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Abstract 
The iVCR 3700 is our next-generation general purpose computer. Its design benefited from 10 years of 
Teradata DBC/1012 industrial experience, with which we hold a 70% market share in commercial VLDB 
applications. The NCR 3700 will be sold as a large parallel Unix system, and as a database computer. The 
NCR 3700 can run third party merchant databases, as well as the Teradata relational DBMS. Readers 
should keep in mind that all the &sign decisions assume VLDB (multi-terabyte) size applications. The 
NCR 3700 and the DBC/1012 have a close symbiotic relationship between the hardware and the software. 
The operating system and hardware contain features and extensions used by the database to exploit 
parallelism. This paper describes the NCR 3700 architecture, hardware capabilities, the BYNEITM 
interconnection network, the Unix/NS operating system, and the Teradata relational database. We describe 
our notion of a Trusted Parallel Applicafion (TPA) that runs under our extended Unix operating system, 
UnixINS. The most important TPA is the Teradata relational database. Real-world VLDB systems have 
difficult system administration problems. We conclude the paper by describing one of these problems, 
namely, the loading of massive amounts of data. The NCR 3700 computer and database software were 
designed to efficiently run new multi-terabyte level VLDB applications well into the 21st century. 

1 The NCR 3700 Hardware Overview 
The NCR 3700 exploits recent technology advancements in hardware and software. The software design 
utilizes new developments in parallel operating systems that exploit the NCR 3700 architecture, BYNET 
interconnection network, RAID [ll] disk array storage and multi-processing at the board-level. The NCR 
3700 primary design goal was to linearly scale-up CPU and I/O utilization as the systems grows. The NCR 
3700 was designed to service the massively-parallel UNIX and Teradata’s very-large database market. The 
largest DBC/1012 [8] database application is a mission critical 2-Terabyte database application; DBC/1012 
case studies are documented in [4]. The NCR 3700 will be sold as a database computer [2,5,7, 81 as well 
as a massively-parallel UNIX system. Each processor module runs Unix/NS, an enhanced UNIXTM SVR4 
operating system. This paper concentrates and emphasizes the NCR 3700 as a relational database machine 
for VLDB applications. 

The NCR 3700 (Figure 1) basic building blocks are Processor Module Assemblies (PMAs). The NCR 3700 
has a single processor type, the PMA. The PMA is a processor board with four tightly-coupled processor 
units. The first PMA generation uses a quad 5OMHz Intel 80486 CPU, and 512MB of memory. Each CPU 
has an on-chip 8KB cache and a second level 256KB cache. The channel and network attachments are 
through the Micro Channel Adapter (MCA) bus allowing us to connect to the IBM Channel as well as a 
variety of network hardware. Every PMA is logically composed of six boards: (1) a 4 CPU processor 
board, (2) SCSI host adapter board, (3) BYNET interface controller with a dedicated SPARC processor, 
(4) memory board, (5) power board, and (6) a board reserved for future use. The PMA boards share a 
memory bus, called the JDBus, which is capable of 200 MB/set peak performance. 
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The disk arrays are connected to the PMA via a standard SCSI-2 interface. The disk array has dual access 
paths, including dual controllers. The data is stored on the disk array using a modified RAID logic, which 
can survive a single disk failure. The disk array can be configured with hot spares that are used to 
reconstruct the data of a failed drive. The initial disk array matrix is built using 1.6GB drives configured 5 
deep and 6 wide giving 48GB of unformatted capacity. Future disk arrays will have more disks and support 
99GB of unformatted capacity. 
The NCR 3700 is configured as a series of cliques. A clique is a collection of PMAs and RAID disk arrays 
that are connected by the same bus controller, and thus can communicate directly. The simplest fault- 
tolerant clique configuration has two PMAs connected to a RAID disk array. In this configuration, when a 
PMA fails there is still access to the data via the second PMA. Determining the optimal clique 
configuration mix (ratio of PMAs to disk arrays) at this time, is a black art that involves an application 
specific complex trade-off between fault-tolerance, price and performance. The external requesting clients 
to the NCR 3700 are connected through various local/wide area networks and protocols such as: Ethernet, 
FDDI, Token Ring, TCP/IP, ISO/OSI, XNS and X.25. Mainframe clients are connected and served via 
streaming channels connected to the PMAs. 

