
(the hit rate assumption).

The most common reason for a violation of the first assumption
(I/0 dominance) is that the bottleneck resource for a particular

331

workload class may be something other than the disk. The
extent to which the second (hit rate) assumption holds depends on
the degree to which accesses within the fragment are uniformly
distributed and on how the base replacement policy deals with
different access patterns. Becausc the algorithm is continually
observing the system and readjusting target residencies based on
those observations, violations of these two assumptions are not
critical. However, extreme cases can cause the algorithm to “try
too hard,” meaning that it could increase the resident volume
even when there is very little benefit in terms of response time
improvements.

Using the state data maintained for each class and fragment,
together with the model of transaction behavior just described,

new target residencies for a class ¢ are determined in two steps:
calculating the change in I/Os required for the class, and setting
target residencies in order to achieve that I/O increase or reduc-
tion. The change in the number of I/Os for an average transaction
of class ¢ is computed using the I/O dominance assumption as

follows:

Iozarget — Iogbsv/(Rgbsv/Rgoal)
AIOC . Iogbsv _ Iozarget

Note that ATO, will be positive if I/Os are to be reduced, or
negative if they are to be increased. In order to dampen the feed-
back mechanism, we limit ATO, to at most 20% of I Ofb““’ on
any individual change in target residencies (thus I/O deltas larger
than 20% require multiple observation intervals to be achicved).

Setting Target Residencies

Every fragment has a certain observed frequency of reference
by the transactions of a class, and the fragments with higher ref-
erence frequencies should be favored for memory residency over
those with lower frequencies. On the other hand, some fragments
are much larger than others; therefore, for a given frequency of
reference, small files should be favored over larger ones, as their
per-page reference frequencies will be higher. The notion of
temperature [Copeland 88] combines both of these factors into
a single number of references per second per megabyte. We
extend the definition of temperature to record access frequencies
for a specific class instead of for the system as a whole, and we
call the resulting metric class temperature. Each fragment has a
class temperature for every class that references it.

If a class is not meeting its response time goals, AIO, will be
positive, and target residencies will need to be increased. In this
case, fragments are sorted in decreasing order of class tempera-
ture (“biggest bang for the buck” first). If a class is excceding its
goals, AT, will be negative, and target residencies will need to
be decrcased. Here, fragments will be sorted in increasing order
of class temperature (“lowest bang for the buck” first).

Each fragment f is then processed in sorted order. First, the
absolute change in the fragment’s hit rate (as compared to its
current hit rate) that is required to achieve AIQ, is computed
as:

min(1.0, AIO./Missesy,.)
maz(—1.0, AIO;/Hitss)

. AIO, >0
Ahitrate,c = { otherwise
If the absolute value of Ahitrateys . is greater than 1.0, this
means that fragment f is not currently experiencing enough
buffer misses (hits) from class ¢ to completely satisfy the required
AIQ,, so the next fragment in the sorted list will need to be
investigated as well. Otherwise, fragment f can accomplish the

change in I/O by itsclf; in this case, the increase (or decrease) in
hit rate is simply cqual to the ratio of AIO, 10 Missesy . (or
Hitsy . for a hit rate decrease). Finally, the hit ratc assumption
is used to translate hit rate changes into ahsolute target residency
changes (as compared to the current target residency) as follows:

DiskRess x Ahitratey .

targel __ ot
ARes; - { Res'f‘"””' * Ahitratey,,

otherwise

Changes in target residencies and total resident volume arc lim-
ited to 10% of available memory, in order to dampen the fecdback
mechanism.

To illustrate the process just described, consider a class ¢
with a response time goal of 1 second and an observed re-
sponse time of 1.5 seconds. Supposc that class ¢ refercnces
two fragments, f; and fu, with an average of 5 buffer misses
on fi and 25 misses on fo, for an average of 30 disk 1/0s
per class ¢ transaction. We first compute a target number of
1/Os that would result in a 1 second (goal) response time as
109t = 102 [(Rgb*v | Rg°™) = 30/(1.5/1.0) = 20,
and thus AJO, = JO%*Y — JO!*"9°t = 30 — 20 = 10. As-
suming that fragment f; has the higher class temperature, we
compute the required increase in f,’s hit ratc as Ahitrates . =
min(l, AIO./Misses;.) = min(1,10/5) = 1. Becase
Ahitrateys, = 1, f; cannot satisfy the change in 1/O all by it-
sclf. We make all of f; memory resident, taking carc of 5 out of
the 10 1/0s that we are trying to climinate, leaving a AI(),. of §
which must be satisfied by fragment f,. The required change in
hit rate for fz is min(1,5/25) = 0.2. Suppose that fo is 2000
pages and that it has a current target residency of 1000 pages.
Therefore, if we need to increase f,’s hit ratc by 20%, we must
bring in 20% of its 1000 disk resident pages, resulting in a new
target residency for f, of 1200 pages.

4 Simulation Model

The simulator that we use for our performance study of fragment
fencing was built as part of an ongoing investigation into re-
source allocation and scheduling for parallcl database systems.
For this study, however, we definc a very simple centralized
configuration that consists of onc processing node with a single
CPU, memory, and two disks. The remainder of this section
provides a more detailed description of the relevant portions of
the current simulation model, and concludes with a table of the
simulation parameter settings used for this study.

4.1 Configuration Model

The simulated terminals model the external workload source
for the system. Each terminal submits a stream of transactions
of a particular class, one after another. As cach transaction is
formulated, the terminal sends it (0 the DBMS for exceution
and then waits for a response before continuing on to the next
transaction. In between submissions, cach terminal "thinks" (i.c.
waits) for some random (exponentially distributed) amount of
simulated time. The number of terminals and the think times used
in this study were chosen to insure an average disk wtilization of
50 to 60% under normal operating conditions.

The simulated disks are modeled after the Fujitsu Modecl
M2266 (I GB, 5.25") disk drive. This disk provides a 256
KB cache that we divide into cight 32 KB cache contexts for usc
in prefetching 8K pages for scquential scans. In our model of the
disk, which is a slight simplification of the rcal disk, the cache is
managed in the following manner: Each 1/O request, along with
the required page number, specifies whether or not prefetching is

332

Qhitrates, >0

File #rees | rec | #pages | % of
name (x1000) | size | #pages | mem
“hig hlc 100 | 100 12347 2.400
| hig index 10016 196 | 0.380
‘med il T A0 TTOD 493 1 0:960
“medindex || 407 16 79 1°0.150
“smil file” 0] 100 123 1 0.240
[“sml'indcx 10 16 20 | 0.040
tiny file 1| 100 12 1 0.020
tiny index 1 16 2 [0.004
qry files 20.1 | 200 502 | 0.980

Tablc 1: Database characteristics

desired. If so, onc context’s worth of disk blocks (4 blocks) are
read into a cache context after the originally requested data page
has been transferred from the disk to memory. The requester
is not released until the entire cache context is loaded, however
(synchronous cache loading). Subsequent requests to onc of the
prefetched blocks can then be satisfied without incurring an I/0O
operation. A simple round-robin replacement policy is used to
allocate cache contexts if the pumber of concurrent prefetch re-
quests exceeds the number of available cache contexts. The disk
qucue is managed using an elevator algorithm.

