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Abstract 

SQL3 generalizes the relational model into an object model 
offering abstract data types, multiple inheritance, and 
dynamic polymorphism. Tables may then contain 
collections (multisets) of objects, and sets and lists are 
defined as closely related collection types. By specifying an 
SQL-Table type template to correspond to the existing 
Table concept, it is possible to treat sets and lists as 
subtypes of tables that inherit the behavior (and SQL 
syntax) for tables, while adding their own specializations. 
The SQL set-at-a-time data manipulation kanguage can then 
be applied to collections of objects, i.e. tables in which 
each row is an object. 

1. Introduction 

This paper discusses some of the major considerations in 
introducing collection types such as Set aud List into 
SQL3, which is the informal name for the language defined 
in the working draft for the next revision of the IS0 and 
ANSI SQL standard 111. The extensious described in this 
paper have been adopted by ANSI, and are under 
consideration by IS0 at the time of writing, but of cotmse 
many further changes may occur before the work ou SQL3 
is completed. 

Although SQL3 contains a number of extensions that ;LTe 
still relational in character, most of the work ou SQL3 
since December 1990 h&s been devoted IO gcueralizalion of 
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the type system of the relational model into an object type 
system offering abstract data types, multiple inheritance, 
and dynamic polymorphism 121. The extensions are 
completely upwards compatible from the relational 
language, and subsume the relational model rather than 
juxtaposing an object model. To emphasize that the SQL3 
model retains the relational model at its heart as a special 
case, it may be called a circumrelational model. 

Since an object type system requires the definition of 
functions, SQL3 has been provided with procedural 
language extensions as one means, although not the only 
means, of specifying the function bodies. Thus SQL3 is 
no longer merely a database sublanguage, but is a 
computationally complete programming language, with an 
emphasis on database applications. It does not aim to be a 
uuiversal application language, but rather aspires to be a 
very convenient way of implementing database procedures 
and functions to define the semantics of the data in the 
database. 

The SQL revision previously known informally as SQL2 
was completed and formally approved by both IS0 and 
ANSI in 1992, and has thus become SQL-92. Previous 
versions of the standard were SQL-86 and SQL-89. This 
aggressive pace is unlikely to be maintained indefinitely, 
and SQL3 will probably be finally approved in 1996 or 
1997. Features such as the object extensions, for which 
there are strong user requirements, are of course likely to be 
implemented ahead of formal standardization. This has 
already happened with other features such as triggers and 
stored procedures, which were not included in SQL-92 but 
have draft definitions in SQL3. 

Another reason for urgency in stabilizing the essential 
features of SQL3 is that there is strong interest 
internationally in developing SQL3 type library deiinitions 
for v,arious functional areas, so that objects can be stored in 
databases together with the functions defined on them, and 
will then be accessible to applications written in a variety 
of programming languages. (SQL-92 defines seven 
language bindings to standard programming languages, and 
SQL3 aims to strengthen this ability to work effectively 
with many languages by taking advantage of the increasing 
similarity of ils type system to those of programming 
languages, defining higher-level bindings involving whole 
ohjccts - which may themselves be collections of objects). 
An emerging new IS0 project on SQL Multi-Media already 
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has a base proposal for an SQL3 Text type to address the 
Full Text area, and proposed SQL3 type definitions for the 
Spatial Data area are expected shortly. 

Rather than attempt a complete overview of SQL3, this 
paper will go into some depth in examining the 
implications of the type system for the treatment of 
collections of objects. To set the stage, section 2 gives a 
brief outline of the SQL3 type system. In section 3, the 
relational collection type Table is generalized into a table of 
objects. Although this functionality has now been built 
directly into the language, it will be shown that the table 
concept is no longer primitive in SQL3, but is also 
expressible by means of an SQL3 type template 
(parameterized type). Section 4 discusses the functionality 
of Sets and Lists, and shows how they may be defined 
economically as subtypes using the SQL-Table template. 
Section 5 summarizes current status and open questions. 

2. Outline of SQL3 Type System 

The main feature of an object model, by comp‘arison with 
the relational model, is the richness of its type system. 
Given some predefined base types, the relational model 
imposes a strict (and often healthy) discipline in allowing 
only one kind of composite entity to be constructed from 
these, namely the table, a collection of first-normal-form 
rows formed from elements of the base types (or simple 
domains defined over the base types). A row often 
represents a real-world object like an employee or 
department, and is indeed a simple case of an object in the 
cUrrent sofhvare sense. 

2.1 Types and Tables 

Since SQL3 needs to enrich the type system, and the type 
of a row is implicit in a relational table definition, a good 
place to begin is by making it possible to create a n‘amed 
type separately from a table, although with almost identical 
syntax to Create table: 

Create type Address 
( number char(6), 

street char(30). 
apmo integer, 
city char(30), 
state cha.r(2), 
zip integer ); 

One use of such a type is as a column data type: 

Create table People 
( name char(30), 

address Address, 
bhthdatedate ); 

The table People is our first non-relational example - it has 
an attribute of a composite type (by any reasonable 
detini tion of “composite”). 