The DBC/1012 uses the YNET[16] interconnection network. The YNET is a broadcast based, 6MB/sec 
bandwidth interconnection network, with a hardware-based sorting mechanism, and global 
synchronization. The YNET design assumption was that the database software will broadcast messages to 
processors owning the data, but in practice a significant amount of messaging turn out be point-to-point. 
The YNET bandwidth is not scalable to the maximum 1000 processor board configuration. Based on these 
experiences, a new interconnection network was designed, the BYNETTM [lo]. The BYNET preserved and 
enhanced YNET features, and addressed the scalability limitation. 

The BYNETrM is a scalable, Banyan topology, multistage interconnection network that supports broadcast, 
multicast and monocast messages and is internally comprised of 8x8 crossbar switch nodes. Each PMA has 
two optical fiber connections to the BYNET Each BYNET connection has a full-duplexed lOMB/sec 
bandwidth; hence two BYNETs per PMA provide 2OMB/sec throughput. The BYNET is architected to 
interconnect up to 4096 NCR 3700 processor modules; thus the maximum monocast throughput is 40 GB 
per second per BYNET, minus contention. Both simulation and hardware analysis of a 64 processor 
module configuration exchanging 4KB messages at random indicate that the sustainable throughput is 
about 2/3 of the maximum. The BYNET motwcus~ messages are two-way communication links established 
between two PMA processors. The requesting PMA processor communicates on a high capacity forward 
channel, while the responding processor can reply using a lower capacity backchannel. 

231 



The BYNET broadcust and multicast messages am two-way communication trees established between the 
sender PMA and the receiving PMAs. The BYNET supports both blocking and non-blocking protocols. 
The sender sends the data down the tree on the high capacity forward channels. The receivers respond on 
the low capacity backchannels. The responses am combined at the sender using one of the predefined 
combining functions. The combining functions are implemented in BYNET hardware/firmware and thus 

execute quickly. Selection of the combining function occurs when the communication tree is established. 
For broadcast or multicast the combining function selects the lowest response. Successful receivers 
respond with 1 and unsuccessful with 0 (unsuccessful here means that the software detected a failure, for 
example lack of memory resources to receive the message). Thus the sender knows the status of the 
broadcast. It then sends, on the forward channel, a commit or abort broadcast signal. There am many 
possible PMA failures. Two cases deal with PMA failure before query execution, and failure while a query 
is executing. When a PMA fails, the optical connection is broken, the BYNET reconfigures the PMA out 
of the network. If the PMA was running a transaction a recovery process is initiated, and if possible, the 
processes are migrated to the another PMA within the clique. 
The BYNET provides a message sorting function used by the Teradata database for sorting data returned 
by individual senders. During the BYNRT sort operation participating senders prepare messages consisting 
of two parts: the sorting key and the actual data. BYNET constructs a merging tree that spans all senders 
and whose root is the processor that initiated the sort, and passes up the tree messages in a sequence sorted 
by the key. Unlike YNET, however, the sorting function is implemented in software which gives us a 
greater flexibility in selecting the length of the sorting key (YNET limited the key to 512 bytes) and the 
sorting order. Software sorting does not impact the application executing on a PMA since BYNET on each 
PMA has a dedicated SUN SPARC processor. The BYNET also provides global synchronization facilities 
between PMAs, such as counting semaphores, and using monocast messages. Readers are referred to 
[3,4,5] for a more in-depth description and comparisons of the BYNET, DBC/1012 and NCR 3700. 

2 Unix/NS - OS for Distributed Memory DBMS 
The NCR 3700 Gperating System, calIed here VnixlNS, is based on the Unix SVR4 OS. It contains 
significant extensions for massively parallel systems, in particular Distributed Memory DBMSs. The 
extensions include the concepts of virtual processor and virtual disk, message and global synchronization 
system, segment system, and globally distributed objects. When compared to other parallel UNIX 
operating systems like Mach [ 131 or Chorus [ 141, Unix/NS has a more powerful communication and 
message addressing paradigm, and richer process-group management and global synchronization 
mechanism. 

