
STDL - A Portable Language for Transaction Processing

Philip A. Bernstein’ Per 0. Gyllstrom Tom Wimberg

Digital Equipment Corp.
151 Taylor Street

Littleton, MA 01460-1407

Abstract
Structured Transaction Definition Language (STDL)

is a block-structured language specialized for distributed
transaction processing, developed by the Multivendor In-
tegration Architecture consortium. The main design goals
were application portability across multiple interoperable
STDL implementations, and ease of implementation on
different vendors’ transaction processing systems - both
new and existing ones. This paper describes STDL’s
transaction features: demarcating transaction boundaries,
transactional remote procedure call, transactional queu-
ing, recoverable terminal I/O, and transactional exception
handling.

STDL relies on standard C and COBOL for most ap-
plication logic and all operations on files and SQL data-
bases. All transactional features of STDL and new fea-
tures outside standard C and COBOL are isolated in
procedures written in the STDL task definition language.
These features include demarcating transaction bounda-
ries, transaction recovery, exception handling, transac-
tional communications, access to data queues, submission
of queued work requests, and invocation of presentation
services. This isolation of transactional features is quite
different than other persistent programming languages
and has two important benefits: one can use applications
written in standard C or COBOL, and to implement
STDL, it is possible to map clauses of the task definition
language onto operations of most any distributed TE
monitor.

’ Address: Digital Equipment Corp., One Kendall Square,
Building 700, Cambridge, MA 82139.
Internet: pbemstein@crl.dec.com.

Permission to copy without fee all or part of this ma-
terial is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by per-
mission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee andlor special
permission from the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993

1 Introduction to MIA

Structured Transaction Definition Language (STDL)
is a language for transaction processing (TP), developed
by the Multivendor Integration Architecture (MIA) con-
sortium. The consortium produced architectural specifi-
cations (including STDL) for general-purpose computing
with the goals of application portability, interoperability,
and a common end-user environment [6]. The specifica-
tions are intended to be a basis for procurement - that is,
customers would buy systems conforming to the MIA
specification. Such a procurement standard is needed be-
cause many existing standards are incomplete (e.g. do not
include standard error codes, thereby limiting application
portability), insufftciently international (e.g. do not handle
the Japanese language well), or insufficiently
interoperable (e.g. use incompatible calling standards or
different options in communications standards).

The MIA consortium is sponsored and mn by Nippon
Telegraph and Telephone (N?T) of Japan. The members
of this consortium during the creation of the MIA Version
1 Specifications were Digital Equipment Corp., Fujitsu
Ltd., Hitachi, IBM, NEC and NTT Data, which is NIT’s
system integration subsidiary.

MIA specifications are primarily based on existing
standards, both de facto and de jure, and cover three ma-
jor areas: application programming interfaces (APIs), pro-
tocols, and human (end-user) interfaces. The API specifi-
cations define the set of languages used for application
programming and include STDL, C, COBOL, FOR-
TRAN, and SQL. (MIA modifies C, COBOL, FORTRAN
and SQL slightly, to handle the Japanese language well.)
Protocols for both OS1 and Internet are in the specifica-
tion, including transactional remote procedtue calls, file
transfer, electronic mail, and network management proto-
cols. Human interface specifications address graphical
window-based interfaces. The lack of international stan-
dards in this ares prompted MIA to adopt three de facto
standards: OSF Motif, IBM Common User Access, and
AT&T Open Look. Using MIA style guides ensures the
same look and feel across different presentation services.

The MIA Version 1.0 specifications were completed
in the spring of 1991. Today, V1.2 is available from NIT
(see [6]). The MIA specifications are the basis for pro-

218

curement by NTT and are gaining interest in many other
industries. Joint efforts by an expanded consortium,
named SPIRIT, has started under the direction of the Net- . work Management Forum. Members of SPIRIT include
many international telecommunication companies (e.g.,
AT&T, British Telecom, NTT) and a growing list of ven-
dors. It is expected that SPIRIT will adopt MIA in addi-
tion to other open technologies.

2 STDL Overview
For TP, the MIA consortium developed the STDL

language. This decision was made due to the lack of any
mature TP API standard. STDL is modeled on the Task
Definition Language of Digital’s TP monitor, ACMS [4,
91. One reason ACMS was selected as the model is that it
isolates TP-specific functionality in a separate language,
so that most application logic can be written in standard
C, COBOL and SQL, without TP extensions. The isola-
tion of TP functions also simplifies implementing such an
API on new and existing TP systems; the language for TP
functions can be mapped to TP system functions and the
implementation of standard languages can be used as is.

STDL supports access to persistent resources, so it is,
in effect, a persistent programming language. STDL’s use
of a special language for TP functions and standard lan-
guages for most application logic makes it rather different
than other persistent programming languages, which
either are completely new designs or extend existing lan-
guages with new constructs for transaction functions.

Another reason for selecting ACMS as the model is
its use of remote procedure call @PC) for interprocess
communication. Compared to peer-to-peer programming
models (e.g. send-message, receive-message), RPC has
several benefits: it allows programmers to retain a simple
sequential execution model; it avoids programmers intro-
ducing certain protocol errors, such as forgetting to wait
for a reply message or giving up waiting for a reply that
subsequently arrives; it allows one to re-configure a call-
ing and called program to be in the same or different proc-
esses without rewriting the programs; and it hides lan-
guage differences in parameter format between caller and
callee. Though the latter facility could be introduced in a
peer-to-peer model, it typically isn’t.

In developing STDL, the ACMS API was modified
and extended in many ways, both in major features and
syntactic detail. These modifications were done to make
STDL portable, to ensure that STDL was implementable
at acceptable cost on different TP systems, and to meet
functional requirements defined for the MIA architecture.

During the MIA VI.0 design effort, each vendor
checked how difficult it would be to implement STDL on
their existing TP system. This was important, to ensure

that vendors could deliver MIA-conformant products
within 2-3 years. NTT has announced that many vendors
either have delivered STDL implementations to NIT or
will do so within the next year, including Digital, Fujitsu,
Hitachi, HP, IBM, and NEC. Some of these STDL imple-
mentations are being used by NTT in the implementation
of large application projects. The fit two scheduled pro
jects are: Listing Maintenance System, which provides
off-line directory maintenance (for telephone books) and
was awarded to Digital EquipmenKorp.; and Directory
Assistance System, which provides on-line directory as-
sistance and was awarded to NEC.