Now it is easy to see how to extend the type system with 
the features necessary for it to qualify as an object system: 

Create type Person 
( name char(30). 

address Address, 
function age (p Person) 

returns interval day; 
return . . . /* flattering expression */ ; 

function set-age@ Person, 
d interval day) returns Person; 

begin set phihthdate = current-date - d; 
return p; 

end ; 
private 
birthdate date ); 

Some (or all) of the attributes can be encapsulated, as 
birthdate is here, by being preceded by private. This 
means that the birthdate is directly accessible only 
internally to this type definition. (Subsidiary functions 
called only from function bodies in the type can also be 
encapsulated by specifying them as private.) Protected is 
also specifiable, as in C++. to allow access both within the 
type definition and within its subtype definitions. A 
public or private tag can precede any attribute or 
function of the type definition, and is effective until the 
next tag. The default on the first member is public. 

Create type also has an operators clause to allow the 
identification of “friend” functions that are given the same 
accessibility rights as functions specified within the type 
definition. 

The similarity of a SQL3 type definition to a simplified 
C++ class definition [lo] is obvious and intentional, since 
mapping between these languages is likely to be of 
fundamental importance as the decade progresses. 

The word “type” is used in SQL3 iu preference to “class”, 
which in the database arena has been overloaded to refer to a 
type, or a collection of instances of a type, or both. In 
fact, these user-defined types are commonly referred to in 
SQL3 as abstract data types (ADTs), although they go 
beyond the basic ADT concepts in supporting inheritance 
and polymorphism. 

Inheritance is provided by an under clause: 

Create type Employee under Person 
( emp-no char(i0). 
dept Department ); 

245 



Multiple inheritance is supported, with a conservative 
approach deemed wise in database schemas - name conflicts 
must be resolved by renaming inherited elements as part of 
the under clause. Dynamic polymorphism is applied as 
part of overloading rules that unify the treatment of 
specialization in the type hierarchy with overloading of a 
routine name across multiple arguments. Space precludes 
fuller discussion of these features here, since they are not 
crucial to what follows. 

2.2 Object identifiers 

By default, ADTs are defined with oid, i.e. their insmnces 
have system-managed object identifiers, generated 
implicitly on creation of the instance. Formally, an 
instance of such a type is a pair <aid, value>, where only 
the value part participates in comparisons and assignments. 

In the example above, where the dept attribute of an 
Employee had type Department, this would imply that the 
value of the attribute was a reference to a Department 
instance, i.e. a copy of its oid (assuming that Department 
was a normal ADT with oid). In SQL3, reference values 
are constrained pointers, working very much like foreign 
keys, with the usual SQL referential integrity checking 
applicable to them when used for persistent objects. 

Two optimizations of object identity are provided in 
creating a type. 

First, if a type haS an oid for internal references within the 
database, it may still be created with oid not visible, 
meaning that the oid cannot be extracted outside the 
database, so that the DBMS ueed not manufacture an oid 
that it will guarantee indefinitely, but can use something 
like a rowid. The default is with oid not visihle for a 
top-level type, and subtypes inherit the “strongest” 
specification from their supertypes, or may strengthen what 
they inherit. 

Second, if a type need never be used as a reference type, it 
may be specified to be without oid. This has another 
important implication. For example, if the type Address 
had been specified by 

Create type Address without oid 
( number char(6), 

street char(30), 
aptno integer, 
city char(30), 
state char(2), 
zip integer ); 

Create table People 
( name char(30), 

address Address, 
birthdate date ); 

a value in the address column would be au actual Address 
instance (much like an expanded instance in Eiffel [ 111) 
rather than a references to an Address. 

2.3 Type templates, collections, and distinct 
types 

Type templates are supported, i.e. parameterized types, with 
similar syntax to Create type: 

Create type template MySet(T type) 
( . . . 
1; 

Create table People 
( name char(30). 
addresses MySet(Address), 
birthdate date 
): 

The use of MySet(Address) mates a type from the template 
by substituting the type Address for T throughout the body 
of the remplale. Multiple parameters are permitted, and are 
not restricted to being type parameters. 

Colleclion types like this are a common use of type 
templates, as will be illustrated later in this paper. 

Distinct types are strongly typed typedefs: 

Create distinct type Kilometres as integer; 
Create distinct type Kilogrammes as integer; 

The strong typing implies that Kilometres and 
Kilogrammes cannot be assigned to each other. 

2.4 Attrihutes 

Atlributes may be either stored or virtual. 

