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Abstract 

Many current relational database systems use some 
form of histograms to approximate the frequency dis- 
tribution of values in the attributes of relations and 
based on them estimate query result sizes and access 
plan costs. The errors that exist in the histogram ap- 
proximations directly or transitively affect many esti- 
mates derived by the database system. We identify the 
class of serial histograms and demonstrate that they 
are optimal for reducing the query result size error for 
several classes of queries when the actual query result 
size (and hence the value of that error) reaches some 
extreme. Specifically, serial histograms are shown to 
be optimal for arbitrary tree equality-join queries when 
the query result size is maximized, whether or not the 
attribute independence assumption holds, and when 
the query result size is minimized and the attribute in- 
dependence assumption holds. We also show that the 
expected error for any such query is always zero under 
all histograms, and thus argue that histograms should 
be chosen based on the reduction of the extreme-cases 
error, since reduction of the expected error is mean- 
ingless. 
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1 Introduction 

Query optimizers of relational database systems de- 
cide on the most efficient access plan for a given query 
based on a variety of statistics on the contents of the 
database relations that the system maintains. These 
are used to estimate the values of several parame- 
ters of interest that affect the decision of the opti- 
mizer [SAC+79]. Histograms are the most common 
type of maintained statistics containing the number 
of tuples in a relation for each of several subsets of 
values (buckets) in an attribute. Usually, the informa- 
tion contained in a histogram represents an inaccurate 
picture of the actual contents of the database, which 
affects the validity of the optimizers’ decisions. 

We investigate the optimality of histograms for lim- 
iting the errors in the estimates of query result sizes. 
Our focus is on histograms that accurately record the 
average frequency within each bucket. In an earlier ef- 
fort, we identified the class of serial histograms and 
dealt with equality-join queries where each relation 
is joined on the same attribute for all joins in which 
it participates [IC92]. We showed that the optimal 
histogram for reducing the worst-case error in the re- 
sult size of such a query is always serial. In this pa- 
per, we generalize these results by showing that se- 
rial histograms are optimal for arbitrary tree equality- 
join queries when the query result size is maximized, 
whether or not the attribute independence assumption 
holds, and when the query result size is minimized and 
the attribute independence assumption holds. We also 
show that the expected error for any such query is al- 
ways zero under all histograms, and thus argue that 
histograms should be chosen based on the reduction 
of the extreme-cases error, since reduction of the ex- 
pected error is meaningless. 

Although used in many systems, the formal proper- 
ties of histograms have not been studied extensively. 
The few pieces of work of which we are aware deal with 
histograms in the context of single operations, primar- 
ily selection. Specifically, Piatetsky-Shapiro and Con- 
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nell dealt with the effect of histograms on reducing 
the error for selection queries [PSC84]. They stud- 
ied two classes of histograms: in an “equi-width” his- 
togram, the number of attribute values associated with 
each bucket is the same; in an “equi-depth” (or “equi- 
height”) histogram, the total number of tuples hav- 
ing the attribute values associated with each bucket is 
the same. Their main result showed that equi-width 
histograms have a much higher worst-case and aver- 
age error for a variety of selection queries than equi- 
depth histograms. Muralikrishna and Dewitt [MD881 
extended the above work for multidimensional his- 
tograms that are appropriate for multi-attribute se- 
lection queries. Several other researchers have dealt 
with “variable-width” histograms for selection queries, 
where the buckets are chosen based on various crite- 
ria [M079b, MK85, KK85]. The survey by Mannino, 
Chu, and Sager [MCSSS] contains various references 
to work in the area of statistics on choosing the ap- 
propriate number of buckets in a histogram for suffi- 
cient error reduction. That work deals primarily with 
selections as well. Histograms for single-join queries 
have been minimally studied and then again without 
emphasis on optimality [Chr83, Koo80, MK85]. Our 
work is different from all the above in that it deals 
with arbitrarily large join queries and identifies a sin- 
gle class of histograms that are universally optimal for 
reducing errors in the worst-case. 

All results in this paper are given without proof due 
to lack of space. The full details can be found else- 
where [Ioa93]. This paper is organized as follows. Sec- 
tion 2 introduces some notation for queries and their 
result sizes and presents the basic definitions on his- 
tograms. It also includes some mathematical results 
from majorization theory that are used throughout 
the paper. Section 3 gives a summary of the results 
of our work on histogram optimality for a restricted 
class of queries. Section 4 demonstrates the optimal- 
ity of serial histograms’ when the query result size is 
maximized for arbitrary tree queries, both when the 
attribute independence assumption does and does not 
hold. Section 5 repeats for the case where the query re- 
sult size is minimized and the attribute independence 
assumption holds. Section 6 shows that all histograms 
estimate accurately the expected value of the query 
result size, and therefore, argues against choosing his- 
tograms based on the minimization of the expected 
error. Finally, Section 7 summarizes our results and 
gives directions for future work. 

