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Abstract 

The enforcement of semantic integrity constraints in data and 
knowledge bases constitutea a major performance bottleneck. 
Integrity constraint simplification methods aim at reducing 
the complexity of formula evaluation at run-time. This paper 
proposes such a simplification method for large and semanti- 
cally rich knowledge bases. Structural, temporal and asser- 
tional knowledge in the form of deductive rules and integrity 
constraints, is represented in Telos, a hybrid language for 
knowledge representation. A compilation method performs 
a number of syntactic, semantic and temporal transforma- 
tions to integrity constraints and deductive rules, and orga- 
nizes simplified forms in a dependence graph that allows for 
efficient computati.on of implicit updates. Precomputation of 
potential implicit updates at compile time is possible by com- 
puting the dependence graph transitive closure. To account 
for dynamic changes to the dependence graph by updates of 
constraints and rules, we propose efficient algorithms for the 
incremental maintenance of the computed transitive closure. 

1 Introduction 

The problem of efficient management and enforcement of 
semantic integrity constraints constitutes a cornerstone 
issue in the development of knowledge base management 
systems (hereafter KBMSs) 1121. Undoubtedly knowl- 
edge bases (KBs) will form an integral part of information 
systems of the future. Aimed at modeling a multitude of 
application domains, these systems will be required to 
represent consistently and reason efficiently with large 
amounts and a wide range of knowledge. Generic tools, 
providing robust and efficieni implementations for sior- 
age managemeni, query optimizaiion, concwrencg cofl- 
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id and integritg enforcement are needed for managing 
such large KBs [12]. 

Integrity constraints specify the valid states of a KB 
(static) as well as the allowable KB state transitions 
(dynamic). The ability to express general constraints 
in KBs is crucial, since constraints express additional 
application dependent semantics that cannot be built- 
into or expressed by the data structures used for 
representing knowledge. Additionally, they constitute a 
means for controlling the quality of information stored in 
knowledge repositories. 

A number of issues arise within the problem of integrity 
constraint management. A first such issue is the declar- 
ative - as opposed to procedural - specification of con- 
straints. Constraints specify which properties must hold 
in valid KB states and transitions, and not how these 
properties are to be enforced. Procedural constraint 
specification inadvertently ties constraint enforcement 
with transaction specification and leads to expensive run- 
time integrity checks. Declarative specification of con- 
straints permits their treatment as first-class citizens of 
the KB and allows automating their optimization pro- 
cess. Telos [ll] g d re ar s constraints as objects of their 
own right, and as such, they can be inserted or removed, 
and are subject to consistency violation. Constraints in 
Telos are specified declaratively via a first-order assertion 
language. 

A second issue is that of efficient consiraint checking. 
This consists of determining, after each update, whether 
all con&tints are satisfied in the resulting state. The 
expressive power of the assertion language, the number 
of constraints in the KB and the inherent complexity 
of first- or higher-order deduction constitute major 
impediments to constraint checking. This paper focuses 
on the problem of simplifying the process of constraint 
checking in large, semantically rich KBs. Lastly, it has 
to be ensured that the KB is in a consistent state after a 
constraint violation. Iniegrify recovery is the undertaking 
of appropriate action for restoring consistency once it 
has been violated. At present, we adopt a rather 
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coarse-grained approach to integrity recovery, namely 
the rejection of any integrity violating transaction. A 
transaction is not committed until all constraints are 
found to be satisfied.’ 
The naive approach of checking all integrity constraints 
after each update is highly impractical given the antici- 
pated large number of integrity constraints in a KB. In- 
cremental integrity checking methods are baaed on the 
premise that constraints are known to be satisfied prior 
to an update [13]. Only a subset of the constraints need 
to be verified after the update, namely those that are 
affected by it. Incremental integrity checking is made 
possible by specializing integrity constraints with respect 
to the anticipated types of updates and by performing 
simplifications on the specialized forms. A number of 
incremental constraint checking techniques for relational 
(e.g. [13]), deductive (e.g. [4], [2], [S]) and, most recently, 
object-oriented databases [7] have appeared in the recent 
literature. Most methods concentrate on the enforcement 
of static constraints. Dynamic constraint checking meth- 
ods are mainly baaed on temporal logics and are run-time 
methods (e.g. [3]). To the best of our knowledge, there 
has been no proposal for compile-time simplification of 
temporal (static and dynamic) integrity constraints. We 
propose such a method in this paper. The presence of 
deductive rules also complicates constraint enforcement: 
explicit updates may cause implicit updates which may 
violate integrity constraints. Most techniques compute 
implicit updates at run time, after the actual update is 
specified. In our proposal, potential implicit updates can 
be computed at KB compilation time. This information 
is stored as the transitive closure of a logical dependence 
relation that defines a graph structure. The transitive 
closure of the dependence graph is affected by updates of 
rules or constraints and has to be incrementally main- 
tained on-line. 
The rest of this paper is organized as follows. Section 2 
presents a brief overview of Telos and introduces a work- 
ing example. The compilation of constraints and rules 
into simplified structures and the precomputation of im- 
plicit updates is introduced in section 3. Section 4 dis 
cusses the treatment of updates of deductive rules and in- 
tegrity constraints and describes incremental algorithms 
for maintaining the computed implicit update informa- 
tion. Preliminary performance results are also presented 

’ and the paper is concluded in section 5 with an outlook 
for further research. 

2 Overview of Telos 

The representational framework of Telos (111 is a gener- 
alization of graph-theoretic data structures used in se- 

lA finer grained approach could initiate a sequence of updates 
so that constraints are satisfied in the resulting state. 

