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Abstract

Partitioning, in general, has become the basic strat-
egy for organizing data files to avoid an exhaustive
search when executing queries. However, hardware
limitations that constrain the performance of query
execution mainly become a problem for partial-match
queries, where the size of the result can equal the size
of the data file. In such situations, a proper application
of parallelism can bring the required breakthrough in
performance. Hamming Filter is a parallel, partitioned
organization of signature files that are stored in fixed
size buckets with a guaranteed load and is based on
the idea of linear code decomposition. It can efficiently
manage dynamic data files by means of a partitioned
structure that always grows and shrinks linearly and
is appropriate to multidimensional partitioning and
searching. This paper proves that the organization
yields no expected execution skew for partial-match
queries, provided the data is not skewed and the de-
gree of parallelism is a power of two.

1 Introduction

Users of computer systems can nowadays benefit from
a considerable performance improvement achieved in
the speed of processors. However, the bottleneck for
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applications with high 1/0 activities still remains the
performance of secondary storage that has only been
improving at a modest rate.

Recently, several attempts have been made to design
computer architectures capable of meeting the require-
ments of applications with high /O activities, such as
Multiprocessor Database Computers [10}, client-server
systems [3], and disk arrays [17]. As claimed in 3],
these mechanisms form an excellent environment for
distributed, parallel database technology.

A comumon implementation problem of all parallel
designs is the strategy for data placement and re-
trieval that should fully exploit capabilities offered by
the hardware. This problem involves distributing data
over several parallel hardware units (e.g. disks that can
be accessed in parallel). In general, good partitioning
must avoid: (1) date skew - much more data is placed
in one partition than in the others, and (2) erecution
skew — execution time in one partition is much higher
than in the others.

Three basic approaches to partitioning appear in the
literature: range partitioning, round-robin partition-
ing, and hashed partitioning. Range partitioning maps
continuous attribute ranges of a file to various parti-
tions. Round-robin partitioning maps the i-th record
to partition ¢ mod n. Hashed partitioning maps cach
record to a disk location based on a hash function.

Recently, a new declustering method for parallel
disk systems called Coordinate Modulo Distribution
(CMD) has been proposed [15]. Experimental results
show that the method achieves near optimum per-
formance for range queries, provided the distribution
of data on cach dimension is stationary. Kamel and
Faloutsos [11] proposed a parallel organization of R-
trees [9] to design a server for spatial data, maximizing
the throughput of range queries.

The difficult problem of mulli-attribute file disk al-
location for eflicient execution of partial-match queries
has been extensively studied for Cartesian product



Jiles. Recent works have successfully applied a coding-
theoretic approach for allocating buckets on  disks
[1, 6, 7). Even though there is no strictly optimal allo-
cation method for distributing a Cartesian product file
with n attributes over p disks, for arbitrary values of n
and p, the theory of error-correcting codes has shown
to provide schemes which are very close to the optimal
case. Ilowever, since in the above designs the number
of buckets, as determined by the partitioning scheme,
is a priort fixed, problems arising from files dynami-
cally changing in size have not been considered.

In this paper, we concentrate on partitioning for par-
allel processing of signalure files [5]. We consider sig-
nature files as a way to tackle the problem of multi-
dimensional partitioning and searching. A signature
file is basically a compressed version of a correspond-
ing data file. Even though a signature file typically
causes information loss (i.e. the compression is nonre-
versible), it is suitable for searching due to its simple
structure. Signature files contain randomized muitidi-
mensional data and, depending on the signature ex-
traction method used, can eliminate non-uniform data
term occurrences and query frequencies [4, 14]. We
are also convinced that ongoing research effort in this
field will bring even better signature extraction designs
than we can apply today.

Many techniques have been proposed to improve
the scarch performance of signature files in a single-
processor environment. For a survey, see for example
(14]. The general idea is to avoid searching the whole
signature file by using a nonsequential storage struc-
ture, typically by applying a tree or a hashing tech-
nique. There have also been attempts to make the
schemes run in parallel environments [8, 12, 21]. How-
cver, these designs apply a simple horizontal and/or
vertical signature file partitioning, thus resulting in
parallel organizations which can rarely avoid execution
skew. The negative fact that some (very often, many)
processors are not activated for a specific query is re-
lieved by introducing inter-query parallelism, that is,
by using the not active processors for executing other
queries, if possible. In this paper, on the other hand,
we are aiming at maximizing intra-query parallelism,
where elimination of the execution skew is the main
objective.

In general, provided a file is formed by a set of
directly accessible buckets containing data objects
(records, signatures), there are two ways to improve
query execution performance: (1) minimize the num-
ber of accessed buckets, and (2) use parallelism. In
other words, the less buckets from the total number
of existing buckets that are accessed, the shorter the
processing time. Naturally, if the needed buckets are
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accessed in parallel, perforiance can improve further.
Such a strictly performance-oriented view of query
processing requires a simultaneous application of two,
seemingly adverse, data placement strategies: clusler-
tng and declustering. Retrieved records should be clus-
tered in buckets so the minimum number of buckets is
accessed. On the other hand, accessed buckets should
be declustered uniformly on all partitions, and in this
way, the power of parallel processing is maximized.
Signature files are advantageous not only because
they represent pieces of simple, structured, binary, and
randomized data but also because many techniques ex-
ist for their organization and management. Two spe-
cific ideas have become fundamental for our work:

e The dynamic partitioning technique to cluster sig-
natures in fixed-size partitions known as Quick
Filter 23],

o The method for declustering binary data based on
linear error correcting codes [6].