The CPU is scheduled using a round-robin policy with a 5
msec time slice. The buffer pool models a set of main memory
page frames, 8K bytes each. We use two base replacement and
allocation policies in this study: pure global LRU, and a modi-
ficd global LRU scheme augmented with 3 levels of hints. The
hints are given by the query cxecution operators when a page
is unfixed, and define 3 levels of value as follows: index pages
are considered more valuable than data pages, and randomly ac-
cessed data pages are considercd more valuable than sequentially
accessed data pages. Pages are chosen for replacement in the
following order: unused frames (not mapped to any database
page), scquentially accessed data pages using an MRU criteria,
randomly accessed data pages using an LRU criteria, and finally,
index pages using an LRU criteria. A memory reservation mech-
anism allows query execution operators to reserve memory for
their working storage, preventing those reserved frames from
being stolen while the reservation is in effect. This function is
used by hash join operators to reserve memory for their hash
tables.

4.2 Database Model

The database is modeled as a set of files, each of which can can
have onc or more associated B+ tree indices. All of the indices
used in this study are unclustered secondary indices, implying
that accesses to the data pages through an index scan occur in a
random (versus scquential) pattern. Key sizes are 12 bytes, and
key/pointer pairs are 16 bytes. Table 1 lists the files and indices
uscd for all of the cxperiments in this study. The large, medium,
small, and tiny files are uscd by the transaction and batch classes
(which are described in the next section). The query files con-
sist of a set of 200 identical files and reside on a different disk
than the transaction/batch files to limit any competition at the
disk from the query class. There will be a small amount of disk
intcrference between the query class and the other classes, how-
ever, because its hash join intermediate bucket files are written
1o randomly chosen disks. There are also two sets of the trans-
action/batch files, cach on a separate disk, to climinate the disk
interference between transaction and batch classes or between
multiple transaction classes.

4.3 Workload Model

Since we are primarily interested in the effects of page replace-
ment decisions and working storage allocation on transaction
performance, the key workload characteristics are page refer-
cnce patterns and working storage requirements. Therefore, our
simulated workload classes are relatively simple examples of
variations in these two characteristics. For the purposes of this
paper, we define a workload as any pair of the following classes:
transactions, queries, or batch.

Transactions

The transaction workload class models page reference behav-
iors typical of transactions in the TPC-A benchmark [Gray 91].
They perform nonclustered, single record index selects on 4 files:
big, medium, small, and tiny (see Table I above). Since all of
our indices are 2 levels deep, this adds up to a total of 12 random
page references per transaction. Although each file is accessed
the same number of times per transaction, their differing sizes
insures that some will have higher per-page access rates (i.e.
higher temperatures) than others. Transactions require no work-
ing storage, and the key factor in their performance is their buffer
hit rate.

For every experiment in the performance analysis section that
includes transactions, we fix the number of terminals submit-
ting transactions at a population of 100. Their think times are
exponentially distributed with 15 second means. These two val-
ues were chosen such that average disk utilizations remain in
the 50-60% range. The resulting transaction throughput is ap-
proximately 5 completions per second, and depending on the
response times experienced, there are an average of 0.5 to 1.5
transactions resident in the system at any moment with peaks of
10-12. Enough memory is set aside to insure that at no point is
a transaction forced to wait for memory, as we do not wish to
address load control issues in this initial study.

The interval over which the average transaction response times
arc computed is set to 300 completions (about 60 seconds). This
intcrval represents a balance point that allows the fragment fenc-
ing algorithm to provide a high degree of responsiveness while
at the same time exhibiting very stable behavior with respect to
changes in target residencies. As mentioned earlier, we will ex-
plore the effect of varying observation interval lengths in section
5.2.

Batch

The batch workload class consists of a single sequential scan
of the medium data file. Obviously, the medium file has a fairly
high temperature for this class. Because of this one hot file,
the word “batch” is somewhat of a misnomer; while real batch
workloads can normally be characterized by sequential scans, the
files they reference are typically of a fairly low temperature. For
this study, however, straight sequential scans of low temperature
files are uninteresting because their buffer hit rates are near zero.
This class is actually more of a stand-in for any type of workload
that can be characterized by sequential accesses to a small portion
of the database and very low working storage requirements. As
before, because we wish to exclude load control issues from this
study, we fix the number of terminals submitting batch queries
1o one, and we set its think time to zero.

The interval over which average batch response times is com-
puted is set at 30 completions in length (about 60 seconds). The
rationalc for this interval is the same as that for the transactions:
it represents a good balance point between responsiveness and

333

stability.
Queries

We model a query workload using binary relational join op-
erators on two randomly chosen query files (sec Table 1). Since
we want to ignore any possible effect of query optimization dc-
cisions, the inner and outer join files are always of the same size
here. We use the hybrid hash join algorithm [DeWitt 84] because
it is generally accepted as a good ad hoc join method. Since the
query files are ncarly the same size as the configuration memory,
allocating all of available memory to a join query will allow it to
execute the with the minimum number of I/Os (a single scan of
each relation). Allocating less memory (down to a minimum of
28 pages for these files) increases the number of I/Os required
in a linear fashion. Since the queries choose their two join files
from a set of 200, no single query file will have a very high access
rate, and therefore the primary factor in their performance is the
amount of working storage allocated to them as opposed to their
buffer hit rates (which are essentially zero).

Since queries can demand and be atlocated large portions of
memory, the potential for more than one simultancous query
arrival would complicate our study of replacement policies with
issues related to load control. Setting aside memory to avoid
possible memory waits, as was done for the transaction class, is
not feasible for queries since they can use such large amounts
of memory. We therefore restrict the number of terminals that
submit queries here to one at all times. We sct the think time
for this terminal to zero when studying sicady state behavior
(Section 5.1), because in this case it doesn’t really matter if
there are some points in time when a query is present or not —
only average values are of interest. In our analysis of fragment
fencing’s transient behavior (Section 5.2), we investigate the
effects of varying the query think time.

No average response time computation interval is needed for
the query class. Since query performance cannot be affected by
changes in disk buffer hit rates, we do not set any goals for them
and we expect the DBMS to “do its best” for this class.