Stored altributes (like columns in tables) do double duty: 

. They provide a neater notation than pairs of get 
and .se:t functions 

. They define both interface and representation 

then in 
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To retain the neat notation, and still have encapsulation 
(representation-independence in the inlerface), SQL3 also 
offers virtual attributes: 

. The attribute notation now makes no commitment 
to representation 

. Users of the interface are unaffected by change of 
representation 

For example, “age” can be inserted as a virtual attribute 
into our previous definition of the Person type: 

Create type Person 
( name char(30), 

address Address, 
age virtual, 

function age (p Person) 
returns interval day; 

return . . . /* flattering expression */ ; 
function set-age(p Person, 

d interval day) returns Person; 
begin set pbiidate = current-date - d: 

return p; 
end ; 

private 
birthdatedate ); 

This uses the default naming convention. In full, we could 
write 

age updatable virtual get with foo set with b,ar, 

where foo and bar are any functions defined in the type with 
appropriate parameter and return types. It is also possible 
to define a read only virtual attribute having a get 
with function only. 

With the introduction of virtual attributes, attributes do not 
break encapsulation. Of course, one could always make all 
attributes private and only get the neat notation inside 
method bodies. But now the attribute notation can be used 
in the public interface orthogonally to the representation. 

3. Tables and Type Templates 

In order to capture the functionality of an SQL-92 table in a 
type template SQL-Table(T type), the type parameter may 
be defined to be a simple type with attribute mames and 
types corresponding to the column names and types of the 
table. 

The main challenge is to define the SQL-Table template 
with functions that provide equivalent power to the existing 
SQL Data Manipulation Language (DML) statements on 

tables - Select, Insert, Update, and Delete. (There is 
generally room for some debate as to exactly which 
operations should be grouped with a given type or 
template, due to the asymmetry of the ADT model - a 
function with multiple parameters whose types are different 
ADTs is a candidate for being placed in any of those ADTs. 
For example, is Grant select on Employees to dbeech; 
an operation principally on the table, or on the grantee, or 
on a privilege manager object?) 

The existing DML can then be regarded as syntactic sugar 
for invoking these functions. If a user were allowed to 
overload the definitions in certain ways and write new 
function bodies, the syntactic sugar would still be 
available, e.g. au Update statement on a complicated view 
could be given user-defined semantics to make it valid. 
Likewise, if SQL-Lists and SQL-Sets are definable as 
subtypes of SQL-Tables, they can inherit all the DML 
functionality and syntactic sugar currently applicable to 
tables. 

The outline structure will be as follows: 

Create type template SQL-Table ( T type) 
( equals none, 

less than none, 

constructor function SQL-Table . . . . 
destructor function Remove-SQL-Table . . . . 

function SQL-xxx . . . . 
function SQL-yyy . . . . 
. . . 

k 

The naming convention of the SQL- prefer in SQL-Table 
and SQL-xxx allows names like xxx to be statement 
keywords without causing clashes with reserved words. 

All of these functions are, by default, public. 

Equals and less than are none, since SQL does not 
extend its builtin comparison operators to whole tables - 
their most general operands are <few value constructors. 

The goal is to complete the signatures of the functions - it 
is not necessary to write out their bodies, since the 
sem‘antics of these functions are already well defmed in the 
standard, when they are invoked with the usual statement 
syntax. 

3.1 SQL-Table constructor 

The lirst thing to note about the constructor is that it is not 
equivalent to the more powerful Create table, which not 
only constructs a table object but makes it persistent and 
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gives it a name that will be recognized by the built-in name 
resolution of SQL. There is currently no way with the 
ADT mechanism to build this functionality out of anything 
else - Create table is the primitive for creating a 
persistent named data object, and this is the only kind of 
data object that SQL3, with its relational heritage, currently 
allows to be created at the top level. 

A similar situation exists in the procedural language with 
Declare War Ttypc; --- the naming and lifetime control of 
the variable are language primitives, and the constructor is 
invoked as part of the whole creation process. Thus the 
constructor is neutral as to whether the constructed instance 
is to be persistent or transient, and as to how it is n‘amed. 
This is an advantage, since the normal case is to construct 
(i.e. initialize) instances in the same way whether they are 
transient or persistent, and the same default consuuctor c<an 
be used. In exceptional cases, different constructors can be 
defined and invoked explicitly. 

The initialization carried out by Create table is very 
simple (bearing in mind that it is using an already crealed 
type). It makes a table descriptor that references the type 
descriptor, and then creates an emply table. In the ADT 
model, a generated type SQL-Table(SomeType) will have 
its descriptor pointing to the descriptor for SomeType, and 
the constructor makes the empty instance. 

