
Integrity Constraint and Rule Maintenance in Temporal Deductive
Knowledge Bases

Dimitris Plexousakis
Department of Computer Science

University of Toronto
Toronto, Ont. M5S lA4, Canada

Email: dpQcs . toronto . edu

Abstract

The enforcement of semantic integrity constraints in data and
knowledge bases constitutea a major performance bottleneck.
Integrity constraint simplification methods aim at reducing
the complexity of formula evaluation at run-time. This paper
proposes such a simplification method for large and semanti-
cally rich knowledge bases. Structural, temporal and asser-
tional knowledge in the form of deductive rules and integrity
constraints, is represented in Telos, a hybrid language for
knowledge representation. A compilation method performs
a number of syntactic, semantic and temporal transforma-
tions to integrity constraints and deductive rules, and orga-
nizes simplified forms in a dependence graph that allows for
efficient computati.on of implicit updates. Precomputation of
potential implicit updates at compile time is possible by com-
puting the dependence graph transitive closure. To account
for dynamic changes to the dependence graph by updates of
constraints and rules, we propose efficient algorithms for the
incremental maintenance of the computed transitive closure.

1 Introduction

The problem of efficient management and enforcement of
semantic integrity constraints constitutes a cornerstone
issue in the development of knowledge base management
systems (hereafter KBMSs) 1121. Undoubtedly knowl-
edge bases (KBs) will form an integral part of information
systems of the future. Aimed at modeling a multitude of
application domains, these systems will be required to
represent consistently and reason efficiently with large
amounts and a wide range of knowledge. Generic tools,
providing robust and efficieni implementations for sior-
age managemeni, query optimizaiion, concwrencg cofl-

Penniwaion to copy &bout jet all or pari of thit malcn’al it
Oranttd protided tbal tbc copit~ art not mtde or ditkibrkd for
dirtd commtrcial tdraniagc, tbt VLDB copyrighf noiict aad Iht
title of Iht prblidioa and iti dab apptar, tad notice it given
iba2 copyins it bp ptmaitrion of the Very Large Data Bare Endow-
ment. To cojy olhtrwitt, or to rtprblith, nqrirtt a fee and/or
tptcial ptrmbaior jwm tbt Endotvmtnl.

Proceedings of the 19th VLDB Conference
Dublin, Ireland 1993

id and integritg enforcement are needed for managing
such large KBs [12].

Integrity constraints specify the valid states of a KB
(static) as well as the allowable KB state transitions
(dynamic). The ability to express general constraints
in KBs is crucial, since constraints express additional
application dependent semantics that cannot be built-
into or expressed by the data structures used for
representing knowledge. Additionally, they constitute a
means for controlling the quality of information stored in
knowledge repositories.

A number of issues arise within the problem of integrity
constraint management. A first such issue is the declar-
ative - as opposed to procedural - specification of con-
straints. Constraints specify which properties must hold
in valid KB states and transitions, and not how these
properties are to be enforced. Procedural constraint
specification inadvertently ties constraint enforcement
with transaction specification and leads to expensive run-
time integrity checks. Declarative specification of con-
straints permits their treatment as first-class citizens of
the KB and allows automating their optimization pro-
cess. Telos [ll] g d re ar s constraints as objects of their
own right, and as such, they can be inserted or removed,
and are subject to consistency violation. Constraints in
Telos are specified declaratively via a first-order assertion
language.

A second issue is that of efficient consiraint checking.
This consists of determining, after each update, whether
all con&tints are satisfied in the resulting state. The
expressive power of the assertion language, the number
of constraints in the KB and the inherent complexity
of first- or higher-order deduction constitute major
impediments to constraint checking. This paper focuses
on the problem of simplifying the process of constraint
checking in large, semantically rich KBs. Lastly, it has
to be ensured that the KB is in a consistent state after a
constraint violation. Iniegrify recovery is the undertaking
of appropriate action for restoring consistency once it
has been violated. At present, we adopt a rather

