Viewers: A Data-World Analogue of Procedure Calls

Kazimierz Subieta* Florian Matthes

Joachim W. Schmidt Andreas Rudloff

Ingrid Wetzel

University of Hamburg
Department of Computer Science
Vogt-Kélin-Strafie 30
D-2000 Hamburg 54, Germany

Abstract

A viewer is a reference-valued datum with a special
meaning: a value of the data pointed by the viewer be-
comes a virtual part of data where the viewer is placed;
the value virtually substitutes the viewer. Viewers are
considered to be a data-world analogue of procedure
calls. They possess a large conceptual and pragmatic
potential as a result of new data semantics on which
we can base a variety of well-organized data struc-
tures. Various applications of viewers, related to DB-
PLs and object-oriented data modelling, are presented:
importing common attributes, inheritance and multi-
inheritance, stored selections, projections and joins,
viewing a single relational structure as several hierarchi-
cal structures, etc. Methodological and formal aspects
of the concept are discussed and a method of incorpo-
rating viewers into a query language is presented.

1 Introduction

A viewer is a reference-valued datum with a special
semantics: a value of data referenced by the viewer
virtually substitutes the viewer. Viewers have some
similarities with the well-known concept of database
views as found e.g. in POSTGRES [12}, which can be
used to build virtual nested data structures from rela-
tional ones. There are, however, essential conceptual

*Current address: Institute of Computer Science, Polish
Academy of Sciences, Ordona 21, PL-01-237 Warszawa, Poland

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and sts date appear, and notice is given
that copying is by permission of the Very Large Data Base En-
dowment. To copy otherwise, or to republish, require a fee and/or
special permission from the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993

and pragmatic differences between viewers and views;
thus they should be considered as distinct notions. The
basic differences are as follows:

e Views are properties of a particular (query) lan-
guage. Viewers are not connected to any language:
they are properties of data structures.

e Names of views occur explicitly in queries. Names
of viewers never occur in queries (they occur in
meta-statements only).

e Views are evaluated dynamically (when they are
needed) which has consequences for performance.
Viewers are properties of static data thus there is
no performance problem. however, sometimes they
share negative properties of materialized views.

e Updating through views leads to problems (at least
in value-oriented frameworks). There are no prob-
lems in updating through viewers (though it may
lead to other anomalies).

e View definitions are not updatable from inside the
program since their external form is a source text.
Viewers, as normal data, can be updated by as-
signing new references as their values.

Viewers play the same part for data as procedure
calls for sequences of instructions. They allow one to
see some data from different places in the database
structure, similarly as procedures allow utilization of
a piece of code in different program points. In view of
the analogy we believe that viewers are of a large con-
ceptual and pragmatic importance, allowing the build-
ing of well-organized data structures. In the paper we
discuss various potential applications of the viewers in
data-intensive environments.

Similarly to other data abstractions, viewers intro-
duce a new kind of data semantics. More semantics

268

inside data supports natural data views and simpli-
fication of application programs, which need not in-
corporate this semantics into their code. For exam-
ple, due to path expressions queries addressing object-
oriented data structures are usually shorter than rela-
tional queries. Path expressions are based on additional
data semantics such as explicit hierarchical data struc-
tures, pointer links, or referential integrities. Complex
objects, object sharing, classes, is-a relationships, be-
havioral invariants of classes (methods), active rules,
etc. can be considered as methods of introducing more
semantics into data.

Sophisticated methods concerning data semantics
(knowledge representation) are considered in Al. The
database domain have already been partly adopted Al
ideas, for example, data abstractions and behavioral
properties. This import, however, is constrained by
engineering requirements, in particular, proper perfor-
mance and easy-to-understand data views. For exam-
ple, deductive databases have a potential to represent
advanced data semantics; however, current research
does not make evident that the acceptable performance
is feasible. Therefore, in contrast to unlimited inven-
tions of Al, database researchers must look for such
features in the -data world which are capable of repre-
senting attractive conceptual modelling primitives, are
easy to implement, yield proper performance, and are
easy from the programmer point of view.

A well-known technique covering many issues related
to data semantics lies in the application of references
(pointer links). References in network and object-
oriented databases explicitly represent different kinds of
dependencies between objects, such as sharing, cyclic-
ity, subordination, aggregation and association. From
a practical point of view the advantage of references is
easy implementation and good performance.