2 Mat hemat ical Foundat ions 
and Problem Formulation 

2.1 Majorization Theory 

This subsection presents some important results from 
the mathematical theory of majorization [M079a], 
which are used to study the effect of histograms on lim- 
iting the error in the estimates of query result sizes. In 
what follows, an (M x N)-natriz A whose entries are 
ukl, 1 5 k 2 M, 1 5 1 5 N, is denoted by A = (ukl). 
The results presented in this paper hold for all ma- 
trices with non-negative real entries. For database 
applications, all entries will be non-negative integers. 
The transpose of an (M x N)-matrix A is denoted by 
AT, and is the (N x M)-matrix constructed from A by 
switching its rows with its columns. We occasionally 
use the terms horizontal vector and vertical vector for 
matrices with M = 1 and N = 1, respectively. An M- 
vector a whose entries are ai, 1 5 i 5 M, is denoted 
by a = (ai . . . UM) or by a = (ai). An M-vector 
a is nonincreasing when Vl 5 i < M, the inequality 
ai 2 ai+i holds. Similarly, a is nondecreasing when 
Vl 5 i < M, the inequality ai 5 ai+i holds. Gener- 
alizing the above, a matrix 4 is nonincreasing (resp. 
nondecreasing) when all its columns and all its rows are 
nonincreasing (resp. nondecreasing) vectors. (Note 
that the set of nonincreasing (resp. nondecreasing) 
matrices is closed under matrix multiplication.) Fi- 
nally, A is mixed-monotone when either all its columns 
are nonincreasing or all of them are nondecreasing, 
and similarly for all its rows. The following definition 
and notation is from the work of Marshall and Oikin 
[M079a]. 

Definition 2.1 For two M-vectors a = (ai) and 
b = (bi) with non-negative entries, a weakly majorizes 
b, denoted by a +,,, b or b -& a, if cE1 ai 2 
Cz, bi, Vl 5 K 5 M. If, in addition to the above, 
xi”=, oi = x2, bi, then a majorizes /J, denoted by 
a*borb+a. 

For the needs of this paper, we have extended the 
above standard definition to matrices, by viewing an 
(M x N)-matrix as a vertical M-vector whose entries 
are horizontal N-vectors (the symmetric view would 
be equivalent). 

Definition 2.2 Consider two (M x N)-matrices A = 
(ai) and B = (bi) with non-negative entries, where for 
all 1 < i 5 M, ai and bi are horizontal vectors. If 
Czlgi +,,, CE, &, Vl 5 K I M, then A weakly 
majorizes B, denoted by A +w B or B + A. If, 
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in addition to the above, CE1 gi = C,“=, &, then A 
majorizes B, denoted by A + B or B + A. 

The following result states a well known implication of 
vector majorization. 

Theorem 2.1 [M079a] If g and a are nonincreasing 
horizontal vectors, b is a horizontal vector, and a kw b, 
then a: aT 2 : bT. 

Example 2.1 As an example of the above theorem, 
consider the vectors c = (3 2 l), a = (10 5 l), and & = 
(1 5 10). The premises of Theorem 2.1 are satisfied. 
The same holds for the conclusion of the theorem, since 
g aT = 42 > x bT = 23. 0 -- 

We have extended the above theorem to arbitrary 
products of matrices. 

Theorem 2.2 If for all 1 5 j < N, A(j) and B(j) are 

holds. 

2.2 Problem Formulation 

The focus of this paper is tree equality-join queries. In 
what follows we often omit the ‘tree’ and/or ‘equality- 
join’ qualifications. Without loss of generality, we 
assume that joins between relations are on individ- 
ual attributes. For example, if I&, Ri, R2 are relation 
names and a, b are attribute names of these relations, 
we do not deal with queries whose qualifications con- 
tain (R0.a = R1.a and &.b = R1.b). Also without 
loss of generality, we only deal with chain join queries, 
i.e., ones whose qualification is of the generic form 

Q := (&.a1 = Rl.al and RI .a2 = R2.a~ and 

. . . and RN-l.aN = &r.aNN), 

where &,..., RN are relations and al,. . . ,aN are 
appropriate attributes. Generalizing the results pre- 
sented in this paper to arbitrary tree queries is 
straightforward. The required mathematical machin- 
ery becomes hairier but its essence remains unchanged. 

Consider the above query Q and let ‘Dj be the (fi- 
nite) domain of attribute aj, 1 5 j 5 N. In princi- 
ple, Vj contains all the potential attribute values that 
could appear in attribute aj of either relation Rj-I 
or Rj. In practice, however, Dj may be assumed to 
contain only the aj values that actually appear in the 
database at some point. The results presented below 
do not depend on the particular definition of ‘Dj. Let 

Mj be the size of Dj and ‘Dj = {dij]l 5 i 5 Mj}. 
Also, for convenience, define Mc = MN+i = 1. Note 
that i < k does not imply dij < dkj, i.e., the number- 
ing of attribute values is arbitrary and does not reflect 
some natural ordering of them. The frequency matrix 
Zj = (tkl) of relation Rj, 0 5 j 5 N, is defined as 
an (iVj x Mj+i)-matrix, whose tkl entry is the num- 
ber of tuples in Rj with Rj.aj = dkj, for j > 0, and 
Rj.aj+l = dl(j+i), for j < N. Each entry tkl is the 
frequency of the pair < dkj, dl(j+l) > in the attributes 
aj, aj+i of Rj. Note that the frequency matrices of 
RQ and RN are a horizontal and a vertical vector, re- 
spectively. Occasionally, it is also useful to treat all 
the frequencies in zj as a collection, ignoring the at- 
tribute values with which each frequency is associated. 
That collection is in general a bag (or multiset, i.e., it 
may contain duplicates), is called the frequency set of 
Rj, and is denoted by Bj . 

The following theorem establishes that the size of 
the result of an equality-join query is equal to the 
product of the frequency matrices of the participat- 
ing relations. 

Theorem 2.3 The size S of the result relation of 
query Q is equal to 

(1) 

Example 2.2 Consider three relations Ro, RI, and 
R2, whose frequency matrices are 

G = ( 20 15 ), T1 = (;z” ‘: ;), x2=( :;). 

