
Viewers: A Data-World Analogue of Procedure Calls

Kazimierz Subieta’ Florian Matthes Jonchim W. Schmidt
Ingrid Wetzel

Andreas Rudloff

University of Hamburg
Department of Computer Science

Vogt-Kiilln-Strafk 30
D-2000 Hamburg 54, Germany

Abstract

A viewer is a reference-valued datum with a special
meaning: a value of the data pointed by the viewer be-
comes a virtual part of data where the viewer is placed;
the value virtually substit.utes the viewer. Viewers are
considered to be a dat,a-world analogue of procedure
calls. They possess a large conceptual and pragmatic
potential as a result of new data semantics on which
we can base a variet,y of well-organized data struc-
tures. Various applications of viewers, related to II&
PLs and object-oriented data modelling, are presented:
importing common att,ributes, inheritance and multi-
inheritance, stored selections, projections and joins,
viewing a single relational structure as several hierarchi-
cal structures, etc. Met,hodological and formal aspects
of the concept are discussed and a method of incorpe
rating viewers into a. query language is presented.

and pragmatic differences between viewers and views;
thus they should be considered as distinct notions. The
basic differences are as follows:

l Views are properties of a particular (query) lan-
guage. Viewers are not connected to any language:
they are properties of data structures.

l Names of views occur explicitly in queries. Names
of vkwers never occur in queries (they occur in
met,a-st.at.~ment,s only).

l Views are evaluated dynamically (wh they are
needed) which has consequences for performance.
Viewers are properties of st.a.t.ic da,ta. t,hus there is
no performance problem. however, sometimes they
share negative properties of materialized views.

1 Introduction

l Updat.ing t,hrough views leads bo problems (at least
in value-oriented frameworks). There are no prob-
lems in updating through viewers (though it may
lead to other a.nomalies).

A viewer is a reference-valued dat,um wit.11 a special
semantics: a value of data referenced by t,he viewer
virtually substitutes the viewer. Viewers have some
similarities with the well-known concept, of da.tabase
views as found e.g. in POSTCIRES [12], which can be
used to build virtual nest,ed dat,a struct,ures from rela-
tional ones. There arc. however, essent.ial conrcpt.ual

l View definitions are not. updatable from inside the
program since their external form is a source text.
Viewers, as normal data, cm be updated by as-
signing new references as their values.

‘Current address: Inst ituk of Compuler Science. Polish
Academy of Sciences, Ordona 21, PI,-Ol-23i Warszawa, P~hnd

Permission to copy without fee all or part of this material is
granted provided that the copies ore rot made or distributed for
direct commercial advantage. the VLDB copyright notice and the
title of the pubtication and its dale appear, and notice is giaetz
that copying is by permission of the Very Large Data Bose En-
dowment. To copy otherwise, or to republish. require o fee a.ad/or

special permission from the Eadowmrat.

Viewers play the same part, for data as procedure
calls for sequences of inst,ruct.ions. They allow one t,o
see some dat,a from different, places in t.he database
struct.ure, similarly as procedures allow ut,ilization of
a piece of code in different program poink. In view of
the analogy we believe that viewers are of a large con-
cept,ual and pragmat,ic importance, allowing the build-
ing of well-organized data structures. III the paper we
discuss various potent.ial applicat,ions of the viewers in
dat,a-iriknsive environments.

Proceedings of the 1Ot.h VLDB Conference Similarly to other data. abstractions, viewers intro-
Dublin, Ireland, 1993 duce a new kind of dat.a semant.ics. More semantics

268

inside data support*s nat.ura.l dat,a views and simpli- Iat,e semantic meaning for t,he designer and the reader
fication of applicat,ion programs, which need not. in-
corporate this semant.ics int,o t.heir code.

of the program, and thereby allow the understanding
For exam- of t.he program as a hierarcl1ical structure. In the data

ple, due to path expressions queries addressing object-
orientsed data structures are usually short,er t.han rela-

world a similar not.ion can be achieved by hierarchically

tional queries. Path expressions are baaed on additional
organized data reposit,ories, scoping, encapsulation, lo-

data semantics such as explicit hierarchical data struc-
calit,y of references [G], etc. Still, there is no possibility

tures, pointer links, or referential integrities. Complex
to organize different hierarchical data views assuming
dat,a sharing and proper performance. Viewers are the

objects, object sharing, classes, is-a relationships, be- solution to this problem. Navigation according to a
havioral invariants of classes (methods), active rules, viewer is not definite (as pointers and gotos are), but
etc. can be considered as methods of introducing more always implies returning to data where the viewer is
semantics into data. placed; thus the analogy with procedures.

