
Implementation and performance evaluation of a parallel transitive
closure algorithm on PRISMA/DB

Maurice A.W. Houtsma* Annita N. Wilschut Jan Flokstra

University of Twente, Department of Computer Science, P.O. Box 217
7500 AE Enschede, the Netherlands

{houtsma, annita, flokstra@cs.utwente.nl}

Abstract 1 Introduction

This paper ia one of the firat to discuss actual imple-
mentation of and eqerimentation with parallel tmn-
sitive clo~~se operations on a full-fledged relational
database system. It brings two research efforts to-
gether; the development of an eficient ezecution atmt-
egy for parallel computation of path problems, called
Disconnection Set Approach, and the develop-
ment and implementation of a parallel, main-memory
DBMS, called PRISMA/DB. First, we report on the
implementation of the disconnection set approach on
PRISMA/DB, showing how the latter’s design allowed
ua to easily e&end the functionality of the system. Sec-
ond, we investigate the disconnection set approach’s
parallel behavior and performance by means of ezten-
sive ezperimentation.

It i8 shown that the pamllet implementation of the
disconnection set approach yields very good perfor-
mance chamcteriatica, and that (auper)linear apeedup
w.r. t. a special implementation of semi-naive i8
achieved for regular, so-called linear fmgmentotions.
We also present a number of ezperiments that show
to what eztent data fmgmentation issues influence the
performance. Finally, we discuss the speedup and ben-
efits to be achieved for arbitmry fragmentations.

For years now, attention has been paid to the exten-
sion of query languages with (types of) recursion, and
the development of effective query optimization strate-
gies [4, 7, 12, 181. An overview of this area can be
found, for instance, in [a]. As the actual computation
of recursive queries usually amounts to an iteration
over join sequences, recursive queries are computation-
ally very expensive. Therefore, the need for parallel
computation is obvious. Parallel computation is a way
to reduce the response time to recursive queries, and
a lot of research in this area has recently been done,
e.g., [lo, 271. In particular, the transitive closure op-
eration has been studied, as an example of a recursive
query with great practical value [l, 9, 13, 16, 17, 241.
An extensive survey of parallel execution strategies
for transitive closure and logic programs can be found
in [5, 61; [6] also presents an analysis of the effect of
initial data distribution on performance.

‘The maearch of Maurice Houtsma has been made possible
by a fellowship of the FLoyal Netherlands Academy of Arts and
Science9

Permiseion to copy without fee all of part of this material ti
gmntcd provided that the copies anz not ma& M distributed
for dinct commercial advantage, the VLDB coplftight notice
and the title of the publication and its date appear, and notice
ir given that wpying ir by permission of the Very Large Data
Bore Endowment. To cop9 otherwise, or to republish, nquinr
a fee ond/ot special permieeion from the Endotument.

Pmceedi~ of the 19th VLDB Conference
Dublin, Ireknd 100s

Although many parallel transitive closure algo
rithms have been proposed, very few have actually
been implemented in a real database management sys-
tem, and performance analysis via implementation is
largely missing. Performance analysis of parallel tran-
sitive closures is mainly done using (analytical) sim-
ulation [13, 17, 241. [24] presents a number of hssh-
based algorithms for the transitive closure operation,
and evaluates them using analytical simulation. [17]
uses simulation to evaluate a parallel algorithm that
combines ideas on traversal recursion [21] and dis-
connection sets [13] (it is, however, not yet suitable
for graphs containing cycles). In all these studies,
many simplifying assumptions, such as regularity in
the number of tuples produced in each iteration and
the fact that data represents a tree structure are made.
Consequently, the results of these studies will not re-
flect actual behavior of systems implementing these

206

strategies. In [l, 231 some actual experiments on tran-
sitive closure algorithms are reported. [l] reports on
experiments with 8 processors connected by a stan-
dard VMEbus; only DAGs are considered in their ex-
periments. [23] reports on a so-called semi-simulation
on a single transputer, and some assumptions are
made to give an indication of its parallel behavior.
In both papers, the graphs that were used in the ex-
periments were small due to limited memory.

In [13], we proposed a parallel transitive closure al-
gorithm, called the disconnection set approach, that
is based on semantic data fragmentation. The algo
rithm was evaluated using simulation, and the results
of this study were encouraging. However, for problems
as complex as transitive closure, actual implementa-
tion is essential to really evaluate and understand the
behavior of an algorithm. This paper describes the
implementation of the disconnection set approach on
PRISMA/DB, and the experiments we did (with large
relations) to evaluate its parallel behavior. PBISMA/
DB is a parallel, main-memory, relational DBMS that
was developed in the Netherlands [2, 201. One of the
goals of the PRISMA project was to provide a parallel
DBMS that is flexible in its architecture and query ex-
ecution strategy, so that new functionality can easily
be added. This paper shows that implementation of a
new transitive closure algorithm and the disconnection
set approach were straightforward.

