
Collections of Objects in SQL3

David Beech

Ora4de Corporation
500, Oracle Pm-k-way, Redwood Shores, CA 94065

dbeech@oracle.com

Abstract

SQL3 generalizes the relational model into an object model
offering abstract data types, multiple inheritance, and
dynamic polymorphism. Tables may then contain
collections (multisets) of objects, and sets and lists are
defined as closely related collection types. By specifying an
SQL-Table type template to correspond to the existing
Table concept, it is possible to treat sets and lists as
subtypes of tables that inherit the behavior (and SQL
syntax) for tables, while adding their own specializations.
The SQL set-at-a-time data manipulation kanguage can then
be applied to collections of objects, i.e. tables in which
each row is an object.

1. Introduction

This paper discusses some of the major considerations in
introducing collection types such as Set aud List into
SQL3, which is the informal name for the language defined
in the working draft for the next revision of the IS0 and
ANSI SQL standard 111. The extensious described in this
paper have been adopted by ANSI, and are under
consideration by IS0 at the time of writing, but of cotmse
many further changes may occur before the work ou SQL3
is completed.

Although SQL3 contains a number of extensions that ;LTe
still relational in character, most of the work ou SQL3
since December 1990 h&s been devoted IO gcueralizalion of

Permission to copy without fee all or part of this material
is granted provided thot the copies ure nor made or
distributed for direct commercial utlvanfage, the VLDB
copyright notice and the title of the publicarion and its date
appear, and notice is given that copying is by permission
of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires LI .fee mdbr special
permission from the Enclowrtunt.

Proceedings of the 19th VLDII Conference,
Dublin, Ireland, 1993

the type system of the relational model into an object type
system offering abstract data types, multiple inheritance,
and dynamic polymorphism 121. The extensions are
completely upwards compatible from the relational
language, and subsume the relational model rather than
juxtaposing an object model. To emphasize that the SQL3
model retains the relational model at its heart as a special
case, it may be called a circumrelational model.

Since an object type system requires the definition of
functions, SQL3 has been provided with procedural
language extensions as one means, although not the only
means, of specifying the function bodies. Thus SQL3 is
no longer merely a database sublanguage, but is a
computationally complete programming language, with an
emphasis on database applications. It does not aim to be a
uuiversal application language, but rather aspires to be a
very convenient way of implementing database procedures
and functions to define the semantics of the data in the
database.

The SQL revision previously known informally as SQL2
was completed and formally approved by both IS0 and
ANSI in 1992, and has thus become SQL-92. Previous
versions of the standard were SQL-86 and SQL-89. This
aggressive pace is unlikely to be maintained indefinitely,
and SQL3 will probably be finally approved in 1996 or
1997. Features such as the object extensions, for which
there are strong user requirements, are of course likely to be
implemented ahead of formal standardization. This has
already happened with other features such as triggers and
stored procedures, which were not included in SQL-92 but
have draft definitions in SQL3.

Another reason for urgency in stabilizing the essential
features of SQL3 is that there is strong interest
internationally in developing SQL3 type library deiinitions
for v,arious functional areas, so that objects can be stored in
databases together with the functions defined on them, and
will then be accessible to applications written in a variety
of programming languages. (SQL-92 defines seven
language bindings to standard programming languages, and
SQL3 aims to strengthen this ability to work effectively
with many languages by taking advantage of the increasing
similarity of ils type system to those of programming
languages, defining higher-level bindings involving whole
ohjccts - which may themselves be collections of objects).
An emerging new IS0 project on SQL Multi-Media already

244

has a base proposal for an SQL3 Text type to address the
Full Text area, and proposed SQL3 type definitions for the
Spatial Data area are expected shortly.

Rather than attempt a complete overview of SQL3, this
paper will go into some depth in examining the
implications of the type system for the treatment of
collections of objects. To set the stage, section 2 gives a
brief outline of the SQL3 type system. In section 3, the
relational collection type Table is generalized into a table of
objects. Although this functionality has now been built
directly into the language, it will be shown that the table
concept is no longer primitive in SQL3, but is also
expressible by means of an SQL3 type template
(parameterized type). Section 4 discusses the functionality
of Sets and Lists, and shows how they may be defined
economically as subtypes using the SQL-Table template.
Section 5 summarizes current status and open questions.

2. Outline of SQL3 Type System

The main feature of an object model, by comp‘arison with
the relational model, is the richness of its type system.
Given some predefined base types, the relational model
imposes a strict (and often healthy) discipline in allowing
only one kind of composite entity to be constructed from
these, namely the table, a collection of first-normal-form
rows formed from elements of the base types (or simple
domains defined over the base types). A row often
represents a real-world object like an employee or
department, and is indeed a simple case of an object in the
cUrrent sofhvare sense.