Sophisticated methods concerning data selnantics We will show through examples that viewers are able
(knowledge representation) are considered in AI. The to cover surprisingly many conceptual modelling issues
database domain have already been partly adopted AI that are currently the focus of considerations of DBPLs
ideas, for example, dat.a abstractions and behavioral and object-oriented approaches. An advantage of view-
properties. This import,, however, is constrained by ers is their capability to simplify queries. Due to viewers
engineering requireinent.s, iii particula.r, proper perfor- the dat,abase designers and programmers receive a full
mance and easy-to-understa11d cIaOa views. For exam- control over so-called au2omcltic nnvigation, which was
ple, deductive databases ha.ve a pot.ential to represent t,he 1na.in motive for t.he 5-t,h normal form of relational
advanced data semantics; however, current research dat,abases (known also as uai~rrsnl relnfion) [l, 71.
does not make evide11t tl1at t.he accept,able performance The viewer concept, has already some precedences.
is feasible. Therefore, i11 co11t,rast t.o unlimit,ed inven- Wilkes et, al. int,roduced the concept of “instance in-
tions of AI, da.taba,se resea.rchers must, look for such heritance” in [IO]. Tl1e idea is based on t,he observation
features in the ,dat,a world which are capable of repre- that. inhcrit,ance 1nay concern not, only metl1ods and at-
senting attractive coiicept,ual modelling primit.ives, a.re t.ribut,e definitions but, also some values of att,ributes.
easy to implement, yield proper perforniance, and are For example, common or default values can be stored
easy froin the progra.mmcr point, of view. as first-class objects inside a class and then imported

A well-known technique covering many issues rela.t.ed as virt,ual att.ribut.es (without. copying) by class mein-
to data semantics lies in t,he applicat,ion of references bers. Ohori et, al. [9] int,roduced in Machiavelli the
(pointer links). References in network and object.- concept of coercio11s or “views”. A Machiavelli view
oriented databases explicit,ly represent different kinds of is a. set. of simple records ha.ving references to complex
dependencies bet,ween objects, such as sharing, cyclic- records. In this way attributes of the complex records
ity, subordination, aggregation a11d associat,ion. From are virtually imported by the si1nple records, allowing
a practical point of view the advant,a.ge of references is the programmer, for example, t,o perforin a natural join
easy implement,a.tion and good performa.nce. on t,he virtual attributes. Independent of this research,

From anot,her aspect., pointer links in dat,abases can in L”Qrs [13y 141 we implemented a 1nore general con-

be compared to go&, which have been recognized as cept, covering the instance inheritance and Machiavelli

leading to impossible-t.o-underst~a.nd pr0gra.m.s. There views.
is an analogy: a CODASYL or a11 entity-relationship The rest of the paper is organized as follows. In Sec-

schema for large dat.abases resembles a maze. III re- t,ion 2 we present. various examples of pot,ential appli-

lational databases t,he sit,uatio11 is even more dillicult, cations of viewers. Section 3 is devoted to 1nore general

since instead of explicit. links carryi11g sema11tic infor- observat,ions, and in Section 4 we briefly discuss conse-

mation there is a11 at.tribute naming convention and as- quences for dat,ahase desig11 methodologies, formal as-

sertions in a natural language. Integrit,y const.raints, pect,s, and modifications of query languages.

such as functional dependencies and refercnt,ial int.egri-
ties are conceptual links in t,l1e relat.ionaI schema, t,urn-
inn it to a similar “maze”. This 1>roblcm also occurs in 2 Viewers: Examples of Appli-
object-oriented dat,abases.

In programming 1iiet.hodologies t,lie prol~lem of
cat ions

“spaghetti-like” structures has been avoided by st.ruc- The figures present.ecl in this sect,ion show viewers as
tured programming which is based 011 procedures as da.t.a I1a.ving some 11ame, and a pointer value depicted as
semantic units of the programs. Procedures encapsu- an arrow. For ret,rieval such data structures are equiva-

269

lent to structures where all viewers are textually substi-
tuted by values of data they point to; viewers are t,rans-
parent for users. For example, the structure shown in
Figure 1 should be understood as the following data ‘:

PET(IAXE(Rex) KIID(dog)
LECS(4) EARS(2) EYES(2))

PET(IAllE(Pussy) KIPD(cat)
LEGS(4) EARS(?) EYES(2))

AKIIIAL(LECS(4) EARS(a) EYES(2))

PERSOI(YAHE(John) BDATE(1970))
PERSON(NAHE(Bill] BDATE(1972))
PERSON(NAME(Jack) BDATE(iQ71) >

STUDENT(NAME(John) BDATE(1970)
STDt(l34) FACULTY(Physics) >

STUDENT(IAHE(Bil1) BDATE(IQ72)
STDW(241) FACULTY(Biology))

STUDENT(NAME(Jack) BDATE(1971)
STD#(lGS) FACULTY(Law))

For class hierarchy viewers can act transitively, i.e.