A question that naturally arises is what stored attributes 
could be used to represent the state of an SQL-Table. 
Since the type template is defining an SQL Iable out of 
more primitive components, it cannot itself use a table. 
Fortunately, the reference concept is available as a 
primitive that supports the building of arbitr‘ary collections, 
and a table can be constructed by chaining the rows 
together, in any of several familiar programming styles, 
e.g. using the following SQL-Chain template, where 
SQL-Chain and U are with oid and hence imply tie use 
of references: 

Create type template SQL-Chain (U type) 
( next gen-type, 

item U); 

(The symbol gen-type is SQL3’s way of rcpr.csentiqg the 
zges;tr;hen the type template is provldcd wuh an 

Create type template SQL-Table (T type) 
( . . . , 

private 
rows SQL-Chain(T); 

Since this is encapsulated in an abstract specilication, an 
implementation is free to optimize! Yet for a persislent 
table. this use of a chain with indirection is not so far 

removed from a practical implementation using an index to 
disk blocks which may not be contiguous. 

By default, the rows attribute will be initialized to null, so 
the constructor has an easy time. In fact, there is no need 
for an explicit constructor, since the implicit constructor 
assigns defaults. 

If the type passed to the type parameter T has been defined 
(as an optimization) to be without aid, this removes the 
ahove possibility of constructing aggregations of instances 
of T out of other primitives, and the representation of such 
tables becomes primitive. However, it is interesting to 
have observed that when references are available, tables 
become non-primitive. References essentially provide a 
means of being able to link objects together by a join, 
without the objects needing to be in tables. The private 
representation of an SQL-Table will in any case not be 
used formally in defining the semantics of the functions 
corresponding to DML statements, so these functions will 
apply to all tables, regardless of whether the “row types” of 
Ihe tables are with or without oid. 

3.2 Remove-SQL-Table 

Just as the constructor was only a part of the semantics of 
Create table (or of the creation of a transient table), so 
the destructor is only a part of the semantics of Drop 
table (or of the destruction of a transient table). The 
significant semantics include destroying the chain and all 
its referenced “items”. As with the default constructor, the 
criterion for the functionality to be included in the default 
destructor is that it should apply to both persistent and 
transient tables. 

3.3 DML functions 

Deciding how to srructure the functions corresponding to 
DML statements is much like designing a call level 
interface (CLI) to invoke SQL functionality. The same 
questions arise as to how to: 

. pass expressions that need to be evaluated inside a 
function, especially when they may contain 
<variable n<ame>s to be bound; 

. determine the result type of a query (using templates, 
the result type will certainly be of the form 
SQL-Table(T), but what is T?); 

. iterate over the individual rows of a table returned by 
a query. 

Since these problems have already been solved in SQL-92 
in defining Dynamic SQL (and closely corresponding call 
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interfaces have been implemented), there is no riced lo look 
further for one viable approach. This may not be the only 
useful set of functions, since they are designed for dealing 
with a fmed (although growing!) language, and they assume 
that the implementor of the functions will cheerfully parse 
SQL statements passed as strings. For purposes of 
extensibility by user-defined overloading of the functions, it 
may be more convenient to define some funclions that 
accept arguments already structured into parse trees. 
Fortunately the two approaches are not mutually exclusive, 
since the type template could contain both sets of functions 
- there is no requirement that the functions provided should 
be a minimal set without any semantic overlap, so long as 
they are semantically consistent. 

The solution offered here will take an intermediate course in 
the interests of simplicity, without precluding future 
extensions of the template for other purposes. The 
approach is to assume that the SQL statement has already 
been parsed so far as to recognize its initial keyword such 
as INSERT, so that a SQL-Insert function can correspond 
to this; and that a table expression has been evaluated so far 
as to determine a table to serve as the principal operand. 

‘Ihe existing descriptor mechanism for dynamic SQL will 
be employed. There is not even any need to define an 
SQL-Descriptor type, since it suffices to represent 
descriptor names as character strings and use the existing 
allocate, deallocate, get, and set statements on descriptor 
names, once the SQL-Table operation semantics have been 
defined (informally) to work with descriptors. 

Note that although some of the mechanisms of dynamic 
SQL come in useful, this paper is not attempting to 
capture the full functionality of dymamic SQL in an ADT. 
Because the general structure of dynamic SQL handles any 
SQL statement except for some special treatment of 
Select and cursors, it might be conceptualized in terms of 
SQL-Source-Statement and SQL-Prepared-Statement 
types. Those prepared statements that turn out lo be DML 
on tables would then, when executed, cause invocation of 
the functions defmed on SQL-Tables. 

3.3.1 Input values 

Following the style of dynamic SQL and the accompanying 
treatment of input data, the SQL statement passed as a 
string to the operations SQL-Insert, etc., will contain 
question marks in the positions where the input values are 
to be substituted in order. The actual arguments are then 
provided as data values in a descriptor, whose mame is 
passed as a character string argument to the DML 
operation. 