146

coarse-grained approach to integrity recovery, namely
the rejection of any integrity violating transaction. A
transaction is not committed until all constraints are
found to be satisfied.’
The naive approach of checking all integrity constraints
after each update is highly impractical given the antici-
pated large number of integrity constraints in a KB. In-
cremental integrity checking methods are baaed on the
premise that constraints are known to be satisfied prior
to an update [13]. Only a subset of the constraints need
to be verified after the update, namely those that are
affected by it. Incremental integrity checking is made
possible by specializing integrity constraints with respect
to the anticipated types of updates and by performing
simplifications on the specialized forms. A number of
incremental constraint checking techniques for relational
(e.g. [13]), deductive (e.g. [4], [2], [S]) and, most recently,
object-oriented databases [7] have appeared in the recent
literature. Most methods concentrate on the enforcement
of static constraints. Dynamic constraint checking meth-
ods are mainly baaed on temporal logics and are run-time
methods (e.g. [3]). To the best of our knowledge, there
has been no proposal for compile-time simplification of
temporal (static and dynamic) integrity constraints. We
propose such a method in this paper. The presence of
deductive rules also complicates constraint enforcement:
explicit updates may cause implicit updates which may
violate integrity constraints. Most techniques compute
implicit updates at run time, after the actual update is
specified. In our proposal, potential implicit updates can
be computed at KB compilation time. This information
is stored as the transitive closure of a logical dependence
relation that defines a graph structure. The transitive
closure of the dependence graph is affected by updates of
rules or constraints and has to be incrementally main-
tained on-line.
The rest of this paper is organized as follows. Section 2
presents a brief overview of Telos and introduces a work-
ing example. The compilation of constraints and rules
into simplified structures and the precomputation of im-
plicit updates is introduced in section 3. Section 4 dis
cusses the treatment of updates of deductive rules and in-
tegrity constraints and describes incremental algorithms
for maintaining the computed implicit update informa-
tion. Preliminary performance results are also presented

’ and the paper is concluded in section 5 with an outlook
for further research.

2 Overview of Telos

The representational framework of Telos (111 is a gener-
alization of graph-theoretic data structures used in se-

lA finer grained approach could initiate a sequence of updates
so that constraints are satisfied in the resulting state.

Figure 1: An example Telos KB

mantic networks, semantic data models and structurally
object-oriented representations. Among the distinguish-
ing aspects of Telos are the novel treatment of attributes,
the extensibility provided by the metaclassing mechanism
and the special representational and inferential capabil-
ities for temporal knowledge. Telos has a well defined
semantics baaed on a possible-worlds model [16]. Telos
KBs are collections of propositions. A proposition, the
single representational unit provided, is formally defined
as a quadruple with components from, label, to and
when. These denote the source, label, destination and
duration of the proposition respectively and are proposi-
tions themselves. Referential integrity requires that any
component of a proposition must exist in the KB. Telos
propositions are divided into two disjoint categories: in-
dividuals, representing concrete or abstract entities, and
attributes, representing relationships between entities or
relationships. Individuals and attributes are treated uni-
formly and are the building blocks of the structured ob-
jects that comprise a Telos KB. Propositions are orga-
nized along the structuring dimensions of instantiation,
generalization and aggregation. Telos offers a number of
built-in classes at all levels of an infinite instantiation
hierarchy. Classes having instances into more than one
levels of the hierarchy are termed w-classes. For in-
stance, the w-class proposition has all propositions as
instances, whereas Class has all classes as instances. In-
stantiation and specialization relationships are grouped
by the built-in classes InstanceOf and ISA. Figure 1 de-
picts an example KB modeling an imaginary scientific
conference domain. Dashed lines represent a specializa-
tion relationship (isa) between generic entities (classes),
shown in bold font, whereas solid lines represent binary
relationships among entities (attributes). Integrity con-
straints and deductive rules are attached through at-
tributes to classes.

2.1 Temporal Ynowledge

Telos emphasizes the use of time for representing histo-
ries of generic events and activities as well as the system’s
knowledge of these histories, by providing two temporal

147

dimensions for hisforical and belief time. Telos adopts
Allen’s[l] interval-based time model for representing his-
torical information about an application domain. Belief
time records the history of the KB itself. The primitive
notion of the time model is that of an interval. Seven
temporal relationships are used, along with their inverses,
to characterize the relative position of two time intervals.
These are the relationships meets, during, overlaps,
before, starts, finishes and equals. The model
also includes temporal constants (dates and times), semi-
infinite time intervals and the special time interval
Alit isle.