PET(NAME(Rex) KIND(dog) PROPERTIES(1 1

;;

they import data imported by other viewers. (This fea-
ture is implemented in LOQIS.) Viewers allow multi-
inheritance: any number of viewers can be stored inside

ANIMAL(LEGS(4) EARS(2) EYES(Z)) a data object. Note that (similarly to views) viewers

STUDENT .,,c+.s.
automatically propagate updates of PERSON objects to

PET(NAME(Pussy) KIND(cat) PROPERTIESC 1 1
It. is observed in [lo] that, a quite common sit,uation is

not t,hat. STUDENT is n PEWON, but that. PERSON
Figure 1: Shared attribut,es becofnr n STIJDENT. This paraphrasing underlines dy-

namic nature of data views (t)he schema evolution): dur-
The value of the datum ANIMAL, being t.he record ing the life of a database systems objects can gain and

LEGS(4) EARS(2) EYES(S) (virtually substitut,es the lose many independent roles. As we can see from the
data PROPERTIES. Figure 2 viewers supply a mechanism for dealing with

this problem: any number of roles such its STUDENT

2.1 Object-Oriented Issues
can he clynamically creat,ed and deleted.

Figures 1 and 3 present examples of shared at,tributes.
Attrkute sharing.ma.y be usefill for long attributes, for

STUDENT(PDATA(t) STDt(134) FACULTY(Physics) example, if t.hey represent graphical objects or texts.
I

NAME(John) iDATE(1970) 1 (STUDENT(NAME(John) OPINIONKJnsystematic)-;) .--____- -.

STUDENT(PDATA(f) STD#(241) FACULTY(Biology)

I
+

PERSON(NAMFi(Bill) BDATE(1972)) i i
fG000 oPINIoNT\
1 Efficient,
! tallented,

and active) J

Figure 2: Example of &ructural inherit,ance imple-
mented by viewers

In Figure 2 we present an example of structural in-..
heritance: a STUDENT object inherits basic data from
a PERSON object. This data structure is understood as
follows:

‘In this paper we apply a synt.ax in which a bulk datum with
naneN and value {VI ,vz ,.., vn} is writ.ten as N(vl) N(Q) . . N(vn)

Figure 3: IJt.iliaation of a sha.red long attribute

Classes in object-oriented approaches can be consid-
ered as data reposit,ories storing invariant at,tributes for
their members. Severa. kinds of such invariants can
be considered, for example, common attribut,es, default
attributes, methods, types, const,raints, icons, etc. In
Figure 4 we show how class invariants can be imported
to particular objects by application of viewers. The fig-
ure shows cases of overriding; Bill is smoking and John

270

has a special firing procedure.

EMP(NAME(Jack) PROPS(o))

EMP(NAME(Bi11) SMOKING(yes) PROPS(p))

\ 1
EMP(NAME(John) FIRE(proc3) PROPS(p))

v 1 i'
~MP-cLASS-INVARIANTS(

SMOKING (no)
GLASES (no)
HIRE(proc1)

L FIRE(proc2) 1

Figure 4: Importing class invariants

In Figure 5 viewers organize object sharing. Note
that viewers allow to int,roduce local aliases for objects:
a PERSON accessed from inside of anot,her object has
an alias WIFE, HUSBAND, CIIILD, MOTHER, etc.

Using viewers as supported by LOQIS we can eas-
ily formulate queries on such a struct,ure, for example,
“Give name of the wife of the father of Mary’s husband”
as follows:

(PERSON where HAHE = "Mary").
IiUSBAID.FATHER.UIFE.lAnE

Another query, “For each person over 30, give name,
the number of children, the number of siblings, and the
number of first-order cousins of t,he same genera.tion”,
can be formulated as follows:

((PERSON where AGE > 30) W
(s E count(unique(

(MOTHER U FATHER). CHILD. NAME)))) .
(HAHE x count(CHILD) x (8 - 1) x

(count(unique((HOTIiER U FATHER).
(MOTHER U FATHER).
CHILD.CHILD.IAHE)) - s))

(See (151 for detailed specification of this language.
w denotes a navigational join, ‘.’ denotes projec-
tion/navigation; other operators have t.ypical mean-
ing.) To formulate t.his example in the relational model,
PERSON and 5 additional relations should be defined.
The last query is extremely dificult to formulate in SQL
and we have doubts if SQL processors are able to op-
timize it. Due to viewers implement,ed as pointer links
the query is execut,ed in LOQIS in a reasonable time.