From another aspect, pointer links in databases can
be compared to gotos, which have been recognized as
leading to impossible-to-understand programs. There
is an analogy: a CODASYL or an entity-relationship
schema for large databases resembles a maze. In re-
lational databases the situation is even more difficult,
since instead of explicit links carrying semantic infor-
mation there is an attribute naming convention and as-
sertions in a natural language. Integrity constraints,
such as functional dependencies and referential integri-
ties are conceptual links in the relational schema, turn-
ing it to a similar “maze”. This problem also occurs in
object-oriented databases.

In programming methodologies the problem of
“spaghetti-like” structures has been avoided by struc-
tured programming which is based on procedures as
semantic units of the programs. Procedures encapsu-

late semantic meaning for the designer and the reader
of the program, and thereby allow the understanding
of the program as a hierarchical structure. In the data
world a similar notion can be achieved by hierarchically
organized data repositories, scoping, encapsulation, lo-
cality of references [6], etc. Still, there is no possibility
to organize different hierarchical data views assuming
data sharing and proper performance. Viewers are the
solution to this problem. Navigation according to a
viewer is not definite (as pointers and gotos are), but
always implies returning to data where the viewer is
placed; thus the analogy with procedures.

We will show through examples that viewers are able
to cover surprisingly many conceptual modelling issues
that are currently the focus of considerations of DBPLs
and object-oriented approaches. An advantage of view-
ers is their capability to simplify queries. Due to viewers
the database designers and programmers receive a full
control over so-called automatic navigation, which was
the main motive for the 5-th normal form of relational
databases (known also as universal relation) [1, 7].

The viewer concept has already some precedences.
Wilkes et al. introduced the concept of “instance in-
heritance” in [16]. The idea is based on the ohservation
that inheritance may concern not only methods and at-
tribute definitions but also some values of attributes.
For example, common or default values can be stored
as first-class objects inside a class and then imported
as virtual attributes (without copying) by class mem-
bers. Ohori et al. [9] introduced in Machiavelli the
concept of coercions or “views”. A Machiavelli view
is a set of simple records having references to complex
records. In this way attributes of the complex records
are virtually imported by the simple records, allowing
the programmer, for example, to perform a natural join
on the virtual attributes. Independent of this research,
in LOQIS [13, 14] we implemented a more general con-
cept, covering the instance inheritance and Machiavelli
views,

The rest of the paper is organized as follows. In Sec-
tion 2 we present. various examples of potential appli-
cations of viewers. Section 3 is devoted to more general
observations, and in Section 4 we briefly discuss conse-
quences for database desigh methodologies, formal as-
pects, and modifications of query languages.

2 Viewers: Examples of Appli-
cations
The figures presented in this section show viewers as

data having some name, and a pointer value depicted as
an arrow. For retrieval such data structures are equiva-

269

lent to structures where all viewers are textually substi-
tuted by values of data they point to; viewers are trans-
parent for users. For example, the structure shown in
Figure 1 should be understood as the following data :

PET(NAME(Rex) KIND(dog)
LEGS(4) EARS(2) EYES(2))

PET(NAME(Pussy) KIND(cat)
LEGS(4) EARS(2) EYES(2))

ANIMAL(LEGS(4) EARS(2) EYES(2))

CPET(NAME (Rex) KIND (dog) PROPERTIES (

) 1)
4

(ANIMAL(LEGS(4) EARS(2) EYES(2)))

)

CPET(NAME (Pussy) KIND(cat) PROPERTIES(

Figure 1: Shared attributes
The value of the datum ANIMAL, being the record

LEGS(4) EARS(2) EYES(2), virtually substitutes the
data PROPERTIES.

2.1 Object-Oriented Issues

(éTUDENT(PDATA(p) STD#(134) FACULTY(Physics);)

4
((PERSON (NAME (John) BDATE (1970)))

(STUDENT(PDATA(;) STD#(241) FACULTY(Biology))

(CPERSON(NAME (Bi11) BDATE(1972)))

(%TUDENT(PDATA(s) STD#(165) FACULTY(Law)<D

\
((PERSON (NAME (Jack) BDATE(1971)))

Figure 2: Example of structural inheritance imple-
mented by viewers

In Figure 2 we present an example of structural in-.
heritance: a STUDENT object inherits basic data from
a PERSON object. This data structure is understood as
follows:

1In this paper we apply a syntax in which a bulk datum with
name N and value {v1,v2,...vn} is written as N(v1} N(v2) .. N(vn)

PERSON(NAME(John) BDATE(1970))
PERSON(NAME(Bill) BDATE(1972))
PERSON(NAME(Jack) BDATE(1971))

STUDENT(NAME(John) BDATE(1970)
STD#(134) FACULTY(Physics))

STUDENT(MAME(Bill) BDATE(1972)
STD#(241) FACULTY(Biology))

STUDENT(NAME(Jack) BDATE(1971)
STD#(165) FACULTY(Law))

For class hierarchy viewers can act transitively, i.e.
they import data imported by other viewers. (This fea-
ture is implemented in LOQIS.} Viewers allow multi-
inheritance: any number of viewers can be stored inside
a data object. Note that (similarly to views) viewers
automatically propagate updates of PERSON objects to
STUDENT objects.