Feedback from these implementation activities has
and will be incorporated in past and future versions of the
MIA specifications. In addition, NTT has also held inter-
nal, experimental demonstrations of portability of STDL
applications between Digital and IBM implementations.

STDL is a portable block-structured language, spe-
cialized for TP. Procedures written in STDL are called
tasks. All transactional features of STDL and new fea-
tures outside standard C and COBOL are isolated in tasks.
These features include:

the ability to call COBOL and C programs, which can
access SQL databases and stream, relative, indexed
and indexed sequential files

demarcating transaction boundaries

RPC-based task-to-task transactional communication

structured exception handling, portable across STDL
implementations

queued task submission

a standard interface to presentation services (e.g.
communication with display devices) based on the
IS0 Forms Interface Management System (FIMS) 131

recoverable presentation services, called exchanges

recoverable variables, called workspaces

environmental features required for full application
portability (i.e. features that the programmer can
count on but that are not reflected in the API)

To ensure interoperability between different imple-
mentations of STDL, MIA defined a transitional remote
procedure call (RPC) protocol, called the Remote Task In-
vocation protocol (RTI). RTI has recently been adopted by
the x/open consortium for transactional RPC [lo]. RTI is
an integration of the OS1 TP standard for two-phase com-
mitment and the Open Software Foundation (OSF) Dis-
tributed Computing Environment’s RPC for task-to-task
data transfer [7,8]. RTI has also been specified for layer-
ing on TCP/IP and IBM’s SNA LU6.2. Furthermore, the

219

specification of STDL includes a detailed mapping of
STDL operations onto protocol messages - an unusual
feature of language and prot~ol specifications.

MIA also addresses interactive computing environ-
ments outside of Tp. Through its Interactive Processing
Extensions, applications in standard COBOL, C and FOR-
TRAN that execute outside the TP system (for example,
on workstations and PCs) can invoke TP applications and
interact with presentation services. The interface for in-
voking TP applications is a stub routine generated from
the TP application written in STDL. The stub routine
communicates with the TP system using the RTI protocol.
The presentation interface is based on FIMS.

This paper focuses on the transactional aspects of
STDL. It begins with a model for STDL programs, fol-
lowed by a description of STDL’s transaction features:
demarcating transaction boundaries, transactional remote
procedure call, transactional queuing, recoverable termi-
nal I/O, and transactionaI exception handling. For a full
language specification, see [6]. An example STDL pro-
gram is given in the Appendix.

3 The STDL Model

A TP system is a uniquely named entity that executes
STDL applications (see Fig. 1). A node can have multiple
TP systems, and a TP system can span multiple nodes.
STDL applications are divided into three parts: tasks,
presentation procedures, and processing procedures. A
tusk is a procedure written in STDL task definition lan-
guage. It controls the execution flow of the TP applica-
tion, demarcates transactions, and specifies exception
handlers. The procedure variables for tasks are called
workspaces. These can be local to the task (private work-
spaces) or shared with other tasks (shared workspaces).

A processing procedure is called by a task to perform
computations and access files or relational databases.
Processing procedures can be written in standard C or
COBOL, and can access SQL or ISAM databases or use
standard file transfer protocols (FTAM or PIP). (Lack of
API standardization led to acceptance of vendor-specific
file transfer APIs.) Procedures can, in turn, make nested
calls to other procedures written in C or COBOL.

A task invokes a preshution procizdure to obtain in-
put or display output. The presentation procedure interacts
with an extemal device, called a display, such as a termi-
nal, PC, workstation, bar-code-reader, or automated teller
machine. Presentation procedures can be part of a forms
package or can be a set of programs written in C or CO-
BOL. Although presentation procedures do not participate
in transactions, inputs and outputs can be recovered after
failures, as explained later, in Section 8.

This three-part application model follows ACMS.
One goal of the original ACMS design was to control the
context and programming options in the main task defmi-
tion. This minimizes the resources tied up across terminal
I/O and ensures that context across transactions is well-
defined, to support enhanced reliability features such as
checkpointing (which STDL exploits in transaction re-
start). Three alternatives were considered:

1. Provide a set of TP services callable from standard
languages. This was rejected because it was hard to
limit the context across terminal I/O and transactions.

2. Provide a definition utility for the task flow and TP
functions. This alternative was tried and rejected be-
cause it was harder to use than a procedural language.

3. Support a restricted language in which to define the
task flow, which calls all presentation functions, de-
limits tmnsactions, and calls standard procedures for
data processing. This alternative was picked because it
allows one to define the task flow procedurally but it
restricts the context that needs to be maintained over
terminal I/O and transactions.

TP System

46
Flies SQL

Figure 1 TP System Model

Structuring applications into three parts isolates stan-
dard 3GL code from portable STDL task definition code.
The data processing part of the application is written in
standard C, COBOL, and SQL. TP features are isolated in
STDL tasks, which allows STDL implementors to map
these features onto current TP system implementations.

220

These features include demarcating transaction bounda-
ries, transaction recovery, exception handling, transac-
tional communications, accessing data queues, submitting
queued work requests, and invoking presentation services.

Due to a lack of existing standards, end-user presen-
tation services are not portable and are therefore isolated
in presentation procedures. Interoperability with different
presentation services was attempted based on the FIMS
work [31. But the FIMS standard was incomplete when
STDL was designed, so non-portable presentation serv-
ices written”m C and COBOL were allowed, to meet all of
the presentation requirements.

Each TP system also has an audit log, a set of named
record queues, and a task queue. The audit log is a se-
quential file where tasks can store interesting events. Re-
cord queues are storage areas where tasks can pass data,
in the form of record structures. Task queues contain re-
quests to run tasks and are discussed further in Section 7.

A client program is any program that invokes a task.
It can be a task, an internal component of the TP system
implementation, or an external agent.

4 Transactions

STDL supports aj7at (non-nested) transaction model.
Each transaction commits or aborts independent of the
outcome of other transactions.