The experiments we describe in this paper first of
all intend to show the parallel behavior of the dis-
connection set approach on PRISMA/DB. We explain
this behavior, and show what influences it. It turns
out that the results of the parallel approach consis-
tently outperform those of a fast semi-naive algo
rithm, that the disconnection set approach shows good
parallel behavior, and that (super)linear speedup is
achieved, even for simple cases, We then investigate
what specific characteristics of the fragmentation in-
fluence the results. In parallel to the experimentation
reported here, we have been working on the design
of fragmentation algorithms for the disconnection set
approach; this is reported in [15].

The paper is structured as follows. In Sec. 2 we
give an overview of the disconnection set approach,
followed by an introduction to PR.ISMA/DB in Sec. 3.
In Sec. 4 we describe the implementation of the dis-
connection set approach on PR.ISMA/DB. Sec. 5 de-
scribes the performance analysis of the disconnection
set approach, discusses the parallel behavior obtained,
reports on experiments studying several characteris-
tics of the data and its fragmentation that influence
the performance, and explains the superlinear speedup

obtained. Finally, Sec. 6 summarizes and concludes
the paper.

2 Disconnection set approach

In [13] we introduced a parallel strategy for solving
all sorts of transitive closure problems (shortest path,
bill of materials, etc.) called the disconnection set ap-
proach. In [14] a formal description of this strategy
was given and it was proven correct and complete.
We will now give a short introduction to the discon-
nection set approach, enough for the reader to get an
impression of the approach and an idea of its main
characteristics. For a complete description and more
detailed information, including formal proofs and how
to deal with updates, we refer to [13, 141.

The disconnection set approach is a so-called ‘se-
mantic approach’ to parallel transitive closure compu-
tations, just like parallel hierarchical evaluation [16]
which was inspired by it. Noticing that communica-
tion between processors and computing the same tu-
ples on different processors are the main bottlenecks
to efficient parallel computation, and that database
problems require coarse-grain parallelism, the discon-
nection set approach was developed in the following
MY-

The disconnection set mirrors a very natural way of
dealing with transitive closure problems by humans.
When one needs to travel by rail from one part of Eu-
rope to another, instead of dealing with the extensive
European railroad network as a whole, we deal with
it country by country. 1 For instance, when seeking
a connection from Amsterdam to Stockholm we first
find a connection from Amsterdam in Holland to the
border with the Germany, then we find a connection
from there to the border of Germany and Denmark,
then we find a connection from there to the border of
Denmark and Sweden, and finally we find a connec-
tion from there to Stockholm. Ideally, there is only one
chain of countries leading from one city to another; in
reality there may be more and the process described
above has to be repeated for each such chain.

More formally, given a directed graph G = (V, E),
we assume an edge-disjunct fragmentation in n frag-
ments Gr = (&,BI), . . . , G, = (VR,ER) such that
EiflEj = 0 (i # i). The disconnection sets are formed
by the node intersection of the fragments dsij = KnVj
(i # i). It is required that the disconnection sets

‘In practice, this has the nice implication that queries about
the shortest path of two cities in Holland can be answered by
the Dutch railway computer system alone.

207

Figure 1: Illustration of disconnection set approach

be pairwise disjunct. Furthermore, a small amount
of “complementary informationn (CidSij) is stored for
each disconnection set; it is required to guarantee a
correct and complete answer (in case of paths that
zigzag in between two fragments) [14]. For instance,
for shortest path queries, thii complementary infor-
mation stores the cost of the shortest path for each
pair of nodes in the same disconnection set.

For a description of what happens when a path
query is processed, consider Fig. 1 and a path query
concerning the connections from node a to node b. Af-
ter determining the fragments containing nodes a and
b and the chain of fragments to be followed, the follow-
ing XRA-commands (XRA is the internal relational
interface language of PRISMA/DB) are executed in
parallel:

tcl({a}, Gr U cidel~) K dsla
tcl(dsis, Gz U cidszs) M dsz3
tcl(dszs, G3) K {b)

In this program, tcl(z, y) denotes the transitive clo-
sure over relation y, starting from the set of nodes x.
The first query finds all paths in the transitive closure
of Gr and its complementary information that start
from a, and semijoins the result with the nodes in the
disconnection set. The second and third query do like-
wise. To obtain the final result, the results of the three
intermediate queries have to be joined. Note, that we
have assumed a so-called linear fragmentation here;
as mentioned before, for non-linear fragmentation the
strategy works too, but now has to be executed for
each chain of fragments connecting the fragments that
contain the start and end nodes2

Two obvious characteristics that influence the per-
formance of the disconnection set approach are: size of
the disconnection sets and size of the fragments. Small
disconnection sets are preferable: they function as ad-
ditional selections in the computation of the global
transitive closure query; from each disconnection set a
kind of ‘magic cone’ is built that restricts the amount
of data to be considered. The size of a fragment is

IIn case of fragmentation graphs that contain many cycles,
the technique described in [16] can be used to reduce possible
overhead.

an indication of the amount of work to be done for
computation of the local transitive closure query. It
should be sufficiently large, so a processor has enough
work to process it, and the fragments should prefer-
ably be balanced in size, so all processors may finish at
approximately the same time with the local transitive
closure queries.

3 PRJSMA/DB

PRISMA/DB is a full-fledged parallel, main-memory
relational DBMS, designed and implemented from
1986 to 1991 by several Dutch Universities and Philips
Research Laboratories. A goal of the PFUSMA project
was to provide flexibility in architecture and query ex-
ecution strategy, to enable experiments with the func-
tionality and performance of the system. This flexi-
bility is used here to implement a parallel transitive
closure algorithm, and to evaluate its performance.