Figure 1: An example Telos KB 

mantic networks, semantic data models and structurally 
object-oriented representations. Among the distinguish- 
ing aspects of Telos are the novel treatment of attributes, 
the extensibility provided by the metaclassing mechanism 
and the special representational and inferential capabil- 
ities for temporal knowledge. Telos has a well defined 
semantics baaed on a possible-worlds model [16]. Telos 
KBs are collections of propositions. A proposition, the 
single representational unit provided, is formally defined 
as a quadruple with components from, label, to and 
when. These denote the source, label, destination and 
duration of the proposition respectively and are proposi- 
tions themselves. Referential integrity requires that any 
component of a proposition must exist in the KB. Telos 
propositions are divided into two disjoint categories: in- 
dividuals, representing concrete or abstract entities, and 
attributes, representing relationships between entities or 
relationships. Individuals and attributes are treated uni- 
formly and are the building blocks of the structured ob- 
jects that comprise a Telos KB. Propositions are orga- 
nized along the structuring dimensions of instantiation, 
generalization and aggregation. Telos offers a number of 
built-in classes at all levels of an infinite instantiation 
hierarchy. Classes having instances into more than one 
levels of the hierarchy are termed w-classes. For in- 
stance, the w-class proposition has all propositions as 
instances, whereas Class has all classes as instances. In- 
stantiation and specialization relationships are grouped 
by the built-in classes InstanceOf and ISA. Figure 1 de- 
picts an example KB modeling an imaginary scientific 
conference domain. Dashed lines represent a specializa- 
tion relationship (isa) between generic entities (classes), 
shown in bold font, whereas solid lines represent binary 
relationships among entities (attributes). Integrity con- 
straints and deductive rules are attached through at- 
tributes to classes. 

2.1 Temporal Ynowledge 

Telos emphasizes the use of time for representing histo- 
ries of generic events and activities as well as the system’s 
knowledge of these histories, by providing two temporal 
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dimensions for hisforical and belief time. Telos adopts 
Allen’s[l] interval-based time model for representing his- 
torical information about an application domain. Belief 
time records the history of the KB itself. The primitive 
notion of the time model is that of an interval. Seven 
temporal relationships are used, along with their inverses, 
to characterize the relative position of two time intervals. 
These are the relationships meets, during, overlaps, 
before, starts, finishes and equals. The model 
also includes temporal constants (dates and times), semi- 
infinite time intervals and the special time interval 
Alit isle. 

2.2 The Assertional Component 

Telos provides an assertional language (AL) for the ex- 
pression of deductive rules and integrity constraints. 
AL is a first-order language with equality whose terms 
are variables, constants and the functions from(t), 
label(t), to(t) and when(t) when applied to terms, 
and explicitly enumerated sets produced by set val- 
ued functions. The atomic formulae of the language 
include the predicates: prop(p,x,y,z,t), meaning: 
p is a proposition with components x, p ,z and t, 
instanceof (x,p,tl,t2): x is an instance of J for the 
time period ti and is believed by the system for the time 
period t2, isA(x y,tl ,tZ): x is a specialization of y for 
the time ti and is believed by the system for time t2, 
att (x y,tl , t2): y is a value of the attribute att of x 
for ti and is believed for tZ2 For any terms x and y in 
AL and every temporal or evaluable predicate 6, z 0 y is 
an atomic formula with the obvious meaning. The well 
formed formulae (wffs) of AL are defined recursively from 
atomic formulae in the usual manner. Assertional knowl- 
edge is also organized along the structuring dimensions 
of Telos. 
Integrity constraints and deductive rules are expressed 
as rectified3 closed wffs of AL. An integrity constraint 
can be in one of the forms I 3 Vzl/C1.. .VXL/CI: F or 
I i 3x& . . .3xt/Ck F, where F is any wff of AL whose 
quantified subformulae are of the above forms and in 
which the variables 21, . . . , ZI occur free if at all. Each Ci 
is a Telos class. The meaning of each restricted quantifi- 
cation is that the variable bound by the quantifier ranges 
over the extension of the class instead of the entire do 
main. Any constraint in this form is range-restricfed [4]. 
This class of constraints is equivalent to both the rc- 
stricted quanfification form of [2] and the range form of 
[7]. The latter is obtained if a “typed” constraint of 
one of the above forms is transformed to its untyped 
form, whereas the restricted quantification form is ob- 

2The belief time component of these predicates is omitted when 
they appear in the head of deductive rules. 

3A formula is rectified if no two quantifiers introduce the same 
variable [2]. 

tained from the range form by imposing the restriction 
that F is in miniscope negation normal form. According 
to the standard transformation of typed quantified for- 
mulae to untyped ones [9] the following equivalences hold: 
Vz/T F s Vx T(z) * F and 3x/T F E 32 T(z) II F. 
The typed quantifications Vx/C F and 3x/C F are short 
forms for the formulae: 

Vx Vt instanceOf(t,TimeInterval, Alltime) A 
instanceOf(z, C, t) 3 F and 

Bz Bt instanceOf(t, TimeInterval, Alltime) A 
instanceOf(x, C, 1) A F. 

The transformation preserves the range-restriction prop 
erty despite the introduction of new universally quan- 
tified temporal variables: they are restricted by the 
instanceOf literals. The introduction of temporal vari- 
ables and their restricting literals is necessary since all 
atomic formulae of AL have a temporal component. 
For simplicity and since explicit temporal quantifies 
tion appears in assertions, the introduced variable(s) 
may be identified with ones already appearing in the 
formula. Deductive rules are considered to be special 
cases of integrity constraints. Their general form is 
DR z Vxl/C1.. .Vx,,/C,, (F =S A), where F and the vari- 
ables ti are subject to the same restrictions as in the case 
of constraints. Atom A may not contain belief time, since 
belief time is set by the system, and variables other than 
Xl,**., x,,. Deductive rules in this form are also range- 
restricted. Moreover, deductive rules are assumed to be 
stratified [9]. C onstraints and rules are associated with 
history and belief time intervals. If no such association 
appears explicitly with their definition, both intervals are 
assumed to be equal to (syst ime. . *) , where syst ime 
denotes the current system time. 