PERSON(
NAME(Bob) NAME(Doris)
AGE(C0) AGE(57)
WIFE (Vl(o: ! i -D HUSBANDt V3())

\ CHILDt V2(7)) '/ CHILD (Vp-1 ,y

NAME(John)

\ MOTHERt V5Cd) ,/

Figure 5: Implementation of Shared Objects

2.2 Stored Selections, Joins and Projec-
tions

(EMPf NAMEtJohn) SAL(5000) 13

EMP(NAME(Bil1) SAL(4000))

(. EMP(NAMEtJaCk) SAL(3000) 1)

EMP(NAME(Bob) SAL(4500))

Figure 6: Implementation of a stored selection

In Figure 6 we show the possibility to store in objects
RICHJ4AN the result ofthe selection ERP where SAL >
4000. The resulting RICHJAN data are seen as follows:

RICH-HAN(MHE(John) SAL(5000))
RICH-MAN(NAHE(Bob) SAL(4500) >

The idea shown in Figure G allows us to store joins
followed by arhit,rary selections. III Figure 7 objects
RICH-MAN store outer join between DEPT and EIIP, fol-
lowed by selection SAL > 4000; t,he result is equivalent
to the following data 2:

2Note our convention: when t.he value of some data is NULL,
we do not write it at all.

271

RICH-IIALI(

RICH,HAP(

DHO(D1) DPAME(Toy)
IAHE(John) SAL(5000))
llAHE(Bob) SAL(4500))

RICH-MAN(Vlc\.) VZ(*))

RICH-MAN(V2_lr))

t
EMP(NAME(John) SAL(5000) DNO(D1))

EMP(NAME(Bi11) SAL(4000) DNO(D11)

NAME(Jack) SAL(3000) DNO(DZ))

EMP(NAME(Bob) SAL(4500))

Figure 7: Stored outer join followed by selection

Stored projections require equipping the viewer with
an additional feature: filtering the data that are seen
through it. The simplest way to do this is associating
with a viewer a set of data names; data having other
names are not imported. This feature is implemented in
LO&IS. For example, in Figure 7 we can equip viewers
Vl with a list containing DBAHE and V2 with a list con-
taing BAME, the result will be the projection of RICHJ4AI
onto attributes DlDAHE and UAHE:

RICH,HAI(DlAHE(Toy) IAME(John) >
RICHJlAli(BAHE(Bob))

Richardson and Schwarz [lo] proposed to extend the ob-
ject concept in order t,o support multiple independent
roles for objects, preserving object identity. Figure 8
presents how viewers equipped wit.11 the filtering mech-
anism can support this feature. (Ovals over arrows de-
note data filters.) In this approach all attributes of a
PERSON are collected in one variable, thus the unique-
ness of identity is preserved. Different person roles are
implemented as separate variables (having their own
identities), but they store only viewers. Such an orga-
nization has both advantages: all attributes of a per-
son are identified by a single identity (which may be
important for administrative functions) and simultane-
ously, this object in a particular role has a separate
identity (which is necessary for limitation of the scope
of queries). If necessary, special coercion functions can
be implemented in order to map e.g. a PERSON iden-
tity to a STUDENT identit.y and vice versa.

STUDENT-CLASS-INVARIANTS(.. V3(&

1

CLUB-MEMBER(v7b))

<PATIENT-CLASS-INVARIANTS(

Figure 8: An object PERSON in several independent
roles

This picture shows that viewers support richer data
semantics that is typically aswmled in object,-oriented
a.pproaches. For example, STUDENT has less at-
tributes than PERSON, but the STUDENT class is a
subset of the PERSON class.

2.3 Network Structures Seen as Several
Hierarchies

IIiera.rchical organizations are perhaps the most un-
derst.anda.ble for humans but have disadvantages. For
many-many relationships hierarchical da.ta views are
undesirable since they lead t#o redundancy in represen-
tation, which in many cases is undesirable. Moreover,
different users may require different hierarchical views.
Considering the SUPPLIER-PART database, a clerk
from t,he personnel department is interested in suppli-
ers and rarely in parts, and clerk from the storage de-
part,ment is interested basically in parts, but sometimes
his interest,s concern suppliers. If the database is to
be organized hierarchically, the dat,abase administrator
should decide which point of view is more important.

Viewers make possible implementation of a network
structure which can be considered as several hierarchies.
To explain this t,opic we introduce some notation. We
enhance previously used prefixed lists (representing in-

272

stances of data) by context-free grammars. A database
schema ix a grammar describing possible database in-
stances; names of types are non-terminals in the gram-
mar. As usual, { ..) means iteration, [..I mean optional
data, and 1 means alternative (exclusive variants)?

We refer to the SUPPLIER-PAR?’ relational
database, which has the following description:

< SUPPLIHl(SllO(rtriag)
SlAMEbtring)) 1

< PART(PIO(rtring)
PlAl4E(rtting)
UBIGHT(raa1) 1)

< SP(SIiO(etring)
PliO(rtring)
QTY(integer) 1)

The data view appropriate for a personnel clerk can
he represented as the following NF2 structure:

{ SUPPLIER(supplier-lype) }

supplier4gpe c SHOCrtring)
SWAME(string)
whd-supplies

whal-supplies c {SUPPLIES(pari-u~it~,-qly))

part-with-q@ +- PNO(rtring)
PNAHB(string)
UEIGHT(raa1)
Q?Y(integer)

The view emphasizes SUPPLIER data; the information
about parts and their quantities is hidden in the type
par&wiih-q@ inside a lower hierarchy level.