4.4 Parameter Summary

The important parameters of the simulated DBMS are listed in
Tables 2 and 3. The MIPs rating is typical of high-end work-
stations or mid-range computers and was chosen so that CPU
utilizations could be kept below 10% in order to insure that the
two workload classes primarily compete for memory, not CPU
cycles. The number of terminals and think times were cho-
sen to insure that disk utilizations lie in the 50 to 60% rangc.
The memory size of 4 megabytes is obviously small, but was
chosen to limit the amount of simulation time required for the
performance studies. This does not limit the applicability of
our performance analyses however, since the important factor
is not the absolute size of memory but its size relative to the
database and the working sets of concurrent transactions. The
software parameters are based on instruction counts taken from
the Gamma parallel database prototype [DeWitt 90]. The disk
characteristics approximate those of the Fujitsu Model M2266
disk drive, as described earlier.

5 Fragment Fencing Performance

In this section, we use the simulation model described previously
to examine the both the steady state and the transient performance
of fragment fencing. The steady state analysis addresses the ba-
sic question of how well fragment fencing can achicve response
time goals for various workloads and system configurations. We

[Parameter 1 Value |
Transaction terminals 100
Mcan tran think time (exponential) 15 sec
Query terminals 1

Query think timc 0 (varied)
Batch terminals T

Batch think time 0
Number of CPUs T
CPU speed 50 MipPS
Number of disks 3
Page size RKB

Mcmory size

Disk cylinder size

Disk seek factor

Disk rotation time
Disk settle time

Disk transfer rate

Disk cache context size
Disk cache size

4 MB (512 pages)
R3 pages
0617
16.667 msec
2.0 msec
3.00 MB/scc
4 pages
8 conlexts

Table 2: Simulation paramecter settings

| Function T #1Instr | Function T #Instr |
read record from write record to
buffer page 300 | buffer page 100
insert in hash tbl 100 | probe hash tbl 200
test index cntry 50 | copy 8K msg 10000
start an 1/O 1000 | apply predicatc | 100
initiatc select 20000 | terminaic scicet | SO00 |
initiate join 40000 | terminalc join 10000 |

Tablc 3: Simulation instruction counts

explore four different pairings of the workload classes described
in Section 4.3: transactions with qucries, balch with queries,
transactions with transactions, and transactions with batch. Half
the cases specify goals for only one of the two classes, and the
other half specify goals for both. Besides varying workloads and
goals, we also explore the cifects of different base replacement
policies as well as varying levels of competition at the disk or
CPU between the two classes. The transient analysis section ex-
plores the behavior of fragment fencing over time and addresses
questions of stability and responsivencss that are always a con-
cern for systems that exploit feedback. Holding the workload
and configuration constant there, we explore two parameters:
the length of the obscrvation interval and the stability of the
workload.

5.1 Steady State Behavior

The performance metric we adopt for judging steady state be-
havior is the average response time for each workload class. All
of the experiments in this section execute the workload for 50
simulated minutes and collect statistics for only the final 30 min-
utes of simulated time in order to remove warm-up (ransicnts
from the averages. We insure a minimum of 15,000 transaction
completions, 500 batch job complctions, and 50 query comple-
tions.

The results of each experiment in this section arc prescnted
in tables of a similar format, with a column for the average
response time of cach class. Every row represents a diffcrent
response time goal. For comparison purposes, we include rows
labeled “alone’ that show the response time of cach class when
it is exccuted alone in the system, as well us rows labeled “hase”
that show results when no goal is specitied for either class. The

334

“alone™ rows represent lower hounds on the response times that
can be expected for cach class, and the “base” rows show how
the base replacement policy acts without any assistance from the
fragment fencing algorithm.

Additionally, if the query class is present, we add a column
shiowing the amount of working storage allocated to the hash join
under the guidance of fragment fencing. We also need to split
the “base™ row into (wo cases when queries are present, because
without any guidance from the fragment fencing algorithm, the
hase allocation policy is frec to decide on its own how much
working storage to allocate to a hash join operator. We explore
two cases: minimum, which is the minimum allocation required
for the join to exceute, and maximum, which is all of memory
except for that portion which is set aside for “system” use and to
insurc that no transaction memory waits occur (20% of memory,
or about 100 frames).

Transactions & Queries

We begin this section with a set of four experiments using
a mix of transactions and querics. The detailed behavior and
paramelers ol cach workload class were described previously in
Section 4.3. The first experiment isolates the effects of adding
fragment fencing to an existing memory manager. Purc global
LLRU is used as the base memory manager to show the effects
ol fragment fencing as distinct from any other “hints” about the
relative value of a page. We also insure that memory is the only
resource where the two classes compete to any significant degree.
This is accomplished by scgregating the data referenced by each
class onto scparate disks and by setting the CPU speed such
that processor utihizations are 10% or below (50 MIPS). Table 4
shows the resulting response times and memory allocations for
this first experiment.

Examining the first two rows in Table 4, we see the impact of
adding querics 1o a transaction workload: transaction responsc
times double — even when those queries arc allocated the ab-
solute minimum amount of working storage. Since there is no
significant contention at the disk or CPU in this experiment, the
only reason for the change is a drop in transaction buffer hit rates
when queries are added, resulling in an increase in the average
1/0s per transaction from about 2 to about 4. This hit rate de-
crease is due lo the inability of pure global LRU to distinguish
the more (requently accessed transaction pages from the less
vitluable pages accessed by the queries.

The sccond and third rows of Table 4 show the cffects of
adding fragment fencing to a pure global LRU memory manager.
While the 60 msee goal is not achievable for the transactions,
their average response time ol 71 msecs under fragment fencing
approaches their stand-alone performance of 64.5 msecs. The
reason is, of course, the incrcase in buffer hit rates provided
by fragment fencing. In these same two rows we can see that
query performance improves as well, even though the amount
of memory allocated 10 the querics is the same (28 pages) with
or without fragment fencing. This is because the transaction
response times, with fragment fencing trying to enforce a 60
msee goal, are ncarly halved relative to the pure LRU case.
The response time improvement for the transactions lowers their
average humber in the system from 0.9 to 0.5, reducing what little
competition the queries experience at the CPU and disk from the
transactions (hash join buckets are written to a randomly chosen
disk, which occasionally causes some interference at the disk
between the two classes). Looking at the remaining rows, we
can see that fragment fencing manages to meet the goals fairly
well, with at most a 1% violation for the 80 and 150 msec cases.