It is observed in [10] that a quite common situation is
not that STUDENT is e PERSON, but that PERSON
become a STUDENT. This paraphrasing underlines dy-
namic nature of data views (the schema evolution): dur-
ing the life of a database systems objects can gain and
lose many independent roles. As we can see from the
Figure 2 viewers supply a mechanism for dealing with
this problem: any number of roles such as STUDENT
can be dynamically created and deleted. »

Figures 1 and 3 present examples of shared attributes.
Attribute sharing may be useful for long attributes, for
example, if they represent graphical objects or texts.

(STUDENT (NAME (John) OPINION (Unsystemattic)))

D

)))
(GOOD__OPINION(

Efficient, w

! tallented, |
systematic

_ and active) /

(STUDENT(NAME (Bill) OPINION(V1 {

(STUDENT(NAME (Jack) OPINION (V1 ¢(

Figure 3: Utilization of a shared long attribute

Classes in object-oriented approaches can be consid-
ered as data repositories storing invariant attributes for
their members. Several kinds of such invariants can
be considered, for example, common attributes, default
attributes, methods, types, constraints, icons, etc. In
Figure 4 we show how class invariants can be imported
to particular objects by application of viewers. The fig-
ure shows cases of overriding; Bill is smoking and John

270

has a special firing procedure.

(EMP(NAME (Jack) PROPS (

))

(EMP(NAME(Bill) SMOKING|(yes) PROPS(;)))

\
"))
\

(_EMP (NAME (John) FIRE (proc3) PROPS(

EMP_CLASS_INVARIANTS (
SMOKING (no)
GLASES (no)
HIRE (procl)
FIRE (proc2))

Figure 4: Importing class invariants

In Figure 5 viewers organize object sharing. Note
that viewers allow to introduce local aliases for objects:
a PERSON accessed from inside of another object has
an alias WIFE, HUSBAND, CHILD, MOTHER, etc.

Using viewers as supported by LOQIS we can eas-
ily formulate queries on such a structure, for example,
“Give name of the wife of the father of Mary’s husband”
as follows:

(PERSON where NAME = "Mary").
HUSBAND . FATHER.WIFE.NAME

Another query, “For each person over 30, give name,
the number of children, the number of siblings, and the
number of first-order cousins of the same generation”,
can be formulated as follows:

((PERSON where AGE > 30) <
(s € count(unique(
(MOTHER U FATHER).CHILD.NAME)))).
(NAME x count(CHILD) x (s ~ 1) X
(count (unique ((MOTHER U FATHER) .
(MOTHER U FATHER).
CHILD.CHILD.NAME)) - s))

(See [15] for detailed specification of this language.
>a denotes a navigational join, . denotes projec-
tion/navigation; other operators have typical mean-
ing.) To formulate this example in the relational model,
PERSON and 5 additional relations should be defined.
The last query is extremely difficult to formulate in SQL
and we have doubts if SQL processors are able to op-
timize it. Due to viewers implemented as pointer links
the query is executed in LOQIS in a reasonable time.

PERSON (PERSON (

NAME (Bob) NAME (Doris)

AGE (60} AGE (57)

WIFE (V1{ HUSBAND(V3(s))

CHBILD(V2(CHILD (V2£f)))
PERSON {(

NAME (John)

AGE (35) PERSON (

FATHER({ V4(
MOTHER(V5(
WIFE (V1(
CHILD (v2{

NAME (Mary)

PERSON(
NAME (Ann)
AGE (5)
FATHER(V4 ()

MOTHER(V5(¥)))

Figure 5: Implementation of Shared Objects

2.2 Stored Selections, Joins and Projec-
tions

RICH_MAN(V{¢) {)

RICH MAN(V(p)))

((EMP (NAME (John) SAL(5000)))
(CEMP (NAME(Bill) SAL(4000)))
(CEMP (NAME (Jack) SAL(3000)))

EMP (NAME (Bob) _ SAL(4500)))

Figure 6: Tmplementation of a stored selection

In Figure 6 we show the possibility to store in objects
RICH.MAN the result of the selection EMP where SAL >
4000. The resulting RICH_MAN data are seen as follows:

RICH_MAN(NAME(John) SAL(5000))
RICH_MAN(NAME(Bob) SAL(4500))

The idea shown in Figure 6 allows us to store joins
followed by arbitrary selections. In Figure 7 objects
RICH_MAN store outer join between DEPT and EMP, fol-
lowed by selection SAL > 4000; the result is equivalent
to the following data 2:

2Note our convention: when the value of some data is NULL,
we do not write it at all.