2.1 Types and Tables

Since SQL3 needs to enrich the type system, and the type
of a row is implicit in a relational table definition, a good
place to begin is by making it possible to create a n‘amed
type separately from a table, although with almost identical
syntax to Create table:

Create type Address
(number char(6),

street char(30).
apmo integer,
city char(30),
state cha.r(2),
zip integer);

One use of such a type is as a column data type:

Create table People
(name char(30),

address Address,
bhthdatedate);

The table People is our first non-relational example - it has
an attribute of a composite type (by any reasonable
detini tion of “composite”).

Now it is easy to see how to extend the type system with
the features necessary for it to qualify as an object system:

Create type Person
(name char(30).

address Address,
function age (p Person)

returns interval day;
return . . . /* flattering expression */ ;

function set-age@ Person,
d interval day) returns Person;

begin set phihthdate = current-date - d;
return p;

end ;
private
birthdate date);

Some (or all) of the attributes can be encapsulated, as
birthdate is here, by being preceded by private. This
means that the birthdate is directly accessible only
internally to this type definition. (Subsidiary functions
called only from function bodies in the type can also be
encapsulated by specifying them as private.) Protected is
also specifiable, as in C++. to allow access both within the
type definition and within its subtype definitions. A
public or private tag can precede any attribute or
function of the type definition, and is effective until the
next tag. The default on the first member is public.

Create type also has an operators clause to allow the
identification of “friend” functions that are given the same
accessibility rights as functions specified within the type
definition.

The similarity of a SQL3 type definition to a simplified
C++ class definition [lo] is obvious and intentional, since
mapping between these languages is likely to be of
fundamental importance as the decade progresses.

The word “type” is used in SQL3 iu preference to “class”,
which in the database arena has been overloaded to refer to a
type, or a collection of instances of a type, or both. In
fact, these user-defined types are commonly referred to in
SQL3 as abstract data types (ADTs), although they go
beyond the basic ADT concepts in supporting inheritance
and polymorphism.

Inheritance is provided by an under clause:

Create type Employee under Person
(emp-no char(i0).
dept Department);

245

Multiple inheritance is supported, with a conservative
approach deemed wise in database schemas - name conflicts
must be resolved by renaming inherited elements as part of
the under clause. Dynamic polymorphism is applied as
part of overloading rules that unify the treatment of
specialization in the type hierarchy with overloading of a
routine name across multiple arguments. Space precludes
fuller discussion of these features here, since they are not
crucial to what follows.

2.2 Object identifiers

By default, ADTs are defined with oid, i.e. their insmnces
have system-managed object identifiers, generated
implicitly on creation of the instance. Formally, an
instance of such a type is a pair <aid, value>, where only
the value part participates in comparisons and assignments.

In the example above, where the dept attribute of an
Employee had type Department, this would imply that the
value of the attribute was a reference to a Department
instance, i.e. a copy of its oid (assuming that Department
was a normal ADT with oid). In SQL3, reference values
are constrained pointers, working very much like foreign
keys, with the usual SQL referential integrity checking
applicable to them when used for persistent objects.

Two optimizations of object identity are provided in
creating a type.

First, if a type haS an oid for internal references within the
database, it may still be created with oid not visible,
meaning that the oid cannot be extracted outside the
database, so that the DBMS ueed not manufacture an oid
that it will guarantee indefinitely, but can use something
like a rowid. The default is with oid not visihle for a
top-level type, and subtypes inherit the “strongest”
specification from their supertypes, or may strengthen what
they inherit.

Second, if a type need never be used as a reference type, it
may be specified to be without oid. This has another
important implication. For example, if the type Address
had been specified by

Create type Address without oid
(number char(6),

street char(30),
aptno integer,
city char(30),
state char(2),
zip integer);

Create table People
(name char(30),

address Address,
birthdate date);

a value in the address column would be au actual Address
instance (much like an expanded instance in Eiffel [111)
rather than a references to an Address.

2.3 Type templates, collections, and distinct
types

Type templates are supported, i.e. parameterized types, with
similar syntax to Create type:

Create type template MySet(T type)
(. . .
1;

Create table People
(name char(30).
addresses MySet(Address),
birthdate date
):

The use of MySet(Address) mates a type from the template
by substituting the type Address for T throughout the body
of the remplale. Multiple parameters are permitted, and are
not restricted to being type parameters.

Colleclion types like this are a common use of type
templates, as will be illustrated later in this paper.

Distinct types are strongly typed typedefs:

Create distinct type Kilometres as integer;
Create distinct type Kilogrammes as integer;

The strong typing implies that Kilometres and
Kilogrammes cannot be assigned to each other.

2.4 Attrihutes

Atlributes may be either stored or virtual.