The NF2 view appropriate for a storage clerk puts
the PART data on the first plan:

{ PART(paMype)

part-lype +

who-supplies c {summm (supp-tuifh-qly)}

supp-with-qty + SIIO(string)
SlIAHB(rtring)
STATUS(intagar)
QTY(integer)

PffO(rtring)
PWAl4E(etring)
UEIGBT(rea1)
wio-eupplies

3A data checker based on a acbema understood M a context-
free grammar ia implemented in LOQIS.

Current DBMSs and database theories are not
able to express efficiently simultaneously both hierar-
chies assuming data sharing. In Figure 9 both hi-
erarchies are represented. Names QTY inside ovals
denote data filters. Due to viewers we have re-
ceived virtual infinite hierarchical structures (an in-
teresting object for mathematics and having some
flavour of recursion within viewers): each part within
supplier again contains information about suppliers,
and so on. This may be convenient for queries
such as “Find suppliers supplying the same parts
as Smith does” (in LOQIS: (SUPPLIER where SHAME
= “Smith”). SUPPLIES. SUPPLIEDBY. SHAME), or for
queries requiring transitive closures.

/SUPPLIERS SNO(string) SNAME(string) \
\ WlPPLIES(VJ4 ii' 1) l)

\
ART(PNO(string) PNA

(SUPPLIED-BY(V

Figure 9: Implementation of two hierarchies

2.4 Data Independence and Version
Management

St,andard data independency problems concern how to
make one record from existing two records, or how to
make two records from existing one. Viewers present
relevant facilities. Let A,B denote lists of attributes.
Assume a database contains records Rl(A) and
R2(B), and we would like to substitute them by records
R3(A B). Thus we make records R3(A B) and aug-
ment t,he databnst: with records Rl(Vl(viewer to R.3)),
and R2(VP(viewer to R3)); Vl has a filter with names
of A, and V2 has a filter with names of B. A simi-
lar method can be applied for the case of splitting one
record into two. Viewers may be also useful on physi-
cal level for storing long fields, assuming a fixed format
of objects. Instead of the value we can store a viewer
leading to an overflow area which would allow retaining
of the fixed format.

In the case of schema evolution new attributes can

273

be introduced to existing records. For example, old
records Rl(A l,..,Am) need to be augmented by at-
tributes Bl,.. ,B,, and then by attributes Cl,..,C,. As-
suming that in each record created in the databaw a
space for a viewer is left, extension of the record R.l can
be done as shown in Figure 10.

; Rl(Al . . AmvG-))

Figure 10: Extending record R,

In CAD/CAM applications several versions of the
same object can exist. Versions represent different
states of some object but they may share common
sub-objects and other common properties. Every com-
mon property should be a separate object and up
dating of it should be automatically propagated to
all versions. Viewers supply a convenient mecha-
nism for this purpose. For example, assume that
VERSIOHl is described by (arbitrarily complex) at-
tributes ATTRl, . . ,ATTRx, . . ,ATTRn, and VERSIOP:! is
made from VERSION1 by changing attribute ATTRx. This
situation can be described as follows:

VERSIOYI(ATTRI(..)..
ATTRx(vnhe of 1-d version). .
ATTRn(..))

VERSIONZ(V(viewer lo VERSIOII)
ATTRx(v&e of tnd verszoti))

VERSIOIZ inherits all att.ributes of VERSIOWI, hut
ATTRx, which is overridden by own attrihut,e ATTRx.

3 Updating and Typing

Viewers require a proper level of data abstraction. If
dat,a views and processing are too close to physical rep-
restsonlation there may be no po&bility to distinguish
viewers from pointers; in this case viewfIrs iutroduce 110
new quality. (By analogy, in mmhlers procedure calls
are simply g&s with some additional features.) Most
relational systems have a sufficient lcvrl of abstraction
and they deal with persistent pointers (known as tide).
TIIIIS implementation of viewers is poaqiblc but profits
imposed by viewers may be decreased by the INI: re-
quirement. We believe that most of all viewers would
be profitable in object-oriented database systems such
as 01 [4] and ORION [5], which support a high level of
data abstraction and explicitly deal with complex hicr-
archical objects and persistent pointers.

So far we have assumed that the data pointed by the
viewer substitute it, thus viewers are invisible at the
level of user interfaces. This assumption can be true
only for retrieval. When conaidcring updating the user
SIIOIII~I be aware of differences bc*tween normal updating
and npdating of data imported by viewers. Ilence, at
the lcvcl of dat,a typcrs or data description we must ex-
plicitly specify viewers, and some kindsof users (dealing
with updating) must he aware of their existence.