The sccond experiment dealing with transactions and queries
retains the workload and configuration of the previous one. This
time, however, the basc memory manager uses a 3-level global
LRU policy instead of pure LRU. Table 5 shows the resuits
of this experiment. If we examine the first two rows of this
table and compare them to the previous experiment (Table 4),
we can sec that adding hints on page type and reference patterns
significantly reduces the impact of adding queries to a transaction
workload relative to the pure LRU case. This is largely because
scquential flooding? is eliminated via the hints. The second and
third rows of Table 5 show that the additional guidance provided
by fragment fencing still results in improved transaction response
times. Even though-the 3-level LRU base replacement policy can
now distinguish the more valuable transaction data from the less
valuable query data, it still does not discriminate between more
frequently accessed and less frequently accessed data within the
transaction class. The rest of Table 5 shows results similar to
the previous experiment with pure LRU, except that all of the
query response times are correspondingly lower. Looking at
the query memory allocation column of Tables 4 and 5, we see
that transaction response time goals under a 3-level LRU policy
can be achieved with much less memory, leaving more left over
to allocate to the qucries. This shows clearly how fragment
fencing’s feedback approach allows it to adapt to the behavior of
the base memory manager. The fencing algorithm doesn’t know
that response times are improved because the base replacement
policy is smarter; it just knows that it has to keep less data in
memory here to achieve the response time goals. For the rest of
the paper, we will adopt a 3-level LRU replacement policy since
it is clearly superior to pure LRU.

The final two experiments with a transaction/query workload
examine the effects of increased competition between the two
workload classes at resources other than memory: CPU and
disk. Table 6 shows the effects of the increased disk competition
that results from placing all the data of both classes on a single
disk. Table 7 shows the effects of increased CPU competition
by decreasing the MIP rating from 50 to 8. CPU utilizations rise
from 10% or less in the previous experiments to between 50 and
75%.

Both tables 6 and 7 show a similar phenomenon. Responsc
times rise uniformly rclative 1o the more powerful system con-
figuration used in Table 5, and the more aggressive responsc
time goals in the top few rows become unachievable. Both of
these effects are due to the increased competition between the
two classes at the CPU or the disk (disk response times nearly
double due to queucing delays). The amount of memory made
available to the queries drops as well, indicating that the fencing
algorithm is trying to compensate for the response time increases
by retaining more and more of the database in memory. Similar
to the pure LRU versus 3-level LRU case, the fragment fencing
algorithm only knows that response times are higher for some
reason, and the only thing it can do is to increase the memory
resident portion of the database. Even though goal oriented CPU
scheduling might be a more effective way to control response
times in this case, we can see that fragment fencing still per-
forms better for both classes than the base 3-level LRU strategy
docs by itself (“Base (min)” row).

1 Sequential flooding is a problem characteristic of a pure LRU replacement
policy. Processes performing sequential scans can flood the buffer pool with
pages that are not likely to be reaccessed, displacing pages with a much higher
probability of reaccess.

335

Avg tran Avg gqry | Qry mem

resp (msec) | resp (sec) (pages)

Tran alone 64.5 - -
Base (min) 138.4 33.7 28
Goal 60 ms 71.0 30.5 28
Goal 80 ms 80.8 25.3 100
Goal 100 ms 98.8 21.8 203
Goal 150 ms 151.6 16.6 350
Goal 200 ms 196.9 15.6 392
Base (max) 2323 15.6 412
Qry alone - 11.7 412

Table 4: Pure LRU, separate disks

Avg tran Avg qry | Qry mem

resp (msec) | resp (sec) (pages)

Tran alone 55.0 - -
Base (min) 135.8 58.9 28
Goal 60 ms 112.8 53.2 28
Goal 80 ms 112.8 53.2 28
Goal 100 ms 112.8 532 28
Goal 150 ms 146.7 443 174
Goal 200 ms 201.0 432 280
Base (max) 3332 435 412
Qry alone - 11.7 412

Table 6: 3-level LRU, disk interference

Table 10: Trans (150 ms) & Batch

Avg tran Avg gry | Qry mem

resp (msec) | resp (sce) (pages)

Tran alone 549 N -
Basc (min) 75.1 0.8 T 2w
Goal 60 ms 60.8 30.0° 38
Goal 80 ms 77.6 22.1 181
Goal 100 ms 101.2 19.2 273
Goal 150 ms 146.4 14.7 399

Goal 200 ms 182.5 14.8 411
Base (max) 182.1 143 412
Qry alone - 11.7 412

Table 5: 3-level LRU, separate disks

Avg tran Avg gqry | Qry mem
resp (msec) | resp (scc) {pages)
Tran alone 68.7 - -
Base (min) 103.0 36.8 28
Goal 60 ms 91.0 36.1 28
Goal 80 ms 91.0 36.1 28
Goal 100 ms 100.1 29.2 116
Goal 150 ms 153.8 229 300
Goal 200 ms 190.0 19.8 395]
Base (nax) 230.3 199 17
Qry alone - 15.7 417"

Table 7: 3-level LRU, slow CPU

Table 11: Trans (100 ms) & Batch

336

Avg Batch Avg gry | Qry mem
resp (sec) | resp{(sec) (pages) Tl resp | T2 resp
Batch alone 0.80 - - (msec) | (msec)
Base (min) 3.12 37.7 28 T1i alone 55.0 -
Goal 1.3 sec 1.42 37.7 28 T2 alonc - 55.0
Goal 1.6 sec 1.71 32.8 58 T1 Goal 150 msec i31.1 60.6
Goal 1.9 sec 1.96 28.4 140 T1 Goal 125 msec 126.3 60.6
Goal 2.5 sec 2.65 22.6 284 T1 Goal 100 msec 102.2 60.1
Goal 2.8 sec 2.86 22.5 300 TI Goal 80 msec 914 64.8
Base (max) 327 17.0 312 [Basc T 1064] 1060 |
Qry alone - 11.7 412
Table 9: Trans 1 & Trans 2 (60 mscc goal)
Table 8: Batch & Queries
Bresp | Tresp Bresp | Tresp Bresp | Tresp
(sec) | (msec) (sec) | (msec) (sec) | (msec)
[Tranalone |~ -] 355.0] [Tran alone || -7 5507 [Tran alone -1 5507
Goal 2.70 2.70 60.8 Goal 2.70 2,70 60.8 Goal 2.70 2.70 60.8
Goal 2.30 2.40 82.3 Goal 2.30 2.40 82.3 Goal 2.30 2.39 799
Goal 2.00 206 | 1159 Goal 2.00 2. 99.7 Goal 2.00 2.06 85.9
Goal 1.70 176 | 140.3 Goal 1.70 1.7S 1 107.0 Goal 1.70 2.07 85.8 |
Goal 1.40 1.40 162.2 Goal 1.40 1.75 107.0 Goal 1.40 2.07 85§
Batch alone 0.30 - Batch alone 0.80 - Batch alonc 0.80 T
Basc 270 60.8 Base 2.70 60.8 Basc 2770 60.8 |