Stored altributes (like columns in tables) do double duty:

. They provide a neater notation than pairs of get
and .se:t functions

. They define both interface and representation

then in

246

To retain the neat notation, and still have encapsulation
(representation-independence in the inlerface), SQL3 also
offers virtual attributes:

. The attribute notation now makes no commitment
to representation

. Users of the interface are unaffected by change of
representation

For example, “age” can be inserted as a virtual attribute
into our previous definition of the Person type:

Create type Person
(name char(30),

address Address,
age virtual,

function age (p Person)
returns interval day;

return . . . /* flattering expression */ ;
function set-age(p Person,

d interval day) returns Person;
begin set pbiidate = current-date - d:

return p;
end ;

private
birthdatedate);

This uses the default naming convention. In full, we could
write

age updatable virtual get with foo set with b,ar,

where foo and bar are any functions defined in the type with
appropriate parameter and return types. It is also possible
to define a read only virtual attribute having a get
with function only.

With the introduction of virtual attributes, attributes do not
break encapsulation. Of course, one could always make all
attributes private and only get the neat notation inside
method bodies. But now the attribute notation can be used
in the public interface orthogonally to the representation.

3. Tables and Type Templates

In order to capture the functionality of an SQL-92 table in a
type template SQL-Table(T type), the type parameter may
be defined to be a simple type with attribute mames and
types corresponding to the column names and types of the
table.

The main challenge is to define the SQL-Table template
with functions that provide equivalent power to the existing
SQL Data Manipulation Language (DML) statements on

tables - Select, Insert, Update, and Delete. (There is
generally room for some debate as to exactly which
operations should be grouped with a given type or
template, due to the asymmetry of the ADT model - a
function with multiple parameters whose types are different
ADTs is a candidate for being placed in any of those ADTs.
For example, is Grant select on Employees to dbeech;
an operation principally on the table, or on the grantee, or
on a privilege manager object?)

The existing DML can then be regarded as syntactic sugar
for invoking these functions. If a user were allowed to
overload the definitions in certain ways and write new
function bodies, the syntactic sugar would still be
available, e.g. au Update statement on a complicated view
could be given user-defined semantics to make it valid.
Likewise, if SQL-Lists and SQL-Sets are definable as
subtypes of SQL-Tables, they can inherit all the DML
functionality and syntactic sugar currently applicable to
tables.

The outline structure will be as follows:

Create type template SQL-Table (T type)
(equals none,

less than none,

constructor function SQL-Table
destructor function Remove-SQL-Table

function SQL-xxx
function SQL-yyy
. . .

k

The naming convention of the SQL- prefer in SQL-Table
and SQL-xxx allows names like xxx to be statement
keywords without causing clashes with reserved words.

All of these functions are, by default, public.

Equals and less than are none, since SQL does not
extend its builtin comparison operators to whole tables -
their most general operands are <few value constructors.

The goal is to complete the signatures of the functions - it
is not necessary to write out their bodies, since the
sem‘antics of these functions are already well defmed in the
standard, when they are invoked with the usual statement
syntax.

3.1 SQL-Table constructor

The lirst thing to note about the constructor is that it is not
equivalent to the more powerful Create table, which not
only constructs a table object but makes it persistent and

247

gives it a name that will be recognized by the built-in name
resolution of SQL. There is currently no way with the
ADT mechanism to build this functionality out of anything
else - Create table is the primitive for creating a
persistent named data object, and this is the only kind of
data object that SQL3, with its relational heritage, currently
allows to be created at the top level.

A similar situation exists in the procedural language with
Declare War Ttypc; --- the naming and lifetime control of
the variable are language primitives, and the constructor is
invoked as part of the whole creation process. Thus the
constructor is neutral as to whether the constructed instance
is to be persistent or transient, and as to how it is n‘amed.
This is an advantage, since the normal case is to construct
(i.e. initialize) instances in the same way whether they are
transient or persistent, and the same default consuuctor c<an
be used. In exceptional cases, different constructors can be
defined and invoked explicitly.

The initialization carried out by Create table is very
simple (bearing in mind that it is using an already crealed
type). It makes a table descriptor that references the type
descriptor, and then creates an emply table. In the ADT
model, a generated type SQL-Table(SomeType) will have
its descriptor pointing to the descriptor for SomeType, and
the constructor makes the empty instance.

A question that naturally arises is what stored attributes
could be used to represent the state of an SQL-Table.
Since the type template is defining an SQL Iable out of
more primitive components, it cannot itself use a table.
Fortunately, the reference concept is available as a
primitive that supports the building of arbitr‘ary collections,
and a table can be constructed by chaining the rows
together, in any of several familiar programming styles,
e.g. using the following SQL-Chain template, where
SQL-Chain and U are with oid and hence imply tie use
of references:

Create type template SQL-Chain (U type)
(next gen-type,

item U);

(The symbol gen-type is SQL3’s way of rcpr.csentiqg the
zges;tr;hen the type template is provldcd wuh an

Create type template SQL-Table (T type)
(. . . ,

private
rows SQL-Chain(T);

Since this is encapsulated in an abstract specilication, an
implementation is free to optimize! Yet for a persislent
table. this use of a chain with indirection is not so far

removed from a practical implementation using an index to
disk blocks which may not be contiguous.