Since the MIA specification was intended as a basis
for procurement, the designers had to balance their desire
for state-of-the-art features with the practicality of what
products would be available in the desired time frame.
The transaction model was one area of compromise. A
flat model was selected due to the lack of availability of
products that support nested transactions (e.g. TP moni-
tors, protocols and resource managers) and the lack of
standardization efforts for nested transactions. We see no
problems in adding nested transactions in the future, if
and when that technology becomes widely available.

Recoverable operations are operations that, if exe-
cuted within a transaction, are committed permanently
and made visible to other transactions if and only if the
transaction commits. Otherwise, they are undone. The re-
sult of a recoverable operation is stored in a recover&e
resource, which is managed by a recoverable resource
manager. A durable resource is a resource that survives
system failures. STDL supports combinations of recover-
able/non-recoverable and durable/non-durable resources,
as summarized in Fig. 2.

Determining if an operation is recoverable depends
on the type of resource. For files, it is done externally,
per-file. This avoids introducing non-standard syntax into
C and COBOL. For exchanges and queues, the determina-

tion is done operation-by-operation. For workspaces, it is
done in the workspace declaration.

Resource Recoverable? Durable?

private workspace Y&N N
]sharedworkspace 1 Y [N 1

I SQL database
(C & COBOL only) I y lyI

indexed file Y&N Y
(COBOL only)

relative file (COBOL only) Y&N Y
sequential file Y&N Y

(COBOL only)
stream file (C only) N Y
recoverable send exchange Y Y
recoverable

receive exchange I y INI
task queue Y&N Y
record queue Y Y&N
audit log N Y
Figure 2 Properties of Resources

5 STDL Tasks

An STDL task definition is a named procedure con-
sisting of clauses. These clauses are divided into a task
name, a declarative part describing the task’s attributes,
and a set of executable clauses. Task attributes define the
context of the task, including task arguments, task work-
spaces, and the “send display” (where presentation out-
put is sent, if different from the default display).

Since all of an application’s transaction-related func-
tions are invoked in STDL tasks, understanding transac-
tions in STDL amounts to understanding tasks.

A task group defines a set of tasks and is the scope of
shared context. For example, a shared workspace is
shared only by the tasks of the task group in which the
workspace is defined. Similarly, a processing procedure
group defines a set of processing procedures, which is
also a scope for shared context. For example, processing
procedures retain context (e.g. file and database cursors)
across multiple calls in the same transaction.

STDL tasks use a chained transaction model: as soon
as one transaction commits or aborts, another transaction
starts. Thus, no access of recoverable resources can occur
outside of a transaction. This is different than both the
original ACMS model [9] and the X/Open tx model [111;
both ACMS and X/Open are non-chained, meaning they

221

have syntax to explicitly start and end transactions and
they allow operations to execute outside a transaction.

Although a non-chained model appears to be more
flexible, we see no use for operations outside transactions.
If an operation does not access a recoverable resource,
then it makes no difference whether the operation is part
of a transaction. If an operation accesses a recoverable re-
source, it must be part of a transaction. A chained transac-
tion model, like STDL’s, prevents programmers from ac-
cessing recoverable resources outside of a transaction. It
also avoids semantic complexity around access to recov-
erable resources. For example, recoverable workspaces
were added to STDL without needing complex rules to
define where the recoverable workspaces could be used.

The use of chained transactions does not affect the ar-
chitecture of transaction managers - the TP system com-
ponent that implements the start, commit, and abort op-
erations and the two-phase commit protocol. It does not
imply that the underlying transaction protocol must be
chained, as in IBM SNA LU6.2. And it allows a transac-
tion manager with unchained semantics to be used, such
as one implementing the X/Open model. An implementa-
tion just has to ensure that a transaction is active before a
recoverable resource is accessed.

The only relationship between the chained transac-
tions in a task is their execution order defined by the
task’s control flow. In particular, they commit or abort in-
dependently: the commitment of a transaction does not
depend on the commitment of others (as it would in a
nested transaction). The abort of a transaction does not
prevent later transactions in the task from executing; the
aborted transaction’s exception handler decides whether
to continue executing or terminate the task (see Section
9).

An implementation is free to optimize transactional
aspects of STDL task execution. It can choose not to start
a real transaction in certain cases, for example, if an
STDL transaction contains only non-recoverable ex-
changes. It can also delay starting a real transaction until
actually needed. For example, if an STDL transaction
contains a non-recoverable exchange before calling a pro-
cedure that accesses recoverable resources, the real trans-
action can be started after the exchange is completed.

The STDL chained model is comparable to the trans-
action model in IBM’s CICS, where the syncpoint opera-
tion both ends one transaction and starts the next. Origi-
nally, STDL used a similar model in which a COMMIT
qualifier on some executable clauses indicated where a
transaction ends. This was discarded in favor of a model
in which the syntax of executable clauses defines a task’s
transactional structure. This allows transaction restart, ex-
ception handling, and other features to be tied to the syn-
tax structure (see Section 9).

The syntax of STDL task definitions is organized to
enforce the transactional rules of STDL. A task can be
one of two types: composable or noncomposable. A
composuble task executes entirely within a transaction
started by the caller of the task. A non-composable rusk
executes in one or more transactions controlled by the
task itself. A non-composable task uses executable
clauses called sturements to control the flow of transac-
tions. A composable task cannot contain statements, since
it cannot define a new transaction. A statement type called
a transaction block delimits those recoverable actions that
must occur within a single transaction. All recoverable ac-
tions must occur within transaction blocks. STDL pro-
vides other statements types (loops, if statements, case
statements, and block statements) to sequence transac-
tions. Since these statements execute outside of a transac-
tion block, they cannot reference recoverable resources
and can only reference private, non-recoverable work-
spaces.

Tasks use executable clauses called steps to perform
work within transactions. For example, non-composable
tasks use steps within transaction blocks, and composable
tasks use steps as their top level executable clauses. Step
types include calling tasks, submitting tasks to a queue,
calling processing procedures, performing exchanges,
enqueuing and dequeuing data, performing concurrent
processing, operating on workspaces, loops, if steps, case
steps, and step blocks.

Steps that call tasks, enqueue tasks, and perform ex-
changes can optionally be performed outside the transac-
tion that invokes the step. This is useful to reduce transac-
tional overhead or to record data before aborting or
restarting a transaction.