Our design, called Hamming Filler, is a new dy-
namic organization for signature files processed in par-
allel environments. It demonstrates very good per-
formance for any partial-match query because it has
practically no execution skew, provided the data is
not skewed. Performance of the organization improves
with the signature file size and the degree of paral-
lelism.

The rest of the paper is organized as follows. In
Section 2, we review the underlying concepts of our
design. In Section 3, we present the Hamming Filter,
and Section 4 contains its performance evaluation.

2 Background

We have built our design on top of the following two
idcas: Quick Filter and linear error correcling codes.
In the following, we will survey their most essential
concepts.

2.1 Quick Filter Organization of Su-
perimposed Signatures

This subsection provides the most essential informa-

tion concerning the superimposed signature file coding

method, partitioned organizations of signatures, and
the main characteristics of the Quick Filter method.

2.1.1 Superimposed Coding

For the sake of simplicity, we assume that each data
object O; (i = 1,..., N) in the file is represented by a



superimposed object signature, S;, with length f, the
signature size. The number of bits with value “1”is the
signature weight. An object signature is generated by
superimposing (OR-ing) signatures of terms that {form
the object. A term signature is obtained by hashing
the term onto an f-bit vector so exactly m bits are set
to “17.

When objects are searched for a term or a set of
terms, a gquery signature, (Q, is generated from the
user’s query in the same way as described for an object
signature above. The object signature, S;, (signature
for short, from now on) satisfies query signature Q iff
for all bit positions of @ that are set to “1”, the cor-
responding bit positions in S; are also set to “1”(the
tnclusion condition). Then, we say S; includes Q. For-
mally, the set of qualifying signatures is defined:

{S: | S AND Q = Q}

where bitwise AND is used. Such a way of generating
superimposed signatures is also known as the fized-size
block (FSB) method.

A new way of generating signatures, the fired-weight
block (FWB) method, was introduced recently in [14].
The main objective of FWB is to provide an optimum
method of assigning weights to document terms based
on their occurrence and query frequencies. As a re-
sult, the FWB method accounts for both uniform and
nonuniform occurrence and query frequencies, the sig-
nature weight is constant, and the false-drop proba-
bility (i.e. the probability that a signature qualifies
while the actual object does not) is lower than for the
FSB method. However, the storage overhead of FWB
is slightly higher.

2.1.2 Partitioned Signature Files

The basic idea of any signature file partitioning scheme
is simple: while storing a file that contains N signa-
tures, similarsignatures are grouped in partitions, and
when a query is issued, some of the partitions need
not be accessed because they cannot contain quali-
fying signatures. Signatures stored in partition P;
(j = 1,...,b) are characterized by having the same
signature key, K P;, with key size (length), {, where
I < f. Obviously, KP; is also the key of partition
P;. When a query signature @ is received, its key, de-
noted K@, is obtained by extracting a substring of {
bits from @ at the same position where the keys of the
object signatures were obtained. The partition P; is
activated (i.e. accessed) iff A'P; includes K Q. The set
of partitions activated by @) is thus defined:

{P; | KP; AND KQ = KQ} (1)
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Let w(-) denote the function that returns the weight
of its bit vector argument, that is, the number of bits
set to “1”. Then, regardless of the method used to
define signature keys, the basic factor influencing the
performance of partitioned signature file organizations
is clearly the query signature key weight, w( K Q).

2.1.3 Quick Filter

The Quick Filter (QF) method - also called the Dy-
namic Suffir method because the keys are defined as
suffixes - partitions a signature file according to a split
hash function that uses the signature’s suffix as its ar-
gument. Linear hashing [16) has been employed as the
storage structure in [23]. Such organization makes the
signature (and partition) key size, I, closely related to
the number of partitions, b. More precisely, in any QI
file, 2'-! < b < 2' holds, and the keys of 2! — b par-
titions have size | — 1, whereas the keys of the other
2b — 2' partitions have size I. For a given number of
partitions, b, the signature key size, 1, can be computed
as | = [log, b]. As a consequence of the linear hashing
implementation, each of the partitions can have entrics
in an overflow area.

Quick Filter is a fully dynamic, partitioned, sig-
nature file organization with a controlled load and a
small space overhead. Partitions, in fact, are physical
buckets of secondary memory (e.g. blocks or pages).
Maintenance is handled casily, and the file can both
grow and shrink linearly. Performance is dependent
on query signature weight; QF works much better for
high-weight queries, but even an exhaustive search -
it is used when query signatures with zero weights in
their suffixes are executed - is comparable to a search
in the sequential file organization. QF is also more
efficient for large rather than for small files. Use of un-
derlying storage structures other than linear hashing
is discussed in [23].

The performance of some basic methods for parti-
tioning of signature files, including Quick Filter, can
be easily evaluated by means of a closed approximated
formula that introduces no appreciable errors for all
practical purposes [2]. The key performance parame-
ter is called the bucket activation ratio (BAR), which
is defined as the ratio of the number of buckets ac-
tivated by a query (i.e. those buckets that must be
searched) to the total nuinber of buckets. The formula
for estimating BAR follows:

w(o))’

BAR(w(Q)/].1) = (‘ Y



2.2 DBinary Linear Error Correcting

codes

Lincar codes are used in Information and Coding The-
ory to detect and correct errors while transmitting
data. It has been shown by examples and verified
by simulation in [6] that linear codes can be useful
for building a declustering scheme for binary Carte-
sian product files. The method has been mathemati-
cally analyzed and extended to general (i.e., not only
binary) Cartesian product files in [7]. More recently,
Abdel-Ghaffar and El Abbadi have also considered the
use of nonlinear codes and investigated the optimality
ranges for the different alternatives [1]. It should be
remarked that our framework differs from that consid-
cred in [1, 6, 7] because partial-match queries on sig-
nature files are actually inclusion queries (see Eq. (1)),

and the hnekote cancidered for storace have a fived cize
alG L€ BUCRELS CoNSIGered 10r su1orage ave a nxeq siace

and a controlled load.