One can easily verify that the size of the result of 
the corresponding query is equal to S = &T1$ = 
19,265. 0 

As mentioned above, in this paper, we are primar- 
ily concerned with the cases when S reaches some ex- 
treme. The following results apply Theorem 2.2 on (1) 
to identify conditions for when this happens. 

Theorem 2.4 ’ Consider an equality-join query Q on 
relations Rj, 0 5 j 5 N, and let Bj, 0 5 j 5 N, be 
their frequency sets. Also consider, for each 0 5 j 5 
N, all possible arrangements of the elements of Bj in 
the frequency matrix rj. There is one such arrange- 
ment where, for all 0 5 j 5 N, rj is nonincreasing 
and the result size of Q is maximized. 

‘This has been proved earlier for the special cases of a prod- 
uct of vectors by Marshall and Olkin [MO79a] and the product 
of a square matrix with itself by Schwarz (Sch64]. 
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Theorem 2.5 [M079a] Consider an equality-join 
query Q on relations Rj, 0 5 j 5 N, such that, for 
all 0 < j < N, the frequency matrix of Rj must be 
diagonal, and let Bj, 0 5 j 5 N, be their frequency 
sets. The result size of Q is maximized when, for all 
0 5 j 5 N, the elements of Bj are arranged so that 
&, TN, and the main diagonals of rj, 0 < j < N, are 
nonincreasing. 

Theorem 2.6 [M079a] Consider a 2-way equality- 
join query Q on relations Rs and RI, and let Bo and 
BI be their frequency sets. The result size of Q is min- 
imized when the elements of BO and BI are arranged 
so that the frequency matrices (vectors) G and Tr are 
nonincreasing and nondecreasing, respectively. 

Example 2.3 Consider a database with two relations 
Ro and RI both of size T with a common attribute 
al, which follows the Zipf distribution in both rela- 
tions [Chr84, Zip49): 

ti = T ,i’i: ,.‘, for all 1 I i 5 MI. (2) 

The main characteristic of the Zipf distribution is that 
there are few attribute values with high frequencies 
and many with low frequencies. This has been claimed 
to be a characteristic of the distributions seen in many 
databases. Assume that T = 10000 (the size of the re- 
lations) and Mr=lOO. Figure 1 is a graphical represen- 
tation of (2) for z = 0,0.02, . . . , 0.1, where the x-axis 
represents i, the rank of the attribute value with re- 
spect to its associated frequency in descending order. 
For z = 0, the Zipf and the uniform distributions co- 
incide, but as z increases, their deviation from each 
other increases. 

Note that, for all 2, the frequency vector that cor- 
responds to the Zipf distribution is nonincreasing. By 
Theorem 2.4, this maximizes the result size of the join 
between Rs and RI. If we reverse the Zipf frequencies 
in one of the vectors, that vector will become nonde- 
creasing, and by Theorem 2.6, the result size of the join 
will be minimized. The following table shows these 
minimum and maximum values (in millions) for vari- 
ous values of z (same value for both relations). 

z 0.0 0.2 0.4 0.6 0.8 1.0 

Max Size 1.0 1.05 1.27 1.88 3.30 6.08 
Min Size 1.0 0.97 0.89 0.75 0.57 0.38 

n 
l-l 

150-l 

140-j 

z=o.oo 

z=o.o2 
___---.___ Zd.04 

Z=O.O6 

.-. z=o.O8 
Z&IO 

0 10 20 30 40 50 60 70 80 90 100 
Rank of Attribute Value 

Figure 1: Zipf frequency distribution. 

matrices. In what follows, we discuss histograms for 
two-dimensional matrices; histograms for matrices of 
any other dimension are defined similarly. In a his- 
togram on attributes aj, aj+r of relation Rj, 0 < j < 
N, the set Vj x Vj+i is partitioned into buckets, 
and a uniform distribution is assumed within each 
bucket. That is, for any bucket b in the histogram, 
if < dkj, dl(j+l) >E b then i&l is approximated by the 
closest integer to &,,j,d,cj+lj,Eb tdlbl. The ap- 
proximate frequency matrix captured by a histogram 
is called the histogram matrix. Note that any arbitrary 
subset of Vj x Vj+r may form a bucket, e.g., bucket 
{< dlj,dd(j+l) >,< dTj,ds(j+l) >}. Also note that 
the ‘uniform distribution assumption’ corresponds to 
maintaining a histogram with a single bucket. Such a 
histogram is called trivial. Whenever Rj is updated, 
the corresponding histogram matrix may need to be 
updated as well. The mechanism for this depends on 
how histograms are implemented. Both histogram im- 
plementation and histogram updates are outside the 
scope of this paper and do not affect the results pre- 
sented, so they are not discussed any further. 

2.3 Histograms Example 2.4 To illustrate the above definition of 
Among commercial systems, maintaining histograms is histograms, consider the following relation schema: 
a very common approach to approximating frequency WorksFor(ename,dname,year). The attributes in ital- 
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Bucket b q 
Buckctb 0 

8 ! (a) (e) 

Figure 2: Frequency matrix and two histogram matrices on WorksFor 

its form the key to the relation, and represent em- 
ployee and department names such that the employee 
is working in the department. The year attribute rep- 
resents the year the given employee started working at 
the given department. We focus on the combination 
of dept and year attributes, and assume for simplicity 
that there are four different departments (toy, jewelry, 
shoe, and candy) and five different years (1989 through 
1993). The frequency matrix of the relation is shown 
in Figure 2(a), where dname is used for the rows and 
year is used for the columns of the matrix, and the cor- 
responding values are arranged in the order specified 
above. Note that the matrix is nonincreasing. An ex- 
ample histogram matrix with two buckets is shown in 
Figures 2(b) and 2(c). In the former, we show the orig- 
inal matrix with an indication of which attribute value 
pairs (or equivalently, frequencies) are placed in which 
bucket. In the latter, we show the actual histogram 
matrix that is the result of averaging the frequencies 
in each bucket. Another example histogram matrix 
with two buckets is shown in Figures 2(d) and 2(e), 
again depicted in the two ways discussed for the first 
histogram. cl 

Optimal histograms are defined as follows. 