271

RICH_MAN(DNO(D1) DNAME(Toy)
NAME(John) SAL(5000))
RICH_MAN(NAME(Bob) SAL(4500))

STUDENT_CLASS_INVARIANTS (.. V3(7)))

(stuent (i) vad))

DEPT(DNO(D1) DNAME (Toy)))

DEPT(DNO(D2) DNAME (Sales) ”

(RIcH_MAN(Vi) v2(q))
(RICH_MAN(V2(0))

(fEMP(NAME (John) SAL (5000} DNO(D1)))

SAL (4000) DNO(D1)))
SAL (3000) DNO(D2)))

D)

(EMP (NAME (Bill)

(EMP (NAME (Jack)

EMP (NAME (Bob) SAL{4500)

Figure 7: Stored outer join followed by selection

Stored projections require equipping the viewer with
an additional feature: filtering the data that are seen
through it. The simplest way to do this is associating
with a viewer a set of data names; data having other
names are not imported. This feature is implemented in
LOQIS. For example, in Figure 7 we can equip viewers
V1 with a list containing DNAME and V2 with a list con-
taing NAME, the result will be the projection of RICH_MAN
onto attributes DNAME and NAME:

RICH_MAN(DNAME(Toy) NAME(John))
RICH_MAN(NAME(Bob))

Richardson and Schwarz [10] proposed to extend the ob-
Jject concept in order to support multiple independent
roles for objects, preserving object identity. Figure 8
presents how viewers equipped with the filtering mech-
anism can support this feature. (Ovals over arrows de-
note data filters.) In this approach all attributes of a
PERSON are collected in one variable, thus the unique-
ness of identity is preserved. Different person roles are
implemented as separate variables (having their own
identities), but they store only viewers. Such an orga-
nization has both advantages: all attributes of a per-
son are identified by a single identity (which may be
important for administrative functions) and simultane-
ously, this object in a particular role has a separate
identity (which is necessary for limitation of the scope
of queries). If necessary, special coercion functions can
be implemented in order to map e.g. a PERSON iden-
tity to a STUDENT identity and vice versa.

& ((PERSON_CLASS_INVARIANTS(..))

PERSON(SSN(55) NAME({Bill)
SEX (M) FACULTY (Law)
ILLNESSES(..)
HOBBIES (Box)

va (

(PATIENT(V5 ({) Ve(p)) @JB_MEMBER(D)
L)

(PATIENT_CLASS_INVARIANTS(..i)

Figure 8: An object PERSON in several independent
roles

This picture shows that viewers support richer data
semantics that is typically assumed in object-oriented
approaches. For example, STUDENT has less at-
tributes than PERSON, but the STUDENT class is a
subset of the PERSON class.

2.3 Network Structures Seen as Several
Hierarchies

Hierarchical organizations are perhaps the most un-
derstandable for humans but have disadvantages. For
many-many relationships hierarchical data views are
undesirable since they lead to redundancy in represen-
tation, which in many cases is undesirable. Moreover,
different users may require different hierarchical views.
Considering the SUPPLIER-PART database, a clerk
from the personnel department is interested in suppli-
ers and rarely in parts, and clerk from the storage de-
partment is interested basically in parts, but sometimes
his interests concern suppliers. If the database is to
be organized hierarchically, the database administrator
should decide which point of view is more important.
Viewers make possible implementation of a network
structure which can be considered as several hierarchies.
To explain this topic we introduce some notation. We
enhance previously used prefixed lists (representing in-

272

stances of data) by context-free grammars. A database
schema is a granunar describing possible database in-
stances; names of types are non-terminals in the gram-
mar. As usual, {..} means iteration, [..] mean optional
data, and | means alternative (exclusive variants).3
We refer to the SUPPLIER-PART relational
database, which has the following description:

{ SUPPLIER(SNO(string)
SNAME(string)) }

{ PART(PNO(string)
PNAME(string)
WEIGHT(real)))}

{ sp(SNO(string)
PNO(string)

QTY(integer)) }

The data view appropriate for a personnel clerk can
be represented as the following NF? structure:

{ SUPPLIER(supplier-type) }

supplier-type «— SNO(string)
SNAME(string)
what-supplies

what-supplies — {SUPPLIES(pari-with-qly)}

part-with-qty — PNO(string)
PNAME(string)
WEIGHT(real)
QTY(integer)

The view emphasizes SUPPLIER data; the information
about parts and their quantities is hidden in the type
part-with-qly inside a lower hierarchy level.