A concurrent-block step allows concurrent execution
of two or more steps within a transaction. It can also exe-
cute a set of transactions concurrently by including steps
that call non-composable tasks, each of which executes in
a different transaction.

Although STDL does not currently support nested
transactions, it would be easy to add subtransaction blocks
as a step type in the future.

Within a step clause, STDL provides an executable
clause called an action to process the result of the main
work of the step. Action types include operating on work-
spaces, raising exceptions, writing to the audit log, trans-
lating message codes into message text, transferring con-
trol to another step within the current block, if actions,
and case actions.

6 Task Call
One reason for selecting ACMS as a model for

MIA’s TP API is its use of RPC for interprocess commu-

222

nication. In STDL, RPC is embodied in the CALL TASK
step (see Fig. 3). A task uses CALL TASK to invoke an-
other task synchronously. The execution model is RPC so
the syntax of CALL TASK is insensitive to whether the
callee is local or remote; distribution is an environmental
consideration determined after the application is written.

PROCFSS&&..WITH

&ILL TASK <task-name> u <taskgroup name>
[AT <destination-name>] [j&(@& (<workspace-name>} I,...]]

(In showing STDL syntax: lr means use zero or one instance; “I)- means use
zero or more instances; underscored words are required; non-underscored
words are optional; l,...r means tt~ previous clause, followed by a annma,
can be repeated; “<a’ denotes an STDL token which we leave undefined
(-[a.
Figure 3 Syntax for Call Task

One can execute a called task in the same transaction
as the caller or in a separate transaction (see Fig. 4). This
option is denoted in the call step by the phrase WITH DE-
PENDENT WORK (for the called task to execute as part
of the caller’s transaction) or WITH INDEPENDENT
WORK (for the caller and callee to execute in different
transactions that commit or abort independently). A task
that’s called WITH DEPENDENT WORK must be
composable, that is, must have the keyword
COMPOSABLE in its definition. A task that’s called
WITH INDEPENDENT WORK must not have the key-
word COMPOSABLE in its definition, meaning that it’s
non-composable. A call WITH INDEPENDENT WORK
is called a “top level transaction” in some systems (e.g.
Argus 151).

Figure 4 Composable and Non-Composable
Tasks

A non-composable task is called for work that should
complete whether or not the caller commits. For example,
if the caller detects an illegal state based on the value re-
turned by an earlier statement or step, then it may want to
perform some work to repair that state (by calling a non-
composable task), whether or not it (the caller) commits.
A non-composable task is also used when the client is not
executing in a transaction, for example, when the task to
run is selected from a menu by an end-user.

The syntax WITH DEPENDENT (or INDEPEND-
ENT) WORK in tbe call step and COMPOSABLE in the
task definition is a redundant specification. In principle, it
would be sufficient only to supply (or omit) tbe

COMPOSABLE task attribute in the task interface delini-
tion of the called task. The syntax is supplied for consis-
tency reasons. It reminds the programmer of the called
task where the transaction bracket is and indicates if it is
appropriate to have a transaction exception handler.

We considered allowing a call WITH DEPENDENT
WORK of a non-composable task. ‘Ihe main problem is
what to do if the caller fails before the reply is delivered.
We found no useful and implementable semantics. Drop-
ping the reply seems unsatisfactory, since the called task
committed and its results may be needed. Tbe best alter-
native seems to be treating the orphaned reply as a request
to run a task that is an error handler for the failed calling
task. But there are many messy details to make this work,
complicating the language for a feature that isn’t often
used. In the end, this type of call was made illegal.

A cdestination-name names a TP System that
knows the name of the called task and will invoke it. The
USING clause lists the actual parameters to the called task

A task invokes processing procedures by a CALL
PROCEDURE step. All processing procedures are
composable. That is, a processing procedure always exe-
cutes in the transaction of the task or processing proce-
dure that called it. This is because STDL does all transac-
tion demarcation in the task No transaction demarcation
is done in processing procedures, partly because there was
no standard transactional demarcation API in C or CO-
BOL when STDL was developed. SQL-specific transac-
tion demarcation verbs are also excluded since they only
apply to SQL operations.

Since the syntax for calling tasks is different from
calling procedures, the caller’s code must be modified if a
task is rewritten as a procedure or vice versa. Clearly, this
is undesirable. It was done to simplify implementation: an
STDL implementation is not required to support RPC
from tasks to procedures - only from task to task. Using
different syntax for calling tasks and procedures makes it
easier for an implementation to identify which calls can
be remote.

A C or COBOL procedure can call a non-composable
task. Such a procedure may be accessible as a processing
procedure, but it is not required to be. The called task
looks to the caller like an ordinary external procedure, ac-
cessed via a stub interface.

7 Submit Task

A task can invoke another task without waiting for
the results by using a SUBMIT TASK step (see Fig. 5).
Its effect is to create a request (i.e. message) to execute
the task and put the request on a persistent task queue as-
sociated with the task’s TP system. The TP system will
dequeue the request later and invoke (i.e. call) the task.

223

Since the invoked task won’t return to the submitting task,
it cannot have return parameters.

PROCESSING WtTH

SUBMIT TASK <task-name> &I &&group name,

AT 4estinatic+name>
<distribution-lit-name> I

[!&&JQ (~workspacename>) I,...]]

<trigger>
Figure 5 Syntax for Submit Task

The SUBMIT TASK step can be executed as part of
the current transaction, denoted in the step using WITH
DEPENDENT WORK. In this case, it is recoverable. That
is, its effect (put-the-new-request-on-a-m&queue) is
made permanent if and only if the transaction that exe-
cutes the SUBMIT TASK commits. SUBMIT TASK can
optionally execute in a separate transaction, denoted using
WITH INDEPENDENT WORK.

A submitted task - the task that the SUBMIT causes
to execute - is guaranteed to execute at least once and al-
ways runs in a new transaction. If the task is composable,
then the system starts a transaction before calling the task.
The system dequeues the request to execute the task and
executes the task, all within one transaction. So, if the
transaction aborts, the request is undone (returned to the
queue) and will be processed later. Thus, composable
tasks execute exactly once.