3.3.2 Output values 

SQL-Select on an SQL-Table(T) returns an 
SQL-Table(f-0, where U may be arbitrarily different from 
T, and indeed may be a type previously undefined. Here 
there is a very strong motivation to define SQL-Select to 
be a function returning an SQL-Table, since nested queries 
are then treated very naturally. Since the SQL-Table type 
template cannot know how to define the result type in 
terms of its T parameter (and not even a particular generated 
type can know, since SQL-Select can accept any SELECT 
statement as a string argument, and could return a table of 
any type). we can do no better than exploit Object as a 
supertype of all ADTs, and return an SQL-TableJObject). 
The actual type of table returned by a particular query will 
be specified in a descriptor, and this information can be fed 
into the semantics of further processing of the query result. 

3.3.3 Iteration 

The classical approach to iteration over a collection of 
ohjccts, e.g. in Smalltalk-80, is to have an Iterate operation 
on the collection type, that takes a function as an argument 
and applies it to each element of the collection in tum (in 
some undefined order if the collection is unordered). It is as 
though rhe iteration is being carried on “inside” the 
collection object, using a call-back. Until SQL3 has 
function p<arameters, this approach is not available. 

The alternative is to extract the elements in turn from the 
collection in order to operate on them “outside” the 
collection. This is the cursor approach, where Open 
materializes an SQL-Table and Fetch is the sequential 
extractor. Since the use of cursors is at the periphery of 
SQL where it interfaces to languages without set-at-a-time 
operations, this paper dws not attempt to capture the cursor 
functionality by using ADTs. However, questions about 
the relationship between cursors and tables have received 
some thought. For example, are a cursor and a table best 
thought of as different specializations of an SQL-Relation 
type, in which different manipulative operations are 
provided to augment the definition inherited from 
SQL-Relation? The definition itself could take the geneml 
form of either the body of SQL-Select, or of SQL-Fetch -- 
- in mathematical terms, either of something akin to a 
membership predicate, or of a generator, where (over finite 
domains) one function can always be derived from the 
other, although optimizers have to worry about strategies 
for doieg this. (There is some relevant discussion in [8].) 
This definition could be made protected in 
SQL-Relation, so that the subtypes can use it, but don’t 
have 10 expose its functionality in their public interface if 
they don’t want to --- a table would only want to expose it 
if it were SQL-Select, and a cursor if it were SQL-Fetch. 
A base table has a simple SQL-Fetch that mns along the 
ch,ain of its stored representation. 
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3.4 SQL-Table Type Template 

Many other functions applicable to tables <are provided in 
SQL, either with a function or an operator syntax. 
Function signatures for these are rather straightforwardly 
included in the SQL-Table template. The template as 
currently specified is as follows: 

Create type template SQL-Table 
(Element-Type type) 

( 
cast(gen-type as Element-Type 

with Table-to-Element);, 
cast (gen-type as SQL-Set( Element-Type ) 

with Distinct);, 
cast (gen-type as SQL-List( Element-Type ) 

with Table-to-List);, 
cast (SQL-Empty-Table as gen-type 

with Empty-Table-to-Table);, 

function SQL-Insert (tabref gen-type, 
stmt charmer varying(tax_sInltleng~li), 

descr-name character varying(Nuuc_nrrrne-lenglJI));, 
function SQL-Select (tabref gen-type, 

stmt character varying(rrurx_stnu_lengrll), 
descr-name character varying(N~-~arrzngf~)) 
returns SQL-Table(Object); , 

function SQL-Update (tabref gen-type, 
stmt character varying(rrtu~-.~~mC~~ns/~~), 

descr-name character varyhg(Nurx_narfu-i~ng/li));, 
function SQL-Delete(tabref gen-type, 

stmt character varying(Nt~-.~~rnt~~n~~/~), 
dew-name character varyLg(i~wx_ntrnle_lengrh));, 

function In(table gen-type, elem Element-Type) 
returns Boolean ;, 

function Exists(tab1e gen-type) 
returns Boolean ;, 

function Unique(tab1e gen-type) 
returns Boolean ;, 

function For-Some(table gen-type, 
pn-A character varying(Nlax_pr~~l-l~ngfl?), 

dew-name character varying(tl~-nNau-i~ngtll)) 
returns Boolean ;, 

function For-All(table gen-type, 
pred character varying(tiu~~7r~~~i~lengil~), 

descr-name character varying(ri~-nrrrrln~~li)) 
return.. Boolean ;, 

function Average(table gen-type) 
returns Element-Type ;, 

function Maximum(table gen-type) 
returns Element-Type ;, 

function Minimum(table gen-type) 
returns Element-Type ;, 

function Sum(tab1e gen-type) 
returns Element-Type;, 

function Count(table gen-type) 
returns count-type ;, 

function Distinct(table gen-type) 
returns SQL-Set(Element-Type);, 

function Union(table gen-type, table2 gen-type) 
returns gen-type;, 

function Union-All(table gen-type, 
table2 gen-type) returns gen-type;, 

function Except(table gen-type, table2 gen-type) 
returns gen-type;, 

function Except-All(table gen-type, 
table2 gen-type) returns gen-type;, 

function Intersect(table gentype, 
table2 gen-type) returns gen-type;, 

function Intersect-All(table gen-type, 
table2 gen-type) returns gen-type;, 

private: 
function Table-to-Element(tab1e gen-type) 

returns Element-Type;. 
function Table-to-List(table gen-type) 

returns SQL-List( Element-Type );. 
function Empty-Table-to-Table(target gen-type) 

returns gen-type; 
1; 

4. Sets and Lists 

The groundwork has been laid now for using the type 
template approach to define functionality for sets and lists 
which stays very close to the existing language for tables 
(multisets). This has been an active area of SQL3 
development during 1‘992 and 1993 [33-[73, [93. 