An advantageous consequence of the ability to explicitly 
refer to both the history of the domain of discourse and to 
the system’s knowledge about that history, is the ability 
of expressing a number of different types of constraints 
not expressible in formalisms with no or a single only 
notion of time. Apart from static and transition 
constraints expressible in first-order predicate calculus 
and temporal logics respectively, AL provides the ability 
to express constraints referring to the epistemic state 
of the KB. To provide a better characterization of the 
types of constraints expressible in AL, we will refer 
to state, dynamic and dynamic epistemic constraints. 
The characterization “state” was chosen over “static” 
to refer to constraints that specify properties that must 
hold in any state of the domain since, even non- 
temporal formulae become temporal when expressed in 
AL. Dynamic constraints specify properties dependent on 
two or more domain states. Finally, dynamic epistemic 
constraints refer to two or more epistemic states of the 
KB in addition to multiple domain states. From the 
above definitions, it is expected that in the expression 
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of dynamic constraints in AL, the history time variables 
will be constrained by explicit temporal relationships, 
whereas in the case of dynamic epistemic constraints, 
belief time variables will be constrained as well. For 
facilitating temporal reasoning, disjunction of temporal 
relationships is disallowed in AL. 
The semantics of the above types of integrity constraints 
requires that a state constraint is satisfied in any state 
that is accessible from the current state and for the KB’s 
epistemic state corresponding to the constraint’s belief 
time interval. A dynamic constraint must be satisfied 
in any sequence of states that satisfy the temporal 
predicates explicit in the constraint expression for the 
belief time interval corresponding to the constraint’s 
belief time. Finally, a dynamic epistemic constraint must 
be true in all domain and epistemic states that satisfy the 
historical and belief time relationships in the constraint. 

2.3 Working Example 

This section introduces a working example that will be 
used throughout the paper. A number of integrity con- 
straints and deductive rules have been defined, for the 
sake of depicting the application of the method, and at- 
tached to classes (see figure 1). Constraints ICI and IC2 
are state constraints expressing the properties that “no 
author of a paper can be a referee for if’ and “an author 
cannot submit a paper to a conference organized by the 
department she works in” respectively. Dynamic con- 
straint IC3 enforces the property that “an employee’s 
salary can never decrease”. Deductive rules DRl and DR2 
express the rules that “A university afiliate works in 
the department that has the same address as she does” 
and “A university department’s address is the same as 
the university’s location*. IC4 is an example of a dy- 
namic epistemic (meta-) constraint expressing the prop 
erty that “the system cannot stop believing a class defy- 
nition”. They are expressed as follows: 

ICI: Vc/ConfPaperVr/RefereeVa/Author 
Vtl, tz/TimeIntervaI (re j(c, r, tl, tz) A 
author(c, a, tl, t2) + (r # a [at ii, believed at tz])) 

IC2: Vc/ConferenceVp/ConfPaperVa/Author 
VdlDepartment WI, tz/TimeInterval 
(submitted-to(p, c, tl, tz) A organized-by(c, d, tl, t2) A 
author(p, a, tl, t2) A worls-in(a, d, tr, tz) j False) 

IC3 : Vp/Employee)(Vs, s//Integer 
Vtl, t2, ts/TimeInterval (salary(p, 8, tl, t2) A 
sa/ary(p, s’, t3, t2) A bef ore(tl, ts) * (s 5 s’)) 

DRI: Vu/UnivAffiIiateVd/DepartmentVs,s’/String 
Vtl, tz/TimeInterval (address(u, s, tl, tz) A 
Daddr(d, s’, tl, t2) A (s = s’[at tl, believed at tz]) 
+ works-in(u, d, tl)) 

DR2: Vd/DepartmentVu/UniversityVs/String 
Vtl, tz/TimeInterval (uniu(d, u, tl, tz) A 

location(u, s, iI, t2),,+ D-addr(d, s, tl)) 
IC4: Vp, c, l/Proposition Vt, t’/TimeInterval 

brop(p, c, I, c, t) A instanceOf(p, Class, t, t’) * 
(VZ’, T’/TimeInterval (overlaps(t, T) A 
overlaps(t’, 7”) * instanceof (p, Class, T, T’))) o 

3 Constraint Simplification 

In this section the compilation of constraints and rules 
into simplified forms and their organization in a depen- 
dence graph is presented. Our method builds on the com- 
pilation method that was initially proposed in [2] and was 
later adapted to an object-oriented setting in [7J. The ef- 
ficiency of the method stems from the separation of the 
task of constraint enforcement in two separate phases: a 
compilation phase, performed at schema definition time 
and an evaluation phase performed at KB update time. 
During compilation, constraints and relevant rules are 
compiled into simplified forms whose evaluation can be 
triggered by the occurrence of affecting updates. Our 
proposal advances the method of [7] by taking time into 
account and by optimizing the compile-time computation 
of implicit updates. 

3.1 Compilation of Constraints and Rules 
Let us first explain the rationale behind simplification 
by means of an example. Assume that constraint 
ICI of section 2.3 has the right-infinite interval tl = 
(Oi/Oi/iQ88..*) as its associated history time interval. 
Assume also that the constraint defining transaction 
was processed on January 2, 1988. This means that 
the constraint is believed by the system from 02/01/88 
and on. Let t2 = (02/0i/i988..*). Constraint ICI is 
relevant to any update processed on or after 02/01/88 
and which refers to a history time interval contained 
in tl. ICI is satisfied if it is entailed by the KB for 
any history time interval t3 such that during(tz,ti), 
with belief time t4 such that during(t4,tz). Updates 
with time intervals overlapping tl and t2 are considered 
relevant only for the subintervals that occur during tl, tz. 
Assume now that an update introduces an instance 
of the class ConfPaper with title Krypton, author 
Bra&man and time 05/01/88, and that the transaction 
is processed on OS/Ol/SS. Then the constraint is 
relevant to this update since, for 13 =(06/01/88. . *) and 
t4 =(08/01/88. . *), during(ts, tl) and during(t4, tz) 
are both satisfied. After instantiating variables and 
dropping quantifiers the constraint that needs to be 
checked becomes: 
Vr/Ref eree (re j(Krypton, r, 05/01/88..*, 08/01/88..*) 

A author(Krypton, Bra&man, 05/01/88..*, 08/01/88..*) 
j (r # Bra&man [at 08/01/88..r, believed at 08/01/ 
88..*])). 
Moreover, it is known that the literal 
author(Krypton, Brachman, 05/01/88..*, 08/01/88..*) is 
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true in the new state and thus, it can be replaced by 
the Boolean constant True. What remains to be checked 
is the simplified form: 

b/Red erete(ref(Krypton, r, 06/01/88..*, 08/01/88..*) 
=+ (r # Bra&man [at 08/01/88..*, believed at 