Tl~c? SUIIP concerns operations which mast he per-
formed on virwers. A viewer must be initialized, i.e.
a rcfprrncc trust. Ilc asGgn~*d as its value. TIIC refer-
ence being a value of the viewer must be the subject
of updating. The discussion concerning necessit.y of up-
dat.ing of inheritance relationships is presented in [2].
Thus, the programming language should provide spe-
cial statements, which “see” viewers and enable proper
operations on them. We consider that these statements
belong to syntactically distinguished layer of the pro-
gramming language.

Assuming static binding and strong typing we must
provide capabilities for declara.tion and typing of vicw-
ers, and for changing their vxlocs. For example (see
Figure I), an ext.ension of DRPI, [X, 111 to deal with
viewers may he the following:

TYPE
AnimalProps =

RECORD
LEGS, EARS, EYES: integer;

END ;
SinglePet =

RECORD
KAME: string;
KIHD: (dog, cat, . . . 1;
PROPS: IMPORT AnimalProps;

274

END ;
Pet = RELATION NAME OF SinglePet;

conetrllct:

VAR
PET : Pet;
AYIHAL, DOG : AnimalPropr;
X : integer;

BEGIH
AIIHAL := AniaalPropr{4,2,2};
PET := Pet{ {"Rex", dog, AYIHAL},

{“Pusey”, cat, ANIHAL}) ;
.
PET [“Rex”] . PROPS : = DOG ;
X : = PET [“Pussy”] . EARS ;

(* Possible typing problems *)
.

END ;

‘The type IHPORT AnimalProps denotes a viewer
Icading to a variable of type AnimalProps. Typing of
viewers is the same a.9 typing of pointers, and initializa-
tion and updating of viewers can he done> by sta.udard
capabilities. Ilowcvcar, t,yping of field selections may
iluply problems, since viewers ca.n import foreign at-
tributes into the dat.a. If typing of viewers is static and
complete, this import, is tlctcrmined during compilation
time, thus the prohlem is exactly the same as with mul-
tiple inheritance [;I]. If typing of the viewers’ import,
cannot be static, e.g. hecause overriding by attributes
with unknown types or importing random ditta, static
strong typing is problrmn.tic.

Assuming dynamic binding, we can dynamically cre-
ate, insert, modify and tlclet,e viewers; t,his approach is
implemented in LOQIS. Actions similar t,o t,he above
DBPL example are 1.h~ following:

create permanent AliIMAL
begin LEGS(4) EARS(2L) EYES(2L) end;

create permanent PET
begin

NAME(“Rex”) KIND(“dog”)
PROPS(import from AIIHAL 1

end ;
create permanent PET

begin
NAHE(8’Pussy”) KIND(“cat”)
PROPS(import from ANIMAL)

end ;

LOQlS provides a spl’cia,l assignment, opera.t.or for
changing valut~s of viewcbrs. For example, if DOG is an-
other da.tum similar to ANIHAL, we cit.11 use the following

store pointer to DOG in
(PET where NAME = “Rex”) . PROPS;

The identifier of DOG is stored as a value of PROPS.
Other operators are the same as for normal data, for
example, deleting the viewer for Pussy can be done by
the statement:

delete ((PET where NAME = “Pussy”) .PROPS) ;

Current typing systems are not prepared for such fea-
tures, thus dynamic capabilities should be somehow re-
stricted or novel typing ideas should be developed.

Since viewers transfer control to pointed data, up-
dating of data that are seen through viewers is feasible.
llowever, there is a possibility of updating anomalies.
Rct,urning to the PET-ANIMAL example, assume that
Rex in some dogs’ battle lost an ear. If we directly up-
datcb EARS via the Rex object, it will cause updating in
the object ANIMAL and, in consequence, innocent Pussy
will alrio loss an ear. Instead of updating of the ANIMAL
ohjcct we should insert a datum EARS(I) to the Rex
object, which will override the datum inherited from
ANIMAL. Such semantics of the assignment operator is
a novclt,y in programming languages and may lead to
sonw unexpected erects.

If a. cl-5 of viewers has predefined external semantics,
for example, it0 represents the stored view RICHJAN:
EHP where SAL > 4000, there is a problem with prop-
agat.ion of updates to viewers. For example, if Bill’s
salary is increased, he will become RICHJtAN, thus a
new datum RICHJAN should be inserted, with a viewer
pointing the Bill’s object. This problem is the same as
for materialized views and can be solved by two meth-
ods: by providing a manual for the programmer saying
what. should be a.tltlit.ionally done when some update is
p(~rrornietl, or more ambitiously, by active rules propa-
gating the updat,e automatically.