In the following, the most essential principles of lin-
car codes related to our paper are summarized. More
information can be found in any book dealing with
Information and Coding Theory, e.g. [18, 20].

A limear binary code, C, is a subspace of the vector
space, {0,1}", of all bit strings of length n. If C is
a subspace of dimension k, we speak about a linear
C(n, k) code. Every binary C(n,k) code consists of
28 codewords, where each of the codewords has k n-
Jormation and m = n — k check bils. The minimum
distance of code C'(n, k) is the minimum number of dif-
ferent bits (i.e., Hamming distance) between any two
codewords.

Each lincar binary C(n, k) code can be described by
a system of m = n — k homogeneous linecar equations.
I'he matrix, H, of this system is called the check matriz
of the code. If H is the check matrix of a linear C(n, k)
code, then any codeword W = (wy,wz,...,wy,) is a
solution of the system H-W7T = 0T, where 0 is the zero
binary vector of dimension m (upperscript T' denotes
veclor transposition). In general, for every word W €
{0,1}", we define the word ¥ = (y1,¥2,...,Ym) as
H-WT = ¥T. The word Y is called the syndrome of
W. Because the dimension of Y is i, the numnber of
possible syndromes is 2.

The idea of declustering binary data by means of
linear codes can be formalized by the following defini-
tion.

Definition 2.1 (Lincar code decomposition)

Lincar code decomposilion of the lincar space {0,1}7
is a decomposition of the sel of 2™ binary words of
length ninto 2™ pair-wise disjoini groups by using the
C(n, k) incar code cheek matriz H. Each of the groups
conlains the 2% words with the same syndrome and with
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the minimum distance given by the linear code C(n, k).

The basic idea is that, by putting together signa-
tures with the same syndrome (i.e. signatures with
high distance), not many signatures in a specific group
should qualify for a given query, and many groups, if
not all, should contain qualifying signatures.

In the following we consider, without loss of general-
ity, the specific case of Hamming codes, that are linear
codes defined as follows.

Definition 2.2 (Hamming code) A binary linear
code is a (perfect) Hamming code if its check matriz
is formed by columns of all possible 2™ — 1 non-zero
binary words of length m (with none of them repeated).
Hamming code C(n,k) is a perfect code that can be
defined for any number of check bits, m > 2, with
n=2"~1and k = n—m. The Hamming distance
between any two codewords of the code is d > 3.

Example 2.1 Consider the Hamming code C(7,4),
that is, m = 3, for which the check matrix H can
be written as:

H

_—— O

1 11
0 1 0
1 1 0

O et e
O = O

0
0
1

Then, the code, i.e. the set of words with syndrome 0,
includes the following 2* = 16 words:

(000D000) (0100101) (1000011). (1100110)
(0001111) (0101010) (1001100) (1101001)
(0010110) (0110011) (1010101) (1110000)
(0011001) (0111100) (1011010) (1111111)

If we complement the first bit of the above codewords,
we get the words with syndrome Y = (011). In general,
by complementing the i-th bit, we get words whose
syndrome Y is the i-th column vector of matrix H
(i=12,...,n). 0

3 Hamming Filter

Hamming Filter is a dynamic organization of super-
inposed signatures distributed over a number of disks
that can be processed in parallel. It is designed for a
partitioned storage structure, defined as follows:

Definition 3.1 (Partitioned Storage Structure)
PSS(p,bo, by, ..., bp—1) is a Partitioned Storage Struc-
ture that consists of p parallel partitions where the i-th
partition is formed by b; buckets. A bucket consists of
one or more physical pages (blocks) and contains sig-
natures (a horizontal fragment of the signature file).



Buckets have a fized size bul can be connecled with an
overflow area. Each signature is stored in ezaclly one
bucket. Buckets are directly accessible and, once ac-
cessed, are searched entirely (i.e. erhaustive search is
used in buckets). The number of partitions, p > 0, is
constant for a given store while the number of buckets,
b; > 0, can change in time. Lel B; ; designale the j-th
bucket of the i-th partition, where i = 0,1,...,p — 1
and 7=0,1,...,b; — 1.

Hamming Filter is based on the idea of horizontal frag-
mentation of the signature file and is, in fact, a gener-
alization of the Quick Filter method to a multiple-disk
environment. The main difference is that the partition-
ing space is two-dimensional. Whereas in the Quick
Filter, the partitions are basically the access units of
the secondary store (blocks, pages), partitions of the
Hamming Filter are sets of such units, conveniently
called buckets. Then, the mapping into partitions is
performed by using the principle of linear code deconi-
position (see Definition 2.2) while the mapping into
buckets within partitions is performed by means of the
Quick Filter.