2.2 The Assertional Component

Telos provides an assertional language (AL) for the ex-
pression of deductive rules and integrity constraints.
AL is a first-order language with equality whose terms
are variables, constants and the functions from(t),
label(t), to(t) and when(t) when applied to terms,
and explicitly enumerated sets produced by set val-
ued functions. The atomic formulae of the language
include the predicates: prop(p,x,y,z,t), meaning:
p is a proposition with components x, p ,z and t,
instanceof (x,p,tl,t2): x is an instance of J for the
time period ti and is believed by the system for the time
period t2, isA(x y,tl ,tZ): x is a specialization of y for
the time ti and is believed by the system for time t2,
att (x y,tl , t2): y is a value of the attribute att of x
for ti and is believed for tZ2 For any terms x and y in
AL and every temporal or evaluable predicate 6, z 0 y is
an atomic formula with the obvious meaning. The well
formed formulae (wffs) of AL are defined recursively from
atomic formulae in the usual manner. Assertional knowl-
edge is also organized along the structuring dimensions
of Telos.
Integrity constraints and deductive rules are expressed
as rectified3 closed wffs of AL. An integrity constraint
can be in one of the forms I 3 Vzl/C1.. .VXL/CI: F or
I i 3x& . . .3xt/Ck F, where F is any wff of AL whose
quantified subformulae are of the above forms and in
which the variables 21, . . . , ZI occur free if at all. Each Ci
is a Telos class. The meaning of each restricted quantifi-
cation is that the variable bound by the quantifier ranges
over the extension of the class instead of the entire do
main. Any constraint in this form is range-restricfed [4].
This class of constraints is equivalent to both the rc-
stricted quanfification form of [2] and the range form of
[7]. The latter is obtained if a “typed” constraint of
one of the above forms is transformed to its untyped
form, whereas the restricted quantification form is ob-

2The belief time component of these predicates is omitted when
they appear in the head of deductive rules.

3A formula is rectified if no two quantifiers introduce the same
variable [2].

tained from the range form by imposing the restriction
that F is in miniscope negation normal form. According
to the standard transformation of typed quantified for-
mulae to untyped ones [9] the following equivalences hold:
Vz/T F s Vx T(z) * F and 3x/T F E 32 T(z) II F.
The typed quantifications Vx/C F and 3x/C F are short
forms for the formulae:

Vx Vt instanceOf(t,TimeInterval, Alltime) A
instanceOf(z, C, t) 3 F and

Bz Bt instanceOf(t, TimeInterval, Alltime) A
instanceOf(x, C, 1) A F.

The transformation preserves the range-restriction prop
erty despite the introduction of new universally quan-
tified temporal variables: they are restricted by the
instanceOf literals. The introduction of temporal vari-
ables and their restricting literals is necessary since all
atomic formulae of AL have a temporal component.
For simplicity and since explicit temporal quantifies
tion appears in assertions, the introduced variable(s)
may be identified with ones already appearing in the
formula. Deductive rules are considered to be special
cases of integrity constraints. Their general form is
DR z Vxl/C1.. .Vx,,/C,, (F =S A), where F and the vari-
ables ti are subject to the same restrictions as in the case
of constraints. Atom A may not contain belief time, since
belief time is set by the system, and variables other than
Xl,**., x,,. Deductive rules in this form are also range-
restricted. Moreover, deductive rules are assumed to be
stratified [9]. C onstraints and rules are associated with
history and belief time intervals. If no such association
appears explicitly with their definition, both intervals are
assumed to be equal to (syst ime. . *) , where syst ime
denotes the current system time.

An advantageous consequence of the ability to explicitly
refer to both the history of the domain of discourse and to
the system’s knowledge about that history, is the ability
of expressing a number of different types of constraints
not expressible in formalisms with no or a single only
notion of time. Apart from static and transition
constraints expressible in first-order predicate calculus
and temporal logics respectively, AL provides the ability
to express constraints referring to the epistemic state
of the KB. To provide a better characterization of the
types of constraints expressible in AL, we will refer
to state, dynamic and dynamic epistemic constraints.
The characterization “state” was chosen over “static”
to refer to constraints that specify properties that must
hold in any state of the domain since, even non-
temporal formulae become temporal when expressed in
AL. Dynamic constraints specify properties dependent on
two or more domain states. Finally, dynamic epistemic
constraints refer to two or more epistemic states of the
KB in addition to multiple domain states. From the
above definitions, it is expected that in the expression

148

of dynamic constraints in AL, the history time variables
will be constrained by explicit temporal relationships,
whereas in the case of dynamic epistemic constraints,
belief time variables will be constrained as well. For
facilitating temporal reasoning, disjunction of temporal
relationships is disallowed in AL.
The semantics of the above types of integrity constraints
requires that a state constraint is satisfied in any state
that is accessible from the current state and for the KB’s
epistemic state corresponding to the constraint’s belief
time interval. A dynamic constraint must be satisfied
in any sequence of states that satisfy the temporal
predicates explicit in the constraint expression for the
belief time interval corresponding to the constraint’s
belief time. Finally, a dynamic epistemic constraint must
be true in all domain and epistemic states that satisfy the
historical and belief time relationships in the constraint.