PRISMA/DB is used for research in various direc-
tions, such as analysis of its performance and parallel
behavior [26], interoperator pipelining for parallel im-
plementation of multi-join queries [25], and the use of
parallelism for integrity constraint enforcement [ll].
Here, we explore a fourth direction: parallel recursive
query processing. A full description of design, archi-
tecture, and implementation of PRISMA/DB can be
found in 121, here we give a brief introduction into
the hardware and architecture of PRISMA/DB. An
overview of the results of the entire project can be
found in [3].

3.1 The POOMA machine

PRISMA/DB is implemented on a shared-nothing
parallel multi-processor machine called POOMA. A
loo-node prototype, located at Philips Research Lab-
oratories, and an 8-node prototype, located in our own
laboratory, exist. The work reported in this paper was
done on the 8-node prototype. Each node of POOMA
consists of a 68020 data processor with 16 Mbytes
of memory, a disk, and a communication processor
that links it to 4 other nodes using bidirectional links.
Some nodes have an ethernet card that links the sys-
tem to a Unix host.

3.2 The architecture of PR,ISMA/DB

Figure 2 presents an overview of the architecture of
PRISMA/DB. The architecture consists of compo-
nents that are implemented as communicating pro-
cesses. Some components are instantiated several

208

Figure 2: Global architecture of PRISMA/DB

times in the system, others have a single instantiation
that serves the entire DBMS. The architecture is flex-
ible; components can be created and deleted dynam-
ically, according to the use of the system. The rect-
angles in Figure 2 represent permanent components,
the ovals represent transient components belonging to
a single user session. The dotted ovals show transient
components belonging to a second, concurrent user
session.

The data dictionary (DD) and concurrency con-
troller (CC) are central components, with their usual
function. Standard two-phase locking with shared and
exclusive locks is used for concurrency control. Fig-
ure 2 shows that these components are used by both
user sessions.

The query preprocessing layer of the system is
formed by the query language compiler (QLC) and
query optimizer (QO). The QLC provides an interac-
tive interface to the user and translates queries from a
user language into the internal relational language of
the system, called XRA. Translated queries are sent
to the QO, which optimizes them into parallel execu-
tion plans. The transaction manager (TM) forms the
execution control layer of the system, it enforces the
ACID transaction properties.

The data storage and query execution layer consists
of one-fragment managers (OFMs) and local transac-
tions managers (LTMs). OFMs are permanent; they
store and manage a single fragment of a relation.3
OFMs serve as storage units of the database and can
be accessed by all user sessions. LTMs are transient
and private to a transaction; they are the relational
engines of the system, supporting the relational op
erators. An LTM can be attached to an OFM, in
which case it is allocated to the processor hosting the

30nly horizontal fragmentation is currently supported.

OFM and can directly access its data. LTMs that are
not attached to an OFM, process intermediate results
and can be allocated to any processor. Parallelism is
achieved by having several LTMs process parts of the
data concurrently

An extended Relational Algebra (XRA) is used as
internal representation of queries. This language con-
sists of the normal relational operations extended with
some primitives for grouping and for recursive query
processing. Also, the language allows the expression
of a wide range of parallel execution plans for a query.
Each relational operation can be executed by an arbi-
trary number of processors,, and the result of an op
eration can be distributed efficiently over an arbitrary
number of destinations.

The modification to the system that was done for
the research in this paper, was the implementation
of a transitive closure algorithm in the LTM, and
some minor adjustments in the QLC and QO, to have
these components correctly handle the new algorithm.
These changes took less than two weeks.

3.3 The execution monitor

PRISMA/DB has a built-in execution monitor that
allows detailed analysis of the execution characteris-
tics of a query. The execution monitor enables the
writing of cheap log messages during the execution of
a query; collection of log data is postponed until af-
ter query execution. The execution monitor consists
of a data structure on each processor, which is shared
by all processes that run on that processor. Processes
write simple atomic log messages consisting of local
time (the local clocks are synchronized), process iden-
tification, and an indication of what the process is
doing, such as “start” or “ready”.

In the current version of PRISMA/DB, all LTMs
log the time at which they initialize and the time at
which they are ready. This requires two log messages
per LTM, and therefore the execution of a query is
hardly influenced by monitoring. After the execution
of a query, log data are collected into a file for analysis.
The costs of initializing an operation process can be
retrieved using initialization time of subsequent LTMs,
and costs of local processing can be found from the
difference between the “init” and “ready” mark of an
LTM.

209

4 Implementation of the disconnection
set approach

This section describes the implementation of the dis-
connection set approach on PRISMA/DB. To imple-
ment this parallel transitive closure strategy, a suitable
central transitive closure algorithm is needed (to com-
pute locally the transitive closure of each fragment),
and an execution plan-that uses this transitive clo-
sure algorithm together with other primitives that are
provided by PPISMA/DB-to generate the answer to
a path problem over a fragmented graph. Further-
more, test data is needed for experiments with the im-
plementation of the disconnection set approach. This
section describes these issues: lirst the generation of
test data, then the central transitive closure algorithm
that we implemented, and finally the execution of path
queries over a fragmented graph (using an example
query ‘execution).