2.1 Virtual Processors 
Virtual Processor (Vproc) and Virtual Disk (Vdisk) are abstractions that give an application, like the 
Teradata database, the illusion of having dedicated processor and disk devices. In Unix/NS a Vproc is an 
addressable collection of processes that can sham resources such as memory segments, mailboxes, 
monitors, and files. Vprocs use a Vproc ID to identify resources acquired and presses performing Vproc 
operations. The Vproc ID is used to migrate processes, and thus sharing resources between Vprocs is not 
allowed. Virtual processors are typed, which allows us to group Vprocs which serve a common purpose; 
for example: Vprocs that manage the DBMS disks, Vprocs that parse queries, or Vprocs the interface with 
networks. Vproc type grouping allows group-wide operations such as broadcasting to Vprocs of type A 
and collecting performance data from Vproc of type A. A Trusted Parallel Application (TPA) is a 
collection of Vprocs that perform operations on an application. TPAs provide an isolation mechanism for 
executing more than one paralIe1 application on the same machine. The Teradata database is a (special) 
TPA, but other parallel TPAs can also execute on the NCR 3700. Unix./NS provides the mechanisms to 
give every TPA Vproc the illusion that it operates on a dedicated parallel machine. Global operations like 
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such a failure took the entire logical disk (i.e., all disks connected to a processor) off-line. Vprocs can 
reduce the scope of a failure to the granularity of a single physical disk. 

PMA VPROC 

Figure 2: Vproc and Vdisk Diagram 

Unix/N!3 provides a facility for adding PMAs and disk arrays to the system. Reconfiguration is a two step/ 
process: add hardware and repopulate system. New hardware is added and new disks containing the PMA 
Area axe populated with OS software. The system administrator updates Unix/NS configuration files 
indicating the number and type of new Vprocs, the cliques where they am to execute and new LAN and 
channel addresses for the outside connections. Unix/N!3 then creates the Vprocs and empty Vdisks and 
replicates permanent GDGs on the new PMAs. The second step is TPA specific. The Teradata database 
TPA redistributes its data evenly among all Vdisks in the configuration. 
2.3 Global Distributed Objects 
Preventing a Vproc from sharing resources may lead to their inefficient resource utilization and replication. 
Unix/NS provides Globally Distributed Objects (GDOs) to eliminate such replications. A GDG is a 
memory object that is shared by all Vprocs. A GDG can be transient, in which case it does not survive 
restarts and must be initialized when the system comes back up, or it can be permanent in which case all 
changes to it are preserved across system restarts. Transient GDGs ate used for structures which can 
change at each system restart, such as the system configuration tables. Unix/NS guarantees that each GDG 
starts at the same virtual address on all Vprocs, so that when a Vproc is migrated, all references to a GDG 
remain valid Unix/NS provides a locking based, concurrency control mechanism for reading and writing 
of GDGs. The mechanism includes deadlock prevention, such that the offending reader or writer is not&d 
if its operation would have caused a deadlock. It is left to the application to handle this. Unix/NS 
guarantees atomic updates of GDGs, so that the copies on all PMAs are always consistent in the presence 
of failures. 
2.4 Memory System 
Unix/NS provides memory management services, the segment system, for sharing memory between 
processes of a single Vproc, and for providing a segmented view of the vdisk space. This exists above and 
beyond Unix memory services. Two salient features are: (1) built-in concurrency control, and (2) mirroring 
of critical segments. Each allocated memory segment has a locking structure. Read locks, write locks and a 
version of intentional write locks are supported. Teradata database uses these segment system locking 
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The table is logically ordered within the AMP by the rowids which serve as the clustered index. The index 
is organized as a three-level B+ tree structure, where keys of the tree are the rowids. Usage of rowids as a 
key precludes usage of the index in range qualification. The organization of a non-clustered index, called 
here the secondary index, is the same as that of a data table. We refer to it as the index table. A row in the 
index table consists of the rowid, the index columns, and a column containing rowids of the corresponding 
rows in the data table. Rowid is constructed as before. Index columns am simply the columns on which the 
index hash has been declared, Within an AMP the index table is logically ordered by rowid again using a 
three-level B+ tree structure. There are three types of secondary indexes. 