By default, the rows attribute will be initialized to null, so
the constructor has an easy time. In fact, there is no need
for an explicit constructor, since the implicit constructor
assigns defaults.

If the type passed to the type parameter T has been defined
(as an optimization) to be without aid, this removes the
ahove possibility of constructing aggregations of instances
of T out of other primitives, and the representation of such
tables becomes primitive. However, it is interesting to
have observed that when references are available, tables
become non-primitive. References essentially provide a
means of being able to link objects together by a join,
without the objects needing to be in tables. The private
representation of an SQL-Table will in any case not be
used formally in defining the semantics of the functions
corresponding to DML statements, so these functions will
apply to all tables, regardless of whether the “row types” of
Ihe tables are with or without oid.

3.2 Remove-SQL-Table

Just as the constructor was only a part of the semantics of
Create table (or of the creation of a transient table), so
the destructor is only a part of the semantics of Drop
table (or of the destruction of a transient table). The
significant semantics include destroying the chain and all
its referenced “items”. As with the default constructor, the
criterion for the functionality to be included in the default
destructor is that it should apply to both persistent and
transient tables.

3.3 DML functions

Deciding how to srructure the functions corresponding to
DML statements is much like designing a call level
interface (CLI) to invoke SQL functionality. The same
questions arise as to how to:

. pass expressions that need to be evaluated inside a
function, especially when they may contain
<variable n<ame>s to be bound;

. determine the result type of a query (using templates,
the result type will certainly be of the form
SQL-Table(T), but what is T?);

. iterate over the individual rows of a table returned by
a query.

Since these problems have already been solved in SQL-92
in defining Dynamic SQL (and closely corresponding call

248

interfaces have been implemented), there is no riced lo look
further for one viable approach. This may not be the only
useful set of functions, since they are designed for dealing
with a fmed (although growing!) language, and they assume
that the implementor of the functions will cheerfully parse
SQL statements passed as strings. For purposes of
extensibility by user-defined overloading of the functions, it
may be more convenient to define some funclions that
accept arguments already structured into parse trees.
Fortunately the two approaches are not mutually exclusive,
since the type template could contain both sets of functions
- there is no requirement that the functions provided should
be a minimal set without any semantic overlap, so long as
they are semantically consistent.

The solution offered here will take an intermediate course in
the interests of simplicity, without precluding future
extensions of the template for other purposes. The
approach is to assume that the SQL statement has already
been parsed so far as to recognize its initial keyword such
as INSERT, so that a SQL-Insert function can correspond
to this; and that a table expression has been evaluated so far
as to determine a table to serve as the principal operand.

‘Ihe existing descriptor mechanism for dynamic SQL will
be employed. There is not even any need to define an
SQL-Descriptor type, since it suffices to represent
descriptor names as character strings and use the existing
allocate, deallocate, get, and set statements on descriptor
names, once the SQL-Table operation semantics have been
defined (informally) to work with descriptors.

Note that although some of the mechanisms of dynamic
SQL come in useful, this paper is not attempting to
capture the full functionality of dymamic SQL in an ADT.
Because the general structure of dynamic SQL handles any
SQL statement except for some special treatment of
Select and cursors, it might be conceptualized in terms of
SQL-Source-Statement and SQL-Prepared-Statement
types. Those prepared statements that turn out lo be DML
on tables would then, when executed, cause invocation of
the functions defmed on SQL-Tables.

3.3.1 Input values

Following the style of dynamic SQL and the accompanying
treatment of input data, the SQL statement passed as a
string to the operations SQL-Insert, etc., will contain
question marks in the positions where the input values are
to be substituted in order. The actual arguments are then
provided as data values in a descriptor, whose mame is
passed as a character string argument to the DML
operation.

3.3.2 Output values

SQL-Select on an SQL-Table(T) returns an
SQL-Table(f-0, where U may be arbitrarily different from
T, and indeed may be a type previously undefined. Here
there is a very strong motivation to define SQL-Select to
be a function returning an SQL-Table, since nested queries
are then treated very naturally. Since the SQL-Table type
template cannot know how to define the result type in
terms of its T parameter (and not even a particular generated
type can know, since SQL-Select can accept any SELECT
statement as a string argument, and could return a table of
any type). we can do no better than exploit Object as a
supertype of all ADTs, and return an SQL-TableJObject).
The actual type of table returned by a particular query will
be specified in a descriptor, and this information can be fed
into the semantics of further processing of the query result.

3.3.3 Iteration

The classical approach to iteration over a collection of
ohjccts, e.g. in Smalltalk-80, is to have an Iterate operation
on the collection type, that takes a function as an argument
and applies it to each element of the collection in tum (in
some undefined order if the collection is unordered). It is as
though rhe iteration is being carried on “inside” the
collection object, using a call-back. Until SQL3 has
function p<arameters, this approach is not available.