3.1 Fragmentation Scheme

The number of partitions p is related to the Hamming
code parameter m in the following way:

p=2"=n+1

Signatures are assigned to buckets of PSS in two
steps. In the first step, signatures are declustered,
and the identification number of the partition where
a signature will be stored is determined as a function,
PI(S,p), of the signature, S, and the number of par-
titions, p. In the second step, similar signatures in
a partition are clustered and the identification num-
ber of the bucket for storing a specific signature is de-
termined by the function BI(S,p,b;). In the follow-
ing, we will discuss both steps in detail. Finally, the
address, Addr(S), for storing the signature S within
PSS, is obtained by the function I(S, PSS), which
returns the ordered pair of partition and bucket iden-
tification numbers:

Addr(S) = I(S, PSS) = (PI(S,p), BI(S,p, b)) = (i, §)

3.1.1 Partition Assignment

let

For a given signature S (e1,¢2,...¢1),
W be its n-bit suffix, that is, W Sl
(¢f—n+1,€f—nt2,...,¢5). Then, the partition index,
i, i1s determined by the formula:

i=PIUS,p)=[H-WH)T],
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This formula multiplies the matrix H by the trans-
posed vector WT . cousiders the (transposed) result
vector as a binary number from the set {0,1,...,2™ ~
1}, and determines the partition index. Thus, a sig-
nature is allocated in the i-th partition if and only if
its suffix yields a syndrome with decimal value i. It
follows that all the signatures in #-th partition have
distance d > 3. In order to illustrate the partition as-
signment function, we designatc the result of the mul-
tiplication as Y = (y1,¥2,...,¥m)- Then, we can write
H - WT =Y7, where

All arithmetic operations are taken modulo 2.

Example 3.1 Consider Hamming code C(7,4) (sce
Example 2.1), and suppose that the n-bit suflix of sig-
nature S is SI*] = (1001001). Then:

1

0
0111100 0 1
1 011010 1 =10
11010 01 0 1

0

1

L 1]

The decimial value of the binary transposed result is
(101), = 5, meaning that any signature with the suffix
(1001001) will be stored in the 5-th partition. o

3.1.2 Bucket Assignment

Signatures are assigned to buckets using the Quick Fil-
ter principle in the following way. ‘T'he last, 1 bits of a
signature belonging to the i-th partition are ignored,
and only the remaining & = n — m inforination bits of
the suffix are retained. Such a definition of the signa-
ture key guarantees the uniforin occurrence distribu-
tion inside a partition because all possible 2* config-
urations of bits can in such area occur. By coutrast,
this would not be true if all n bits were considered (sce
Example 2.1).!

Let {; = [log, b;]. Then, the {;-bit suffix is used as
an argument to store the signature in a bucket of the
i-th partition. The bucket index, j, in partition 7 is
determined as:

UIn order to guarantee that all the 2¥ addresses are generated,
the submatrix consisting of the last m columns of H has to
have m distinct rows. For Hamming codes, the simplest way
to achieve this is to have the last m columins of H forming an
identity matrix.



j=BI(S,p,bi) =

{ S

Yoso
When b; 1, then
BI(S,p,b;i) = 0 results.

Y ey rem?® < b

xr
otherwise

Y4
_ Cj—:r-—mz

Cj-—z--mzx

= = 0, and in this case,

Example 3.2 Consider the n-bit suffix S
(1010001), and a number of partitions p = 8. Suppase
the nuinber of buckets in the i-th partition is b; = 10.
It follows that the maximum bucket key size in par-
tition  is ; = [logy b;] = [log, 10] = 4 and the size
of the ignored suffix of the signature needed to de-
termine accessed buckets is m = logsp = log,8 = 3.
Then, BI((...1010001),8,10) = 2. The explanation is
easy. By taking 4 bits, §; = 4, we get (1010); = 10.
However, 10 is not smaller than b; = 10, and there-
fore, only {; ~ 1 bits must be considered, namely (010),
which, as a binary number, gives 2. o

For large files and small values of m (i.e. m < 5), [; is
likely to exceed n—m = k. In this case, bucket assign-
ment is based on one or more bits that are not used to
deterinine the partition index; as a consequence, the
number of buckets in the i-th partition is not limited
to 2¢.

3.2 Query Processing

The task of the query processing algorithin is to deter-
mine addresses of buckets - the Response Set — that
must be accessed to execute the query signature Q.
It is a distinctive feature of the Hamming Filter that
buckets are determined directly (i.e. without any ad-
ditional access to the database). The query processing
arguments are PSS and @, and the algorithm proceeds
as follows:

I. Generate all possible signature suffixes, W;, of
length n, which include QI"):

(Q" AND W,) = QI

2. Deterinine the Response Set, RS, for query signa-
ture @ as a set of bucket addresses:

RS = | JI(W., PSS)

This set contains addresses of buckets that must
be accessed to check their signatures for qualifica-
tion.
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3.3 Partitioned Store Evolution

By definition, PSS has two dimensions: partition and
bucket. In a given store, the number of partitions is
fixed (determined by the parameter p), and any re-
quirement for a change in this dimension resuits in a
complete reorganization. On the other hand, individ-
ual partitions are dynamic; the number of buckets can
change, but it never becomes zero. Such a feature of
the store enables dealing with dynamic signature files
where the number and contents of signatures change
in time.

The strategy for load balancing in PSS changes the
number of buckets, which, even though overflow areas
can be appended, have primary areas of a fixed size.
We use the linear hashing principle [16], and the hints
for store growth or shrink are the bucket overflow or
underflow, respectively. The specific procedures for
the i-th partition growth and shrink follow:

Partition Growth
1. add a new empty bucket B;,;
2. b; =b; +1;
3. I = [log, b:];

4. VS € B;, _i_ -1 store the signature in the
bucket at address I(S, PSS).

Partition Shrink
1. & = [log, bi1;

2. VS € Bjy,—1 , put the signatures into the bucket
By —1-a2t-1;

3. b,' = b{ e 1;
4. release the bucket Byy,.