The Unique Secondary Index (USI) and the Hashed Non-Unique Secondary Index (HNUSI) are hash 
partitioned indexes where the index columns serve as the partitioning key. Locating a row using a US1 
value V involves at most two AMPS: one that owns the index row which it is found by applying the hash 
function to V, and one that owns the data row. The index row will contain the rowid of the data row, and 
thus the address of the AMP owning the row. Using HNUSI may involve more than two AMPS since the 
index row may point to more than one data row, each of which may reside on a different AMF? HNUSI is 
intended for non-unique columns where the average number of synonyms is small in comparison to the 
number of AMPS in the system. 

The Non-Unique Secondary Index (NUSI) is a non-partitioned index. For each AMP it contains the rowids 
of the data rows owned by that AMl? Notice that in order to locate a set of data rows using NUSI value X 
all AMPS have to be involved. This is because NUSI is a non-partitioned index, and it is not know in 
advance which AMPS own rows whose non-partitioning columns have value X. If a table is declared to be 
a fallback table, all its secondary indexes are also protected by the fallback mechanism. Observe that the 
mechanism for fallback maintenance for the tables and indexes is the same since indexes have the same 
structure as the data tables. Observe that US1 and HNUSI offer a very desirable scalability property of the 
index lookup load. Provided the same arrival rate of US1 or HNUSI lookup operations, increasing the 
number of AMPS decreases linearly the index lookup load per AMI? NUSI does not have this property. 

3.2 Query Planning 
A query is parsed and optimized in the virtual IFP by the parser. The parser will first verify whether the 
query exists in the database buffer. The database buffer retains 300 of the most recently parsed and 
optimized queries. The query has to pass several qualifications to be able to use the cached steps. These 
include exact match of the query text and equivalent host types from where the query originated. If a query 
can m-use cached steps, the rest of the parsing and optimization is bypassed. The input to the parser is the 
user query, which contains one or more SQL statements. The parser translates this query into steps, which 
are executed by the AMPS. When optimizing a query that involves joining several tables, the optimizer 
uses a strategy known as the Greedy Algorithm with a one-table look-ahead. The optimizer does check for 
certain special cases, to avoid producing plans where the Greedy Algorithm generates sub-optimal join 
plans. All join plans are composed of binary joins. 

The Greedy Algorithm starts the join with the two tables that are cheapest to join. With one-table look- 
ahead, the optimizer finds from all the possible tables the three tables that are cheapest to join. These three 
tables are joined first. The Greedy Algorithm is used to limit the number of combinations that the optimizer 
has to evaluate, since the number of possible join orders grows as a factorial of the number of tables in the 
query. As an example, there are 362,880 (= 9!) possible orders of 9 tables. The greedy algorithm with one 
table look-ahead limits these to 9x8x7 = 504 choices. Once the first three tables in the join or&r are picked, 
the next three are picked from 6x5x4 = 120 choices, and the last three are picked from 3x2x1 = 6 choices. 
The total number of combinations the Greedy Algorithm looks at is, therefore, 630. Note that the look- 
ahead join might or might not select the first join. 
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To estimate the cost of joining two tables, the optimizer uses statistics about the tables which can be 
explicitly collected by the user. If statistics were not collected on the table, the optimizer will estimate table 
demographics by random sampling of the table data blocks. A message is sent to a random AMP which 
counts the number of data blocks, then a random block is select. For this random block, the number of rows 
in the block are counted and returns an approximated row count to the optimizer. The optimizer caches the 
count for future use. If the user has collected statistics on the involved tables, the join plan will always be 
consistent. The cost model used minimizes the total resource utilization, assuming exclusive use of the 
system. The optimizer minimizes the sum of the CPU utilization, the disk array utilization (calculated 
using maximum disk array throughput), and BYNET utilization. 