Already, the SQL-Table template type increases flexibility 
in the use of tables in SQL, since it is possible, given any 
type Z IO use the type SQL-Table(T) as the data type of a 
column, attribute, variable or parameter. This is in 
addition to being able to create a top-level named persistent 
instance of an SQLiTable by using the familiar syntactic 
sugar Create table tab of T. The DML statements can 
bc applied to instances of SQL-Tables, however they were 
cnzaied or nested. 

What follows will make it possible to create and use sets 
and lists in both the above ways. Top-level sets and lists 
may be created by Create set and Create list, with 
syntax otherwise identical to Create table. 

Although some of the technicalities of this paper may seem 
rather intricate, they are needed only in the bootstrapping 
process of building collection types by the extensibility 
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mechanisms in the language, so that very litlle aclual 
language extension is needed. These mechanisms are 
encapsulated as far as the end user is concerned, aud the 
resulting application language for sets and lists is simihar 
to that for tables. 

4.1 Sets 

Sets are treated as differing from tables only in excluding 
duplicate members (rows). Working from the SQL-Table 
template, an SQL-Set template can be defined under it 
with an additional uniqueness constraint, otherwise 
inheriting all the behavior of tables. 

Create type template SQL-Table 
(Element-Type type) 

( . . . . 
function SQL-Insert(...) . . . . 
function Unique&b gen-type), 

/* the <unique predicalc> */ 

);“’ 

Create type template SQL-Set 
(Element-Type type) 

under SQL-Table(Elcmcnt_Type) 
( check(Unique(value)), 

function Subset(set gen-type, 
set2 gen-type) returns Boolean; 

); 

The SQL-Table template contains the function LJnique to 
correspond to the <unique predicate>. This is then 
inherited by SQL-Set, and used in a check constraint. A 
Subset function has also been introduced. 

The keyword value, as in domain constraint definitions, 
provides a way of naming, not the type, bul the whole 
instance of the type or domain being referenced in an 

expression that is being evaluated (it is often called self or 
this in programming languages). When a p‘articular 
attribute or column is referenced in the check constrai~n, Uie 
instance name is usually implicit; and when lhe expression 
occurs within a table definition, the table natne is in any 
case the instance name, not a mere type name. IIowever, 
in a constraint definition of an ADT (including a templale, 
which generates ADTs), there is no instance natne, and one 
is sometimes needed. 

Since all the SQL DML statements are just syntactic sug‘ar 
for the corresponding functions like SQL-luscrt on an 
SQL-Table. and these functions are inherited by au 
SQL-Set, the DML statements are immediately applicable 
to sets. By analogy with Create table, Create set is 
introduced to make a named persistent instance of an 
SQL-Set: 

Create set CityZip 
( city char(40), 

zip inleger); 

Then proceed with existing DML: 

Insert into CityZip values( ‘Los Altos’, 94022); 
Insert into CityZip values( ‘Menlo Park’, 94025); 
Insert into CityZip values(‘Atherton’, 94025); 
Insert into CityZip values(‘Palo Alto’, 94301); 
Insert into CityZip values(‘Palo Alto’, 94302); 

Select zip from CityZip where city=‘Palo Alto’; 

So far, all that this illustrates is a slightly neater syntax for 
creating a table with a uniqeness constraint across all 
columns (the weakest uniqueness constraint, implied by 
uniqueness across any subset of columns). The behavior is 
just the same, including the exception condition raised on 
attempting to insert a duplicate - integrity constraint 
viduli0n. 

IIowcver, a framework is now in place for systematic 
consideration of other functions that might be added to 
templates like SQL-Table and SQL-Set, for example to 
iucrease the power of search conditions in queries. 

And already there is the payoff from the sugar-free syntax, 
e.g for a set-valued attribute: 

Create set CityZips 
( city char(40), 

zips SQLSet(integer)); 

Insert into CityZips 
values(‘PaloAlto’, 

set(94301,94302,94303,94304,94306)); 

The set of insert values in parentheses looks as though it 
is serving as a constructor of a set. However, existing 
constructors on ADTs have to take a fixed number of 
argumcuts, and even with overloading (and extreme tedium) 
there cau only be a finite number of constructors to cater 
for argument lists of different lengths. Recursive use of 
something like a 2-place cons function quickly palls - 
cons(94301, cons(94302, cons(94303, cons(94304, 
cons(94306))))) - so some primitive syntax is needed for 
constructing a single collection from an arbitrary number of 
elements. The extension adopted is to prefix the 
pareulhesized lists by a <table type> of table, set, or 
list, corresponding to the trio of statements Create <table 
type> T. 