2.3 Working Example

This section introduces a working example that will be
used throughout the paper. A number of integrity con-
straints and deductive rules have been defined, for the
sake of depicting the application of the method, and at-
tached to classes (see figure 1). Constraints ICI and IC2
are state constraints expressing the properties that “no
author of a paper can be a referee for if’ and “an author
cannot submit a paper to a conference organized by the
department she works in” respectively. Dynamic con-
straint IC3 enforces the property that “an employee’s
salary can never decrease”. Deductive rules DRl and DR2
express the rules that “A university afiliate works in
the department that has the same address as she does”
and “A university department’s address is the same as
the university’s location*. IC4 is an example of a dy-
namic epistemic (meta-) constraint expressing the prop
erty that “the system cannot stop believing a class defy-
nition”. They are expressed as follows:

ICI: Vc/ConfPaperVr/RefereeVa/Author
Vtl, tz/TimeIntervaI (re j(c, r, tl, tz) A
author(c, a, tl, t2) + (r # a [at ii, believed at tz]))

IC2: Vc/ConferenceVp/ConfPaperVa/Author
VdlDepartment WI, tz/TimeInterval
(submitted-to(p, c, tl, tz) A organized-by(c, d, tl, t2) A
author(p, a, tl, t2) A worls-in(a, d, tr, tz) j False)

IC3 : Vp/Employee)(Vs, s//Integer
Vtl, t2, ts/TimeInterval (salary(p, 8, tl, t2) A
sa/ary(p, s’, t3, t2) A bef ore(tl, ts) * (s 5 s’))

DRI: Vu/UnivAffiIiateVd/DepartmentVs,s’/String
Vtl, tz/TimeInterval (address(u, s, tl, tz) A
Daddr(d, s’, tl, t2) A (s = s’[at tl, believed at tz])
+ works-in(u, d, tl))

DR2: Vd/DepartmentVu/UniversityVs/String
Vtl, tz/TimeInterval (uniu(d, u, tl, tz) A

location(u, s, iI, t2),,+ D-addr(d, s, tl))
IC4: Vp, c, l/Proposition Vt, t’/TimeInterval

brop(p, c, I, c, t) A instanceOf(p, Class, t, t’) *
(VZ’, T’/TimeInterval (overlaps(t, T) A
overlaps(t’, 7”) * instanceof (p, Class, T, T’))) o

3 Constraint Simplification

In this section the compilation of constraints and rules
into simplified forms and their organization in a depen-
dence graph is presented. Our method builds on the com-
pilation method that was initially proposed in [2] and was
later adapted to an object-oriented setting in [7J. The ef-
ficiency of the method stems from the separation of the
task of constraint enforcement in two separate phases: a
compilation phase, performed at schema definition time
and an evaluation phase performed at KB update time.
During compilation, constraints and relevant rules are
compiled into simplified forms whose evaluation can be
triggered by the occurrence of affecting updates. Our
proposal advances the method of [7] by taking time into
account and by optimizing the compile-time computation
of implicit updates.

3.1 Compilation of Constraints and Rules
Let us first explain the rationale behind simplification
by means of an example. Assume that constraint
ICI of section 2.3 has the right-infinite interval tl =
(Oi/Oi/iQ88..*) as its associated history time interval.
Assume also that the constraint defining transaction
was processed on January 2, 1988. This means that
the constraint is believed by the system from 02/01/88
and on. Let t2 = (02/0i/i988..*). Constraint ICI is
relevant to any update processed on or after 02/01/88
and which refers to a history time interval contained
in tl. ICI is satisfied if it is entailed by the KB for
any history time interval t3 such that during(tz,ti),
with belief time t4 such that during(t4,tz). Updates
with time intervals overlapping tl and t2 are considered
relevant only for the subintervals that occur during tl, tz.
Assume now that an update introduces an instance
of the class ConfPaper with title Krypton, author
Bra&man and time 05/01/88, and that the transaction
is processed on OS/Ol/SS. Then the constraint is
relevant to this update since, for 13 =(06/01/88. . *) and
t4 =(08/01/88. . *), during(ts, tl) and during(t4, tz)
are both satisfied. After instantiating variables and
dropping quantifiers the constraint that needs to be
checked becomes:
Vr/Ref eree (re j(Krypton, r, 05/01/88..*, 08/01/88..*)