Table 12: Trans (80 ms) & Batch

Batch & Queries

The second workload that we examine is a combination of
“batch” jobs, which consist of file scan operations, and hash join
querics (see section 4.3 for detailed workload descriptions and
paramelers). Because the batch jobs access a “hot” file, fragment
fencing can be effective in controlling their response times. Nor-
mally, a hint-based memory manager would consistently penalize
this batch workload because all of its data is accessed sequen-
tially. On the other hand, a frequency-based memory manager
would consistently favor a batch workload of this sort, because it
understands that retaining frequently accessed data will increase
overall hit rates. Table 8 shows the results of this experiment. If
we fook at the first two rows, we see a phenomenon that is iden-
tical to the first experiment (Table 4), where queries were added
to a transaction workload under the pure LRU replacement strat-
egy: response times for the batch class are more than doubled.
In the first experiment, transaction response times doubled be-
cause the base replacement policy couldn’t distinguish between
the pages of cach workload class, and buffer hit rates for the
transactions thus dropped significantly. By adding hints on page
reference patterns to the replacement policy, the problem with
the transaction/query workload was fixed. However, those same
hints arc uscless for the batch/query workload in this experiment
becausce both classes access the same type of data with the same
reference pattern (sequential data file scans).

Looking at the average response times for the batch workload
in Table 8, we see that fragment fencing can achieve the goals
rcasonably well for this workload, with at most a 6% violation
in the 2.5 second case.

Transactions & Transactions

The third workload that we examine here is a combination of
two TPC-A-like transaction classes, cach with their own responsc
time goals. The behavior of both workload classes is identical
to that which was described in Section 4.3, except that each
references an identically sized but distinct set of files to climinate
data sharing cffects. The data used by the two transaction classcs
is segregated on separate disks as well, 5o there is no competition
at the disk hetween the (wo classes.

This experiment investigates the behavior of fragment fencing
when the goals for both classes can be achieved, and also when
they cannot. Table 9 shows the response times that result. Class
T2's goals are fixed at 60 msecs, which is very close to the lower
bound of 55 msecs. Class T1’s goals are progressively tightened
until they become impossible to achieve, which occurs at the 80
msce goal. Because the behavior of each class in this workload is
very similar, goals for both classes are violated when either one
cannot be achieved. Class T2's performance suffers a bit more
relative to class T1, however. It turns out that this is purely a
matter of chance. Since fragment fencing does not have a notion
of priority between classes, the first class to violate its goals will
win the race for any remaining memory; which class violates
its goal first simply depends on the random arrival processes of
cach class.

Another interesting result of this experiment is the behavior
of fragment fencing with extremely tight goals (the 80/60 msec
case) relative to the performance of the base 3-level LRU re-
placement policy. Although the base replacement policy gives
cach class the same performance, it is significantly worse (see
the “Base” row of the table) than when fragment fencing is ac-
tivated. The reason is the same as in the second experiment
(lable 5): the base replacement policy has no information about

the relative frequencies of reference among pages with the same
“hint” level. The situation becomes even worse with two classes
becausce of the interference between them (external thrashing).
Because fragment fencing tracks the frequency of reference o
each fragment, it can guide the base replacement policy into
making more intelligent replacement decisions.

Transactions & Batch

The final workload that we investigate in this section is a
combination of TPC-A-like transactions and “batch” jobs that
consist of scans over “hot” files. Tables 10, 11, and 12 fix the
transaction class goals at 150, 100 and 80 msecs respectively.
Transaction and batch response times in these tables are shown
under the “T resp” and “B resp” columns respectively. For
each of the three transaction class goals, the batch class goals
arc varied from loose to tight. Table 10 shows the response
times that result with the loosest transaction class goal (150
msecs). In all cases, the batch class goals are met, and in all
except the last row, the transactions out perform their 150 msec
target. This is because the base replacement policy is favoring the
transaclion class’s pages over the batch class’s pages, allowing
the transaction class to use all of the memory that is not required
to meet the batch response time goals. Tables 11 and 12 show
the same experiment with the transaction class goals set at 100
and 80 msecs, respectively. In the 100 msec transaction case,
batch class goals are unattainable beyond 1.75 seconds. Under
the tightest transaction goals of 80 msecs (Table 12), the batch
goals are unattainable beyond 2 seconds.

An interesting aspect of this workload is how fragment fenc-
ing can modify the base replacement policy’s treatment of each
class: always favoring transactions over batch. With fragment
fencing, the base replacement policy can be “coerced” to favor
the transactions less and less, allowing the batch class to move
closer to its stand-alone response time.

We conclude our examination of steady state performance
by noting that fragment fencing seems capable of successfully
achicving steady state response time goals for these example
workloads, and that in many cases it can provide better perfor-
mance for the classes that do not specify any goal as well (relative
to the basc buffer manager’s stand-alone performance). We have
also scen that fragment fencing is able to adjust to different de-
grees of intefligence in the base buffer manager, and to high
device utilizations which violate its simplistic model of transac-
tion behavior. Thus, fragment fencing appears quite promising
as a mechanism to provide users or system administrators with
the ability to automatically tune a DBMS according to a set of
application-level performance requirements.

5.2 Transient Behavior

There are many possible ways to satisfy an average performance
metric over some specified time interval. For example, a one
second average response time goal over some interval could
be satisfied such that 80% of the transactions in the interval
experience a quarter second response time, while 20% of the
transactions experience 4 second response times. Since only the
average value of the metric and the interval over which it should
be computed were specified, we cannot say if this particular
way of satisfying the goal is good or bad. Most likely a more
complete performance specification would include more infor-
mation on the distribution of response times that are considered
“good,” perhaps by specifying standard deviations, percentiles,
or maximums.,

Even though fragment fencing currently lacks mechanisms to

337

specify or act on a more detailed specification of response time
goals, we can state a simple requirement for its transient behavior
in any case: it should not introduce more variance in the work-
load than would exist if fragment fencing were not activated.
Since the only way fragment fencing can introduce variance is to
change the size of the resident database volume, we need to sce

ifthara ic aveaccive mavemant nf ths lina con t tho rocida
ll lll\rl\r 1D WALLODIY L lllUV\,llI\;lll Ul LHiv iy a\.yarauus (841w I\rblu\rlll

volume from the non-resident volume. We explore two variables
which could cause the algorithm to adjust the resident volume
excessively: the length of the interval used to compute average
response times, and the length of the think time betwecen arrivals
of resource intensive queries. Both experiments usc the same
workload as in the first steady state experiment: TPC-A-like
transactions mixed with hash join queries (sce Scction 4.3 for
detailed workload descriptions).