A single syntactic primitive that used just plain parentheses 
wa% also considered, although that construct is often used in 
SQL to specify an ordered tuple whose elements may have 
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different data types, whereas list elements have a common 
data type. Further investigation might show that such a 
tuple could be implicitly cast to a table, set, or list where 
the context required it. Even so, it seemed preferable to 
have a simple explicit way of indicating what is iutended in 
the case of these fundamental collection types. as with the 
corresponding Create statements. 

The notations tableo, set& and IistO represent an empty 
table, set, and list. These are instances of newly defined 
ADTs SQL-Empty-Table, SQL-Empty-Set, and 
SQLJ.mpty-List. Casts are defined from these to empty 
instances of SQL-Table(T), SQL-Set’(T), and 
SQL-List(T), respectively, for any type T. (These casts 
have to be defined in the type template that is the target of 
the cast, since SQL-Empty-Table, for example, does not 
know anything about T in SQL-Table(T). By placing the 
cast in the template, a separate cast is defined for each 
generated type using a particular T.) 

A frequent use of sets is to make sets, not only of objects, 
but of references to objects, e.g. a SQL-SeWerson). Siuce 
reference types are base types, this again is a collection of a 
base type. 

Further consideration is being given to the extended 
syntactic sugar for SELECT and UPDATE that might be 
offered for these nested collections (SQL-Tables as well as 
SQL-Sets), but that is beyond the scope of the present 
paper. 

4.2 Lists 

Lists are treated as differing from tables only in 
maintaining an ordering of the elements (rows) indepcudent 
of their state. Lists lend themselves to a simikar approach 
to that used for sets. However, instead of au additional 
constraint, overloading of the inherited functions is needed 
to make use of the ordering, together with some new 
functions: 

Create type template SQL-List 
(Element-Type type) 

under SQL-Table(Elemcnt-Type) 
( function SQLJnsert(...)... /* point of insertion 

(at end by default ) */ 
function SQL-Select(-)... /* ordering of result */ 
function SQL-Update(...)... /* chauge or&ring */ 
function SQL-Delete(...)... /* mainrain order */ 
function Element (list gen-type, pas iutegcr) 

returns Element-Type . . . 
function Position (list gen-type. 

elem Element-Type) returus inrcgcr . . . 
); 

As with sets, a keyword is introduced for creation of 
persistent named SQL-Lists, following the pattern of 
Create table: 

Create list Incoming-calls 
( line integer); 

Insert into Incomingcalls values(4) /* at end of 
list *I 

alias joe; 

For general positioning, the Element and Position 
functions are providedz 

Select line 
from Incoming-calls ic 
where position(Incomingcalls,ic)=l; 

Declare line-no integer; 
Set line-no = element(Incomingcalls,l); 

If a query has a list in its from clause, its result will be a 
list computed in order from its elements. If there are 
multiple lists in the from clause, the order is that of the 
Cartesian product formed recursively by iterating most 
slowly over the leftmost list, e.g. from Ll,L2 will begin 
by taking the first element of LI with each element of L2, 
etc. Unordered tables and sets are taken in arbitrary order. 
An ordered set could be modeled by an SQL_Ordered_Set 
template. using multiple inheritance from SQL-Set and 
SQL-List (Fig. 1). but the value of this appears marginal. 

SQL-Table 

SQL-+ SQL-List 

1 
I 

I 
SQL_Ord&ed3et 

Figure 1. Possible collection hierarchy 

For Insert, an option is provided to insert before or after a 
member, specified by a subquery returning a single row: 

Insert into Incoming-calls values( 1) 
before element where oid = joe; 

Insert into Incoming-calls values(S) 
after element where line = 1; 
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The specified element must exist in the set --- except 
possibly when the set is empty, so that no special 
initialization logic is required, e.g. a loop around Insert . . . 
after could begin by inserting after position 0. 

With the form of Insert that contains a <query 
expression> producing multiple rows, this is treated, 
compatibly, as successively inserting single elements and 
not as inserting the collection as a single element. The 
frost insertion takes place at the specilied position, and the 
other elements follow in order. 

Moving now to Update, the syntactic sugx needed to deal 
with nested lists as attribute values will be inherited from 
SQL-Table, once it has been defined there for collections in 
general. The additional refinement on a List is that a new 
kind of update is provided to reorder its elements: 

Update Incoming_calls 
move before element where oid = joe 

where sex(caller(line))=‘F; 

3.3 Relationship to mathematical sets and lists 

Mathematically-inspired treatments of sets and lists regard 
them as immutable objects with self-defining identity. 
There is only one empty set, and when two people 
independently talk about a set ( 1,2,3 1, they are talking 
about the same set. Computation with these .sets and lists 
is purely functional, i.e. assignment-free, and a function to 
insert an element into a set does not alter that set, but 
rather produces a new one (or, more strictly, the denotation 
of a set which may already exist, or may even have always 
existed in some Platonic sense). Typical functions are 
IsEmpty, Union, and Intersection. 