The NF? view appropriate for a storage clerk puts
the PART data on the first plan:

{ PART(part-type) }

~— PNO(string)
PNAME(string)
WEIGHT(real)
who-supplics

pari-type

who-supplies «— {SUPPLIED_BY (supp-with-qty)}
supp-with-gty ~— SHO(string)
SNAME(string)
STATUS(integer)
QTY(integer)

3A data checker based on a schema understood as a context-
free grammar is implemented in LOQIS. "

Current DBMSs and database theories are not
able to express efficiently simultaneously both hierar-
chies assuming data sharing. In Figure 9 both hi-
erarchies are represented. Names QTY inside ovals
denote data filters. Due to viewers we have re-
ceived virtual infinite hierarchical structures (an in-
teresting object for mathematics and having some
flavour of recursion within viewers): each part within
supplier again contains information about suppliers,
and so on. This may be convenient for queries
such as “Find suppliers supplying the same parts
as Smith does” (in LOQIS: (SUPPLIER where SNAME
= "Smith").SUPPLIES.SUPPLIED_BY.SNAME), or for
queries requiring transitive closures.

SUPPLIER{ SNO(string) SNAME(string)
{SUPPLIES (Vige) V2(3))})

1

@ry

CSP(SNO(string) PNO(string) QT (integer) D

PART(PNO(string) PNA
{SUPPLIED_BY({ V3(v) V4(

(string) WEIGHT(rea@
)))

Figure 9: Implementation of two hierarchies

2.4 Data Independence and Version
Management

Standard data independency problems concern how to
make one record from existing two records, or how to
make two records from existing one. Viewers present
relevant facilities. Let A B denote lists of attributes.
Assume a database contains records RI1{ A) and
R2(B), and we would like to substitute them by records
R3(A B). Thus we make records R3(A B) and aug-
ment the database with records R1(V1(viewer to R3)),
and R2(V2(viewer to R3)); V1 has a filter with names
of A, and V2 has a filter with names of B. A simi-
lar method can be applied for the case of splitting one
record into two. Viewers may be also useful on physi-
cal level for storing long fields, assuming a fixed format
of objects. Instead of the value we can store a viewer
leading to an overflow area which would allow retaining
of the fixed format.

In the case of schema evolution new attributes can

273

be introduced to existing records. For example, old
records Ri(Ai,..,A,;) need to be augmented by at-
tributes B,,..,B,, and then by attributes C;,...C;. As-
suming that in each record created in the database a
space for a viewer is left, extension of the record R; can
be done as shown in Figure 10.

(RLCAL .. Am V1(e))

D (R1(AL .. Am VI

(R2(Bl .. Bn v2(e))

g@-m _Am Vi))
fCRz(Bl . Bn v2(;))
E(R3(Cl .. Ck V3(e) D

Figure 10: Extending record R,

In CAD/CAM applications several versions of the
same object can exist. Versions represent different
states of some object but they may share common
sub-objects and other common properties. Every com-
mon property should be a separate object and up-
dating of it should be automatically propagated to
all versions. Viewers supply a convenient mecha-
nism for this purpose. For example, assume that
VERSIONi is described by (arbitrarily complex) at-
tributes ATTR1,..,ATTRX,..,ATTRn, and VERSION2 is
made from VERSION1 by changing attribute ATTRx. This
situation can be described as follows:

VERSION1(ATTR1(..).. .
ATTRx(value of 1-sl version)..
ATTRn(..))

VERSION2(V(viewer to VERSION1)
ATTRx(value of 2-nd version))

VERSION2 inherits all attributes of VERSION1, but
ATTRx, which is overridden by own attribute ATTRx.

3 Updating and Typing

Viewers require a proper level of data abstraction. If
data views and processing are too close to physical rep-
resentation there may be no possibility to distinguish
viewers from pointers; in this case viewers introduce no
new quality. (By analogy, in assemblers procedure calls
are simply golos with some additional features.) Most
relational systems have a sufficient level of abstraction
and they deal with persistent pointers (known as tids).
Thus implementation of viewers is possible but profits
imposed by viewers may be decreased by the INF re-
quirement. We believe that most of all viewers would
be profitable in object-oriented database systems such
as Oy (4] and ORION [5], which support a high level of
data abstraction and explicitly deal with complex hier-
archical objects and persistent pointers.