4.1 Generation of test data

Synthetic test data was used for the experiments.
They were provided by a generator that produces a
directed graph over a given set of nodes. This graph
is already fragmented according to the requirements
of the disconnection set approach.’ Note, that the
generator produces fragmented data, instead of gener-
ating a graph which is subsequently partitioned over
fragments. Fragmentation design of arbitrary graphs
is a separate problem; first results of our research in
this area are given in [15]. The results of the exper-
iments reported in this paper will be used in further
study of fragmentation design algorithms.

As explained in Sec. 2, this paper considers frag-
mentations with a linear fragmentation graph, so the
generator only produces directed graphs with a linear
fragmentation. Fig. 3 shows example output of the
generator; a directed graph over a set of 14 nodes is
represented by an adjacency matrix, with [i, j] set to
1 if node i is connected to node i. For each entry in
the matrix that is set to 1, a binary tuple is gener-
ated. The tuples are assigned to fragments; the node
intersections of the fragments are the disconnection
sets. The graph in Fig. 3 consists of three fragments
of 6 nodes, with an overlap of 2 nodes between sub
sequent fragments; each fragment contains 10 connec-
tions. The fragment boundaries are indicated in the
figure by lines betw%n the node numbers; fragment 1,

‘AJ one of the reasons for experimentation is to find out
the influence of several characteristics of data fragmentation on
performance, we chose to generate test data instead of using an
arbitrary graph, ao we can control relevant characterirtics.

0 1 2 3 4 5 6 7 6 6 IO 11 1212

00 10 0 0 01

1 1 0 1 1

l100001

Figure 3: Sample output of the data generator

2, and 3 contain connections between nodes O-5,4-9,
and 8-13. The disconnection set between the first two
fragments contains nodes 4 and 5, the other disconnec-

tion set contains nodes 8 and 9. As the disconnection
set approach requires an edge-disjunct fragmentation
(see Sec. 2), edges in the overlap between two frag-
ments are assigned to an arbitrary fragment. In this
case, they are assigned to the left fragment; hence,
tuple (8,9) is assigned to fragment 2.

The generator takes as input parameters: the num-
ber of nodes per fragment, the number of connections
in each fragment, and the number of nodes per dis-
connection set. The connections in each fragment are
generated randomly. In this way, graphs can be gen-
erated that allow investigation of the influence of each
of these parameters on the performance of the paral-
lel transitive closure computations. A fragmentation
degree of 6 was used throughout this paper; it gives
proper insight in the behavior of the parallel algo-
rithm. Moreover, the graphs still fit in main memory;
central computation of the queries is thus still feasible.

4.2 Central transitive closure algorithm

Path problems usually concern connections between
a set of start nodes and a set of destination nodes,
and in the disconnection set approach the computa-
tions on the fragments concern connections between
two disconnection sets. Therefore, we implemented
a central semi-naive transitive closure algorithm that
builds spanning trees from a given start set of nodes.
We will refer to this algorithm as selective semi-naive
(SSN). Given a binary relation R, representing the
connections in a graph, and a start set S, representing
a set of nodes to start from, the algorithm to compute
the transitive closure of R from S is:

210

#nodes in start set response time
1 2.7
2 5.4
4 8.6
6 15.8
8 21.7

10 27.8
20 52.0

360 3273.6

Table 1: Response time in seconds of SSN for different
start sets; base table containing 900 tuples.

tcl:=R~S
/* to start with the paths that start in S */
new:=tcl
while new # 0 do

new := (new W R) - tcl;
tcl := tcl U new

od
return tcl

A hash-based implementation was used for this algo-
rithm. The joins are executed as hash-joins, and the
result tuples of each new W R are inserted into a tcl
hash-table that checks whether the tuple was already
there. If not, the tuple is also inserted into new.

The performance gain on a single processor is
tremendous; Table 1 relates the execution times to
the size of the start set, where the base relation con-
tains 900 connections (represented by tuples) over 360
nodes. The last entry in this table uses the entire re-
lation as start set; it corresponds to the response time
of the full transitive closure operation. Not only does
SSN reduce the response time by orders of magnitude
compared to semi-naive transitive closure computa-
tion followed by a selection, it also reduces memory
usage significantly. The majority of the experiments
reported in this paper would be impossible without
this reduction in memory usage.

Recently, other algorithms have also been devel-
oped for the problem of transitive closure compu-
tations with a start set ,[19, 221, but these are not
very well suited for a relational environment such as
PRISMA/DB.