If the task is non-composable, then the system starts a
transaction, dequeues the request, and calls the task; if the
call returns successfully, the transaction commits, other-
wise it aborts. The transactions of the non-composable
task run as independent transactions. Thus, if there is an
error in the called task, one or more of the transactions of
the task may commit before the error is returned to the
system transaction that dequeued the request. The re-
tumed error tells the system transaction to abort, so the re-
quest is returned to the queue and, depending on the type
of error, may be retried later, thereby repeating the al-
ready executed transactions. So, a SUBMIT TASK re-
quest executes at-least-once, but possibly more than once.

This semantics of invoking a non-composable task
from a queue is not entirely satisfactory. However, since
nested transactions are not available, for reasons ex-
plained earlier, and since a non-composable task can run
more than one transaction, there’s little one could do in
redesigning STDL to circumvent this problem fully. For
example, if only the first transaction in the non-
composable task ran in the same transaction as the
dequeue operation, a failure in a later transaction of the
task would leave the task partially completed with no
queued request to perform the incomplete work. Also note
that a SUBMIT TASK request isn’t all-or-nothing, no
matter what semantics of “dequeue” we use.

One application of SUBMIT TASK is to send mes-
sages to workstations, some of which may be temporarily
unavailable. If the TP system that manages the queue is
unable to invoke the target task on the workstation be-
cause the workstation is unavailable, it will retry later. If
only RPC-based communication were available, then the
RPC would fail after it hit its retry limit, so it would be up
to the application to retry periodically.

A SUBMIT TASK clause can explicitly name the TP
system that should execute the task. This is useful if a task
can execute on multiple TP systems and the caller wants
to control where the submitted task runs. Using a distribu-
tion list, one can send the request to multiple TP systems,
thereby causing the task to execute once on each TP sys-
tem. This is useful for sending messages to workstations.

One can also define a HOLD clause, which is a rrig-
ger that says when the SUBMIT should invoke the target
task (see Fig. 6). The trigger can ask to invoke the target
when an operator command is run, when a certain time
has elapsed, or when a deadline has been reached. One
can use a REPEATING clause to make the SUBMIT step
re-execute (after the initial execution) at regular intervals
defined by the trigger.
<triggers =

9) SYSTEM] I1

[m EVERY <delta-time>]

Figure 6 Trigger Syntax for Submit Task

Any task with no output parameters can be either
called or submitted. STDL specifies that the input pa-
rameters for the submitted task are “pickled” (the argu-
ments marshaled as in an RPC) and stored. When the task
is to be executed, it is calIed using the “pickled” argu-
ments. In effect, STDL queues the RPC message. We
chose this mechanism instead of a separate queued task
mechanism for flexibility and simplicity. All of the task
submission logic can be handled separately and can use
the called task logic to actually execute the task.

A complete STDL implementation must support the
ability to forward requests from one TP system to another
(which can execute the tasks). For each “server” TP sys-
tem (the one that will ultimately process the request), the
“client” TP system can identify the TP system that holds
the enqueued request; i.e. it need not be the server or cli-
ent TP system. This feature can be used, for example, by a
set of workstations that don’t maintain persistent queues
and use an intermediate “queue server” instead.

Queue forwarding is an example of an environmental
feature, which is not reflected in STDL syntax, but is re-
quired by any MIA-conformant implementation of STDL.
This allows application writers to assume that certain
functionality is available in the system, so they do not

224

have to provide those features in application code. Other
environmental features are: access control for task calls;
identifying which files are recoverable and non-
recoverable, timeouts for transaction execution, ex-
changes steps, etc.; maximum transaction restart count;
and task execution priority.

8 Recoverable Exchanges

An EXCHANGE step allows a task to SEND a mes-
sage to an external device, RECEIVE a message from an
external device, or TRANSCEIVE (which is semantically
equivalent to a SEND followed immediately by a RE-
CEIVE). (See Fig. 7 for syntax of EXCHANGE SEND.
RECEIVE and TRANSCEIVE are similar.) An EX-
CHANGE step is used to gather the initial input to a task
that’s invoked by an external device and to send and re-
ceive interactive output and input after the task has started
executing. An EXCHANGE SEND or EXCHANGE RE-
CEIVE step can be declared RECOVERABLE.

-CAST I u <bmadcast-list-name,

fJjQ1 RFCOVFRAFJJ& WORK

SFND RECORQ <send-mcorbname> JJj <presentation-group-name>

[SENDING (evorkspace-name> [,...]I

Figure 7 Syntax for EXCHANGE SEND Step

A goal of designing recoverable exchanges was to
isolate end users from transaction restarts as much as pos-
sible. Recoverable input for a transaction should be input
once. Recoverable output from a transaction should be
seen by an end user if and only if the transaction commits.

In an EXCHANGE RECEIVE step, RECOVER-
ABLE means that if the transaction that executed the ex-
change aborts and restarts (i.e. executes again, from the
beginning), then the EXCHANGE reuses the input it re-
ceived on its first execution, rather than receiving a new
input from the external device. This saves the end user
having to re-enter the input. An EXCHANGE RECEIVE
step can be declared RECOVERABLE only if it is the
first step of a transaction. It is always non-durable.

It would be inappropriate to allow an EXCHANGE
RECEIVE step to be recoverable if it comes after the first
step. To see why, suppose it were allowed and suppose an
EXCHANGE SEND executed sometime before the EX-
CHANGE RECEIVE in the same transaction. Now sup-
pose the transaction aborts and restarts. During the re-
execution, the transaction may read different data from a
database (via a processing procedure), and therefore send
different values in the EXCHANGE SEND. Therefore,
the user of the display may want to provide different in-
put. However, since the EXCHANGE RECEIVE was re-
coverable, it would reuse the values it received in its first

execution, which may not be what the user wants. If the
EXCHANGE RECEIVE were not preceded by an EX-
CHANGE SEND, then it could be moved to the first step
of the transaction and thereby allowed to be recoverable.

In an EXCHANGE SEND, RECOVERABLE means
that the system stores the message to be sent in a durable
store, and sends the message in that store after the trans-
action commits; if the transaction aborts, then the message
is deleted (i.e. nothing is sent). The semantics of a recov-
erable EXCHANGE SEND is at-least-once; if the TP sys-
tem sends the message to the display but does not get an
acknowledgment, it resends the message later even if the
message was displayed but its acknowledgment was lost.
A non-recoverable EXCHANGE SEND is always non-
durable. An EXCHANGE SEND can broadcast to more
than one display. However, a broadcast EXCHANGE
SEND cannot be declared RECOVERABLE. All other
EXCHANGE SEND steps can be recoverable.