So far we have assumed that the data pointed by the
viewer substitute it, thus viewers are invisible at the
level of user interfaces. This assumption can be true
only for retrieval. When considering updating the user
should be aware of differences between normal updating
and updating of data imported by viewers. llence, at
the level of data types or data description we must ex-
plicitly specily viewers, and some kinds of users (dealing
with updating) must be aware of their existence.

The same concerns operations which must be per-
formed on viewers. A viewer must be initialized, i.e.
a reference must be assigned as its value, The refer-
ence being a value of the viewer must be the subject
of updating. The discussion concerning necessity of up-
dating of inheritance relationships is presented in [2].
Thus, the programming language should provide spe-
cial statements, which “see” viewers and enable proper
operations on them. We consider that these statements
belong to syntactically distinguished layer of the pro-
gramming language.

Assuming static binding and strong typing we must
provide capabilities for declaration and typing of view-
ers, and for changing their values. For example (see
Figure 1), an extension of DBPL [8, 11] to deal with
viewers may be the following:

TYPE
AnimalProps =
RECORD
LEGS, EARS, EYES: integer;
END;
SinglePet =
RECORD
NAME: string;
KIND: (dog, cat, ...);
PROPS: IMPORT AnimalProps;

274

END;
Pet = RELATION NAME OF SinglePet;

VAR

PET . Pet;
ANIMAL, DOG :
X : integer;

AnimalProps;

BEGIN
ANIMAL := AnimalProps{4,2,2};
PET := Pet{ {"Rex". dog, AIIHAL},
{"Pussy", cat, ANIMAL}};
PET[""Rex"] .PROPS := DOG;
X := PET["Pussy"].EARS;
(* Possible typing problems *)

'The type IMPORT AnimalProps denotes a viewer
lcading to a variable of type AnimalProps. Typing of
viewers is the same as typing of pointers, and initializa-
tion and updating of viewers can be done by standard
capabilities. However, typing of field selections may
imply problems, since viewers can import. foreign at-
tributes into the data. If typing of viewers is static and
complete, this import is determined during compilation
time, thus the problem is exactly the same as with mul-
tiple inheritance {3). If typing of the viewers’ import
cannot be static, e.g. because overriding by attributes
with unknown types or importing random data, static
strong typing is problematic.

Assuming dynamic binding, we can dynamically cre-
ate, insert, modify and delete viewers; this approach is
implemented in LOQIS. Actions similar to the above
DBPL example are the following:

create permanent ANIMAL
begin LEGS(4) EARS(2) EYES(2) end;
create permanent PET
begin
NAME("Rex") KIND("dog")
PROPS(import from ANIMAL)
end;
create permanent PET
begin
NAME("Pussy") KIND("cat")
PROPS(import from ANIMAL)
end;

LOQIS provides a special assignment operator for
changing values of viewers. For example, if DOG is an-
other datum similar to ANIMAL, we can use the [ollowing

construct:

store pointer to DOG in
(PET where NAME = "Rex").PROPS;

The identifier of DOG is stored as a value of PROPS.
Other operators are the saine as for normal data, for
example, deleting the viewer for Pussy can be done by
the statement:

delete ((PET where NAME = "Pussy").PROPS);

Current typing systems are not prepared for such fea-
tures, thus dynamic capabilities should be somehow re-
stricted or novel typing ideas should be developed.

Since viewers transfer control to pointed data, up-
dating of data that are seen through viewers is feasible.
However, there is a possibility of updating anomalies.
Returning to the PET-ANIMAL example, assume that
Rex in some dogs’ battle lost an ear. If we directly up-
date EARS via the Rex object, it will cause updating in
the object ANIMAL and, in consequence, innocent Pussy
will also loss an ear. Instead of updating of the ANIMAL
object. we should insert a datum EARS(1) to the Rex
object, which will override the datum inherited from
ANIMAL. Such semantics of the assignment operator is
a novelty in programming languages and may lead to
some unexpected eflects.

If a class of viewers has predefined external semantics,
for example, it represents the stored view RICH MAN:
EMP where SAL > 4000, there is a problem with prop-
agation of updates to viewers. For example, if Bill’s
salary is increased, he will become RICH MAN, thus a
new datum RICH_MAN should be inserted, with a viewer
pointing the Bill’s object. This problem is the same as
for materialized views and can be solved by two meth-
ods: by providing a manual for the programmer saying
what should be additionally done when some update is
performed, or more ambitiously, by active rules propa-
gating the update automatically.