08/01/88..*])) 
Such a simplified form can be generated for each update 
that may affect the constraint. The actual values of the 
variables in the constraint are not known. They are re- 
placed by parameters which are instantiated at evalua- 
tion time. Note however that only V-quantified variables 
not governed by 3 (called instantiation variables) can be 
replaced by parameters. As shown in [13], replacing 3- 
quantified variables or V-quantified variables governed by 
3 with constants or parameters, may lead to counter- 
intuitive or incorrect instances. Let us introduce some 
terminology for formalizing the simplification method. 
Compilation and simplification steps apply uniformly to 
integrity constraints and the bodies of deductive rules 
defined for both simple classes and metaclasses. 
Definition: An update is an instantiated literal whose 
sign determines whether it is an insertion or a deletion. 
0 

Given the general form of constraints defined in section 2, 
it can be seen that a constraint is affected by an update 
only when a “tuple” is inserted into the extension of a 
literal occurring negatively in the constraint, or when a 
“tuple” is deleted from the extension of a literal occurring 
positively in the constraint. The definition of relevance 
found in [7] is not sufficient in the presence of time. 
The following definition provides sufficient conditions for 
“relevance” of a constraint to an update, by considering 
the relationships of the time intervals participating in the 
literals of the constraint and the update. 
Defhition:(Aflecting Update) An update U(-, -, tl, 12) is 
an affecting update for a constraint I with history and 
belief time intervals T and T’ respectively, if and only if 
there exists a literal ~5(-,-, -,-) in I such that L unifies 
with the complement of U and the intersections 21 * T 
and t2 * T‘ are non-empty. o 
For each literal occurring in a constraint, the compilation 
process generates a Parameterired Simplified Structure 
(PSS). A PSS all ows for efficient selection of constraints 
affected by an update and for indexing with respect to 
time or its characteristic literal or class. A PSS has the 
form shown is figure 2. PSSs are readily representable 
in Telos via its metaclassing mechanism. The Literal 
component is the constraint literal with respect to 
which the PSS is generated. Parameters is the list of 
instantiation variables occurring as components to Literal 
in the initial form of the constraint and which are treated 
as parameters in the simplified form. Parameters will be 
replaced by the constants appearing in an update at run- 
time. The History and Belief Time components contain 

the history and belief time intervals associated with the 
constraint. The Concerned Class for a literal L is a class 
C such that, inserting or deleting an instance of C can 
affect the truth of L [7]. The role of a concerned class 
is to limit the search space for constraints affected by an 
update. This is possible because of the fine granularity 
- not found in relational databases - provided by 
aggregation. In the presence of time and specialization, 
this definition must be refined appropriately. Intuitively, 
the concerned class for a literal L(-, -, 21, t2) should be the 
most specialized class that fulfills the above requirements 
and is such that the time intervals of the literal L overlap 
with those of the class. This restriction is necessary 
since the specialization/generalization hierarchy may be 
modified by the insertion of new classes and because 
me&lasses whose extension is expected to be quite 
large, such as Proposition, qualify as concerned classes. 
The concerned class for each literal is determined at 
compile-time, when the constraint is transformed into its 
simplified form. To compensate for schema changes that 
may result in a concerned class that is more specialized 
than the one determined at compile time, a set of rules 
is introduced for computing the concerned class for every 
literal in the constraint. These rules can be formulated in 
the form of meta-rules that can be instantiated for each 
particular literal. The rules express the property that, if 
C is a concerned class for literal L and, after an update, 
a subclass C’of C qualifies as a concerned class of L, then 
C’ is the concerned class of L. Another rule expresses the 
transitivity of the Is-A relationship. Concerned classes 
are determined as follows: 
l Instantiation IiteraIs: for a literal of the form 
instanceOf(z, y, 11, tz), if y is instantiated, then y is the 
concerned class provided this class exists during 11 and 
its existence is believed during t2; otherwise, the built-in 
class InstanceOf is the concerned class. 
l Generalization Iiterals: for a literal of the form 
isA(z, y, tl, t2) where both z and y stand for classes, the 
concerned class is the built-in class ISA, the truth of an 
islliteral does not depend on the insertion/deletion of 
instances to/from the extensions of classes z and y. 
l Attribute literals: for a literal of the form 
att(z, y, 21, t2), where att is an attribute of the class I, 
if both z and y are uninstantiated then the concerned 
class of the literal is the unique attribute class q with 
components from(q) = X, label(q) = att, to(q) = Y and 
when(q) = T, that is such that z is an instance of X for 
t 1, y is an instance of Y for t 1 and both these are believed 
during t2. In other words, the most specialized concerned 
class is the attribute class that includes all instantiated 
attributes that relate objects z and y of types X and Y 
respectively, under the assumption that to each attribute 
literal of AL, corresponds a unique proposition with the 
above properties. 
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Concerned Clau 

Skiikd Fom 

Figure 2: A Parameterized Simplified Structure 

l For a literal of the form prop(p,z, y, z,t), if the 
components x and z are equal, then the concerned 
class is the built-in class Individual; if not, the 
concerned class is the class Attribute. In case none 
of z and z are instantiated, the concerned class is the 
class Proposition. However, because of the referenliol 
integrity constraint imposed in Telos,’ the prop literals 
will not be considered in the generation of simplified 
forms. 
Finally, the Simplified Form is derived by applying the 
following steps to the constraint. 
Step 1: the quantifiers binding instantiation variables 
are dropped. Instantiation variables become parameters. 
Step 2: the temporal variables are constrained with 
respect to the history and belief times of the constraint, 
and the resulting temporal relationships are conjoined 
with the constraint 
Step 3: the atom into (from) whose extension a tuple 
is inserted (deleted) can be substituted by the Boolean 
constant True (False) since after the update it is known 
that the fact expressed by the literal is true (false 
respectively). 
Step 4: absorption rules are applied to simplify the 
resulting formula as shown in table 3.1. ’ 
Step 5: temporal simplification rules are applied if 
applicable. 6 
Example: The concerned class for literal author of con- 
straint ICI is the attribute class defined by the propo- 
sition (Paper, author, Author, t), with t satisfying the 
properties of the above rules. Applying the above steps 
to constraint ICI for literal author yields: 

Vr/Ref eree(ref( c, r, tl, ts)‘A during(ti, Ol/Ol/SS..*) 
A during(tg, 02/01/88..*) a (r # a [at tl, 
believed at ts])). 