A TRANSCEIVE is never recoverable or durable.
T&I

Figure 8 Recoverable Exchange Steps

An implementation of recoverable exchanges does
not require implementing recoverable presentation proce-
dures. The TP system only needs to maintain a non-
durable buffer for the returned value of a recoverable EX-
CHANGE RECEIVE and a durable store for the values
sent by recoverable EXCHANGE SENDS. See Fig. 8.

A conversational task is one that executes an EX-
CHANGE RECEIVE sometime after its first step and/or
executes an EXCHANGE TRANSCEIVE. If one executes
thetask as a single transaction, all EXCHANGE TRANS-
CEIVES and the EXCHANGE RECEIVES beyond the
first one cannot be recoverable. A common way to cir-
cumvent this problem and make the entire task recover-
able is to execute the task as a pseudo-conversation 111.
To do this, each EXCHANGE TRANSCEIVE is split into
two steps, an EXCHANGE SEND followed by an EX-
CHANGE RECEIVE. Immediately before each EX-
CHANGE RECEIVE, one starts a new transaction. Now,
each EXCHANGE RECEIVE and EXCHANGE SEND
can be declared RECOVERABLE. The resulting task is
called pseudo-conversational, since it is imitating a con-
versational transaction.

225

To be able to recover a partially executed pseudo-
conversational task after a failure, the task must save its
context in stable storage before committing each transac-
tion. Since tasks normally maintain less context than C
and COBOL programs, this is easier and less expensive
than it would be if pseudo-conversations were imple-
mented using TP extensions to C and COBOL - another
benefit of isolating TP-specific functionality in tasks.

The advantage of a pseudo-conversational task is that
it is recoverable. The disadvantage is that it no longer exe-
cutes as one transaction, and therefore isn’t serializable or
all-or-nothing. The task isn’t serializable because other
transactions may be interleaved in between the transac-
tions executing within the task. It isn’t all-or-nothing be-
cause it may fail unrecoverably after the first transaction.
In this case, it is too late to abort the first transaction, and
there is no way to complete the execution of the task.

9 Portable Exception Handling

More than half of a typical TP application program is
involved in exception handling. Therefore, to ensure that
programs written in STDL are portable across different
implementations, STDL provides a detailed syntax and
mechanism for exceptions.

To simplify the normal processing logic of tasks,
code to handle abnormal termination of clauses is segre-
gated into exception handlers. An exception handler is as-
sociated with a statement, a step, or a block of statements
or steps. Exception handlers can operate on workspaces
and transfer control.

Upon receiving notice of an abnormal event, called
an exception, control is passed to an associated exception
handler, if one exists. Exception handlers follow the block
structure of STDL: if there is no applicable exception han-
dler on the syntactic unit where the exception was raised,
then it is escalated to the next higher unit, or to the client
if the next higher unit is the task itself.

An action or exception handler can be associated with
a set of operations by grouping the operations in a block.
If no exception handler is associated with an operation
that fails, control is passed to the exception handler of the
operation’s surrounding block. Blocking of a set of state-
ments allows one exception handler to handle all excep-
tions of the operations of the block.

Exceptions can be raised implicitly by the TP system
or explicitly in tasks (by the RAISE EXCEPTION action)
and processing procedures (by setting values in external
variables that the TP system translates into exceptions).

The following operations can be performed by ac-
tions and exception handlers: auditing of information to
an application audit log, manipulating workspace data,

raising an exception, conditional operations, or transfer of
control, e.g. exit the task or exit the block.

There are two types of exceptions: a transaction ex-
ception, which causes the current transaction to abort, and
a non-transaction exception, which does not prevent the
current transaction from committing. Transaction excep-
tions can only be handled by the exception handlers in
statements. This type of exception handler executes in its
own transaction after the transaction that caused the ex-
ception aborted. For a step, a non-transaction exception is
handled in the step’s exception handler, which executes in
the same transaction in which the exception occurred; if
the step has (or surrounding blocks have) no exception
handler, then the exception escalates to become a transac-
tion exception.

A transaction exception may be transient, permanent,
or fatal. A transient transaction exception causes the sys-
tem to retry the transaction, that is, to re-execute the trans-
action block. For example, a deadlock could produce a
transient exception, in which case the TP system aborts
one of the deadlocked transactions and retries it. More
precisely, when a transient transaction exception occurs in
a composable task, the task terminates and returns the ex-
ception to the task’s caller. If it occurs in a non-
composable task, then the TP system converts it to a per-
manent exception if it was raised in an exception handler,
if the transaction executed a non-recoverable exchange, or
if the transaction rey limit was reached. Otherwise, the
retry count is incremented and the transaction (i.e. the
transaction block) is re-executed.

A transaction exception that is not reyable and does
not destroy the execution context of a task generates a
permanent transaction exception. For a permanent trans-
action exception, if the task is non-composable and if
there is an exception handler for the statement that exe-
cuted the transaction, then the handler executes as a new
transaction; in all other cases, the task is terminated and a
non-transaction exception is returned to the task’s caller.

A transaction exception that destroys the execution
context generates a fatal transaction exception. This
causes the system to abort the transaction and terminate
the task in which the current transaction was started and
any composable tasks called by that task as part of the
current transaction. If the task is composable, then a per-
manent transaction exception is returned to the client.
Otherwise a non-transaction exception is returned.

STDL defines various information about an exception
that a TP system must put in the EXCEPTION-INFO-
WORKSPACE when an exception is raised. Except
where noted, this information is defined by STDL and is
therefore portable. Among other things, it includes:

. an exception class, which classifies exception condi-
tions based on the allowed recovery action.

226

. an exception code, which describes the exception con-
dition in detail. Exceptions raised by an application
are defined by the application and are therefore port-
able. For exceptions raised by the system, the excep-
tion code is not defined by STDL or the application
and is therefore non-portable.