In the presentmet examples we recognized the neces-
sity of filtering of dat.a imported by viewers. This can
be done by attaching a list of names to a viewer. An-
ot.llcv kind of filt.eriug is overriding: testing if .a data
having a particular name is already present in the ob-
ject. containing a viewer, and t,hen do or do not the
import. Sometimes fiIt,ering of ditta according t,o equal-
ity of names may be irrelevant since names equivalence
may he quite casual, or we would like to import data
in spit,e of the name conflict; see a.liasing of imported
methocls in 02. Thus we can assign to a viewer a rule
det.crmiuing renaming of data during the import. Fur-
ther inventions in this respect could be based on anal-
ogy wit.h procedures: viewers with parameters, viewers

275

with encapsulated meaning, et.c. Such ideas should IN
carefully tested in some real datahasc environment.

4 Design Methodologies, For-
malization and Query Lan-
guages

Since viewers are in fact pointers, we can expect that
viewers are cheap from the point of view of either con-
sumption of storage, access times, and additional main-
tenance functions. This creates a potential for extensive
use of this facility in database systems. Implementation
of viewers in a database system may change methodolo-
gies of database design because of the following factors:

l They provide a possibility of expressing simulta-
neously different data views required by particular
applications, without the nrcessily of introducing
one global data view and then transforming it. hy
some external views mechanisms.

l They allow more freedom in changing the data view
without destroying existing programs (data inclc-
pendence), thus relaxing the initial responsiblity
of the database schema designers.

By analogy with procedures, viewers may have meaning
in the structural database design, relying on t,op-down
designing of data hierarchies, starting from t,he most
important levels for particular data applications, and
step-by-step refinement. of necessary details down in the
data hierarchy. Such a design methodology is already
assumed in the entity-relationship approach, but inte-
grating independently developed parts present.s actually
an essential methodological problem. As we observed
in Section 2.3, viewers make po.asible independent de-
velopment of hierarchies and then integrate them by
establishing shared parts. This may present a new po-
tential for the database design.

Several aspects of viewers call for t.he formal ap-
proach. One of them is formalization of intetraiotrrl and
etlensionol data, and the mappings brtween them. In-
tensional data involve viewers, while extensional data
are obtained by developing all viewers according to
their meaning. This leads to *some substit#ution concept
(macrc+substitution), or theory of rewriting rules. We
recall, however, that semantics of procedure calls based
on the textual substitution has been abandoned because
it does not support locality of objects with which the
procedure deals. It is not excluded that, some concept of
the locality control for viewers will require an approach
different from the textual substitution.

‘I’hr s~*cond aspect is formalixa~.ion of schemata (both
inlensional a,iid extensional) and mapping bctwccn
them. This aspect ~nay have meaning for the dataha..c
design. For esample, equivalence bedwccn some con-
structs of intcnsional a.nd ext.c&onal schema may 1)~
the basis for unification, normalisation or optimization.

Formalization cordtl cotlcern utilization of viewers in
languages, for example, in query operators or program-
ming primitives. The goal of such investigations is es-
tablishing equivalent query constructs which is impor-
tant for optimization. Another goal is recognizing a new
quality introduced by viewers to the current da.tabasc
or knowledge-base theories.

Viewers have a direct impact on query languages. In
principle each query language, e.g. SQL, can deal wit,11
viewers because from the programmer or user point of
view viewers are invisible during data retrieval and ma-
nipulation. In ninny cases viewers can substitute views;
for esample, POSTQUEL [121 fca.tures extending thtb
rcliit.ional inoclcl can he cquivalcntly b;rscd 011 viewers.
Ilowovcr, Ihcrc are “m4a” fiinct.ions, such as crcabion
and updating of viewers, which cannot be consiatcnt.ly
handled by value-oriented languages. In fact, the idea is
hased on the concept of data identifier, thus only qut’ry
la.nguage that dcal with this concept are appropriate.

For reasons of space we do not attempt to fully spc~-
ify a query Iangua.ge that. is relevant for viewers. (Src
[14, 151 for detailed description of such a language.) We
adopl.ed the stack machinery of cl;ussical programming
languages to define operators of query languages. In
this approach the central role is played by notions of
naming, scoping and binding. Essentially, viewers do
not introduce a new quality to t.his mechanism; it re-
quires minor corrections of scoping and binding rules.
Such a mechanism is implemented in LOQJS. For exam-
ple (see Figure !I), the query “Give names of suppliers
together wir,h quantities of bolts supplied by t,hcm” can
be expressed in LOQIS ax

SUPPLIER.(SNAHE x sun~(
(SUPPLIES where PNAME = “bolt”) .QTY))

III this example wr cmployecl viewers Vl awl V2 for
the automatic navigation. Relat.ional queries without
automatic navigation are much more complex; for com-
parison see the following equivalent. SQL query:

group by SP.SNO, SUPPLIER.SNAl4E

relect SUPPLIER.SWAWE, aum(SP.QTY)
from SUPPLIER, PART, SP
where SUPPLIER.SIO = SP.SWO
and SP.P#O = PART.PNO
and PART.PWARE = “bolt”