At update time, if the constraint is affected by an up- 
date, the form that will have to be verified will be 

‘It is possible to express au& a property as a mets-constraint 
in AL. 

5~ stands for any wff of AL. 
61n several caees the combination of temporal predicates 

introduced in step 2 with ones in the constraint may result in 
simpler forms. Step 5 is applied repeatedly until no further 
simplification is possible. 

Vr/Referee (ref(c,r,tl,t2) a (r # a [at tl, 
believed at t2])) o 

Temporal Simplification 

The last step in the generation of parameteriied simpli- 
fied forms is the application of temporal simplification 
rules. The objective of temporal simplification is to sim- 
plify a conjunction of temporal relationships into a single 
temporal relationship. Hence, the number of subformu- 
lae to be evaluated at run-time is reduced. Carrying 
out temporal simplification requires the employment of a 
temporal reasoner for deducing, in those cases this is pas- 
sible, a temporal expression simplifying a conjunction of 
temporal relations. In its generality, the task may not be 
feasible. It has been shown [l] that certain combinations 
of temporal constraints introduce incomplete knowledge 
(disjunction). In our case however, where at least one 
of the temporal variables in the temporal relations intro- 
duced is instantiated, it is feasible to define a number of 
rules that allow to derive new temporal relations from 
already existing ones. 
Formally, the problem of temporal simplification is stated 
as follows: given a conjunction during(t, ii) A ri(l, iz), 
where ir and iz are known time intervals, find a temporal 
relationship r and an interval i such that r(t, i) is satisfied 
if and only if the original conjunction is satisfied. The 
interval i is a function of the intervals ii and is. The fact 
that the intervals ii and is are known permits us to derive 
a relationship rz(il, is). This relationship is exploited 
for restricting the possibly multiple alternatives for r. In 
fact, the expression that is simplified is the conjunction 
during(t,ii) A rl(t,iz) A rZ(il,iz). It is not always 
possible to derive a single definite relation r that has 
the above property. For some combinations of temporal 
relationships r is a disjunction of temporal relationships. 
In those cases, and for the sake of completeness, we 
do not replace the original expression by the equivalent 
disjunction. 
The table in figure 3 contains all simplifications that can 
be carried out at compile time. The rows are labeled 
with all 13 possible relationships between the time in- 
tervals ii and iz, whereas the columns are labeled with 
those between intervals i and ir. The column labels are 
abbreviations of the corresponding row labels. All rela- 
tionships are treated as being mutually exclusive. The 
content of each table entry is the relationship r between 
t and i that fulfills the properties stated above, if such 
a relationship can be found without introducing indefi- 
niteness. In those cases where this is not possible, the 
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entries in the table indicate that no simplification is per- 
formed. Inconsistencies arising in some of the 169 possi- 
ble combinations are also discovered. F indicates that a 
combination of relationships is unsatisfiable. In the case 
that the negation of a temporal relationship appears in 
~1 one can only suggest a weaker condition r, which if 
satisfied guarantees that the original conjunction is sat- 
isfied. A table similar to that of figure 3 can be defined 
for the cases where negation appears in ~1. The opera- 
tions of intersection and difference can be performed ef- 
ficiently for intervals with known endpoints. We assume 
that the cost of performing these operations is negligible 
compared to that of evaluating an atomic formula of the 
assertion language. The task of temporal simplification 
does not introduce any prohibitive complexity. Its re- 
quirements include determining the relationship between 
the known time intervals, a constant time operation, a 
table lookup for finding the simplifying expression and 
simple operations between interval endpoints. 
Example: Consider the conjunction 
during(& 01/88..09/88) A bef ore(t, 05/88..12/88) A 
overlapa(01/88..09/88,O5/88..12/88). According to the 
table in figure 3, the above expression can be simpli- 
fied into during@, 01/88..05/88). It is also easy to verify 
that, if duxing(t, 01/88..05/88) is satisfied, then the con- 
junction duxing(t, 01/88..09/88) A yoverlaps(t, 05/88.. 
12/88) A overlaps(01/88..09/88,05/88..12/88) is satis- 
fied. o 
Soundness and Completeness: the simplification 
method consists of a number of truth-preserving transfor- 
mations that produce formulae which, if proven not to be 
satisfied in the resulting KB, imply that the original for- 
mulae are not satisfied. Moreover, no inconsistency can 
be introduced by any of the simplification steps. Hence, 
the simplification method is sound. The method is also 
complete in the sense that all possible temporal transfor- 
mations are performed. No transformation takes place in 
those cases where the derived temporal relationship is a 
disjunction of temporal predicates. Detailed proofs are 
found in [15]. 

Dynamic Constraints 

Simplification is applicable .in the case of dynamic 
(epistemic) constraints as well. The validity of the 
constraints in the KB history up to the state prior 
to the update and the system’s knowledge about it is 
exploited for producing, in those cases possible, forms 
with a reduced munber of literals. Dynamic (epistemic) 
constraints are distinguished from state constraints by 
the presence of explicit temporal constraints on the 
history (belief) time variables. In addition, since 
dynamic constraints express properties depending on two 
or more KB states some literals will occur more than 
once in the expression of constraints. In such cases, 

the compilation process will generate one PSS for each 
literal occurrence. The forms will differ in their lists of 
parameters, as well as in their simplified forms. The 
original constraint will be violated if any of the simplified 
forms is. However, in such a case, not all occurrences of 
the literal can be replaced by their truth values on the 
basis that both the update and the fact that constraints 
were satisfied before the update are known. This would 
be possible only if it were known that the constraints 
were non-trivially satisfied in the previous state. This 
kind of knowledge requires the maintenance of meta-level 
information about the satisfaction of constraints. For 
the moment we will assume that no such knowledge is 
available and that a PSS is generated for each literal 
occurrence in an integrity constraint. The following 
example shows the application of the compilation process 
in the case of a dynamic constraint. 
Example: Assume that the history and belief time 
intervals of constraint IC3 of section 2.4 are T and 
T' respectively. The literal salary occurs twice in the 
expression of the constraint. Hence, two simplified forms 
are generated from the compilation process. Only one of 
the history time variables ti and ts will be instantiated 
in each of the two forms. It is known that the constraint 
is satisfied before an update to a salary literal occurs. 
This means that, according to the current beliefs of the 
system, either all employees have not had a change in 
salary, or for those that have had a salary change, this 
change was an increase. These two cases correspond to 
trivial and strict constraint satisfaction respectively. If 
no information exists about whether the satisfaction of 
the constraint prior to the update is strict or trivial, the 
following two forms can be generated by the compilation 
process: 