The lenoth of the observation inte

j 41+ igul Ui o mnter

movement of the resident volume linc for basic statistical rea-
sons. When the interval is shorter, fewer transactions are used
to compute the average observed response times at cach interval
completion. As in any statistical sample of a large population,
the smaller the sample size, the larger the variance that will be
observed between each sample. Small observation intervals can
thercfore present a picture of a very unstable system to the frag-
ment fencing algorithm. The challenge is not to over-react and
iry to manage what are purcly statistical fluctuations in the sys-
tcm load. Larger observation intervals help to mask these natural
fluctuations in load, and thus provide a much more stable input
to the algorithm. In this case, the algorithm will be less likely to
attempt to over-manage the system.

rval can cause
val ca

4] CALCS

excessive
SIVC

To give an idea of the input that the fragment fencing algo-
rithm is attempting to deal with, Figure 2 shows a graph of the
average transaction response times over intervals of 50 comple-
tions with fragment fencing turned off. The X axis is a count of
transaction completions, and the Y axis is the average responsc
time over each 50-transaction interval. The upper linc in the
graphs shows the behavior of transactions when the guerics are
allocated their maximum amount of working storage, leaving
very little for the transaction class data. The lower linc shows
the results of a minimum memory allocation to the querics, with
most of memory being allocated to transaction data. Note that
cven this picture shows less variance than is actually occurring
in the system, since it represents averages over 50 transaction
completions. We use an interval length of 50 completions as our
lower bound since any smaller intervals start to lose statistical
significance.’> One phenomenon that can be seen in this graph is
the relationship between the amount of memory available to the
transactions and the resulting variance in their response times.
The more memory, the lower the probability of disk 1/Os, and the
lower the variance becomes. An interesting implication of this
phenomenon for fragment fencing is that as the resident volume
increases because of tighter and tighter response time goals, the
variance decreases. Surprisingly, this means that loose response
time goals are actually more difficult to manage than tight oncs
are.

We show the effects on resident volume of varying the obser-
vation interval lengths in Figures 3, 4, and 5 for interval lengths
of 50, 100, and 300 completions, respectively. The X axis of
these graphs shows transaction completion counts (time), and
the Y axis shows the resident volume in pages. The maximum
resident volume allowed is about 400 pages (80% of the memory

“While the actual number of samples required by any statistical analysis
depends on the amount of error that can be tolerated, sample sizes less than 30
or 40 are normally considered “smatl.”

in the configuration). Each line in the graphs represents a differ-
ent goal for the transaction class. Higher lines (larger resident
volumes) correspond to tighter response time goals, and lower
lines correspond to looser goals. The throughput of the trans-
actions in this experiment is approximately 5 per second, so the
intervals of 50, 100, and 300 completions translate to 10, 20, and

AN carvando
Uy HCLUnus.,

While it is difficult to develop a precise meiric o
gauge the relative “goodness” of each of these graphs, they show
how the stability of the algorithm improves as the obscrvation
interval lengthens. Even though there are more fluctuations with
smaller intervals, the algorithm seems firmly anchored around a
central point in each case. We also experimented with intervals
greater than 300, but the results were essentially identical to the
300 case and wc therefore omit them here.

The implication of this analysis is that for a workload class

wﬂh sufficiently hivh througshnut (greater than § ner second). an
W $ Yy argh mrougaput (greater tian O per seeonad), an

observation interval of around one minute or larger provides very
stable performance. For workload classes with lower throughput,
however, there is going 1o be a larger trade-off between stability
and responsiveness. While lower throughput workloads (e.g.
batch jobs) scem likely to experience much lower natural vari-
ance in response times, and can thercfore perhaps deal with a
smaller obscrvation interval, the proper seting ol this param-
eter for low throughput workloads remains an area for further
investigation.

The second variable that we investigate here is the gap be-
tween query arrivals. We explore deterministic query class think
times ranging from 10 to 120 seconds for a transaction workload
with a response time goal of 70 milliscconds. The transactions
have a throughput of approximately 5 per second, so the number
of transaction completions that could occur during the gap be-
tween query arrivals varics from 50 to 1500. The interval over
which we compulte the average response times is 100 comple-
tions (20 seconds at 5 transactions per second). This interval size
is smaller than that recommended by (he previous analysis, but
it allows us to exaggerate the effects of query think time slightly
by increasing the responsiveness of the fencing algorithm. 1f
we look at query think time simply as another way to introduce
variance in the system load, then obviously a large enough obser-
vation interval could cancel the effects of any think time-related
variance as well. For the purposcs of this experiment, however,
we want to limit the dampening cllect of a longer observation
interval (even though it is a perfectly valid way to address the
problem).

Figure 6 shows the sizc of the resident volume as a function of
time for each of four query think time valucs. The two straight
lines at the top of the graph are the 10 and 30 sccond think
time results. Since these think times are similar in length to
the observation interval, their effects are completely dampened
by the averaging that occurs over the observation interval, as
explained in the previous analysis. The resident volume for
the 30 second think time line is lower than the 10 second think
time linc becausc as the query think time increases, there are
more periods where the transactions do not have to compete for
memory and thus their response times improve as a result. The
fencing algorithm reacts to this by reducing the resident volume
required to maintain the 70 msec transaction responsc time goal.

The next two (wobbly) lines in Figure 6 show 60 and 120
second query think times, in order of decrecasing average resident
volume. The 60 sccond think time is just large enough for three
observation intervals to occur during the gap in between guceries.
These three observitions are cnough to convinee the fencing
algorithm to reduce the resident volume required, only to raise

338

pages

pages

300
maxingum query allocatign
00
2 3
a
100
od——m—m——a— —— —_—
0 5000 10000 15000
transaction completions
Figure 2: Tran resp times: 50 completion interval
500
60 msec goal
400 \
300
80 msec goal ?"
ms
£ -
200 y—___
100 msec gdal
100 \ ‘
150 msec goal
().,.r‘.,.. .,ﬁ..,,g —
0 5000 10000 15000 20000
transaction completions
Figurc 4: Res volume, 100 compl intervals (20 sec)
300
10 sec
2()()_: /‘\ 30 sec I.\ /'\
v g
) 60 sec
100 3
] 120 sec
0 T r - 1
12000 14000 16000 18000 20000

transaction completions

Figure 6: Resident volume: various think times

339

500

60 msec goal

400
300
80 msecé(‘ﬁl_
200
100 msec goal
100
150D msec goal
oHe—r——— .
0 5000 10000 15000 20000
transaction completions
Figure 3: Res volume, 50 compl intervals (10 sec)
500
400
60 msec goal
~N
300
80 msec goal
200
100 msec goal
100 \'
150 msec goal
0 FH—rr———————————1— 4
0 5000 10000 15000 20000

transaction completions

Figure 5: Res volume, 300 compl intervals (60 sec)

- - 10 sec query think time
1 -— 60 sec query think time

———
6000
transaction completions

5000

Figure 7: Tran resp times: various think times

it again in the following interval. The 120 second think time
line is similar, but the time span between lowering and raising
the resident volume becomes larger. The 60 second think time
represents a worst case scenario for this experiment (with its 20
second observation interval length), as there is no benefit there
to lowering the resident volume - it will have to be raised again
almost immediately.