In the presented examples we recognized the neces-
sity of filtering of data imported by viewers. This can
be done by attaching a list of names to a viewer. An-
other kind of filtering is overriding: testing if a data
having a particular name is already present in the ob-
ject containing a viewer, and then do or do not the
import. Sometimes filtering of data according to equal-
ity of names may be irrelevant since names equivalence
may be quite casual, or we would like to import data
in spite of the name conflict; see aliasing of imported
methods in O,. Thus we can assign to a viewer a rule
determining renaming of data during the import. Fur-
ther inventions in this respect could be based on anal-
ogy with procedures: viewers with parameters, viewers

275

with encapsulated meaning, etc. Such ideas should he
carefully tested in some real database environment.

4 Design Methodologies, For-
malization and Query Lan-
guages

Since viewers are in fact pointers, we can expect that
viewers are cheap from the point of view of either con-
sumption of storage, access times, and additional main-
tenance functions. This creates a potential for extensive
use of this facility in database systems. Implementation
of viewers in a database system may change methodolo-
gies of database design because of the following factors:

e They provide a possibility of expressing simulta-
neously different data views required by particular
applications, without the necessity of introducing
one global data view and then transforming it by
some external views mechanisms.

o They allow more freedom in changing the data view
without destroying existing programs (data inde-
pendence), thus relaxing the initial responsiblity
of the database schema designers.

By analogy with procedures, viewers may have meaning
in the structural database design, relying on top-down
designing of data hierarchies, starting from the most
important levels for particular data applications, and
step-by-step refinement of necessary details down in the
data hierarchy. Such a design methodology is already
assumed in the entity-relationship approach, but inte-
grating independently developed parts presents actually
an essential methodological problem. As we observed
in Section 2.3, viewers make possible independent de-
velopment of hierarchies and then integrate them by
establishing shared parts. This may present a new po-
tential for the database design.

Several aspects of viewers call for the formmal ap-
proach. One of them is formalization of intensional and
extensional data, and the mappings between them. In-
tensional data involve viewers, while extensional data
are obtained by developing all viewers according to
their meaning. This leads to some substitution concept
{macro-substitution), or theory of rewriting rules. We
recall, however, that semantics of procedure calls based
on the textual substitution has been abandoned because
it does not support locality of objects with which the
procedure deals. It is not excluded that some concept of
the locality control for viewers will require an approach
different from the textual substitution.

The second aspect is formalization of schemata (hoth
intensional and extensional) and mapping between
them. This aspect may have meaning for the database
design. For example, equivalence between some con-
structs of intensional and extensional schema may be
the basis for unification, normalization or optimization.

Formalization could concern utilization of viewers in
languages, for example, in query operators or program-
ming primitives. The goal of such investigations is es-
tablishing equivalent query constructs which is impor-
tant for optimization. Another goal is recognizing a new
quality introduced by viewers to the current database
or knowledge-base theories.

Viewers have a direct impact on query languages. In
principle each query language, e.g. SQL, can deal with
viewers because from the programmer or user point of
view viewers are invisible during data retrieval and ma-
nipulation. In many cases viewers can substitute views;
for example, POSTQUEL [12] features extending the
relational model can be equivalently based on viewers.
However, there are “meta” functions, such as creation
and updating of viewers, which cannot be consistently
handled by value-oriented languages. In fact, the idea is
hased on the concept of data identifier, thus only query
language that deal with this concept are appropriate.

For reasons of space we do not attempt to fully spec-
ify a query language that is relevant for viewers. (Sce
[14, 15] for detailed description of such a language.) We
adopted the stack machinery of classical programming
languages to define operators of query languages. In
this approach the central role is played by notions of
naming, scoping and binding. Essentially, viewers do
not introduce a new quality to this mechanism; it re-
quires minor corrections of scoping and binding rules.
Such a mechanisim is implemented in LOQIS. For exam-
ple (see Figure 9), the query “Give names of suppliers
together with quantities of bolts supplied by them” can
be expressed in LOQIS as

SUPPLIER. (SNAME x sum(
(SUPPLIES where PNAME = "bolt").QTY))