t/s/Integer Wr/TimeInterval (sdary(p, 8, 21, tz) A 
during(tr , T) A during(ts, T) A bef ore(tr , ts) A 
during(ta, T') j (s 5 s')) 
Vs’/Integer Ws/TirneInterval (sahry(p, s’, t3, t2) A 
duxing(ti,T) A during(ts, T) A before(ti,ts) A 
dnxing(ts,T’) =+ (8 5 8’)) 

Were it known that IC3 was non-trivially satisfied, only 
one simplified form would be generated, namely the form 
resulting from dropping all quantifiers from the above 
forms and replacing the salary literals by True. If 
however it was trivially satisfied before the update, i.e., 
at least one of the salary literals was false or the temporal 
constraint was violated, then the salary literals cannot 
be eliminated. The rest of the simplification steps are 
applied as before. o 

3.2 Dependence Graph Organization 

In the compilation phase, along with each integrity 
constraint, deductive rules that may contribute to the 
constraint’s evaluation are compiled. These are the 

152 



I I I I - 1 ob mb sb m 

Legend F: false no simp. : no simplification possible 
* l intersection operator . t- : left endpoiit 
- : differenceoperator t+ : right endpoint 

Figure 3: Temporal Simplification Table 

rules whose conclusion literal unifies with literals of the 
constraint. In this case, it is said that the constraint 
directly depends on the deductive rules. A constraint 
cannot directly depend on a rule whose conclusion literal 
does not match any of the constraint’s literals. It can 
however depend transitively on a rule whose conclusion 
literal matches a condition literal of a rule on which 
the constraint depends either directly or transitively. 
Formally, we can define the notions of dependence and 
direct dependence along the lines of [7]. 
Definition:(Direct Dependence) A literal L directly 
depends on literal K if and only if there exists a rule 
of the form Vzl/C1 . . .Vt,,/C,, (F =+ A) such that, there 
exists a literal in the body F of the rule unifying with L 
with most general unifier 0 and Ati = K. (Dependence) 
A literal L depends on literal K if and only if it directly 
depends on K, or depends on a‘literal M that directly 
depends on K. A constraint/rule depends on a rule if its 
literal depends on the rule’s conclusion literal.0 
The above relationships define a dependence graph for 
a set of rules and constraints. The dependence graph 
is a directed graph representing how implicitly derived 
facts from deductive rules can affect the integrity of 
the KB. The graph nodes are the PSSs of rules and 
constraints. Edges denote dependence of constraints on 
rules. There exists an edge form the node of a rule 
R to that of a constraint C, if C directly depends on 

R. An edge from a node of a rule R to the node 
of a constraint C is labeled "T", if the history and 
belief time intervals of R overlap those of the constraint 
C. Formally, the dependence graph of a KB is defined 
as G(KB) = (V,E), where V comprises one node 
for each PSS of an integrity constraint or deductive 
rule of KB. The set V of nodes is equal to the 
union of the set of nodes corresponding to integrity 
constraints (I) with the set of nodes corresponding to 
deductive rules (R). Hence, V = VI U VR, where 
VI and VR are the aforementioned sets. The set E 
of edges is defined a~: E = {(Ui,Uj)lvi E vR,uj E 
VI and vj directly depends on vi} U {(vi, uj)lvi, vj E VR 
and vi di(rectly depends on uj}. The set E of edges is 
made up of edges between rule nodes (ERR) and edges 
from rule to constraint nodes (ERc). From the graph 
definition it can be seen that the graph has a particular 
structure: there are no edges initiating at constraint 
nodes. A dependence graph may contain cycles among 
deductive rule nodes. This happens in the case the KB 
contains mutually recursive rules. As shown in [15] the 
graph is free of trivial cycles and enjoys the property 
expressed in the following lemma. 
Lemma: For any Telos KB, dependence graph construc- 
tion yields a graph that may contain cycles of length at 
most equal to the number of deductive rules participating 
in the same recursive scheme. o 
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The number of nodes in the dependence graph is in the 
order of the number of literals occurring in rule and 
constraint bodies, since one node is created for each 
compiled form. Let us also assume that the average 
number of attribute literals per rule or constraint can be 
estimated and let Q denote this number. The number 
of compiled forms generated, will then be equal to 
IV = a * (111 + ]Rj); The number of edges is 1EI = 
IERRI + IERcI. IERcI can be at most equal to ]R] 
since, there exists an edge between compiled forms of 
a rule and a constraint only if the rule’s head unifies 
with the constraint’s literal. Hence IERcI is at most 
equal to the number of different literals occurring in rule 
heads which, in turn, is at most equal to .the number 
of deductive rules in the knowledge base. Similarly 
PRRI I IW Thus, 14 = PRCI + IERRI I 2 * I@ 
For Q > 2, IV1 = a * (III+ IRI) > 2 * IR] > IE], which 
means that the graph is sparse. The graph’s sparsity 
will be exploited for deriving efficient algorithms for 
transitive closure computation. The dependence graph is 
constructed once when the KB is compiled and is updated 
incrementally when new rules or constraints are inserted 
or deleted. Although sparse, the dependence graph for 
a large KB will be quite large, even too large to fit in 
main memory. The problem of storage of the dependence 
graph in secondary storage remains as a future research 
problem. 