The key point of the growth and shrink procedures is
the management of added and removed buckets. In the
Hamming Filter, a new bucket is always added at the
end of a partition, and the content of the bucket with
index b; — 1 — 2!+~ (called the split pointer in linear
hashing) is divided to fill the new bucket. When a
bucket should be removed from a partition, it is always
the last one, and its contents are moved to the bucket
determined again by the split pointer. The value of
the split pointer increases linearly with the number of
buckets, b;.



4 Performance Analysis

In this section, we analyze performance of the Ham-
ming Filter in terms of bucket accesses needed 1o per-
form a query. For the sake of simplicity, we consider
that in any of the p = 2™ partitions exactly 2* buckets
are allocated. We further suppose no data skew, which
is (at least for large files) justified because the signa-
tures are randomized pieces of data and the bucket
assignment is, in fact, another randomization function
imposed on the same data. On the other hand, exe-
cution skew is the main concern in our performance
study of the query evaluation, for Hamming Filter re-
sponse time is determined by the partition with the
highest execution cost (i.e. the partition where the
highest number of buckets are accessed).

We start with examples showing how the number
of accessed buckets for a given query signature can be
computed and then generalize the approach for com-
puting the worst-case and estimating the average-case
performance for groups of query signatures with a spe-
cific suflix weight. We also compare the performance
with the optimum case, in which the same number of
buckets in each partition is always accessed. Finally,
we extend the analysis to random suffix weights as de-
termined by the weight of the whole query signature.

4.1 Analytical Computation of the

Number of Accessed Buckets

Given a query signature @ whose n-bit suffix has
weight w(Q™), then 97 -w(Q") gut of 2% buckets qual-
ify. Unfortunately, this expression says nothing about
the distribution of the accessed buckets on individual
partitions — the execution skew. However, the execu-
tion skew is the crucial issue for any parallel system
because the partition with the highest number of ac-
cessed buckets determines the total cost (i.e. response
time).

The Hamming Filter computes the partition index
(represented by the syndrome vector Y) for a sig-
nature by multiplying the parity check matrix H by
the transposed signature suffix W = S specifically
H W7 = Y7. Remember that each signature maps
into exactly one partition. Now, let us consider a query
signature Q, with suffix QI*1, and a specific partition
represented by the syndrome Y. Then, H - WT = YT
defines a set of m linear equations in the unknown W.
Because W must include QI*], the elements (i.e. the
bits) of W corresponding to ones in QI are fixed at
“1”, whereas the others are considered as variables.
The number of variables, which depends on the weight
of Q" is exactly n — w(Q["]). It is clear that this sys-
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tem of m linear equations can, in general, have more
than one solution; cach solution represents a qualifying
bucket in the partition deterinined by the syndrome ¥,

4.1.1 Somc Examples

Consider the parity check matrix H for the (/(7,4)
Hamming code and partition 0, represented by vector
Y = (000). To determine suffixes of signatures (bucket.
keys) in partition 0 that qualify for a query signature
with suffix QU = (1001001), the task is characterized
by the following matrix equation:

1
wy
w3 0

S =
—
S -
S o~
—_—c O
—_—

ws, 0
weg

[ 1

"This can be transformed into the system of linear equa-
tions:

EFl: wy + w3 + wy + | = 0
E?2 . w3y + wsg + 0 = 0
E3: wy + 1 = 0

We get three cquations with four unique variables.
Because the variables are binary and the eynatious
linearly independent (due to the construction of H),
the system has 2*~3 = 2 solutions. According to
equation I3, wy, = 1. It follows from equation £
that w3 and wg are simultaneously 0 or 1. Finally,
ws = 0 (provided w3 = wg = 0) or ws 1 (pro-
vided ws = wg = 1). Qur example, therefore, has
the two solutions (1101001) and (1111111). Using the
bucket assignment procedure, bucket indexes are then
obtained by dropping the last m = 3 bits, thus yielding
1101 and 1111, respectively. Only these two buckets
in partition 0 can contain qualifying signatures, and
only they must be accessed during query execution.
To compute the necessary bucket accesses of any other
partition, the left-hand sides of equations K1, F/2, and
E3 remain the same, and only the right-hand sides
change. It can be easily checked that for any other
partition the result is still 2. No exccution skew exists
for our sample query.

If we change the query signature @ and suppose that
Q[ = (1101001), we get the following system of cqua-
tions:

Fl:

wyg + ws + 0 =
E2: w3 + wg + 0 =
E3: 0 =



Because there are no variables in I3, the system only
has solution for yy == 0, implying that only the parti-
tions with indexes 0 = (000)2, 2 = (010),, 4 = (100),,
and 6 = (110)2 contribule to the Response Set. In
these partitions, 23-2 = 2 buckets can contain quali-
fying signatures, for the system of equations induced
by the query is reduced to two equations with three
variables.

For this query, we have execution skew because par-
titions are divided in two groups. No buckets are
accessed in partitions of the first group whereas two
buckets are accessed in partitions of the second group.
It follows that the query execution is again equal to the
cost of accessing two buckets even though the weight
has increased.