4.3 Implementation of path queries on
PR,ISMA/DB

Once a local transitive closure algorithm was imple
mented, support of the disconnection set approach was
relatively straightforward; disconnection set queries

Figure 4: Example query tree for path query (proces-
sors 3-5 equivalent to processor 2)

could now be formulated directly in XRA. Fig. 4 shows
the query tree that is used for a path query on 6
fragments, and the allocation of operations to pro-
cessors. Initially, each participating processor hosts
3 fragments: a fragment of the graph (frogi), the dis-
connection set between the local fragment and the pre-
vious fragment (dai-r,i)r and the precomputed com-
plementary information over the disconnection set
(tidsi,i+l).5 The dotted boxes in the figure represent
the processor boundaries. Each processor starts com-
puting the transitive closure over its local data; these
computations are done independently in parallel. As
described in Sec. 2, the complementary information
is added to the fragments before computing the lo-
cal transitive closures. Each transitive closure is com-
puted from a local start set (either the start set of
the query or a disconnection set). The result of each
transitive closure is semi-joined to the local end set
(either a disconnection set or the end set). During
our experimentation it became clear that it is indeed
profitable to do these semi-joins, to reduce the size of
the operands of the final joins. The five join operations
synthesize the final result.

Fig. 5 shows the parallel behavior of an example
query; it is generated using the PRISMA/DB execu-
tion monitor. Each line in this figure represents a pro-
cessor, a line starts at the time at which the transitive
closure process on the processor is created. A mark
on each line indicates when the transitive closure op

SThe first and last fragment are treated slightly different;
they host a #tact respectively end set instead of a disconnection
set respectively complementary information

211

nodes
#connections I 300 600 1000 6 I

1 I

time +

Figure 5: Parallel execution of DSA on PRISMA/DB

eration is finished; the line ends when the processor is
ready executing its final joins. The figure shows good
parallel behavior, resulting in linear speedup with re-
spect to SSN, as will be shown shortly. It also shows
that each processor spends most of its time on the
local transitive closure. Finally, the structure of the
query tree in Fig. 4 is reflected in the execution moni-
tor diagram. For example, processor 1 joins the results
of the transitive closures that are executed on proces-
sors 1 and 2; this join operation has to wait for the
result of the transitive closure on processor 2 to be
entirely available. Processor 6 does not have to wait
for any remote operand for a join, it can finish after
completing its transitive closure. Processor 3, finally,
executes the last join, and therefore this processor is
last to finish.

The next section investigates the influence of var-
ious parameters on the parallel behavior, and the
speedup achieved by using the disconnection set ap
proach.

5 Performance analysis of the discon-
nection set approach

We now discuss the performance of the disconnection
set approach on PRISMA/DB. We study the influence
of various parameters (number of nodes, connectiv-
ity, size of the disconnection sets) on both response
time and speedup with respect to SSN. Recall from
Sec. 4.2 that the latter is already much faster than
an ordinary semi-naive implementation of transitive
closure followed by a selection. The central transitive
closure computations were executed on a single node
of PRISMA/DB.

5.1 Number of nodes and connectivity of
the graph

We first discuss the influence of the number of nodes
and connectivity of a graph on the response time and
speedup of path queries. The number of nodes in a

Table 2: Number of connections used in the experi-
ments

Table 3: Response time in seconds of parallel and cen-
tral execution of a path query

fragment is varied over 300, 600, and 1000, and a low,
middle, and high number of connections is chosen for
each number of nodes used. Table 2 relates numbers
of connections (i.e. tuples) to numbers of nodes. Data
is partitioned over 6 fragments in all experiments, so
the entire graph is defined on 1800, 3600, and 6000
nodes. (Our largest experiment thus ran over 6 frag-
ments each containing 10000 tuples.) The disconnec-
tion set between two subsequent fragments consists of
6 nodes; the number of nodes in the start and des-
tination sets is chosen equal to the number of nodes
in the disconnection set. The path query that is exe
cuted here, as everywhere else in this paper, asks for
the connections between a given set of start nodes in
the first fragment, and a given set of destination nodes
in the last fragment.

Table 3 lists the response times of this query, both
for the parallel execution of the disconnection set ap-
proach (DSA), and for selective semi-naive (SSN). Fig-
ure 6 presents a plot of the same results. In the dia-
gram, the response time is plotted against the number
of nodes for both algorithms, and for low, middle, and
high connectivities.

Response time increases, for both implementations,
with an increasing number of nodes, and with increas-
ing connectivity. This, because the total amount of
work to be done increases for both approaches. Note
that the parallel implementation outperforms the cen-
tral one in all cases. The diagrams in Figure 6 even
show that the response times of the queries on graphs
with a low connectivity using SSN, is higher than the
response times of the queries on graphs with a high
connectivity using the parallel algorithm.

A more detailed comparison between both imple-
mentations is shown in Fig. 7. For each query, the

212

low

middle

high

#connections
per fragment 300

I

l I

I I

4.5

* 4

3 I
1 c

5.5

#nodes
600

I #

* I

, I

1 L

I I

6.4

6 ,

I ,

. ,

3 ,

1 I
1 ‘

6.7

6 I

I I
. I

I ,

I I

6.9

7.5 I

Figure 7: Execution characteristics and speedup of the parallel execution of the disconnection set approach.