The optimizer determines whether using any indexes, either primary or secondary, is more efficient than a 
full file scan. Any table selection and projection can be done by doing a full file scan. Depending on the 
query constraints, and the available indexes, the optimizer might choose to access the table using these 
indexes. Depending on the join clause, there are several options that the optimizer evaluates in choosing a 
join method. Assume that we are doing an equi-join on two tables, table S that is the smaller of the two 
tables, and table L that is the larger of the two table. If the join columns are primary indexes of both tables, 
no redistribution is required In this case, all the rows in the two tables that are likely to match already exist 
on the same AMP. If the join column of either or both tables is not the primary index, the optimizer will 
normally choose from the following binary join plans, even though several other am also evaluated: 

(1) Project, select, and hash redistribute by the join column table S into a spool file. 
Project., select., and hash redistribute by the join column table L into a spool file. 
Perform a product (nested-loop) join of the above two spool tiles. 

(2) Project, select, hash redistribute and sort by the join column table S into a spool file. 
Project, select, hash redistribute and sort by the join column table L into a spool file. 
Perform a merge join of the above two spool files. 

(3) Project, select, duplicate, and sort table S by the join column into a spool file. 
Project, select, and sort table L by the join column into a local spool file. 
Perform a merge join of the above two spool ties. 

Option 1 is used normally when the smaIl table S has only a few rows per AMP Option 2 is used when 
both tables S and L have a large number of rows. Otherwise, option 3 is used. The figure below shows what 
binary join plans the optimizer chooses if the join columns ate not indexed The results of the join plans are 
from an analytical model done to study the effect of different optimizer cost formulas. 

3.3 Query Execution 
The parser and optimizer break down the original SQL query into several basic operations, called steps, to 
accomplish the desired result The dispatcher is responsible for sending these steps to the AMPS. Based on 
the query, the steps can be either: (1) a&AMP steps, which are received and processed at all the AMPS, or 
(2) be targeted to a single AMP, or (3) be targeted to a Vproc-group of AMPS 
As an example of a query that is executed by a group of AMPS, consider a simple SELECTz 

SELECT * FROM TEST-TABLE WHERE US1 = 1; 
In this example, assume that column US1 is a unique secondary index. As explained previously, the unique 
secondary indexes are hash redistributed by the in&x value. The parser and optimizer generate an AMP 
step that is dispatched to the AMP that contains the US1 row value. The US1 row value contains the hash 
code and rowid of the primary data row, which most likely resides on another AMF? An AMP to AMP step 
is sent to the primary row AMP, which joins this transaction’s Vproc-Group. Thus, queries such as this 
example will scale with the size of the system, as more PMAs (and AMPS) are added. 
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Binary Optimizer Join Plans 

Case l- Product Join, Hash Large, 
Hash Small 

m Case2- Mer e Join HashSort Large 
Has R Sort &nail. 

Case 3- Merge Join, Local Sort Large 
Duped Sort Small 

Figure 4 Optimizer Join Plans 
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Modeled query: SELECT * FROM LARGE-TABLE, f3lWU&W WHERE 
LARGEJXBLE.NONJEY.$OL 3: SMALL~T~.NON_gEY_COL; 

4 I 

SELECT * FROM LARGE-TABLE, SMALL-TABLE WHERE 

LARGE-TAJ3LE.NONJEY_cOL = SMALL-TAJ3LE.NONmKEY_cOL; 

Assume the row sizes in the two tables are such that Case 2 of the Figure 1 join plan is chosen. This join 
plan contains 6 steps: Step(l) A lock table step to place a read lock on both tables. Step(%) A retrieve step 
to project and select rows from the LARGE-TM&E, redistribute the rows using the join column, and sort 
the rows by the join column, before writing them out to a spool file. Step(3) A retrieve step to perform 
exactly the same functions on the SMALL-TNKE that were done for the LARGE-TABLE in step 2. 
Step(4) A join step to perform a merge join of the two spool files generated in steps 2 and 3 into another 
spool file. Step(S) A retrieve step to read and return the results to the user. Step(6) Finally, an end- 
transaction step to release the locks, and clean up any spool files. The end-transaction step is sent only to 
the AMPs involved in the transaction, i.e., to the AMPS in the Vproc-group for the transaction. This avoids 
the overhead of processing the step on non-involved AMPS. 