However, performance of the Hamming Filter does
not depend merely on the number of “1”bits in the
query signature sufix. This can be easily illustrated
by considering another query signature suffix, Q") =
(1110001). It has the same weight as in the previous
example, but the system of equations is now:

Ft: wy + ws + 0 "N
E2: wy + wg + 0 =
E3: wy + 1| = ys

A system of three equations with three variables has
exactly one solution, which implies a single access in
all partitions, i.e. no execution skew,

4.1.2 Generalization

According to the above discussion, we can precisely
define the response time, R(Q), of the Hamming Filter
with respect to query Q.

Definition 4.1 Given a query signature (), whose n-
bit suffiz, Q). has weight w(Q["]), the response time,
R(Q), of the Hammaing Filter is the maztmum number
of accessed buckels in a partition, ezpressed as:

_[2YFE i V>E
R(Q)“{l if V<E

where V is the number of variables, V = n — w(QI™),
and E is the number of equations with at least one
variable.

Let. H; designate the i-th row of the matrix H for i =
1,2,...,m. Then, the number of equations, £, can be
computed:

where

i i) ,
ai(Q) = { 1 if w((NOT Q"l) AND H;) >0

0 otherwise
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T'wo important observations concerning V and E can
be made:

1. The number of variables only depends on the
query signature suffix weight;

2. The number of equations with at least one variable
depends on the specific setting of bits in the query
signature suffix. Thus, for a given query signature
suffix weight, we can have a varying number of
equations, depending on the specific configuration
of bits in the suffix. Note that ¢;(Q) = 1 iff Q"]
does not include H;. In this case, there exists
at least one bit position where H; has the value
“1”and Q™ has the value “0”; this ensures that
the variable corresponding to such a position will
appear in the equation.

4.2 Response Time for Query Signa-
tures with Specific Suffix Weights

We first consider the problem of determining the maz-
imum response lime, designated R}, over all query
signatures Q@ whose suffix Q[*l has the weight w =

w(QM):
R = max{R(Q) : w(Q™) = w}

In order to derive an analytic expression for R}, we
take advantage of Definition 4.1 and write:
R+ - 2V—E‘: —_ 2n—w—E;
b= =

where E_ is the minimum number of equations that
can arise from a query signature suffix with weight w.
Note that, in general, the number of equations can
vary from 1 to m.

The following observation and lemma are fundamen-
tal for our purpose.

Observation 4.1 Given the parity check matriz H of
the C(n,k) Hamming code, the bitwise OR of any
r rows (r = 1,2,...,m) of H yields a binary vector
whose weight 1s 2™ — 2T,

For instance, for the C(7,4) Hamming code, the OR
of any r = 2 rows results in a vector with weight 23 —
23-2 = 6.

Lemma 4.1 Consider the system of linear equations
H - WT = YT. Independently of the specific setting of
bits in the query signature suffiz, at least E,, equations
with variables are obtained if the suffiz query weight
does not exceed the value

w=n—2E"1 E, €{1,2,..,m}



Proof: To get E,, equations from QM it is necessary
that E, rows of H are not included in QM. Ifwis
not less than 2™ — 2™~ ", then, according to Observa-
tion 4.1, there exists a query signature suffix Q™ with
weight w that can include r rows, (r = 1,...,m), thus
leaving m — r equations with variables. Consequently,
w= 2™ — 2™~ — 1 is the maximum weight that al-
ways guarantees at least m — r + 1 equations. The
result follows after substituting F,, for m — r + 1 and
n for 2™ — 1. g

For instance, to get at least 'E,, = 2 equations with
the C(7,4) Hamming code, w must not exceed 5 be-
cause the OR of any 3—2+1 = 2 rows of H has weight
6.

Theorem 4.1 (Maximum Response Time) The
mazimum response time, R}, for a query signalure
Q whose suffiz Q"] has weight w is calculated:

R} 2V~ Fu =
21)—w—-|_log2(n—w)_|—l -

2V— llog, V-1

where:

Ej = llogy(n - w)] +1
Proof: It follows from Lemma 4.1 after solving for E,,
and taking the integer part of the result. o

Corollary 4.1 IfV < 3, then R} = 1.
Proof: From Equation (3), we get R} = 1if

Obviously, the equation only has a solution for V =1
or 2, confirming Theorem 4.2 from [6}, which states
that declustering by the Hamming codes enjoys a re-
sponse time of 1 for w > n — 3, that is, V < 3. o

4.2.1 Optimum Performance of Hamming Fil-
ter

The aim of this subsection is to investigate if and under
which conditions the Hamming Filter behaves in the
optimum way, producing no execution skew.

Definition 4.2 (Optimum Response Time) The
optimum response time, Ropt, for a query signature
whose suffir has weight w is defined as the number of
qualifying buckets, 2°~*, divided by the number of par-
titions, p = 2™:

2"—")

om
1

_ =9"-1-m-w  fp_w>m
Ropt -

otherwise
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w RI, R"HL w Ri Rnpt
16 | 2048 | 1024 23| 16 8
171 1024 | 512 24| 16 4
18 [ 512 256 25 8 2
19 256 | 128 26 4 1
20 | 128 64 27 2 1
21 64 32 28 2 ]
22 32 16

Table 1: Example of the range of query signature suffix
weights in which the Hamming Filter cannot guarantee
optimum response time for the case m = 5.

From this definition, we can derive the following ba-
sic results concerning the Hamming Filter’s worst-case
performance.

Corollary 4.2 The worst-case rcsponse time of the

Hamming Filter is equal to the optimum response tanc,
RY = Rops, if Eg =m.