Figure 6: Response time in seconds of parallel and
central execution of a path query

characteristics of the parallel execution and speedup
with respect to SSN are given. Speedup figures in-
crease from upper left to lower right in the figure. This
means that large graphs with a relatively high connec-
tivity yield more speedup than smaller ones and/or a
low connectivity. This phenomenon can be explained
by the execution characteristics. Computation times
of the fragment closures differ considerably for a small
number of nodes and for low connectivities. Hence,
some processon are idle, waiting for the result of other
processors, while others are still busy computing their
transitive closure. Therefore, speedup is limited in
these cases. For larger problems, however, not only the
computation time per fragment increases, but also the
variation between the local transitive closure compu-
tation times decreases (to be discussed shortly). This
causes all processors to be busy all of the time, so that
good speedup is achieved. The lower right of Figure 7
reports superlinear speedup.

As noticed, we encountered large variations in the
computation times for local transitive closures. This
variation is larger when graphs get smaller and con-
nectivity lower. Table 4 shows the sizes (in number of
tuples) of the transitive closure from a start set of 6
nodes of 300-node fragments. (The same graphs were
used for the experiments in Fig. 7) Each fragment in
an experiment is generated at random, following the
same procedure. The data in Table 4 shows a large
variation in the size of the transitive closures for low
connectivities. This variation in the size of the tran-
sitive closures is responsible for the less than linear
speedup in the top row of Fig. 7. As an aside, we

213

fra&nent 2 593 1740 1764
fragment 3 818 1695 1776
fragment 4 787 1746 1788
fragment 5 590 1160 1782
framnent 6 815 1492 1794

Table 4: Size of the local transitive closure, using a
start set of 6 nodes and 300 node fragments.

I I #connections I
per fragment

ds size 1 1000 2000 3000

Table 5: Execution time in seconds, compared for
varying disconnection set sizes

may conclude that the number of nodes and the con-
nectivity of a graph are not sufficient to give a good
estimation of the size of the transitive closure of a
graph (and its computation time).

The experiments reported in this section were also
done using disconnection sets of 4 and 9 nodes; the
results of those experiments are similar. In the next
section, the effect of the size of the disconnection set
is studied in isolation.

5.2 Effect of Disconnection Set size

We now discuss the impact of the size of the discon-
nection sets on the response time of the disconnec-
tion set approach. In each experiment, the graph was
fragmented over 6 fragments, with 600 nodes per frag-
ment. Three connectivities were used (1000,2000, and
3000 connections per fragment), and for each connec-
tivity the disconnection set size was varied over 4, 6,
and 9 nodes. The size of the start and the end sets was
set to 4 tuples for each experiment. Table 5 shows the
response time of the parallel implementation of the
disconnection set approach for various disconnection
set sizes. Fig. 8 presents a plot of the same results.

The results show that the size of the disconnection
sets is of major importance for the performance of the
disconnection set approach. A small increase in the
disconnection set size causes a significantly larger re-
sponse time. The reazon for this increase in response
time is twofold: Firstly, the computation time of a

Figure 8: Execution time in seconds, compared for
varying disconnection set sizes

local transitive closure increases with increasing dis-
connection set size, as the disconnection set is used
as start set in the transitive closure computation. As
shown in Sec. 4.2, the computation time of a transi-
tive closure algorithm is very sensitive to the size of
the start set. Secondly, the operands of the final join
operations are larger for larger disconnection sets, and
therefore the final joining phase takes longer. A study
of the log data (equivalent to the ones shown in Fig. 7)
revealed that the increase in computation time for the
transitive closure is the main reason for the increase
in response time.

Another conclusion that can be made concerns the
fragmentation strategy that should be used for the
disconnection set approach. A fragmentation strat-
egy may have to make the choice between generating
many small fragments with large disconnection sets,
or fewer large fragments with small disconnection sets.
Our results show that neither choice is always the right
one. For instance, in Table 5 the queries on the 1000
connections per fragment graphs outperform the other
queries, but the query on the 3000 connections graph
with small disconnection sets performs better than the
query on the 2000 connections graph with larger dis-
connection sets. From these observations it can be
concluded that both the fragment size and the size of
the disconnection sets is of major importance to the
performance of the disconnection set approach.

5.3 Speedup

Most results show an almost linear to superlinear
speedup, we will now discuss the main leaSons for this.
In Sect. 5.1, we already explained why for small frag-
ments speedup may be slightly smaller than linear. We

214

will also argue that in many cases the disconnection set
approach will achieve a linear to superlinear speedup
with fewer processors than in our experiments.

Superlinear speedup in the experiments with large
relations occurs because costs of the central transitive
closure algorithm increase more than linear with the
size of its operand. Both in the central and in the
parallel case, each transitive closure is locally com-
puted using SSN; the former with the entire relation
as operand and the latter with fragments as operands.
The cost of SSN increases more than linear with the
size of the relation it computes the transitive clo-
sure of, because of the combined effect of i) a larger
operand used in successive join operations, which al-
ready yields a linear growth in the costs, and ii) a
bigger number of iterations, because longer paths in
the graph have to be calculated. The last argument,
of course, only holds when the initial adjacency ma-
trix is not too sparse or too dense, so that long paths
actually exist in the transitive closure. This was the
case in our experiments. The superlinear increase in
the cost of SSN, together with the unskewed paral-
lel execution for the larger experiments as shown in
Fig. 7, explains the superlinear speedup achieved.