Definition 2.3 Consider a query Q on relations 
Ri , 0 < j 5 N, whose result size is S, as determined by 
the frequency matrices of the relations. For each rela- 
tion Rj , let ‘Hj be a collection of histograms of interest. 
The(N+l)-tuple<Hj>,whereHjE’Hj,O<j<N, 
is an optimal histogram tuple for Q within < 7ij >, 
if it minimizes 1s - S’(, where S’ is the approximate 
query result size determined by any such histogram 
tuple. 

Note that optimality is defined per query and per 
collection of frequency matrices, and for the his- 
tograms of all relations together. The reason is that 
the optimal histograms differ for different queries and 
for different frequency matrices. The following defines 
a very important class of histograms for relations with 
nonincreasing matrices. 

Definition 2.4 Consider relation Rj, 0 < j < N, 
with a nonincreasing frequency matrix rj. A his- 
togram for relation Rj is serial wifh nzspecf to its 
buckets bl and bz, if either V < dkj,d,(j+l) >E bl, < 
d,j,d,(j+l) >E b2, the inequality ttr 2 t,, holds, or 
V < drjtdl(j+l) >E b1, < dmj, dn(j+l) >E bz, the in- 
equality ttl 5 t,, holds. It is called serial if it is serial 
with respect to all pairs of its buckets. 

Note that the buckets of a serial histogram group 
frequencies that are close to each other with no inter- 
leaving. For example, the histogram of Figures 2(d)- 
(e) is serial, while that of Figures 2(b)-(c) is not. 

3 Previous Results 

In this section, we summarize the main results that we 
have obtained earlier [IC92], which form the basis for 
the results presented in this paper. Specifically, in our 
previous work, we dealt with a quite restricted type of 
equality-join queries, called t - clique queries, where 
each relation is joined on exactly the same attribute 
for all joins in which it participates. The formulation 
and the underlying mathematical foundations required 
for the problem were much more restrictive than what 
is required for this work. It involved only vectors and 
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majorization on them. For uniformity with the rest 
of the paper, however, we cast the specialized prob- 
lem into our formulation of Section 2.2 and use that 
to present the results of our earlier work. Specifically, 
dealing with a t-clique query is equivalent to dealing 
with a query Q of the general form discussed in this 
paper with the additional restriction on the data that, 
for each relation Rj,O < j < N, the functional de- 
pendencies oj + oj+i and oj+i --+ oj hold. Without 
loss of generality, assume that the attribute value map- 
pings under the above functional dependencies satisfy 
dij + 4(j+l) and dqj+l) + dij, for all 1 5 i < Mj. 
Then, one can easiIy verify that each frequency ma- 
trix Zj, 0 < j < N, is square and diagonal. Hence, the 
query result size is equal to the sum of the component- 
wise product of their diagonals and the vectors & and 
TN. 

We have concentrated on the case where the query 
result size is maximized. Since we are only concerned 
with diagonal matrices, by Theorem 2.5, maximiza- 
tion occurs when the diagonals of all frequency matri- 
ces rj, 0 < j < N, and the vectors G and TN are 
nonincreasing. This maximum is never exceeded by 
the result size approximated by any histogram, hence, 
the optimal histogram must maximize that approxi- 
mation. 

We have investigated histogram optimality within 
the class of histograms f3 that only partition the diag- 
onal entries and ignore the rest (or equivalently put all 
the rest in a separate exclusive bucket). In what fol- 
lows, when referring to a bucket of a histogram in 13, we 
always mean a bucket formed by some of the diagonal 
entries. Let Bo be the subset of 23 that only contains 
histograms of size ,0, i.e., with p buckets. Note that, 
for any given p, all histograms in BP are equivalent 
with respect to the amount of information that they 
maintain. The following pair of theorems establish the 
importance of serial histograms. 

Theorem 3.1 [IC92] For any histogram size p and 
any histogram H E BP, there is a serial histogram in 
Ba that majorizes it. 

Theorem 3.2 [IC92] Consider a t-clique query Q on 
relations Rj, 0 5 j 5 N, with nonincressing diago- 
nals in their frequency matrices and an (N + 1)-tuple 
of histogram sizes < pj, >. There exists an optimal 
histogram tuple for Q within < 230~ > where all his- 
tograms in it are serial. 

Histograms are usually constructed in a way that 
each bucket stores attribute values that belong in a 
certain range in the natural total order of the attribute 
domain. The important implication of Theorem 3.2 is 

that this traditional approach may be far from optimal 
for t-clique queries. Histograms should be constructed 
so that attribute values are grouped in buckets based 
on closeness in their corresponding frequencies and not 
in their actual values. This is a significant difference, 
since the two orderings may be completely unrelated. 

Identifying which of the many serial histograms is 
the optimal one in each case is not straightforward. 
In our previous work, we have solved the problem 
for the two extreme cases with respect to query size. 
First, for P-way equality-join queries (all of which are t- 
clique) on relations with nonincreasing frequency ma- 
trices (vectors), we have obtained a closed-form for- 
mula identifying the buckets that should be formed in 
the optimal histograms. Second, for t-clique queries 
with N joins, we have proved that, as N -+ 00, the 
optimal histograms of all relations tend to become 
identical favoring the placement of the highest fre- 
quencies in individual buckets. We do not attempt 
to formally present the above results due to lack of 
space. Similarly we do not discuss several other re- 
sults on optimal histograms within other interesting 
classes of histograms (details can be found elsewhere 
[IC92]). However, there is one important result that 
we want to discuss, since we make use of it later. In 
what follows, we refer to the class of serial histograms 
S and its subclasses So of serial histograms with /3 
buckets. 