Figure 7 shows the effect of excessive movement of the res-
ident volume line on transaction responsc times. The line with
higher variance corresponds to the worst case 60 second query
think time, and the line with the lower vartance corresponds to a
more favorable scenario involving a 10 second query think time.
The 10 second think time represents a favorable case because
the resident volume line is never moved here, and any variance
in response times is thus due to natural statistical fluctuations in
the transaction workload itself. Clearly, lowering the resident
volume in the 60 second think time case is a bad idea; the addi-
tional variance introduced could even cause the average response
time goals to be jeopardized. We plan on investigating this issue
further in our future work.

6 Issues and Extensions

In this section, we briefly discuss some important remaining
challenges for the fragment fencing approach and our current
thoughts on how we plan to address them. One key challenge
is to address violations of the algorithm’s assumption that the
hit rate for a fragment is equal to the fraction of the fragment
that is memory resident. Violations of this assumption could be
caused cither by non-uniform referencc patterns (e.g. temporal
locality, correlated references, append-only access, etc.) or by
deficiencies in the base replacement policy (e.g. LRU for a loop
that cannot fit in memory). Such violations currently can causc
fragment fencing to continue increasing the target residency of
a fragment even when little or no hit rate increase results from
doing so. However, the information needed to detect a violation
of this assumption is already collected by the algorithm (i.c., it
keeps the % residency and the observed hit rate for each frag-
ment), so it should not be too difficult to improve the algorithm
in this regard.

Another area for improvement is to address violations of the
algorithm’s assumption that a transaction’s response time is lin-
early related to the number of 1/Os that it requires. As we saw in
the steady state performance analysis (Tables 6 and 7), violations
of this assumption translate into a larger resident volume being
required to achieve a given goal. In fact, fragment fencing may
try too hard to achieve a goal when this assumption is violated,
increasing the resident volume by larger and larger amounts in
order to achieve only small improvements in response times.
As for the hit rate assumption above, the algorithm should be
modified to check the validity of this I/O dominance assumption
before acting on it. This can be accomplished by monitoring the
average observed disk response time per class; by multiplying
this quantity by the average number of disk 1/Os for a class, the
algorithm can identify classes for which I/O time is a relatively
small component of the overall average response time.

Sull another challenge lies in addressing potential problems
caused by low temperature fragments, as these may also cause
the fragment fencing algorithm to incrcase the target residency
of a fragment by large amount for only a small return. Il a
workload class performs a large number of 1/Os, but on very
“cold” data, then even filling up all of available memory with the
class’s data would not significantly reduce the number of 1/0s

required by transactions of the class. An example of this type of

behavior would be a batch job that sequentially scanned a very
large database. An obvious approach to addressing this issue
is to check for some minimum temperature before increasing
the target residency. The algorithm already determines whether
a single (ragment can completely satisfy any required change
in /O, or if multiple fragments are required. This decision can
casily be cxtended to determine it any set of fragments referenced
by the class can satisfy the required change in 1/O.

Finally, as seen in the transient performance analysis (Figure
6), long-running classes with large working storage requirements
(such as hash joins) can present special challenges with respect to
the transicnt behavior of fragment fencing, Once fragment fenc-
ing gives away some working storage to a long-running hash
join, it can suffer the consequences of that decision for long
time to come. The situation would be exacerbated further if
the rclative response times of such queries arc many orders of
magnitude larger than those of thc competing goal classes. (Our
performance analysis only considered response time ratios of up
to 100 or so between classes). While it is unlikely that fragment
fencing can ever be prevented from making mistakes, there are
certainly ways to limit the penalty of doing so. One promising
possibility is the exploitation of memory-adaptive query pro-
cessing algorithms, c.g. memory adaptive hash join and sorting
methods [Zeller 90, Pang Y3a, Pang 93b]. These join methods
can dynamically adapt to changes in thec amount of available
working storage during execution, so fragment fencing could
actually “take back” some of the working storage from long run-
ning querics when it is necessary increase the resident volume
while such queries are active.

In summary, the primary pathology of fragment fencing is
the possibility of its attempting large increases in the resident
volume in return for small improvements in 1/Os or response
times for certain classes. By modifying the algorithm 10 first
check its assumptions, and to react (o violations that it detects,
it is likely that such problematic behavior can be avoided. In
addition, memory-adaptive schemes appear promising as a way
1o address the problem of long-running consumers of working
storage.

7 Conclusions and Future Work

In this paper we have explored the potential of using memory
allocation and page replacement mechanisms to implement per-
class performance goals for multiclass workloads. We described
an algorithm called fragment fencing that takes as input a set
of per-class response time goals and a description of the data
and index fragments that make up the databasc. The algorithm
that we described observes the per-class reference (requencies
and monitors the state of the system relative 1o its stated goals;
the information that it gathers is uscd to help existing bulfer
allocation and page replacement mechanisms to avoid making
decisions that may violate the goals.

Using a detailed simulation model, we studied both the steady
state and transient performance of fragment fencing when it is
coupled with a modified global LRU memory manager with three
levels of *hints.” Our results showed fragment fencing to be ca-
pable of success{ully achieving steady statc response time goals
for a number of example multiclass workloads. For workloads
where one of the classes did not specify any goals, fragment
fencing usually provided better performance than the basc buffer
manager alone for the non-goal class as well. Morcover, by
coupling fragment fencing with a pure global LRU replacement
mechanism, we demonstrated that the approach is able to coexist
with base buffer managers with varying degrees of intelligence.

340

Fragment fencing was able to achieve the same goals with an
LRU scheme as it did with the more intelligent 3-level LRU

scheme, although at a higher cost in erms of the amount of

memory dedicated (o fragment caching. Finally, we explored
violations of fragment fencing’s simple assumptions regarding
transaction behavior as well as possible enhancements to limit
the impact of these violations. We conclude that fragment fenc-
m;_. appears quite pr()mlsmg as a way to provide users or system

administrators with the ability to tune a DBMS according to a
set of application-level performance requirements,

Besides the extensions listed in the previous section, our fu-
ture work will explore additional mechanisms for dealing with
conflicting goals between classes, for allowing more detailed
specifications of response time goals (such as maximums and per-
centiles), and for limiting the penalty incurred as a result of work-
load shifts (via persistent statistics). We also plan on coupling
fragment fencing with algorithms that handle load control and
working storage allocation among competing querics in order to
explore the performance of multiple concurrent queries compet-
ing with transactions and batch classes |[Mehta 93], and we plan
on integrating fragment fencing with goal-oriented CPU and disk
scheduling mechanisms as well. The information collected by
the algorithm on hit rates and percent residencies for individual
fragments could also be a useful input to recently proposed tech-
niques for run-time sclection of query plans [Hong 91, loann 92].
Finally, we would like to exploit the capabilitics of memory-
adaptive query processing techniques, e.g., preemptible hash
Join and sorting methods |Pang 93a, Pang 93b].