The graph reflects both the logical and temporal interde- 
pendence of rules and constraints. Following paths from 
rules to constraints in the graph permits us to derive im- 
plicit updates caused by explicit ones. The set of implicit 
updates can be precomputed at the time of graph con- 
struction using efficient algorithms for transitive closure 
computation, such as the C-wavefront algorithm of [17] 
for solving the reachabiliiy problem. The algorithm, ap- 
plicable to directed acyclic graphs, has been modified to 
take advantage of the dependence graph properties. The 
time complexity for computing implicit updates caused 
by an explicit update matching some node in the graph 
is O(]E]), and O(IVRI * IE]) for computing the transi- 
tive closure of the entire graph by solving IVRI single- 
source problems. Experiments with randomly generated 
dependence graphs have shown that, on the average, the 
complexity of computing transitive closure is sublinear 
in IEl. At evaluation time, reachability information does 
not have to be recomputed. Space restrictions do not 
permit a detailed analysis of the algorithm in this per 
per. The algorithm and its analysis are found in [15]. 
The implicit updates computed in this manner are only 
potential updates. The actual updates can be obtained 
by instantiating the potential updates and evaluating the 
rule bodies in which they occur, starting with the ones 
matching the update’s literal and following the order in 
which the implicit updates were computed. This process 

ICl-d C2-ofganizdby 
Ic2_submitted_to 

0 
0 

0 
ICI-WltW C2_workr_n 

0 

Figure 4: A Dependence Graph 

can take place only after the explicit update is specified 
and interleaves the generation of actual implicit updates 
with formula evaluation. Its complexity is linear on the 
number of potential implicit updates multiplied by the 
cost of formula evaluation. 
Figure 4 shows the dependence graph organization for 
our working example. The edge from the compiled 
structure for literal address of rule DRl to the uorkain 
literal of IC2 denotes the direct dependence of 1~2 on 
constraint DBl, whereas the path from node DRZJlniv 
to ICl-uorkain denotes that an update on literal univ 
might cause a violation of constraint 1~2. o 

4 Updates of Integrity Constraints and 
Deductive Rules 

The compilation scheme presented in section 3.1 per- 
mits the efficient treatment of transactions of literal up- 
dates: for every update in a transaction, the simplified 
constraints affected by the update are selected and in- 
stantiated along with the simplified rules whose literal 
matches the update. The set of implicit updates corre- 
sponding to the rule’s evaluation is instantiated and each 
implicit update is treated 3 a normal update. The situ- 
ation is more complicated in the case of transactions that 
insert or delete constraints and rules. The organization 
of simplified forms in a dependence graph allows for in- 
cremental compilation of newly inserted constraints and 
rules without having to reconsider those that have al- 
ready been compiled. In both the cases of insertion and 
deletion the dependence graph must be modified mini- 
mally. Determining however how dependence is affected 
and updating the stored transitive closure is a difficult 
and costly task for cyclic graphs. In this section we de- 
scribe incremental graph modification procedures, char- 
acterize their complexity and show how the computed 
transitive closure can be updated without having to re- 
compute it from scratch. We also present results from 
experiments with random graphs. It will be assumed 
that the computed transitive closure (TC) is represented 
in a form that permits checking reachability between any 
two graph nodes in O(1) time. A detailed presentation 
and analysis of the algorithms is found in [15]. 
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4.1 Updates of Integrity Constraints 
Insertion: For the time being we assume the traditional 
semantics attributed to the insertion of an integrity con- 
straint, namely that a new constraint must be evaluated 
against the KB and be accepted only if found true; oth- 
erwise. it has to be rejected. Only when a new constraint 
is found true, it is transformed into a set of parame- 
terized forms, one for each of its literals. These forms 
are added as nodes to the dependence graph and in case 
there exist rules already in the graph on which the con- 
straint directly depends, edges from the rule nodes to 
the constraint nodes are added and labeled. The worst- 
case complexity of the dependence graph modification is 
0( IVRI), since the newly introduced nodes have to be con- 
nected with as many rule nodes as the number of rules 
whose conclusion literal matches the constraint literal. 
On the average, it is expected that the complexity of de- 
pendence graph modification will be much smaller, since 
only a subset of the deductive rules will match the con- 
straint literals. To characterize the cost of insertion more 
precisely, let us define a function F : L + [0, 11, which 
returns, for each literal 1, the frequency of its occurrences 
in rule heads.7 On the average the number of edge addi- 
tions required for the insertion of an integrity constraint 
will be equal to Cost~~~,,,~,t = c,eIc IVRI * F(I) * Q. 

Deletion: Deletion of constraints cannot cause an 
inconsistency. All nodes corresponding to some simplified 
form of the constraint are removed along with their 
incident edges.” The worst-case complexity of the 
deletion process is O(]E]) and corresponds to a situation 
in which all edges are adjacent to the nodes to be deleted. 
The average cost of edge deletion is CostIcdelele = 
&C Iv.1 * F(I) * a. 

4.2 Updates of Deductive Rules 

The case of updates of deductive rules appears to be more 
complicated since insertion or deletion may cause implicit 
changes which are also candidates for violating integrity. 

Insertion: When a new rule B + H is inserted, 
its direct dependence relationships to existing rules or 
constraints must be determined* and represented in the 
graph. It must be checked whether there exist PSSs 
of constraints or rules with literals unifying with the 
rule’s conclusion literal. In that case, the conclusions 
of the rule must be derived and checked for possible con- 
straint violations. These implicit updates may trigger 

‘This type of information can be available after KB compilation 
and can be maintained incrementally after modifications. 

sin [7], if this process results in isolated nodes representing sim- 
plified rules on which the deleted constraint previously depended, 
then these nodes are removed as well. In our approach, these nodes 
are not removed in order to avoid their recompilation in case future 
updates introduce constraints depending on these rules. 

subsequent implicit updates if there exist already com- 
piled rules with body literals that unify with the inserted 
rule’s conclusion literal. This information is available 
since the graph’s transitive closure has been computed 
and updated after each insertion/deletion of rules and 
constraints. One only has to check if a constraint node 
appears as a successor of the deductive rule nodes that 
match the inserted rule’s conclusion literal. If no vi- 
olation of constraints arises, and if there does exist a 
literal of a rule/constraint that unifies with the rule’s 
conclusion, then the rule is transformed into a set of 
PSSs and inserted in the dependence graph. The worst- 
case complexity of this process is O(~VRI * IEI). More 
specifically, the number of graph nodes corresponding 
to deductive rules matching the rule head H is equal 
to IVRI * F(H). Moreover each such node can have 
at most IERcI successors in the transitive closure. In 
the worst case, all these successors will be in VI which 
makes the cost of computing possibly affected constraints 
equal to IVRI * F(H) * ~ERC 1. Similarly, there will be 
at most IV11 * F(H) nodes matching H. Hence, the to 
tal maximum cost of identifying the possibly affected 
constraints is IVRI * F(H) * IERcI + IV11 * F(H). Let 
c = H.Then w w c and the above cost becomes 