The alternative is to extract the elements in turn from the
collection in order to operate on them “outside” the
collection. This is the cursor approach, where Open
materializes an SQL-Table and Fetch is the sequential
extractor. Since the use of cursors is at the periphery of
SQL where it interfaces to languages without set-at-a-time
operations, this paper dws not attempt to capture the cursor
functionality by using ADTs. However, questions about
the relationship between cursors and tables have received
some thought. For example, are a cursor and a table best
thought of as different specializations of an SQL-Relation
type, in which different manipulative operations are
provided to augment the definition inherited from
SQL-Relation? The definition itself could take the geneml
form of either the body of SQL-Select, or of SQL-Fetch --
- in mathematical terms, either of something akin to a
membership predicate, or of a generator, where (over finite
domains) one function can always be derived from the
other, although optimizers have to worry about strategies
for doieg this. (There is some relevant discussion in [8].)
This definition could be made protected in
SQL-Relation, so that the subtypes can use it, but don’t
have 10 expose its functionality in their public interface if
they don’t want to --- a table would only want to expose it
if it were SQL-Select, and a cursor if it were SQL-Fetch.
A base table has a simple SQL-Fetch that mns along the
ch,ain of its stored representation.

249

3.4 SQL-Table Type Template

Many other functions applicable to tables <are provided in
SQL, either with a function or an operator syntax.
Function signatures for these are rather straightforwardly
included in the SQL-Table template. The template as
currently specified is as follows:

Create type template SQL-Table
(Element-Type type)

(
cast(gen-type as Element-Type

with Table-to-Element);,
cast (gen-type as SQL-Set(Element-Type)

with Distinct);,
cast (gen-type as SQL-List(Element-Type)

with Table-to-List);,
cast (SQL-Empty-Table as gen-type

with Empty-Table-to-Table);,

function SQL-Insert (tabref gen-type,
stmt charmer varying(tax_sInltleng~li),

descr-name character varying(Nuuc_nrrrne-lenglJI));,
function SQL-Select (tabref gen-type,

stmt character varying(rrurx_stnu_lengrll),
descr-name character varying(N~-~arrzngf~))
returns SQL-Table(Object); ,

function SQL-Update (tabref gen-type,
stmt character varying(rrtu~-.~~mC~~ns/~~),

descr-name character varyhg(Nurx_narfu-i~ng/li));,
function SQL-Delete(tabref gen-type,

stmt character varying(Nt~-.~~rnt~~n~~/~),
dew-name character varyLg(i~wx_ntrnle_lengrh));,

function In(table gen-type, elem Element-Type)
returns Boolean ;,

function Exists(tab1e gen-type)
returns Boolean ;,

function Unique(tab1e gen-type)
returns Boolean ;,

function For-Some(table gen-type,
pn-A character varying(Nlax_pr~~l-l~ngfl?),

dew-name character varying(tl~-nNau-i~ngtll))
returns Boolean ;,

function For-All(table gen-type,
pred character varying(tiu~~7r~~~i~lengil~),

descr-name character varying(ri~-nrrrrln~~li))
return.. Boolean ;,

function Average(table gen-type)
returns Element-Type ;,

function Maximum(table gen-type)
returns Element-Type ;,

function Minimum(table gen-type)
returns Element-Type ;,

function Sum(tab1e gen-type)
returns Element-Type;,

function Count(table gen-type)
returns count-type ;,

function Distinct(table gen-type)
returns SQL-Set(Element-Type);,

function Union(table gen-type, table2 gen-type)
returns gen-type;,

function Union-All(table gen-type,
table2 gen-type) returns gen-type;,

function Except(table gen-type, table2 gen-type)
returns gen-type;,

function Except-All(table gen-type,
table2 gen-type) returns gen-type;,

function Intersect(table gentype,
table2 gen-type) returns gen-type;,

function Intersect-All(table gen-type,
table2 gen-type) returns gen-type;,

private:
function Table-to-Element(tab1e gen-type)

returns Element-Type;.
function Table-to-List(table gen-type)

returns SQL-List(Element-Type);.
function Empty-Table-to-Table(target gen-type)

returns gen-type;
1;

4. Sets and Lists

The groundwork has been laid now for using the type
template approach to define functionality for sets and lists
which stays very close to the existing language for tables
(multisets). This has been an active area of SQL3
development during 1‘992 and 1993 [33-[73, [93.

Already, the SQL-Table template type increases flexibility
in the use of tables in SQL, since it is possible, given any
type Z IO use the type SQL-Table(T) as the data type of a
column, attribute, variable or parameter. This is in
addition to being able to create a top-level named persistent
instance of an SQLiTable by using the familiar syntactic
sugar Create table tab of T. The DML statements can
bc applied to instances of SQL-Tables, however they were
cnzaied or nested.

What follows will make it possible to create and use sets
and lists in both the above ways. Top-level sets and lists
may be created by Create set and Create list, with
syntax otherwise identical to Create table.