A system like this may however be supplemented by an 
updatable memory, provided by a general assignment 
operator that does not allow partial mutalion of its target, 
but completely replaces its value. Thus to insert element 
X into set S, instead of In.sert(S,X) we have 

set S = Union(S,set(X)) 

so then the optimization challenge is to avoid lots of 
temporary sets, if that is the only way this state chanbw can 
be expmsed. 

Computing systems generally take a more rehaxed approach 
to the points at which state changes can occur. This seems 
to be because the intuitive model of a memory, as 
something whose state can be partially changed while 
retaining its identity, is usually simpler to work with. 
This is especially true with a large and intricate memory 
such as a human bmin, or the state of the universe, which 
are subject to many concurrent state changes. It applies 

also to relatively simple collections, such as a football 
team which has an identity even though the playing staff 
may change. 

Thus for both conceptual and performance reasons, a hybrid 
situation is the norm --- functions are often designed to be 
free from side-effects, but they do not have to be, and indeed 
“procedures”, expressible in SQL3 ADTs as functions with 
negligible returned values, are usually intended to effect 
state changes. A database in particular is designed to be 
selectively updatable, rather than having each change 
produce a complete new database. An SQL-Table has 
update operations such as SQL-Insert on it, besides having 
pure functions such as Exists (which means IsNotEmpty), 
Union and Intersect. 

Functions like Union (and UnionAll) may be added to 
SQL-Table to correspond to existing functionality. Call 
this a Hybrid Multiset (HM), and let a Pure MultiSet (PM) 
have only the pure functions of the HM interface. (Hybrid 
is not entirely a derogatory word --- to a nurseryman, say - 
_- or to Webster: “A blend of two diverse cultures or 
traditions”.) 

Then SQL-Set as defined above inherits both the pure and 
the impure functions from HM, and becomes the Hybrid 
Set (HS), rather than a Pure Set (PS). Similarly for 
SQL-List. There could be a corresponding hierarchy of 
pure collections. One way of relating the hierarchies by 
multiple inheritance is shown in Fig. 2. 

Pure Multiset Updatable Multiset 
@ML functions only) 

Hybrid Multiset 
(SQL-Table) 

I 

Q 

I 
I 1 

Pure et PureList Hybrid Set Hybrid List 
(SQL-Set) (SQL-List) 

Figure 2. Pure and hybrid collection types 

Is it worth introducing these other templates, and 
connecting them in this way? Of course, HM is really 
symmetrically descended from PM and UM, and the other 
hybrids could be derived from their pure counterparts, as 
illustrated in Fig. 3. 

Is this “mixin” style preferable? 

Although initially attractive, both these approaches lead to 
further complications, because one really wants the 
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combination of them to give true “is a” semantics - an HS 
is an HM in one picture, and an HS is a (specialization of 
a) PS in the other. 

Pun $L 
L 

re Multiset 

I L 

Updatable ; 

Hybrid Multise I 

Pure Set 

1 HybridSef 

ist 
Hybrid List 

Figure 3. An alternative hiemrchy 

Therefore, the simpler path has been adopled, offering only 
the Hybrid Multiset., Hybrid Set, and Hybrid List, as in 
Fig. 1. The user can then choose whether to work with the 
the pure or impure functions or with both. 

5. Conclusion 

Besides the direct availability of the SQL-Table, SQL-Set 
and SQL-List type templates for generating collccrion 
types (now with syntax multiset(n, sel(‘l), and list(7)) to 
be used as the data types of columns, altributes, v‘ariables 
and parameters, a few basic language extensions are visible 
to the SQL3 user: 

l The Create table statement now becomes 
Create (table I set I list]..., with Ihe 
remainder of its syntax unchanged. 

l (table I set I list) may also be used as prefix lo 
a parenthesized l.ist of any number of elements 
separated by commas, to form a collcclion. 

For sets in particular: 

. The Subset function is inuoduccd. 

For lists in particular: 

l Functions Element and Position are introduced to 
work with ordering in lists, togelhcr with llead, 
Tail, and Append for Lisp style of usage. 

. Insert acquires an extra option to control 
position of insertion before or after an clement 
specified by a query (default is al end ol‘ list). 

. Update acquires a move option to update the 
ordering within a list. 

The use of type templates for defining sets and lists 
provided formal justification for their inheriting the 
functionality of tables. 

Open questions include how to provide improved syntactic 
sug&ar in the DML for operations on nested collections of 
objects, and how precisely to conceptualize views and 
cursors as type templates. 
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