IV11 *F(H) * (1+ /El * +). Let also P = 
t-i 
L . Then the 

cost can be written as tl+c)a -*F(H)*(l+c+c*(EI)*IEI. 
Finally, the modification of the dependence graph re- 
quires that edges are added from rule nodes to the 
newly added ones. This cost is derived as in the case 
of constraint insertion and is, on the average, equal to 
xIEB IvRl * J’(i) * a. In total, COStDRinrert = I+c * 

IEI * (Q * &B WI + J’(H) * (I+ & * IEI)h 

Deletion: If an already compiled rule is to be deleted, 
then, if there exist rules or constraints with literals 
matching the rule’s negated conclusion, the literals 
deducible with this rule must be treated as normal 
deletions. If they do not cause integrity violation, 
the parameterized forms of the rule must be deleted 
along with all their incident edges. The computed 
transitive closure provides the information of whether 
an implicit deletion caused by the rule’s deletion can 
violate an integrity constraint. As was the case for 
rule insertion, rule deletion requires worst-case time of 
O(JV.I * IEI). As before, the edge removal cost is 
estimated as COStDR-&,ete = 

FW) * u+ * * IW 
**lEl*b*C&B w+ 

From the above description, it can be seen that an 
adequate treatment of updates of rules and constraints 
requires interleaving compilation and evaluation. This 
increase in complexity however is a tradeoff for the cost 
of KB roll-back in case a violation is discovered. 
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Figure 5: Performance of Incremental T.C. Computation 

4.3 Incremental Modification of Transitive 
Closure 

In the previous @ures for dependence graph main- 
tenance during rule or constraint updates, the precom- 
puted transitive closure has to be updated, since changes 
in the direct dependence relation induce changes to the 
dependenke relation between literals. A number of algo 
rithms have been proposed for on-line maintenance of 
transitive closure (e.g. [S]) but are not applicable to 
cyclic graphs. In [15] we propose algorithms that main- 
tain reachability information for edge insertions and dele- 
tions in the dependence graph. These algorithms are 
shown to be correct for graphs with the properties of a 
dependence graph. We briefly describe each of them here. 
Insertion of an edge from node u to node u makes v and 
all its successors reachable from u and every node from 
which u is reachable. The reachability between any other 
pair of nodes is not affected. For every pair of nodes (z, y) 
such that y is reachable from E before the insertion, y 
remains reachable from z after the insertion. The worst- 
case complexity of edge insertion is O(]ERR] + ]E]). In 
particular, when an edge from a rule node to a constraint 
node is inserted the worst-case cost is ]E], whereas the 
cost is ]ERR]*]El h w en an edge between two rule nodes 
is inserted. The cause for the high cost is the possible 
presence of cycles in the graph. When an edge (u, u) is re- 
moved, for all nodes t whose only path to v is via u, (z, u) 
must be removed from TC. Moreover, if the only path 
from each such node z to a successor y of v is via (u, v), 
then (z, y) must be removed from TC. The maintenance 
of TC in the case of an edge removal assumes path infor- 
mation is available. This information can be computed 
along with TC and be maintained incrementally with a 
total added cost of at most ]E]. The complexity of the 
deletion process is quadratic on the number of edges in 
the graph. 

It becomes apparent from the description of the mainte- 
nance procedures, that the presence of cycles complicates 
the on-line transitive closure computation. We expect to 
be able to perform better in the average case because 
of the structure of the dependence graph. Specifically, 
no inference path can involve a constraint node unless 
it is the final node in the path. Hence, if the edge to 
be removed is between a rule and a constraint node only 
paths formed by edges connecting rule nodes have to be 
searched. In this case the number of edges to be ex- 
amined is ]ERc] rather than ]E]. The graphs in figure 5 
compare the cost of incremental computation of TC with 
that of recomputing it from scratch in the cases of edge 
insertion and removal and for random sparse dependence 
graphs. The graphs show that on-line maintenance of 
the implicit update information can be carried out effi- 
ciently, with a cost as low as 0.1 * ]E] on the average. 
The performance of the incremental algorithms improves 
even more when the degree of sparsity of the dependence 
graph increases (r = 3, P = 4). 

5 Conclusions and Outlook 

This paper presented an integrity constraint simplifica- 
tion method for large Telos KBs. The main contribution 
of this work lies in the definition of a sound and com- 
plete simplification method that treats uniformly tempo- 
ral and non-temporal (static and dynamic) constraints. 
Temporal simplification is performed efficiently by a ta- 
ble lookup. Other attempts to treat uniformly static and 
dynamic constraints restrict attention to specific types of 
constraints (e.g. transition constraints) and do not con- 
tain explicit temporal information [14]. Chomicki’s tech- 
niques [3] are beneficial to the enforcement of dynamic 
constraints since they permit their evaluation without 
having to consider the entire history of the KB. The 
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method assumes a rather cumbersome formulation of 
constraints in Past Temporal Logic with no explicit pres- 
ence of time and that the set of constraints does not 
change. We consider this to be a major restriction for 
temporal KBs modeling an evolving domain. Techniques 
proposed for temporal integrity monitoring (e.g. [5]) are 
run-time methods, whereas we have focused on simpli- 
fying formulae as much as possible at schema definition 
time. Performance is less critical at compile-time. 
Current research focuses on the definition of an efficient 
hybrid theorem prover for the evaluation of temporal 
constraints, in the flavor of [lo]. Such a theorem 
prover may be enhanced with techniques for reduction 
of temporal formulae referring to long histories into 
formulae evaluable in a pair of states only [18]. A 
performance assessment of the method is in progress. 
The method needs to be compared against one-phase 
methods that interleave simplification and evaluation [8] 
and run-time methods. Moreover, the I/O complexity of 
graph computations and the secondary-memory storage 
of rules and constraints need to be studied. 
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