Proof: LImmediate from Theorem 4.1 and Definition
4.2. O

Theorem 4.2 (Optimality) The worst-case re-
sponse lime of the Hamming Filler is equal to the op-
timum response lime if one of the following conditions
on the query signature suffizx weight is satisfied:

R} =Ropt if w>n—-3=2"-4
2m——l

(4)
(5)

Proof: The case w > n—3 has already been proven to
lead to optimum response time in Corollary 4.1. The
case w < 2™! follows from Lemma 4.1 and Corol-
lary 4.2 because the maximum value of w that always
guarantees 7 = mn equationsis n—2"~! = 2m-1 |
]

To summarize, the Hamming Filter is optimum if
w > n—3 or if less than approximately 50% of the bits
in the query signature suffix are set to 1.2 Note that,
when m = 2, Hamming Filter performance is always
optimum and gives response 1 for any query signature
with w > 0. Furthermore, in the case m = 3, the only
value of w for which optimality cannot be guaranteed
is w = 4. In the case m = 5, the values of w for
which optimality cannot be guaranteed are considered
in Table 1. Although a precise characterization of the
likelihood of Hamming Filter suboptimal behavior is
given in the next section, it is important to notice that
the case w > 2™~ ! is not very likely to occur because:

or w<

ZMore precisely, the percentage is 2™~ 1 /(2™ — 1) % 100.



1. 'The weight of the whole query signature (not just
of its suflix) never exceeds f/2 and, in practical
cases, is much lower [22];

2. The bits set to “1”in the signature query are uni-
formly distributed over the f positions; therefore,
it 13 very unlikely that more than 50% of the n
sullix bits are sel to “1”(see Section 4.3).

4.2.2 Average Performance of Hamming Fil-
ter

The maximum response time, R}, for a query signa-
ture whose suffix has weight w can be quite higher
than the optimum response time, R,p;, as shown in
Table 1, but the average case is much better. For in-
stance, when m = 3 and w = 4, for which R} = 2 and

Ropr = 1, only 3 out of (Z) = 35 queries with suffix
weight w = 4 yield a response time of 2. In this case,
the average response time is only 1.08.

The average response time, designated R,,, is com-
puted by considering all query signatures whose suf-
fix has weight w and depends on the distribution of
the response time, R(Q), over the set of such queries.
To characterize this distribution, the related problem
of determining how many queries with a given suffix
weight w lead to exactly E equations with variables
(E =1,...,m) can be considered.

Lemma 4.2 The probabilitj that a gquery signature
whose suffiz has weight w, and thus V = n —w “9”s,
leads to ezactly E equations is:

Pr{E) = 2g:7:) XE:( 1)E-i ( ) (21"; 1)
Gk
(6)
Proof: Given in [24]. 8]

Lemma 4.3 The number of equations produced by a
query signalure whose suffiz has weight w is a random
vartable with the expected value:

(1;——2"‘"
n—w
A A

)
(:24)

Proof: Consider the i-th row, Hy, of the check matrix.
It yiclds an equation with variables iff there exists at
least one bit position where H; has the value “1”and
Q™ has the value “0”. The number of different Q"

with weight w is (nfw). Because the weight of H; is

(@)

Ey,=m
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2m-—l

—w ) query suffixes such

2m-1 there are exactly (

that thelr n —w “0”s do not correspond to any “1”of
H;. The result then follows.3 0

Theorem 4.3 (Average Response Time) The av-
erage response time, Ry, for a query signature whose
suffiz has w “1”s and V = n—w “0”s, given the con-
dilion that w < n — m, which implies V > m, is cal-

culaled:
m 2 -1
7 |4

Proof: It suffices to consider the expression of Pr{E}
given by Eq. (6). Due to the condition V > m, it is:

m

%4

2V—m

(8)

m
R, =)_2""EpPr{E}

E=1

(9)

and the result follows after some combinatorial manip-
ulation. a

The condition V > m allows 2Y~F to be used in
place of [2V~E] in Eq. (9), and thus to derive a simpler
formula for the average response time. Note, however,
that this leaves out from analysis only [m — 3] cases
from the total number of V cases and, consequently,
[m — 3] values of w (e.g. w = 27 and 28 in the case

= 5). As Figure 1 indicates, R,, is very close to the
optimum response time, Rop, and in the worst case
(w = 26), overhead is about 8%. On the other hand,
in all the other cases, it is completely negligible.

w

16 17 18 19 20 21 22 23 24 25 26
1E+1
1E+0
1E-1
1E-2
1E-3
1E-4
1E-5
1E-6

Figure 1: Average percentage execution overhead, that
is (Ru —Ryp1)/ Ropt ¥100, of Hamming Filter for m = 5.
Only the values of w < n — m = 26 for which R} >
Ropt are considered.

3The result can also be derived by explicitly computing

Y. g EPr{E}.
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Figure 2: Probability that the suffix weight, w, is less than 2™~ as a function of m. Different curves correspond

to different values of the ratio w(Q)/f.

4.3 Performance for a Given Query
Signature Weight

It is a well-known fact that query signatures cannot
have arbitrary weights. Theoretically, the weight of a
specific query, w(Q), cannot be greater than one half
of its size, f, because this is the weight of the object
signatures. However, the weights of query signatures
are usually much lower. Intuitively, the query signa-
ture suffix weight should also be quite low and, conse-
quently, the performance of Hamming Filter optimum.