Our experience with the early DBC/1012 showed that sending this step to all AMPS decreased throughput 
of OLTP transactions that normally touch one or two AMF?s by a factor of two or more, thus the concept of 
the Vproc-group was introduced. In this example, steps 2 and 3 would be dispatched in parallel to all the 
AMPs. Before steps 2 or 3 can start sorting the rows, an intra-step synchronization point has to be reached. 
This synchronization point causes the other AMP steps to wait until the last AMP step is done 
redistributing the rows. Using the operating system messaging calls and coordination channels, all the 
Ah4Ps issue a message call, requesting to know whether it is the last AMP to finish. The last AMP to finish 
will send a message to all the other AMPS to start the sort. In step 5, the f%ral merge of the result rows is 
done in the BYNET controller. This merging in the BYNET controller is done to achieve compatibility 
with the original DBC/1012 Ynet interconnection network, which performs the merge operation in its’ 
hardware logic. Each AMP runs a copy of the lock manager. The lock manager handles locks for database 
objects in its own AMl? Locks are placed at three granularity levels: database level locks, table level 
locks, and harh code level locks. Since the hash code is a 32 bit value, the hash level locks are fine grain. 
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There is no escalation of locks. Should the lock table overflow, the transaction is aborted Global deadlock 
detection is done in one of the IFPs. Periodically, the AMP lock managers pass their local wait-for graphs 
to the global deadlock detector. Using these wait-for graphs, system wide deadlocks can be detected, and 
the newest transaction is aborted. 
Transaction logging uses before image logging. This is done locally at each AMP. Before a row is updated, 
the before image copy is written out to the log, called the transient journal. This transient journal is written 
out to stable storage at transaction commit time together with the end of transaction marker. Gn the 3700, 
this means copying the transient journal to the backup PMA using file system mirroring, as explained 
earlier. Since the system does not use write ahead logging, at transaction commit time the datablocks are 
also forced out to stable storage. To commit a transaction across multiple AMPS, a modified version of 
two-phase commit is used. An end transaction step is broadcast to the participating AMPS. Each AMP will 
place an end transaction entry in the transient journal. Using the system provided channeling mechanisms, 
all AMPS report the success (or faihrre) of their operations. The last AMP to reach this point forces the 
second phase of the commit. Jn case of a system crash, the recovery process on each AMP scans its 
transient journal. A transaction with end of transaction marked on at least one AMP is subject a to commit, 
otherwise it is subject to an abort. One AMP, designated as the recovery coordinator, collects transaction 
votes from each AMP and determines the fate of each active transaction. 
3.4 Media Recovery 
The Teradata database supports media recovery on failures using permanent journalling which is 
optionally specified when creating a table. Journalling allows users to recover a database or a table to a 
previous consistent state before or after changes have been made. Journal tables are created to record the 
changed rows and then used during recovery operations to rollforward or rollback to a previous consistent 
state. The Teradata database can generate journals of changed rows which can include before-images, 
after-images or both. Modified images are stored in a user-specified journal table on the create table 
command. The location of the modified image rows is a function of the table attributes, fallback/non- 
fallback table and single/dual Journalling. For a non-fallback table, after-images are written to another 
AMP in the same cluster as the one containing the data being changed. If the dual option is specified, the 
after-images am also written on the same AMP as the one containing the changed data rows. The before- 
images for a non-fallback data table are written on the same AMP as the modified data rows. For a fallback 
data table, the before-images and after-images are always written to the same AMP as the changed data 
rows. 
Journalling provides protection against both application failure as well as data integrity failure of the 
DBMS. Users can request that the named checkpoint be placed on a database or a table. In case of an 
application failure, a user can request that the data be brought to a named checkpoint state. This is done 
using the rollback operation that backs out the changes made since the checkpoint was taken using the 
before-images. In case of data integrity failure, such as a file system failure on an AMP, data is f%st 
restored from a tape archive, and is then brought to a named consistent state using the rollforward 
operation that applies after-images up to the named checkpoint state. The location of the modified image 
rows can be tailored to both modes of failures. For users concerned only with the application failures, the 
before images are placed on the same AMP that generated the change. This avoids the overhead of sending 
the image to another AMP. For users concerned with data integrity or media failure, after images for non- 
fallback tables are placed on another AMP, protecting against a failure of the generating AMP Permanent 
journalling is complemented by archiving on an external tape device, entire databases, individual data 
tables or journal tables. Archiving a table not protected by after-image journalling places a read lock on the 
table, and this precludes updates to the table. Archiving a table with after-image Journalling places a read 
lock only on tbe blocks that are currently archived Tbis allows for concurrent update and archive 
operations on the same table 
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3.5 Loading and Extracting Massive Amounts of Data 