Theorem 3.3 Consider a 2-way equality-join query 
Q on two relations Rs and RI with nonincreasing fre- 
quency matrices (vectors), and an integer p 2 1. If 
H E So is the histogram used for Re, then for Q, H is 
optimal within Ur=, SOI for RI as well. 

An implication of the above is that, for 2-way join 
queries, for optimal approximations, the same his- 
togram should be used for both relations involved. 

In the rest of the paper, we generalize the above re- 
sults for arbitrary tree queries and data distributions. 
Particular consideration is given to some important 
special cases. 

4 Maximum Value of the Query 
Result Size 

4.1 The Attribute Independence As- 
sumpt ion 

To the best of our knowledge, most database systems 
employ the attribute independence assumption when 
estimating the sizes of query results. Expressed in 
terms of frequency matrices, the assumption states 

261 



that, in the frequency matrix rj of relation Rj, for 
all 1 5 Ic,m 5 Mj, 1 5 E,n < Mj+r, the equality 
hl/hn = h?&nn holds. That is, if the tuples of Rj 
are grouped based on their value in the aj attribute, 
the frequency distribution of the values in attribute 
oj+r within each group is identical up to a constant 
factor. Similarly if the grouping is based on the val- 
ues in the aj+r attribute. One can easily verify that, 
when the above holds, rj is equal to the product of a 
vertical vector with a horizontal vector. 

Example 4.1 The following frequency matrix is 
equal to any of the given products of vectors: 

’ 50 20 10 10 
30 12 6 = 
15 6 3 ) 0 

6 (521) 
3 

80 
= 

( ) 

48 ( 0.625 0.25 0.125 ). 
24 

We show two different products to bring up the point 
that, for frequency matrices that satisfy the attribute 
independence assumption, there is an infinite number 
of pairs of vectors whose product is equal to the ma- 
trix. Moreover, choosing a single entry in any one of 
the two multiplied vectors uniquely determines all the 
other entries. The first product above represents an 
arbitrary such choice. The second product uses the 
sums of the entries of each row for the vertical vector. 
Each entry of the horizontal vector ends up being the 
percentage of the tuples of any row attribute value as- 
sociated with the column attribute value correspond- 
ing to that entry. 0 

When the attribute independence assumption holds, 
the frequency matrix rj should be approximated with 
two histograms on the individual attributes aj and 
aj+r instead of one on the combination of the at- 
tributes. The reason is dual: first, most systems 
only support single-dimensional histograms, possi- 
bly because they are useful more often than higher- 
dimension ones; second, a two-dimensional histogram 
may destroy the independence of attributes, i.e., may 
result in a histogram matrix that is not a product of 
two vectors, and this important piece of information 
on the data will be lost. Therefore, the question of 
histogram optimality for this case is reduced to iden- 
tifying the optimal single-dimensional histogram for 
each attribute aj separately. 

Consider query Q on relations Rj, 0 5 j 5 N, whose 
frequency matrices are nonincreasing (so, by Theorem 
2.4, S is maximized) and satisfy the attribute indepen- 
dence assumption. For all 0 < j < N, let rj = cjbj+r, 

where zj and bj+r are vertical and horizontal vec- 
tors, respectively. The specific choice of bj and gj 
is not important, since they are all identical up to a 
constant factor, which does not affect the optimality 
of histograms. For convenience, define & = h, and 
TN = EN* Then, by (l), the size of the result of Q is 
equal to 

s=z& *. ‘TN = (h,v,)(h,l!~) **. (!&ha,). (3) 

Consider the parenthesization shown in the last for- 
mula. Each parenthesis is a product of a horizontal 
with a vertical vector, i.e., the result of each parenthe- 
sis is equal to a scalar number. As mentioned above, 
each histogram will be associated to an individual vec- 
tor, independent of all others. Therefore, maximiz- 
ing the approximation to S is equivalent to maximiz- 
ing each parenthesis separately. This is equivalent to 
treating the query Q as multiple independent 2-way 
join queries, and maximizing the approximation to the 
result of each one. Hence, the results presented in Sec- 
tion 3 can be used to identify the optimal histogram 
for this case as well. Specifically, let ‘H be the class 
of all histograms for vectors and 7f~lp its subclass of 
histograms with /3 buckets, Recall that, by Theorem 
3.3, for all 1 < j 5 N, the optimal histograms for ~j 
and cj are the same. Then, Theorem 3.2 implies the 
following. 

Theorem 4.1 Consider an equality-join query Q on 
relations Rj, 0 5 j 5 N, with nonincreasing frequency 
matrices that satisfy the attribute independence as- 
sumption, and an N-tuple of histogram sizes < @j >, 
where /3j is associated with both a, and zj, 1 5 j 5 N. 
There exists an optimal histogram tuple for Q within 
< 7-& > where all histograms in it are serial. 