According to [2], the weight of a suffix of length n is
a random variable, w, which follows a hypergeometric
distribution that can be reliably approximated by the

binomial distribution:
W(Q))w (1 _ W(Q)>"_w

Priv}= (Z) ( 7 i

For a given value of the signature weight, w(@Q), the cu-
mulative probability that the suffix weight is less than
2™~! and, consequently, that performance is optimum
can be computed. The most unfavorable case is, intu-
itively, when w(Q) = f/2. In this case, we have:

Pr{w} = (Z,) "= (2’"1; 1) 9-2"H

Therefore, the probability that w < 2™~! equals:

(

When w(Q) < f/2, this probability grows as shown
in Figure 2. The result strongly supports confidence
in optimum, or very near to optimum, performance

2™

Priw<2 )= 3

w=0

1

-2 41 _
)2 =3

2m -1
w
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of the Hamming Filter because typical signature file
applications have w(Q) < f/2.

A second kind of analysis can be done by considering
the expected number of equations with variables, E,
resulting for a given signature weight. We have proven
in Corollary 4.2 that Hamming Filter performance is
optimum when the number of such equations is 1, so a
high value of the ratio E/m indicates that the average
performance is very close to the optimum.

Given by definition:

E= Z E, Pr{w)
w

then, taking advantage of Equation (7) and the bino-
mial approximation, we obtain:
>2m—l )

E:m(l—(

In the most unfavorable case, specifically w(Q)/f =

0.5: (l _0‘52’"”)

Apart from the case m = 2 (where the perfortnance of
Hamming Filter is always optimuim), E is very close
to m (for m = 3, E/m = 0.9375) as Figure 3 shows. It
should be observed that the ratio E/m is an increas-
ing function of m and, consequently, of the degree of
parallelism.

In order to evaluate the average respouse time of the
Hamming Filter, it suffices to observe:

R=>_R, Pr{w}

w@Q)

7 (10)

E=m

(11)

Relative perforinance can be evaluated with respeet



1 . - — ms= 5
4
0.975
E
(i 0.95 3
0.925
0.9 - ey
0 0.1 0.2 0.3 0.4 0.5
w(Q)/t

Figure 3: The ratio E/m as a function of the ratio
w(Q)/ [ for different values of parameter m.

to the optitnum response time, Ry (w(Q)), for a given
query signature weight. Given 2" buckets, Ropi(w(Q))
is the expected number of accessed buckets in each
partition, assuming no execution skew. By means of
Eq. (2) that defines the bucket activation ratio (BAR),
optimum response time can be evaluated:

Figure 4 plots the percentage of execution over-
head of the Hamming Filter, that is (K —
Rop(w(@)))/ Ropt(w(Q)) * 100. The overhead is less
than 10% even in the cxtreme case when w(Q)/f = 0.5
and m = 3. For 1n > 3, the overhead never exceeds
0.1% and, in most cases, is some orders of magnitude
lower.

Ropt(w(@)) = BAR(w(Q)/f,n) 2* = (1 -

5 Conclusions

The Hamming Filter is a partitioned parallel organiza-
tion for signature files. Signatures are stored in fixed
size buckets of parallel partitions by means of a dy-
namic fragmentation scheme. The bucket assignment
and the query execution are performed in a direct ac-
cess mode (i.e. without any additional access to aux-
iliary data). The Hamming Filter can be considered
as an extension of the Quick Filter by the application
of the principle of lincar code decomposition. In this
way, the desired data distribution effect of simultane-
ous declustering and clustering of signatures has been
achieved in a single design. However, the Hamming
Filter is not only a fragmentation scheme for signa-
tures but also a complete integrated organization for
parallel secondary stores.
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The main original' contributions of the paper in-
clude:

e design of the dynamic partitioning scheme for a
persistent store consisting of a specific number of
parallel partitions containing a variable number of
storage buckets;

o design of the query processing and the store evolu-
tion algorithms able to provide high performance
for retrieval and control of data load at a very low
cost;

e performance analysis:

— analytical computation of the number of ac-
cessed buckets;

— explicit formulas for determining the maxi-
mum, optimum, and average response time
for query signatures with specific suffix
weights;

— analytical formalization of the query signa-
ture weight effect on the performance of the
Hamming Filter.

It has been proven that for most of the possible queries,
optimum performance can be guaranteed. Provided
w > 2™ — 4, the response time is exactly 1. However,
the optimum performance is also achieved if w < 2™~1,
The average performance is (if not optimum) always
very near to the optimum, and queries for which the
optimum performance cannot be guaranteed are not
likely to occur. The relative execution overhead is a
decreasing function of the code parameter m, and thus,
the performance of Hamming Filter improves with the
degree of parallelism.

In our design we have only considered Hamming
codes. However, the extension to other linear error
correcting codes is straightforward in that it suffices
only to consider a different parity check matrix. Our
analytical results are valid for codes with minimum
distance d = 3. If codes with larger distance are used,
an even better performance can be expected.

Our future plans will extend the analysis to the ef-
fect of using other linear codes. A proper comparison
of the analytical results with a prototype system that
we have just implemented will be done, and will allow
us to consider the effects of data skew on the perfor-
mance. Then, we want to concentrate our research
effort on application of the Hamming Filter in other
data environments, namely complex object stores com-
bining attribute and reference data. The possibility of
managing parallel environments where the number of
disks is not limited to a power of 2 will also be inves-
tigated.
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Figure 4: Average percentage execution overhead as a function of the ratio w(Q)/ f for different values of paramcter
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