Although some of the technicalities of this paper may seem
rather intricate, they are needed only in the bootstrapping
process of building collection types by the extensibility

250

mechanisms in the language, so that very litlle aclual
language extension is needed. These mechanisms are
encapsulated as far as the end user is concerned, aud the
resulting application language for sets and lists is simihar
to that for tables.

4.1 Sets

Sets are treated as differing from tables only in excluding
duplicate members (rows). Working from the SQL-Table
template, an SQL-Set template can be defined under it
with an additional uniqueness constraint, otherwise
inheriting all the behavior of tables.

Create type template SQL-Table
(Element-Type type)

(. . . .
function SQL-Insert(...)
function Unique&b gen-type),

/* the <unique predicalc> */

);“’

Create type template SQL-Set
(Element-Type type)

under SQL-Table(Elcmcnt_Type)
(check(Unique(value)),

function Subset(set gen-type,
set2 gen-type) returns Boolean;

);

The SQL-Table template contains the function LJnique to
correspond to the <unique predicate>. This is then
inherited by SQL-Set, and used in a check constraint. A
Subset function has also been introduced.

The keyword value, as in domain constraint definitions,
provides a way of naming, not the type, bul the whole
instance of the type or domain being referenced in an

expression that is being evaluated (it is often called self or
this in programming languages). When a p‘articular
attribute or column is referenced in the check constrai~n, Uie
instance name is usually implicit; and when lhe expression
occurs within a table definition, the table natne is in any
case the instance name, not a mere type name. IIowever,
in a constraint definition of an ADT (including a templale,
which generates ADTs), there is no instance natne, and one
is sometimes needed.

Since all the SQL DML statements are just syntactic sug‘ar
for the corresponding functions like SQL-luscrt on an
SQL-Table. and these functions are inherited by au
SQL-Set, the DML statements are immediately applicable
to sets. By analogy with Create table, Create set is
introduced to make a named persistent instance of an
SQL-Set:

Create set CityZip
(city char(40),

zip inleger);

Then proceed with existing DML:

Insert into CityZip values(‘Los Altos’, 94022);
Insert into CityZip values(‘Menlo Park’, 94025);
Insert into CityZip values(‘Atherton’, 94025);
Insert into CityZip values(‘Palo Alto’, 94301);
Insert into CityZip values(‘Palo Alto’, 94302);

Select zip from CityZip where city=‘Palo Alto’;

So far, all that this illustrates is a slightly neater syntax for
creating a table with a uniqeness constraint across all
columns (the weakest uniqueness constraint, implied by
uniqueness across any subset of columns). The behavior is
just the same, including the exception condition raised on
attempting to insert a duplicate - integrity constraint
viduli0n.

IIowcver, a framework is now in place for systematic
consideration of other functions that might be added to
templates like SQL-Table and SQL-Set, for example to
iucrease the power of search conditions in queries.

And already there is the payoff from the sugar-free syntax,
e.g for a set-valued attribute:

Create set CityZips
(city char(40),

zips SQLSet(integer));

Insert into CityZips
values(‘PaloAlto’,

set(94301,94302,94303,94304,94306));

The set of insert values in parentheses looks as though it
is serving as a constructor of a set. However, existing
constructors on ADTs have to take a fixed number of
argumcuts, and even with overloading (and extreme tedium)
there cau only be a finite number of constructors to cater
for argument lists of different lengths. Recursive use of
something like a 2-place cons function quickly palls -
cons(94301, cons(94302, cons(94303, cons(94304,
cons(94306))))) - so some primitive syntax is needed for
constructing a single collection from an arbitrary number of
elements. The extension adopted is to prefix the
pareulhesized lists by a <table type> of table, set, or
list, corresponding to the trio of statements Create <table
type> T.

A single syntactic primitive that used just plain parentheses
wa% also considered, although that construct is often used in
SQL to specify an ordered tuple whose elements may have

251

different data types, whereas list elements have a common
data type. Further investigation might show that such a
tuple could be implicitly cast to a table, set, or list where
the context required it. Even so, it seemed preferable to
have a simple explicit way of indicating what is iutended in
the case of these fundamental collection types. as with the
corresponding Create statements.

The notations tableo, set& and IistO represent an empty
table, set, and list. These are instances of newly defined
ADTs SQL-Empty-Table, SQL-Empty-Set, and
SQLJ.mpty-List. Casts are defined from these to empty
instances of SQL-Table(T), SQL-Set’(T), and
SQL-List(T), respectively, for any type T. (These casts
have to be defined in the type template that is the target of
the cast, since SQL-Empty-Table, for example, does not
know anything about T in SQL-Table(T). By placing the
cast in the template, a separate cast is defined for each
generated type using a particular T.)

A frequent use of sets is to make sets, not only of objects,
but of references to objects, e.g. a SQL-SeWerson). Siuce
reference types are base types, this again is a collection of a
base type.