Acknowledgements

The authors would like to thank Manish Mehta, Mike Franklin,
Hwee-Hwa Pang, and Joe Hellerstein for many helpful discus-
sions and comments on previous versions of this paper.

References

{Boral 90} 1. Boral ct al, "Prototyping Bubba: A Highly Parallel
Database System," [EEE Trans. on Knowledge and Data Engi-
neering, 2(1), March 1990.

IBrown 92| K. Brown, M. Carcy, D. Dewitt, M. Mehta, J. Naughton,
“Resource Allocation and Scheduling for Mixed Database Work-
loads,” Compuier Sciences Technical Report #1095, Department
of Computer Scicnces, University of Wisconsin, Madison, July
1992 (availablc via anonymous ftp from fip.cs.wisc.edu).

[Cheng 841 J. Cheng ct al, “IBM Databasc 2 Performance: Design,
Implementation, and Tuning,” IBM Systems Journal, 23(2), 1984,

1Chou 85] L Chou and D. DeWitt, “An Evaluation of Buffer Manage-
ment Strategics for Relational Database Systems,” Proc. th Int’l
VLDB Conf., Stockholm, Sweden, Aug. 1985.

{Coffman 73] E. Coffman and P. Denning, Operating Systems Theory,
Prentice-Hall. Englewood Cliffs NJ, 1973.

[Copeland 88} G. Copeland, W. Alexander, E. Boughter, T. Keller,
“Data Placement in Bubba,” Proc. ACM SIGMOD '88 Conf.,
Chicago, 1L, June 1988,

[Cornell 89] D. Cornell and P. Yu, “Integration of Buffer Managemem
and Query Optimization in a Relational Database Environment,”
Proc. 15th Int’l VLDB Conf., Amsterdam, The Netherlands, Aug,
1989,

[DeWitt 84] 1. DeWitt et al, "Implementation Techniques for Main
Memory Database Systems,” Proc. ACM SIGMOD Conf., Boston,
MA, Junc 1984.

[DeWitt 90] D. DeWitt et al, "The Gamma Databasce Machine Project,”
IEEE Trans. on Knowledge and Data Engineering, 2(1), March
199().

341

[DeWit 92] D. DeWitt and J. Gray, “Parallel Database Systems: The
Future of High Performance Database Processing,” CACM, 35(6),
June, 1992.

[Falou 91| C. Faloutsos, R. Ng, T. Sellis, “Predictive Load Control
for Flexible Buffer Allocation,” Proc. 17th Int'l VLDB Conf.,
Barcelona, Spain, Sept. 1991.

[Graefe 89] G. Graefe and K. Ward, “Dynamic Query Evaluation
Plans,” Proc. ACM SIGMOD "89 Conf., Portland, OR, May 1989.

iGray 871 J. Gray and F. Putzolu, “The S Minute Ruie for’ Trading Mem-
ory for Disk Access and the 10 Byte Rule for Trading Memory for
CPU Time,” Proc. ACM SIGMOD 87 Conf., San Francisco, CA,
1987.

[Gray 91} J. Gray ed., The Benchmark Handbook, Morgan Kaufmann,
San Mateo CA, 1991.

[Haas 90] L. Haas et al, “Starburst Mid-Flight: As the Dust Clears,”
IEEE Trans. on Knowledge and Data Eng., 2(1), March 1990,

[Haas 91] P. Haas, A. Swami, “Sequential Sampling Procedures for
Query Size Estimation,” Proc. ACM SIGMOD 92 Conf., San
Dicgo, CA, june 1992,

[Hong 91] W. Hong and M. Stonebraker, “Optimization of Parallel
Query Execution Plans in XPRS,” Proc. Ist Int’l PDIS Conf..
Miami, FL, Dec. 1991,

[loann 92} Y. loannidis, R. Ng, K. Shim, T. Sellis, “Parametric Query
Optimization,” Proc. 18th Int’l VLDB Conf., Vancouver, B.C,,
Aug. 1992,

fO’Neil 93] E. O’Neil, P. O’Neil, G. Weikum, “The LRU-K Page Re-
placement Algorithm For Database Disk Buffering,” Proc. ACM
SIGMOD '93 Conf., Washington D.C., May 1993.

[Mehta 93] M. Mehta and D. DeWitt, “Dynamic Memory Alloca-
tion for Multiple-Query Workloads,” Proc. 19 Int’l VLDB Conf.,
Dublin, Ireland, Aug 1993.

INg91] R. Ng, C. Faloutsos, T. Sellis, “Flexible Buffer Allocation
Based on Marginal Gains,” Proc. ACM SIGMOD *91 Conf., Den-
ver, CO, May 1991.

|Pang 93a] H. Pang, M. Carey, M. Livny, “Partially Preemptible Hash
Joins,” Proc. ACM SIGMOD '93 Conf., Washington D.C., May
1993.

[Pang 93b] H. Pang, M. Carey, M. Livny, “Memory Adaptive External
Sorts and Sort-Merge Joins,” Proc. 19 Int’l VLDB Conf., Dublin,
Ircland, Aug 1993.

{Pirahesh 90] H. Pirahesh, et al, "Parallelism in Relational Database
Systems: Architectural Issues and Design Approaches," IEEE
2nd Int’l Symposium on Databases in Parallel and Distributed
Systems, Dublin, Ireland, July 1990.

[Reiter 76] A. Reiter, “A Study of Buffer Management Policies For
Data Management Systems,” MRC Technical Summary Report
#1619, Mathematics Research Center, University of Wisconsin,
Madison, March 1976.

[Robinson 90] J. Robinson and M. Devarakonda, “Data Cache Man-

agement Using Frequency-Based Replacement,” Proc. SIGMET-
RICS "90 Conf., Boulder, CO, May 1990.

[Sacco 861 G. Sacco and M. Schkolnick, “Buffer Management in Re-
lational Database Systems,” ACM TODS, 11(4), December 1986.

|Teng 84] J. Teng and R. Gumaer, “Managing IBM Database 2 Buffers
to Maximize Performance,” IBM Systems Journal, 23(2), 1984.

{Yu93] P. Yu and D. Cornell, “Buffer Management Based on Return
on Consumption in a Multi-Query Environment,” VLDB Journal,
2(1), Jan 1993.

{Zcller 90] H. Zeller, J. Gray, “An Adaptive Hash Join Algorithm
for Multiuser Environments” Proc. 16th Int’l VLDB Conf., Mel-
bourne, Australia, Aug. 1990.