The Teradata DBMS provides two modes for extracting the data. The ReguZur Export Mode is intended for 
selecting small to medium amounts of data. Suppose a user with an open LAN or Channel connection to an 
IFP submits a query, for example the “SELECT... ORDER BY...” SQL statement. The IFP’s parser 
decomposes it into steps, passes them to IFP’s dispatcher, which passes them to the AMPS. Each AMP 
produces a msult in an ordered spool tile. The last AMP to finish producing the spool signals to the 
dispatcher the completion of the step. The dispatcher then initiates the merge operation and the ordered 
data from the AMPS is returned to the user through the single LAN or channel connection. The merge 
operation is performed by the message system which, when merging, composes a totally ordered stream 
out of partially ordered spool files. Observe that in the regular mode, AMPS work in parallel when 
producing the result; however, the answer set is sent to the user through a single LAN or channel 
connection and this gages the throughput. 

The Fast Export Mode eliminates this gaging by allowing an ordered answer set to be returned to the host 
using several LAN or channel connections. The result data is re-partitioned among AMPS such that AMPI 
has block 1 of totally ordered data, AMP2 has block 2 of totally ordered data, etc. in round robin fashion. 
Suppose that the host has N connections to the machine. The fast export utility on the host will use all N 
connections in parallel to retrieve data blocks from the AMPS. Due to data re-partitioning, the total 
ordering is easily preserved The m-partitioning is achieved in two stages as follows. In the first stage 
AMPS sort their respective result spool files. Then a control AMP, AM&, is selected. Bach AMP sends to 
AMPc the Grst key value from each block of its spool file. As the result AMRc can approximate the 
distribution of the sorting key. Suppose there are M AMPS. AMPc partitions the distribution into M equal 
portions and assigns the first portion to AMPI, the second to AMP2, etc. The assignment is broadcast to all 
AMPS which perform the redistribution. The result is placed in another spool with equal-size blocks. This 
finishes the first stage. In the second stage, AMP1 communicates its block count to AMP2. AMI5 adds this 
to its block count and passes it to AMP3 This continue until each AMP knows the relative or&r of its 
blocks. Then AMPI steps sequentially through its blocks and redistributes them to all the AMI% in round 
robin fashion. Suppose it finished on some AMRk. AMP2 starts redistributing its blocks in round robin 
fashion starting from .AM.Rk+I, etc. The last AMP to complete notifies the dispatcher that i-e-partitioning 
hash been done. The dispatcher notifies the host, which starts retrieving the data blocks in parallel on 
different channels. 
Teradata DBMS provides an efficient mechanism for loading and updating massive amounts of data. 
Assume that a host with multiple connections to the machine has a large data file to be loaded to a table. 
The host submits to the parser on an IFP the description of the data file together with a mapping of the 
fields in the file to the fields of the target table. The parser broadcasts this description to the AMPS. Each 
AMP establishes a loading session and prepares two tasks: the &blocker task and the receiver task. The 
deblocker task is provided with the description of the data fiIe and its mapping to the table. After this is 
done, the host starts sending the datablocks from the file to the deblocker tasks on the AMPS. When 
sending it uses all of its connections. Datablocks are addressed to the AMPS in round robin fashion. After it 
receives a datablock from the host, each deblocker task, converts each record into a row in the target table. 
It also calculates, based on the primary index of the table, the destination AMP of each row. Such a 
preprocessed datablock is then handed to the row redistribution service described in previous sections. The 
row redistribution services are asked to deliver the rows to the receiver tasks. The service examines each 
row and sends it to a buffer on the destination AMI? After a buffer is filled, it is presented to the receiver 
task. The receiver task places it in the target table. Occasionally the host will send a checkpointing request. 
The row redistribution service flushes its buffers and presents the rows to the receiver tasks with an 
indication to take a checkpoint. The receiver tasks will then commit all the rows to the table. 
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