Further consideration is being given to the extended
syntactic sugar for SELECT and UPDATE that might be
offered for these nested collections (SQL-Tables as well as
SQL-Sets), but that is beyond the scope of the present
paper.

4.2 Lists

Lists are treated as differing from tables only in
maintaining an ordering of the elements (rows) indepcudent
of their state. Lists lend themselves to a simikar approach
to that used for sets. However, instead of au additional
constraint, overloading of the inherited functions is needed
to make use of the ordering, together with some new
functions:

Create type template SQL-List
(Element-Type type)

under SQL-Table(Elemcnt-Type)
(function SQLJnsert(...)... /* point of insertion

(at end by default) */
function SQL-Select(-)... /* ordering of result */
function SQL-Update(...)... /* chauge or&ring */
function SQL-Delete(...)... /* mainrain order */
function Element (list gen-type, pas iutegcr)

returns Element-Type . . .
function Position (list gen-type.

elem Element-Type) returus inrcgcr . . .
);

As with sets, a keyword is introduced for creation of
persistent named SQL-Lists, following the pattern of
Create table:

Create list Incoming-calls
(line integer);

Insert into Incomingcalls values(4) /* at end of
list *I

alias joe;

For general positioning, the Element and Position
functions are providedz

Select line
from Incoming-calls ic
where position(Incomingcalls,ic)=l;

Declare line-no integer;
Set line-no = element(Incomingcalls,l);

If a query has a list in its from clause, its result will be a
list computed in order from its elements. If there are
multiple lists in the from clause, the order is that of the
Cartesian product formed recursively by iterating most
slowly over the leftmost list, e.g. from Ll,L2 will begin
by taking the first element of LI with each element of L2,
etc. Unordered tables and sets are taken in arbitrary order.
An ordered set could be modeled by an SQL_Ordered_Set
template. using multiple inheritance from SQL-Set and
SQL-List (Fig. 1). but the value of this appears marginal.

SQL-Table

SQL-+ SQL-List

1
I

I
SQL_Ord&ed3et

Figure 1. Possible collection hierarchy

For Insert, an option is provided to insert before or after a
member, specified by a subquery returning a single row:

Insert into Incoming-calls values(1)
before element where oid = joe;

Insert into Incoming-calls values(S)
after element where line = 1;

252

The specified element must exist in the set --- except
possibly when the set is empty, so that no special
initialization logic is required, e.g. a loop around Insert . . .
after could begin by inserting after position 0.

With the form of Insert that contains a <query
expression> producing multiple rows, this is treated,
compatibly, as successively inserting single elements and
not as inserting the collection as a single element. The
frost insertion takes place at the specilied position, and the
other elements follow in order.

Moving now to Update, the syntactic sugx needed to deal
with nested lists as attribute values will be inherited from
SQL-Table, once it has been defined there for collections in
general. The additional refinement on a List is that a new
kind of update is provided to reorder its elements:

Update Incoming_calls
move before element where oid = joe

where sex(caller(line))=‘F;

3.3 Relationship to mathematical sets and lists

Mathematically-inspired treatments of sets and lists regard
them as immutable objects with self-defining identity.
There is only one empty set, and when two people
independently talk about a set (1,2,3 1, they are talking
about the same set. Computation with these .sets and lists
is purely functional, i.e. assignment-free, and a function to
insert an element into a set does not alter that set, but
rather produces a new one (or, more strictly, the denotation
of a set which may already exist, or may even have always
existed in some Platonic sense). Typical functions are
IsEmpty, Union, and Intersection.

A system like this may however be supplemented by an
updatable memory, provided by a general assignment
operator that does not allow partial mutalion of its target,
but completely replaces its value. Thus to insert element
X into set S, instead of In.sert(S,X) we have

set S = Union(S,set(X))

so then the optimization challenge is to avoid lots of
temporary sets, if that is the only way this state chanbw can
be expmsed.

Computing systems generally take a more rehaxed approach
to the points at which state changes can occur. This seems
to be because the intuitive model of a memory, as
something whose state can be partially changed while
retaining its identity, is usually simpler to work with.
This is especially true with a large and intricate memory
such as a human bmin, or the state of the universe, which
are subject to many concurrent state changes. It applies

also to relatively simple collections, such as a football
team which has an identity even though the playing staff
may change.

Thus for both conceptual and performance reasons, a hybrid
situation is the norm --- functions are often designed to be
free from side-effects, but they do not have to be, and indeed
“procedures”, expressible in SQL3 ADTs as functions with
negligible returned values, are usually intended to effect
state changes. A database in particular is designed to be
selectively updatable, rather than having each change
produce a complete new database. An SQL-Table has
update operations such as SQL-Insert on it, besides having
pure functions such as Exists (which means IsNotEmpty),
Union and Intersect.