Example 4.2 Consider a query Q on many relations 
that satisfy the premises of Theorem 4.1. Assume that 
the columns and rows of the frequency matrices of all 
relations are identically distributed based on the Zipf 
distribution introduced in Example 2.3 with z = 0.2. 
Recall that the domain size for all attributes is 100. 
Assume that all individual attribute histograms main- 
tained are identical as well. We have calculated the 
error generated when the histograms are trivial (i.e., 
they capture a uniform distribution) and for three 
other interesting types of histograms that have five 
buckets: (a) a nonserial histogram whose i-th bucket, 
1 5 i 5 5, includes the (5~ + 1)-st highest frequencies, 
0 5 x 5 19; (b) the unique serial histogram with five 
buckets with twenty elements each; and (c) the unique 
serial histogram with four buckets containing the four 
highest frequencies and one containing the remaining 
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frequencies. The values of the relative error in the 
estimate of the query result sizes for various sizes of 
queries is shown below. 

II Number of Joins 
! 

Histogram 1 join 2 joins 5 joins 10 joins 

Trivial 4.64% 9.50% 25.46% 57.39% 
Nonserial 4.60% 9.41% 25.22% 56.79% 
Serial-(b) 1.10% 2.21% 5.62% 11.56% 
Serial-(c) 2.15% 4.34% 11.22% 23.70% 

As expected, the serial histograms do better than the 
trivial and the nonserial ones. Note that the nonserial 
and the trivial histograms generate almost identical 
errors, although the former maintains five times more 
information than the latter. Also, although not clear 
due to their small values, the errors grow exponentially 
with the query size. cl 

r: = ( ;:; f:; ) , r; = ( ;:;5” ;I;; ) . 

It is easy to verify that T, 4 ri and rk 4 Es. Thus, 
for any horizontal 2-vector h and vertical 2-vector c, 
h T v < h T’ v while h T v > h T’ v i.e., all --I- _ --I- - -2 - _ - -2 -, 
other things being equal, zi would overestimate query 
result sizes, while 2’; would underestimate them. •I 

4.2 The General Case 

As mentioned in Section 3, for P-way equality-join 
queries, not only have we established the optimality of 
serial histograms, but we also have obtained a closed- 
form formula identifying the buckets that should be 
formed in the optimal histograms. These results may 
be carried over to arbitrary queries under the attribute 
independence assumption to identify the specific serial 
histograms that are optimal for each join attribute sep- 
arately. 

In this section, we address histogram optimality when 
no assumptions are being made about the frequency 
matrices of relations. We operate within the class of 
general histograms 3-1 and refer to its subclass tip, 
which contains only histograms with /3 buckets. 

In closing this discussion, we would like to comment 
on the case where the attribute independence assump- 
tion is made by a database system although the data 
does not satisfy it. That is, each attribute is dealt with 
separately by the system, and the frequency matrix of 
a relation for a query Q is approximated by a product 
of a vertical with a horizontal vector. It is easily ver- 
ifiable that there is a unique matrix that satisfies the 
above and preserves the row-sums and column-sums of 
the original matrix. Consider a query Q and one of the 
relations Rj,O < j < N, and let rj be its actual fre- 
quency matrix and r> be its corresponding unique ap- 
proximation that satisfies the attribute independence 
assumption and preserves the original row-sums and 
column sums. Depending on characteristics of rj, re- 
placing rj with $ in (1) may increase or decrease 
the computed result size. In the former case, the his- 
tograms that would be optimal for approximating 2: 
may result in an approximation of the query result size 
S that is greater than S. This implies that serial his- 
tograms for individual attributes may not be optimal 
when the attribute independence assumption does not 
hold. 

Consider query Q on relations Rj, 0 5 j 5 N, 
whose frequency matrices are nonincreasing (hence, 
S is maximized) and focus on one of its relations 
Rj,O < j < N. Let h = ~~~~~~~~~~ and v = 
T. T. 
-s”-“” 

...T,,, where & = (hl h2 . . . hMj) and 

1! - (VI v2 . . . VM~+~). Then, clearly S = hT,v, and 

more precisely S = C:L, Czr’r hktklvl. Based on 
the premise that the actual query result size is max- 
imized, and the fact that the product of two nonin- 
creasing matrices is nonincreasing, Theorem 2.4 im- 
plies that for all 1 5 t,m 5 Mj, 1 5 Z,n 5 Mj+r, 
hkvl 5 hmvn if and only if i?kl 5 t,,. Hence, inde- 
pendent of the specific entries of & and c, Theorem 3.2 
can be applied to yield the following: 

Theorem 4.2 Consider a query Q on relations Rj, 
0 5 j 5 N, with nonincreasing frequency matrices, 
and an (N + 1)-tuple of histogram sizes < /3j >. 
There exists an optimal histogram tuple for Q within 
< XH~, > where all histograms in it are serial. 

The above theorem shows that even in the most gen- 
eral case of equality-join queries, serial histograms are 
optimal when the actual query result size is maxi- 
mized. 

5 Minimum Value of the Query 
Result Size 

Example 4.3 Consider the following two matrices for All the results presented in Sections 3 and 4 deal with 
which the attribute independence assumption does not the case where the actual query result size is maxi- 

hold: 

T1= ;; I ( > 
10 3 r2= Z1’ ( > 

The corresponding approximations that do satisfy the 
assumption and preserve the original row-sums and 
column-sums are 
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mized. The other extreme, when the actual query re- 
sult size is minimized, is equally interesting but harder 
to deal with in general. The reason for the diiculty 
is that there are no general results on arrangements of 
the entries of arbitrary numbers of matrices that guar- 
antee the minimization of their product, i.e., there is 
no counterpart to Theorem 2.4. Theorem 2.6 is the 
only result that we are aware of, dealing with the spe- 
cial csse of P-way equality-join queries. In the follow- 
ing subsection, we study this case, and show that serial 
histograms are again optimal. We then use that result 
to show optima&y of serial histograms for arbitrary 
queries when the attribute independence assumption 
holds. 