Our experiments, with a linear chain of fragments,
did not take full advantage of the disconnection set
approach, which allows to ignore non-relevant frag-
ments. Suppose that we move the start set from frag-
ment 1 to fragment 4. The central algorithm still has
to consider the entire relation (i.e. fragments l-6),
whereas the disconnection set approach only considers
fragments 4-6 and still gives a correct and complete
answer [14]. This means that we will need only half
of the processors and consequently the same speedup
is realized using a smaller number of processors! The
ability to ignore non-relevant fragments is a very im-
portant aspect of the disconnection set approach, and
it will occur a lot in practical applications of the dis-
connection set approach. Hence, the disconnection set
approach will in many cases be able to achieve good
linear speedup using fewer processors than in our ex-
periments.

Of course, there is some overhead in the disconnec-
tion set approach to find all applicable routes through
the fragmentation graph. However, the fragmenta-
tion graph is orders of magnitude smaller than the
graph itself (our largest graph contained 6000 nodes
and 60000 tuples, with the fragmentation graph con-
taining 6 nodes and 5 tuples). Special algorithms for
graph traversal in main-memory can be used for find-
ing the routes in the fragmentation graph, so any no-
ticeable overhead seems unlikely. If the fragmenta-

tion graph contains cycles, overlapping paths (com-
mon subexpressions) can be detected so they are com-
puted only once. If the fragment&on graph happens
to be complex and contains many cycles, a generaliza-
tion of the disconnection set approach called Pamllel
Hiemrchical Evaluation [16] can be used for efficient
parallel computation.

6 Conclusions

In this paper, we combined two of our research efforts:
the disconnection set approach and PRISMA/DB.
The implementation of the disconnection set approach
for transitive closure computations on PRISMA/DB
allowed a detailed performance evaluation of the par-
allel transitive closure algorithm. It was shown how
we could benefit from the flexibility provided by
PRISMA/DB, allowing changes to the system to be
made relatively easy. Also, the execution monitoring
facilities of PRJSMA/DB were useful to analyze the
results of our experiments.

The results show that the disconnection set ap
preach provides a good parallel behavior of the compu-
tation. Indeed, the philosophy behind this strategy-
independent computation on only part of the data by
having some minimal complementary information-is
clearly paying off. The results also show that, com-
pared to selective semi-naive (already orders of mag-
nitude faster than semi-naive transitive closure com-
putation followed by a selection), the disconnection
set approach performs very well, yielding (super)linear
speedup. The results of the performance evaluation
show that large fragments yield better speedup than
small ones, due to the large variation in computation
time for the local transitive closures in case of small
fragments. Also, it was shown that the disconnection
set performs best with small disconnections sets. It
may even pay to choose for a smaller number of larger
fragments, if the size of the disconnection sets is re-
duced in return.

We explained the superlinear speedup obtained,
and argued that such speedup may be reached with
considerably fewer processors in many practical appli-
cations.

An interesting side result of the experiments is that
we showed the large variation in size of the transitive
closure, and its relationship to the degree of connec-
tivity of a graph. This issue deserves further research.

We are currently building a tool ‘to,,automate the
process of experimentation (computing complemen-
tary information, fragment graph, allocating frag-

215

ments, etc.). Moreover, in parallel to the experimen-
tation reported here, we have studied the issue of
fragmentation design [15]. As a next step, we will
now combine these efforts, and are going to under-
take large-scale. experiments (on the loo-node ma
chine) with the fragmentation design algorithms and
the experimentation tool. As an aside, we are also
considering experiments to investigate if it would be
possible to come up with a cost estimation of transi-
tive closure, given the connectivity of a graph.

Acknowledgements

We thank Peter Apers for encouraging our research
and commenting on earlier drafts of this manuscript.

References

111

PI

PI

PI

PI

PI

AGRAWAL, R. AND JAGADISH, H.V.
“Multiprocessor transitive closure algorithms,”
in Proc. Int. Symp. on Databases in Parallel and
Distributed Systems, Austin, Texas, Dec. 5-7
1988, pp. 56-66.

APERS, P.M.G., VAN DEN BERG, C.A.,
FLOKSTRA, J, GREFEN, P.W.P.J, KERSTEN,
M.L. AND WILSCHUT, A.N. “PRISMA/DB: A
Parallel Main-Memory Relational DBMS,”
IEEE Transactions on Knowledge and Data
Engineering, Vol. 4, No. 6, Dec. 1992,
pp. 541-554.

AMERICA, P. (Ed.), Parallel Database Systems,
Proc. of the PRISMA Workshop, LNCS 503,
Springer-Verlag, 1991.

BANCILHON F., D. MAIER, Y. SAGIV AND
J.D. ULLMAN “Magic sets and other strange
ways to implement logic programs”, Proc. ACM
SIGMOD-SIGACT Symp. on Principles of
Database Systems, Cambridge (MA), March
1986.

CACACE, F., CERI, S., AND HOUTSMA,
M .A. W. “An overview of parallel strategies for
transitive closure on algebraic machines,” in [3].

CACACE, F., CERI, S., AND HOUTSMA,
M.A.W. “A survey of parallel execution
strategies for transitive closure and logic
programs,,, in Distributed and Parallel
Databases, Vol. 1, No. 4, Oct. 1993.