Functions like Union (and UnionAll) may be added to
SQL-Table to correspond to existing functionality. Call
this a Hybrid Multiset (HM), and let a Pure MultiSet (PM)
have only the pure functions of the HM interface. (Hybrid
is not entirely a derogatory word --- to a nurseryman, say -
_- or to Webster: “A blend of two diverse cultures or
traditions”.)

Then SQL-Set as defined above inherits both the pure and
the impure functions from HM, and becomes the Hybrid
Set (HS), rather than a Pure Set (PS). Similarly for
SQL-List. There could be a corresponding hierarchy of
pure collections. One way of relating the hierarchies by
multiple inheritance is shown in Fig. 2.

Pure Multiset Updatable Multiset
@ML functions only)

Hybrid Multiset
(SQL-Table)

I

Q

I
I 1

Pure et PureList Hybrid Set Hybrid List
(SQL-Set) (SQL-List)

Figure 2. Pure and hybrid collection types

Is it worth introducing these other templates, and
connecting them in this way? Of course, HM is really
symmetrically descended from PM and UM, and the other
hybrids could be derived from their pure counterparts, as
illustrated in Fig. 3.

Is this “mixin” style preferable?

Although initially attractive, both these approaches lead to
further complications, because one really wants the

253

combination of them to give true “is a” semantics - an HS
is an HM in one picture, and an HS is a (specialization of
a) PS in the other.

Pun $L
L

re Multiset

I L

Updatable ;

Hybrid Multise I

Pure Set

1 HybridSef

ist
Hybrid List

Figure 3. An alternative hiemrchy

Therefore, the simpler path has been adopled, offering only
the Hybrid Multiset., Hybrid Set, and Hybrid List, as in
Fig. 1. The user can then choose whether to work with the
the pure or impure functions or with both.

5. Conclusion

Besides the direct availability of the SQL-Table, SQL-Set
and SQL-List type templates for generating collccrion
types (now with syntax multiset(n, sel(‘l), and list(7)) to
be used as the data types of columns, altributes, v‘ariables
and parameters, a few basic language extensions are visible
to the SQL3 user:

l The Create table statement now becomes
Create (table I set I list]..., with Ihe
remainder of its syntax unchanged.

l (table I set I list) may also be used as prefix lo
a parenthesized l.ist of any number of elements
separated by commas, to form a collcclion.

For sets in particular:

. The Subset function is inuoduccd.

For lists in particular:

l Functions Element and Position are introduced to
work with ordering in lists, togelhcr with llead,
Tail, and Append for Lisp style of usage.

. Insert acquires an extra option to control
position of insertion before or after an clement
specified by a query (default is al end ol‘ list).

. Update acquires a move option to update the
ordering within a list.

The use of type templates for defining sets and lists
provided formal justification for their inheriting the
functionality of tables.

Open questions include how to provide improved syntactic
sug&ar in the DML for operations on nested collections of
objects, and how precisely to conceptualize views and
cursors as type templates.

Acknowledgements

I am grateful to Ken Jacobs and Andy Mendelsohn for
discussions clarifying the relationship of the table template
functions to dynamic SQL and corresponding call
inlerfaces.

References

VI

PI

PI

[41

I-51

bl

[71

@I

Jim Melton (ed): (ISO/ANSI Working Draft)
Database Language SQL3, ANSI X3H2-93-091
and IS0 DBL-YOK 003, February, 1993.

David Beech and Cetin Ozbutun, “Object
Databases as Generalizations of Relational
Databases”, ANSI X3H2-90-412, December,
1990.

Amelia Carlson, “LIST, SET, and BAG as Type
Templates”, ANSI X3H2-92-055revl (IS0 DBL
OTT-C)), January 2, 1992.

Jonathan Bauer, Mike Kelley, Krishna Kulkami,
Jim Melton, “Sets, Multisets and Lists”, ANSI
X3112-92-003revl (IS0 DBL KAW-71), February
24, 1992.

Len Gallagher, “SQL as Integrator of Non-SQL
Repositories”, ANSI X3H2-92-51 (IS0 DBL
KAW-98), December 19,199l.

David Beech, “Tables as Type Templates”, ANSI
X3lI2-92-138revl (IS0 DBL CBR-9), June 12,
1992.

David Beech, “Sets and Lists”, ANSI X3H2-92-
220revl (IS0 DBL CBR-S6), October 15.1992.

David Beech, “Intensional Concepts in an Object
Database Model”, Proc. OOPSLA ‘88, ACM
SIGPLAN Notices, 23(1 l), 1988.

254

[9] Amelia Carlson, Rafiul Ahad, Bill Keuf, “SQL3
00 Features”, ANSI X3112-92-066 (IS0 DBL
YOK-3S), January, 1993.

[lo] Margaret Ellis and Bjarne Stroustrup, The
Annotated C++ Reference Manual, Addison
Wesley, Reading, 19(90.

[Ill Bertrand Meyer, Eiffel: The Language, kcnlice
Hall, New York, 1992.

255