5.1 2-Way Equality Join Queries 

The basis for the results in this section is the following 
theorem, which is similar to Theorem 2.1. 

Theorem 5.1 [M079a] If g(l) and b(l) are nonin- 
creasing horizontal vectors, ~((“1 and bt2) are nonde 
creasing vertical vectors, and a(‘) + b(l) and a’“) 4 
bt2’, then a(l)a(2) < #)b(2). - - -- - 

Note that a + b for nondecreasing vectors a and b is 
equivalent to b’ + a’, where a’ is constructed from a 
by reversing the order of its entries, and similarly for 
b’. 

Consider a query with two relations whose corre- 
sponding frequency vectors are nonincreasing and non- 
decreasing, respectively. By Theorem 2.6, S is mini- 
mized. This minimum is never exceeded by the result 
size approximated by any histogram, hence, the op- 
timal histogram must minimize that approximation. 
Theorem 5.1 implies that histograms should be com- 
pared again in terms of majorization. For nonincreas- 
ing vectors, the desirability of serial histograms has 
been shown by Theorem 3.1. For nondecressing vec- 
tors, a similar result can be obtained, essentially as a 
corollary of Theorem 3.1. 

Corollary 5.1 Consider nondecreasing vectors. For 
any histogram size p and any histogram H E 7-10, there 
is a serial histogram in tie major&d by H. 

The main result of this section is a consequence of 
Corollary 5.1 and Theorem 5.1. 

Theorem 5.2 Consider a P-way equality-join query 
Q on relations Be and RI and a pair of histogram 
sizes < &,pI >. Assume that the frequency vectors 
of Be and RI are nonincreasing and nondecreasing, 
respectively. There exists an optimal histogram pair 

for Q within < Hp,, 7-10~ > where both histograms in 
it are serial. 

Identifying the particular serial histograms that are 
optimal for the case where the query result size is mini- 
mized depends on the frequency vectors corresponding 
to the query relations. Unlike for the maximizing case 
(Section 3), we have not been able to obtain any for- 
mal results that settle the question. However, there 
is a counterpart to Theorem 3.3 for this case as well, 
which reduces the number of potentially optimal his- 
togram pairs from quadratic to linear in the size of 
domain Vi. Recall that S is the class of serial his- 
tograms and Sp is its subclass of such histograms with 
/3 buckets. 

Theorem 5.3 Consider a 2-way equality-join query 
Q on relations RK, and RI and an integer /3 > 1. As- 
sume that the frequency vectors of I& and RI are non- 
increasing and nondecreasing, respectively. If H E So 
is the histogram used for Rc, then for Q, H is optimal 
within UF=, So, for RI aa well. 

The above implies that ps = & should hold in the 
statement of Theorem 5.2. 

Example 5.1 Consider a relation Be whose al at- 
tribute follows the Zipf distribution with 2=0.2 intro- 
duced in Example 2.3. Assume that a P-bucket serial 
histogram is used for & such that the p = 10 highest 
frequencies form a bucket, and the remaining 90 fre- 
quencies form another. Figure 3 shows the absolute 
value of the error in approximating the query result 
size as a function of the corresponding break-point p’ 
of a 2-bucket histogram for RI. Three different Zipf 
frequency distributions for RI are shown with r=O.2, 
0.5, and 1.0, respectively. For RI these are increas- 
ing Zipf distributions, i.e., the first attribute value is 
associated with the lowest frequency of the Zipf distri- 
bution, while the last attribute value is associated with 
its highest frequency. In all cases, p’ = 10 generates 
the least error, which grows on the two sides of the op- 
timal p’ value, indicating the importance of choosing 
the appropriate histogram. As expected, more skewed 
distributions (e.g.; Zipf with z = 1.0) are affected more 
severely. cl 

5.2 Arbitrary Queries under the At- 
tribute Independence Assumption 

Based on Section 4.1, the result size of a query Q 
on relations Rj, 0 5 j 5 N, that satisfy the at- 
tribute independence assumption is given by (3), i.e., 
S = (h,g,)(~222). . . (hNgN), where for all 0 < j < N, 
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Figure 3: Choosing a histogram for one relation given 
the histogram of the other. 

Ej and h(j+l) are vertical and horizontal vectors, re- 
spectively. By Theorem 2.6, S is minimized when, 
for all 1 5 i 5 N, either bj is nonincreasing and zj 
is nondecreasing, or vice-versa. Concentrating on his- 
tograms on individual attributes, the approximation to 
S is minimized when the approximation to each indi- 
vidual product bjvj is minimized. Hence, by Theorem 
5.2 the following can be derived: 

Theorem 5.4 Consider an equality-join query Q on 
relations Rj, 0 5 j 5 N, with (mixed-monotone) 
frequency matrices that satisfy the attribute indepen- 
dence assumption and minimize the result size of Q. 
Also consider an N-tuple of histogram sizes < pj >, 
where pj is associated with both bj and 2j, 1 5 j 5 N. 
There exists an optimal histogram tuple for Q within 
< 7-& > where all histograms in it are serial. 

6 Expected Value of the Query 
Result Size 

The previous results provide answers to the histogram 
optimality question for the extreme cases, when the 
query result size is maximized or minimized. Formal 

results that are applicable to arbitrary cases are un- 
likely to exist, due to the complexity of the opera- 
tions involved. In fact, one can construct examples 
where many serial and nonserial histograms with a 
large number of buckets produce higher errors than 
the trivial histogram. Hence, we argue that a database 
system should use serial histograms to limit the error 
in the extreme cases, so that the worst may be avoided. 