In this example we enmiployed viewers V1 and V2 for
the automatic navigation. Relational queries without
automatic navigation are much more complex; for com-
parison see the following equivalent SQL query:

select SUPPLIER.SNAME, sum(SP.QTY)
from SUPPLIER, PART, SP

where SUPPLIER.SNO = SP.SNO

and SP.PNO = PART.PXO

and PART.PNAME = "bolt"

group by SP.SKO, SUPPLIER.SNAME

276

5 Conclusion

In the paper we presented viewers, a concept which can
be cousidered a data-world analogue of procedure calls.
Viewers iake possible the representation of surprisingly
many conceptual modelling issues in data-intensive ap-
plications. They can be implemented efficiently, yield-
ing good performance, since in fact they are pointers.
Simultaneously they simplify database queries due to
automatic navigation. These factors motivate imple-
mentation of viewers together with related language
functionalities in current or prototyped database sys-
tems. This idea is implemented in a prototype database
prograinming system LOQIS. The implementation and
further experiments convinced us that the idea of view-
ers is worth wider popularity in scientific and practical
communities.

References

(1] C. Beeri, P.A. Bernstein, N. Goodman. A So-
phisticate’s Introduction to Database Normaliza-
tion Theory. Proc. of 4th VLDB Conf., Berlin,
Germany, pp.113-124, 1978

[2) J. Banerjee, W. Kim, H.J. Kim, I.F. Korth. Se-
mantics and Implementation of Schema Evolution
in Object-Oriented Databases. Proc. ACM SIG-
MOD Conf. pp.311-322, 1987,

[3] L. Cardelli. A Semantics of Multiple Inheritance.
Information and Computation, 76. pp.138-164,
1988

[4] O. Deux et al. The Story of O2. IEEE Transactions
on Knowledge and Data Engineering, 2:1, pp.91-
108, 1990.

[5] W. Kim, J.F. Garza, N. Ballou, D. Woelk. Archi-
tecture of the ORION Next-Generation Database
System. ITEEE 'Transactions on Knowledge and
Data Enginering, Vol.2, No.1, 1990, pp.109-124

[6] F. Matthes, A. Ohori, J.W. Schmidt. Typing
Schemes for Objects with Locality. Proc.1st Intl.
East/West Database Workshop on Next Genera-
tion Information System Technology, Kiew, USSR
1990 Springer Lecture Notes in Computer Science,
Vol.504, pp.106-123, 1991.

[7) D. Maier, J.D. Ullman, M.Y. Vardi. On the Foun-
dations of the Universal Relation Model. ACM
Transactions on Database Systems, Vol.9, No.2,

pp-283-308, 1984

277

[8] F. Matthes, A. Rudloff, J.W. Schmidt, K. Subi-
eta. The Database Programming Language
DBPL, User and System Manual. FIDE, ES-
PRIT BRA Project 3070, Technical Report Series,
FIDE/92/47, 1992

[9] A. Ohori, P. Buneman, V. Breazu-Tannen.
Database Programming in Machiavelli - a Poly-
morphic Language with Static Type Inference.
Proc. of ACM SIGMOD 89 Conf., 1989, pp.46-57

[10] J. Richardson, P. Schwarz. Aspects: Extending
Objects to Support Multiple, Independent Roles.
Proc. of ACM SIGMOD 91 Conf., 1991, pp.298-
307

[11] J.W. Schmidt, F Matthes. The Database Pro-
gramming Language DBPL, Rationale and Report.
FIDE, ESPRIT BRA Project 3070, Technical Re-
port Series, FIDE/92/46, 1992

[12] M. Stonebraker, L.A. Rowe, M. Hirohama. The
Implementation of POSTGRES. IEEE Transac-
tions on Knowledge and Data Engineering, 2:1,

pp-125-142, 1990.

[13] K. Subieta, M. Missala, K. Anacki. The LO-
QIS System. Institute of Computer Science Polish

Academy of Sciences Report 695, 1990.

K. Subieta. LOQIS: The Object-Oriented
Database Programming System Proc.lst Intl.
East/West Database Workshop on Next Genera-
tion Information System Technology, Kiew, USSR
1990 Springer Lecture Notes in Computer Science,
Vol.504, pp.403-421, 1991,

[14)

[15]) K. Subieta, C. Beeri, F. Matthes, J.W. Schmidt,. A
Stack-Based Approach to Query Languages. Ham-
burg University, Department of Informatics, DBIS,

unpublished report, 1993

W. Wilkes. Instance Inheritance Mechanism for
Object Oriented Databases. Proc. of Workshop on
Object-Oriented Database Systems, Bad-Miinster,
Oct.1988. Springer Lecture Notes in Computer Sci-
ence, Vol.334, pp.274-279, 1988.

[16]