276

5 Conclusion

In tlw l)al”‘r wcl prt*fi~~nI.(~d vic*wc>rn, a concc:pt which can
hf* ro~~nitlfwfl ii tl;il,a-worltl aii;~logw of proc(~tlurc! calls.
Vic*wc:rs mdw possil)lct t.h(t rc~l,rcsc.iil.al,ioii of xurl)risingly
III~II~ conceptual modrlling issues in data-intensive ap-
plications. They can be implemented elficiently, yield-
ing good performance, since in fact they are poinbers.
Simultaneously they simplify database queries due to
automatic navigation. These factors motivate imple-
mentation of viewers together with related language
functionalities in current or prototyped database sys-
tems. This idea is implemented in a prototype database
programming system LOQIS. The implementation and
further experiments convinced us that the idea of view-
ers is worth wider popularity in scientific and practical
communities.

References

PI

[21

PI

[41

[51

PI

PI

C. Beeri, P.A. fkrnstein, N. Good~naa. A So-
phisticate’s Introduction to Da.tabase Normaliza-
tion Theory. Proc. of 41.11 VLDB Conf., Berlin,
Germany, pp.1 13-124, 1978

J. Banerjee, W. Kim, H.J. Jiim, 1I.F. Korth. Se-
mantics and ln’iplrlneiit.atioli of Schema Evolution
in Object-Orientc*d Databases. Proc. ACM SIG-
MOD Cod. pp.31 l-322, 1987.

L. Cardelli. A Semant,ics of Multiple Inheritance.
Jnformation and Clomputat,ion, 76, pp. 138-164,
1988

0. Deux et al. The Story of 02. IEEE Transactions
on Knowledge and Data Engineering, 2:1, pp.91-
108, 1990.

W. Kim, J.F. Garza, N. Ballou, D. Woelk. Archi-
tecture of the OR.ION Next-Generation Database
System. IEEE Transactions on Knowledge and
Data Enginering, Vol.2, No.1, 1990, pp.lOO-124

F. Matthes, A. Ohori, J.W. Schmidt. Typing
Schemes for Objects with Locality. Proc.lat Jntl.
Eaqt/West Database Workshop on Next Genera-
tion Jnformation System Technology, Kiew, USSR
1990 Springer Lect.ure Notes in Conlput.er Science,
Vol.504, pp.106-143, 1991.

D. Maier, J.D. Illlman, M.Y. Vardi. 011 the Foun-
dations of the Universal R.elation Model. AChf
Transactions on Database Systems, Vol.9, No.2,
~1~283-308, 1984

PI

PI

WI

[I 11

P21

WI

[I4

[If>1

WI

F. Matt.hcs, A. Rudlolf, .J.W. Schmidt, K. Subi-
eta. The Database Programming Language
DBPL, User and System Manual. FIDE, ES-
PRIT BRA Project 3070, l’&nical R,eport Series,
FlDE/92/47, 1992

A. Ohori, P. Buneman, V. Breazu-Tannen.
Database Programming in Machiavelli - a Poly-
morphic Language with Static Type Inference.
Proc. of ACM SJGMOD 89 Conf., 1989, pp.46-57

J. Richardson, P. Schwarz. Aspects: Extending
Objects to Support Multiple, Independent Roles.
Proc. of ACM SIGMOD 91 Conf., 1991, pp.298-
307

J.W. Schmidt, F Matthes. The Database Pro-
gramming Language DBPL, Rationale and &port.
FIDE, ESPRIT BRA Project 3070, Technical Re-
port Series, FIDE/92/46,1992

M. Stonebraker, L.A. Rowe, M. Hirohama. The
Implement~al~ion of POSTGR.ES. IEEE Transac-
tions on Knowledge and Data Engineering, 2:1,
pp.125-142, 1990.

K. Suhieta. M. Mis$ala, K. Anacki. The LO-
QIS System. Institute of Computer Science Polish
Academy of Sciences Report 695, 1990.

K. Subieta. LOQIS: The Object-Oriented
Database Programming System Proc.lst Intl.
East/West Database Workshop on Next Genera-
tion Information System Technology, Kiew, USSR
1990 Springer Lecture Notes in Computer Science,
Vol.504, pp.403-421, 1991.

K. Subiet*a, C. Beeri, F. Matthes, J.W. Schmidt,. A
Stack-Ba..ed Approach to Query Languages. Ham-
burg IJniversity, Department of Jnformatics, DBJS,
unpublished report,, 1993

W. Wilkes. Instance Inheritance Mechanism for
Object Oriented Databases. Proc. of Workshop on
Object-Oriented Database Systems, Bad-Miinster,
Oct.1988. Springer Lecture Notes in Computer Sci-
ence, Vol.334, pp.274-279, 1988.

277