The design of STDL exception handling is inspired
by that of Argus [5]. Like Argus, STDL handles named
exceptions which are caught by exception handlers. How-
ever, STDL exception handling differs from Argus in sev-
eral ways. First, since STDL does not support nested
transactions, STDL transaction exception handlers run in
top-level transactions. In Argus, they run as subtransac-
tions. Second, STDL has a stronger emphasis on portabil-
ity of exception handlers across different STDL imple-
mentations. And third, unlike Argus or Avalon [2], STDL
is not designed for writing recoverable resource manag-
ers, but rather just for invoking them.

10 Implementation Strategies

During the development of the V1.0 MIA STDL
specification, we and other vendors looked at possible
strategies for implementing STDL on both existing and
new TP systems. We summarize our view of possible im-
plementation alternatives in this section. The descriptions
are necessarily brief and assume some knowledge of the
system that is the target of the implementation. Of course,
each vendor is free to implement STDL in any
semantically-conformant way, not necessarily using the
alternatives we suggest here.

IBM CICS with conversational transactions. A
compiler would translate each STDL task definition into a
COBOL program that contains CICS verbs and runs as a
conversational CICS transaction. Private workspaces
would be mapped to the COBOL task program’s working
storage. Shared workspaces would be mapped to CICS
workspaces. Processing procedures would be programs
called by the translated COBOL task program. Presenta-
tion procedures would call CICS mapping services.

IBM CICS with pseudo-conversational transac-
tions. This is similar to the CICS conversational transac-
tion, but the STDL task definition would be scanned to
see if the exchange steps can be moved to be immediately
before or after a CICS syncpoint. If the STDL task con-
tains recoverable exchanges, this can be done. If all non-
recoverable exchanges occur in a transaction before any
recoverable resources are referenced or modified, these
can also be moved. If the exchanges can be moved, then
the private workspace is mapped to a CICS workspace.
The STDL task definition is translated into a COBOL pro-
gram that uses CICS pseudo-conversations. In this model,

the program takes the input, performs work, sets the next
program to run, and sends the output to the terminal. The
translated task COBOL program could set a marker in a
workspace to indicate where in the task to continue on the
next input.

OSF DCE RPC Servers. In this case, the STDL task
can be translated to or interpreted in a DCE RPC server.
Since DCE provides multithreading, each active task
would execute as a thread. C and COBOL procedures can
be run in the same multithreaded server as the STDL
tasks. Or they can mn in separate servers, which can be
multithreaded if all resource managers are either
multithreaded or execute as separate servers. For the
multithreaded processing procedure case, the global vari-
able used to return exception information must be handled
either through a preprocessor or through macros in C.

11 Summary

Although most of the features of STDL appear in
other languages, its combination of features and goals is
unique. It is one of the few languages that embodies the
full range of facilities needed for TP, including transac-
tional RPC, queued requests, recoverable presentation
services, and transactional exception handling. It is the
only TP language we know of designed carefully for port-
ability across underlying TP system implementations.
And, via this paper, it is one of the few that are docu-
mented in the research literature, along with motivation
for many of the decisions that affected its design.

12 Acknowledgments

We gratefully acknowledge the strong technical lead-
ership of Akihiro Takagi of NIT, who directed the MIA
consortium including the consortium’s work on STDL. At
Digital, our main collaborators on the design of STDL
were Mike Gagnon, Wayne Haubner, Robert McKenzie,
Hiroshi Minaguchi, Eric Newcomer, Hiroyasu Nohata,
and Tom Pi&. Many other engineers at Digital contrib-
uted, including Tony DellaFera, Bill Drury, Bob Fleming,
Henry Lowe, Kiyoshi Morita, Yoshinobu Ota, Paul
Ranauro, Barry Rubinson, Marc Sevigny, Al Simon%
Ram Sudama, Francis Upton, Laurel Wentworth, Stephen
Young, and Riaz Zolfonoon. In addition, there were doz-
ens of contributors from other MIA consortium members,
too numerous to name. We thank them all for their help.
We also thank Hector Garcia-Molina and Narain Gehani
for many suggestions on improving the presentation.

227

13 References

1.

2.

3.

4.

5.

6.

7.

8.

Bernstein, Philip A., Meichun Hsu, Bruce Mann “Im-
plementing Recoverable Requests Using Queues,”
1990 ACM SIGkOD Conf. on Management of pata,
ACM, NY, 112-122.

D.L. Detlefs, M.P. Herlihy, and J.M. Wing. “Inheri-
tance of synchronization and recovery properties in
Avalon/C++” IEEE Computer 21, 12 (Dec. 1988), pp.
57-69. Also in Advanced Language implementation
Techniques, Peter Lee (editor), MIT Press, 1990.

“Forms Interface Management System,” ISO/IEC
DIS 11730, International Organization for Standardi-
zation, Dec. 7, 1992.

Gray, Jim and Andreas Reuter, Transaction Process-
ing: Concepts and Techniques, Morgan Kaufmarm,
San Mateo, California, 1992.

Liskov, Barbara and Robert Scheifler, “Guardians and
Actions: Linguistic Support for Robust, Distributed
Programs,” ACM Trans. on Prog. Lang. and Systems
5.3 (July 1983), 381404.

Technical Requirements, Multivendor Integration Ar-
chitecture Version 1.2, Vol. l-l 1, TR 550001, Nippon
Telegraph and Telephone Corporation, Jan. 29, 1993.
They can be obtained from N’IT at any of the follow-
ing addresses:

N’IT America, Inc. 101 Part Avenue, 41st Floor New
York, NY 10178 U.S.A.
Telephone: +1212-661-0810 FAX: +1212-661-1078

N’IT Europe, Ltd. Level 9, City Tower 40 Basinghall
Street London, EC2VSDE United Kingdom.
Telephone: +44 71-256-7151 FAX: +44 71-256-7997

NTT Inc. l-6, Uchisaiwaicho 1-Chome Chiyoda-ku,
Tokyo 100 Japan. Telephone: +8 l-33-509-3101
FAX: +8 l-33-580-9104

Rosenberry Ward, David Kenney, Gerry Fisher, Un-
derstanding DCE, O’Reilly & Assoc., Sebastapol,
California, 1992.

“Information Processing Systems - Open Systems In-
terconnection - Distributed Transaction Processing,”
(Part 1, Model, ISO/IEC 10026-l: 1992; Part 2, Service
Definition, ISO/IEC 100262:1992; Part 3: Protocol
Specification, ISO/IEC 10026-3: 1992), International
Organization for Standardization, 1992.