VI

PI

PI

PI

[ill

P21

PI

P41

PI

PI

CERI S., G. GOTTLOB AND L. LAVAZZA
“Translation and optimization of logic queries:
the algebraic approach”, in Proc. of the 12th
Int. Conf. on Very Large Data Bases, Kyoto,
pp. 395-403, August 1986.

CERI S., G. GOTTLOB AND L. TANCA Logic
Programming and Databases, Springer-Verlag,
1990.

CHEINEY J.P. AND C. DE MAINDREVILLE “A
parallel strategy for transitive closure using
double hash-based clustering,” Proc. 16th Int.
Conf. on Very Large Data Bases, Brisbane,
Aug. 1990.

GANGULY S., A. SILBERSCHATZ AND S. TSUR
“A framework for the parallel processing of
Datalog queries,” Proc. SIGMOD 90.

GREFEN, P.W.P.J. AND APERS, P.M.G.
“Parallel Handling of Integrity Constraints on
Fragmented Relations,” Proc. of the Second Int.
Symp. on Databases in Parallel and Distributed
Systems, Dublin, Ireland, July 2-4, 1990.

HOUTSMA, M.A.W. AND APERS, P.M.G.
“Algebraic optimization of recursive queries,”
Data and Knowledge Engineering, Vol. 7, No. 4,
March 1992.

HOUTSMA, M.A.W., APERS, P.M.G., CERI,
S. “Distributed computation of transitive
closure queries: The disconnection set
approach,” Proc. 16th Int. Conf. on Very Large
Data Bases, Brisbane, Australia, August 1990.

HOUTSMA, M.A.W., APERS, P.M.G., AND

CERI, S. “Complex transitive closure queries on
a fragmented graph,” Proc. 3rd Int. Conf. on
Database Theory, December 1990, Paris,
France, Lecture Notes in Computer Science No.
470, Springer.

HOUTSMA, M.A.W., APERS, P.M.G., AND
SCHIPPER. G.L.V. “Data fragmentation for
parallel transitive closure strategies,” in Proc.
9th Int. Conf. on Data Engineering, Vienna,
April 1993, pp. 447-456.

HOUTSMA, M.A.W., CACACE, F., AND CERI,
S. “Parallel hierarchical computation of
transitive closure queries,” in Proc. 1st Int.
Conf. on Parallel and Distributed Information
Systems, Dec. 1991, Miami Beach, Fl.

216

[17] HUA, K.A. AND HANNENHALI, S.S. “Parallel
transitive closure computations using topological
sort,” in Proc. 1st Int. Conf. on Parallel and
Distributed Information Systems, Dec. 1991,
Miami Beach, Fl.

[18] IOANNIDIS Y.E. “On the computation of the

18th Int. Conf. on Very Large Data Bases,
Vancouver, Canada, Aug. 1992.

[27] WOLFSON 0. AND OZEFU, A., “A new
Paradigm for Parallel and Distributed
Rule-processing.“, in Proc. ACM-SIGMOD 1990,
pp. 133-142.

transitive closure of relational operators,” Proc.
Int. Conf. Very Large Data Bases, Kyoto 1986,
pp. 403411.

[19] B. JIANG, “A suitable algorithm for computing
partial transitive closures in databases, in Proc.
6th Int. Conf. on Data Engineering, Los
Angeles, 1990, pp. 264271.

[20] KERSTEN, M.L., APERS, P.M.G., HOUTSMA,
M.A.W., VAN KUIJK, H.J.A., AND VAN DE
WEG, R.L.W. “A distributed, main-memory
database machine,” Proc. of the 5th Int.
Workshop on Database Machines, Karuizawa,
Japan, October, 1987; also appeared in
Database Machines and Knowledge Base
Machines, M. Kitsuregawa and H. Tanaka
(eds.), Kluwer Academic Publishers, 1988.

[21] LARSON, P.-A. AND DESHPANDE, V. “A file
structure supporting traversal recursion,” in
Proc. ACM-SIGMOD, 1989, pp. 243-252.

[22] TOROSLU, T. AND QADAH, G.Z. “The efficient
computation of strong partial transitive
closure,” in Proc. 9th Int. Conf. on Data
Engineering, Vienna, April 1993, pp. 530-537.

(231 SHAO, J., BELL, D.A., AND HULL, M.E.C.
“An experimental performance study of a
pipelined recursive query processing strategy,”
in Proc. of the Second Int. Symp. on Databases
in Parallel and Distributed Systems, Dublin,
Ireland, July 2-4, 1990, pp. 36-43.

1241 VALDURIEZ P. AND KHOSHAFIAN, S. “Parallel
Evaluation of the Transitive Closure of a
Database Relation,” Int. Journal of Parallel
Programming, 17:1, Feb. 1988.

[25] WILSCHUT, A.N. AND AP‘E~ES, P.M.G.,
“Dataflow query execution in a parallel
main-memory environment,“Proc. 1st Int. Conf.
on ParaUel and Distributed Information
Systems, Dec. 1991, Miami Beach, Fl.

[26] WILSCHUT, A.N., FLOKSTRA, J., AND APERS,
P.M.G. “Parallelism in a main-memory DBMS:
The performance of PFUSMA/DB,” in Proc.

217