Another approach that could potentially be useful 
would be to identify the optimal histogram for the av- 
erage case and use that in database systems. Specifi- 
cally, consider the expected value of the result size of a 
query Q over all possible associations of frequencies in 
the frequency sets of the relations of Q to attribute val- 
ues in the corresponding domains. Define optimal his- 
tograms as those that minimize the difference between 
the above and the expected value of the approximate 
result size that they generate. The results presented 
below show that all histograms are equivalent in that 
respect. Therefore, this approach is not useful. 

We first provide a formal definition for the expected 
value of the query result size. We assume that for each 
relation Rj, 0 < j 5 N, in query Q, its frequency set 
Bj together with a partitioning of Bj into buckets are 
given. Let B( be the approximate frequency set gener- 
ated from Bj by replacing each frequency by the aver- 
age of the frequencies that belong to the same bucket 
in the given partitioning. For each frequency matrix 
rj, consider all possible arrangements of the elements 
of Bj in the matrix that respect any functional depen- 
dencies that may hold in Rj, 0 < j < N. Each com- 
bination of arrangements in all matrices corresponds 
to a (possibly unique) value for the query result size. 
The average of all these values is the expected value for 
the query result size and is denoted by E(S]. Similarly, 
consider all possible combinations of arrangements of 
the elements of Bi in the frequency matrices that re- 
spect any functional dependencies that may hold in 
Rj, 0 < j < N. Then, generate the expected approxi- 
mate value for the query result size, which is denoted 
by E[S’]. The following theorem deals with the value 
of E[SJ - E[S’]. 

Theorem 6.1 Consider a tree equality-join query Q 
on relations Rj, 0 5 j 5 N, and an (N + 1)-vector 
< Bj > of frequency sets together with partitionings 
of them. If E[,!9l and E[S’] are defined as above, then 
E[sj - E[S’] = 0. 

Note that Theorem 6.1 deals with arbitrary his- 
tograms, not only serial ones. The above, somewhat 
surprising, result implies that all histograms are accu- 
rate in their approximation of the expected value of 
the query result size. Hence, this quantity cannot be 
used for optimizing the histogram choice. 
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Example 6.1 As a simple example of the equality 
between E[S] and E[S’], consider a query Q on two 
relations, & and RI, such that their frequency sets 
are Bs = {a,b,c} and Bi = {d,e,f}. Let these 
sets be partitioned as {{a}, {b, c}} and {{d}, {e, f}}, 
respectively, resulting in the approximate frequency 
sets Bh = {a, (b + c)/2, (b -t c)/2} and B{ = {d, (e + 
f)/2, (e + f)/2}. To compute the expected value of 
the query result size, it is enough to consider a fixed 
frequency vector for & and examine all arrangements 
of the elements of B1 for the frequency vector of RI. 
There are six such arrangements, resulting in the fol- 
lowing formula for E[S]: 

6 E[S] = (ad + be + cf) -t (ad + bf + ce) 

+ (ue + bd + cf) -t (ae + bf + cd) (4) 

+ (uf+bd+ce)+(uf+be+cd). 

Similarly, the following formula is obtained for E[S’]: 

b+ce+f b+ce+f 
6 E[S’] = (ud+22+22) 

b+ce+f b+ce+f 
+ (udfT2+22) 

+ (02 - 
e+f + b+cd+ b+ce+f 

2 22 ) 

+ (vj- 
e+f + b+ce+f + b+c 

22 24 (5) 

e+f + (UT+22 
b+ce+f + b+c 

-i+- 

Note that the first two parentheses of (5) are equal. 
Simple algebraic manipulations show that their sum is 
equal to the sum of the first two parentheses in (4). 
Similarly, the last four parentheses of (5) are equal 
and their sum is equal to the sum of the corresponding 
parentheses in (4). Hence, E[S] - E[S’] = 0. 0 

7 Summary 

Maintaining histograms to approximate frequency dis- 
tributions in relations is a common technique used by 
database systems to limit the errors in the estimates 
of query optimizers. In this paper, we have studied 
histograms and how they reduce errors when the re- 
sult size of a tree join query reaches some extreme. We 
have focused on the class of serial histograms, which 
was previously shown to be optimal for a restricted 
type of tree join queries, and have generalized these 
results to include arbitrary such queries. Specifically, 
we have demonstrated that serial histograms are op- 
timal for arbitrary tree equality-join queries when the 

query result size is maximized, whether or not the at- 
tribute independence assumption holds, and when the 
query result size is minimized and the attribute in- 
dependence assumption holds. We have also shown 
that the expected error for any such query is always 
zero under all histograms, and thus argue that his- 
tograms should be chosen based on the reduction of the 
extreme-cases error, since reduction of the expected er- 
ror is meaningless. 

Several interesting and important questions on his- 
togram optimality remain open. How many buckets 
should an optimal histogram have in order for the er- 
ror to be within certain prespecified bounds? How is 
histogram optimality defined with respect to multiple 
queries and which histograms are to be preferred for a 
variety of queries? Is it reasonable to use histograms 
that are optimai in reducing the variance of the er- 
ror instead of the worst-case error and what are the 
characteristics of such histograms? How do the results 
of this paper change when considering completely dif- 
ferent types of queries (e.g., cyclic joins, non-equality 
joins, or selections) and different parameters of inter- 
est (e.g., operator cost or ranking of alternative ac- 
cess plans, which determines the final decision of the 
optimizer)? Many of these questions are part of our 
current and future work. 
Acknowledgements: We are indebted to Y. C. Tay 
for several useful comments that improved many as- 
pects of the paper. 
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