9. Speer, Thomas G. and Mark W. Storm, “Digital’s
Transaction Processing Monitors,” Digital Technical
Journal 3,l (Winter 1991), 18-33.

10. “Distributed Transaction Processing: The TxRPC
Specification,” X/Open Snapshot, ISB:l-872630-81-2
S218, The X/Open Company Ltd., Reading, U. K.,
Dec. 1992.

11. “Distributed Transaction Processing: The TX (Trans-
action Demarcation) Specification,” ISB: 1-872630-
65-0 P209, X/Open Preliminary Specification, The
X/Open Company Ltd., Reading, U. K, Oct. 1992.

14 Example Program

! This program pays a credit card bill from a demand
I deposit (checking) account.

! Define the messages that this application requires
!
MESSAGE GROUP billing-messages

LANGUAGE IS ENGLISH;
success-msg VALUE IS 41 CLASS IS NO-OUTPUT-ERROR

TEXT IS ‘Transaction completed.“:
no-funds-msg VALUE IS 42 CLASS IS NO-OUTPUT-ERROR

TEXT IS “Error: Insufficient funds.“;
END MESSAGE GROUP;
!
! Define the records for the task
!
RECORD cc_wksp ! credit card information
acct_num INTEGER:
amount-due INTEGER;

END RECORD;

RECORD dda_wksp ! demand deposit account information
acct_num INTEGER;
amount-due INTEGER;
balance INTEGER;

END RECORD:

RECORD ctrl_wksp
success TEXT SIZE 1;
msg TEXT SIZE 80;

END RECORD;

RECORD input_wksp
cc_acct_num INTEGER;
dda_acct_num INTEGER;

END RECORD;

228

TASK pcry-bill
WORKSPACES ARE cc-wksp, dda-wksp,

ctrl-wksp, input~wksp:

ixn-1:
BLOCK WITH TRANSACTION

! Get credit card and direct deposit account number
! from user

EXCHANGE WITH RECOVERABLE WORK
RECEIVE RECORD acctinfo IN input~fomr

RECEIVING inpu~wksp;

PROCESSING MOVE inpu-wkspcc_acctnum
TO cc-wksp.acCnum

PROCESSING MOVE input~wksp.ddsacct_num
TO dda_wksp.acctnum;

I Pay credit card debt
PROCESSING CALL PROCEDURE pcry-cc

IN creditprccgroup USING cc-wksp;

PROCESSING MOVE cc-wkspamount-due
TO dda-wl&p.amount-due:

! Debit checking account with credit card debt

PROCESSING CALL PROCEDURE debit-dda
IN checkingsroc_sroup USING dda-wksp, ctrl-wksp
ACTION IS

IF (ctrl-wkspsuccess = “N’)
THEN RAISE EXCEPTION CODE 42

WITH ROLLBACK TRANSACTION;
ELSE MOVE ‘Transaction completed.”

TO ctrl_wkspmsg;
END IF:

END ACTION;

! Transaction was successful. Displcry credit card
I amount, new checking acount balance. and
! a success message

EXCHANGE WITH RECOVERABLE WORK
SEND RECORD result-info IN billing-forms

SENDING dda-wksp, ctrl-wksp
ACTION IS EXIT TASK;

! Transaction successful End task.
END ACTION;

END BLOCK ! txn-1

! Exception occurred - Get the message asscciateed with
! the exception. This can be due to insufficient funds or
! other errors. EXCEPTION-CODE and EXCEPTION-SOURCE
! are STDL-defined fields available to exception handen.

EXCEPTION HANDLER IS
GET MESSAGE NUMBER EXCEPTION-CODE

SOURCE EXCEPTION-SOURCE INTO ctrl-wkspmsg:
END EXCEPTION HANDLER;

txn-2:
BLOCK WITH TRANSACTION

! Transaction unsuccessful - dis~lav credit card
I amount due, existing checking acount balance
I and a failure message
I
EXCHANGE WITH RECOVERABLE WORK

SEND RECORD minusJnfo IN error-form
SENDING ddawksp, ctrl-wksp:

END BLOCK: I ixn-2

END TASK:

C Program starts Here:

/” Processing Prccedure for PAY-CC and DEBIT-DDA “/

/’ Include the workspace layouts generated from ‘/
/’ the record definition by the STDL compiler. l /
#include “biBing.h

/ .“mU*HlmHlm”*-m~‘--~*~~-~.“-~~*“. /
/” Functional Description: l *

/

;::

Routine pcry_ccO - l *

/

retrieves ornount due for credit card bill “/

7
and sets amount due to zero “/

l H~~~~~Ul~*“~.**~U~~*“*“~“***..*~*~**.*.*.*

/

void pcry_cc (struct cc_wksp ‘ccwksp) I

EXEC SQL SELECT amount
INTO cc-wksp%mount-due
FROM credit-card
WHERE act-no = cc-wksp>acct-num;

EXEC SQL UPDATE credit-card
SET amount-due = 0
WHERE act-no = :cc_wksp~acct~num;

retum:
1

/ “*~I*H*~*“,~***“.~“~“*~,*.*~~.~****~*”*.”*.*.”*‘**~~.*~~*”*~***~ /
/** Functional Description: l *

/

/” Routine debit-dda0 -- *. /

;:
Retrieve balance from demand deposit account. “/
If sufficient funds are available, then update “/

/ l * the demand deposit account l *

/

/

tt~.~.**,+,~~~~+~~**~**“~*.“~*~*.~*****~*~”***~********.*”.*~*~*~~.*
/

void debit-dda (struct dda-wksp ‘ddawksp.
struct ctrl-wksp ‘ctrlwksp) I

EXEC SQL SELECT balance
INTO :ddawksp>balance
FROM accounts
WHERE acct-no = :ddawksp>acctJnm-i:

if (ddawksp>balance c ddawksp>amount-due) (:
ctr1wksp>success = ‘N;
return; /’ failure retum without update ‘/
1

EXEC SQL
UPDATE accounts
SET balance = balance - :ddawksp>amount_due
WHERE acct-no = :ddawksp>acctnum:

ctrlwksp>success = ‘Y’:
retum;

1

229