A author(Krypton, Bra&man, 05/01/88..*, 08/01/88..*)
j (r # Bra&man [at 08/01/88..r, believed at 08/01/
88..*])).
Moreover, it is known that the literal
author(Krypton, Brachman, 05/01/88..*, 08/01/88..*) is

149

true in the new state and thus, it can be replaced by
the Boolean constant True. What remains to be checked
is the simplified form:

b/Red erete(ref(Krypton, r, 06/01/88..*, 08/01/88..*)
=+ (r # Bra&man [at 08/01/88..*, believed at

08/01/88..*]))
Such a simplified form can be generated for each update
that may affect the constraint. The actual values of the
variables in the constraint are not known. They are re-
placed by parameters which are instantiated at evalua-
tion time. Note however that only V-quantified variables
not governed by 3 (called instantiation variables) can be
replaced by parameters. As shown in [13], replacing 3-
quantified variables or V-quantified variables governed by
3 with constants or parameters, may lead to counter-
intuitive or incorrect instances. Let us introduce some
terminology for formalizing the simplification method.
Compilation and simplification steps apply uniformly to
integrity constraints and the bodies of deductive rules
defined for both simple classes and metaclasses.
Definition: An update is an instantiated literal whose
sign determines whether it is an insertion or a deletion.
0

Given the general form of constraints defined in section 2,
it can be seen that a constraint is affected by an update
only when a “tuple” is inserted into the extension of a
literal occurring negatively in the constraint, or when a
“tuple” is deleted from the extension of a literal occurring
positively in the constraint. The definition of relevance
found in [7] is not sufficient in the presence of time.
The following definition provides sufficient conditions for
“relevance” of a constraint to an update, by considering
the relationships of the time intervals participating in the
literals of the constraint and the update.
Defhition:(Aflecting Update) An update U(-, -, tl, 12) is
an affecting update for a constraint I with history and
belief time intervals T and T’ respectively, if and only if
there exists a literal ~5(-,-, -,-) in I such that L unifies
with the complement of U and the intersections 21 * T
and t2 * T‘ are non-empty. o
For each literal occurring in a constraint, the compilation
process generates a Parameterired Simplified Structure
(PSS). A PSS all ows for efficient selection of constraints
affected by an update and for indexing with respect to
time or its characteristic literal or class. A PSS has the
form shown is figure 2. PSSs are readily representable
in Telos via its metaclassing mechanism. The Literal
component is the constraint literal with respect to
which the PSS is generated. Parameters is the list of
instantiation variables occurring as components to Literal
in the initial form of the constraint and which are treated
as parameters in the simplified form. Parameters will be
replaced by the constants appearing in an update at run-
time. The History and Belief Time components contain

the history and belief time intervals associated with the
constraint. The Concerned Class for a literal L is a class
C such that, inserting or deleting an instance of C can
affect the truth of L [7]. The role of a concerned class
is to limit the search space for constraints affected by an
update. This is possible because of the fine granularity
- not found in relational databases - provided by
aggregation. In the presence of time and specialization,
this definition must be refined appropriately. Intuitively,
the concerned class for a literal L(-, -, 21, t2) should be the
most specialized class that fulfills the above requirements
and is such that the time intervals of the literal L overlap
with those of the class. This restriction is necessary
since the specialization/generalization hierarchy may be
modified by the insertion of new classes and because
me&lasses whose extension is expected to be quite
large, such as Proposition, qualify as concerned classes.
The concerned class for each literal is determined at
compile-time, when the constraint is transformed into its
simplified form. To compensate for schema changes that
may result in a concerned class that is more specialized
than the one determined at compile time, a set of rules
is introduced for computing the concerned class for every
literal in the constraint. These rules can be formulated in
the form of meta-rules that can be instantiated for each
particular literal. The rules express the property that, if
C is a concerned class for literal L and, after an update,
a subclass C’of C qualifies as a concerned class of L, then
C’ is the concerned class of L. Another rule expresses the
transitivity of the Is-A relationship. Concerned classes
are determined as follows:
l Instantiation IiteraIs: for a literal of the form
instanceOf(z, y, 11, tz), if y is instantiated, then y is the
concerned class provided this class exists during 11 and
its existence is believed during t2; otherwise, the built-in
class InstanceOf is the concerned class.
l Generalization Iiterals: for a literal of the form
isA(z, y, tl, t2) where both z and y stand for classes, the
concerned class is the built-in class ISA, the truth of an
islliteral does not depend on the insertion/deletion of
instances to/from the extensions of classes z and y.
l Attribute literals: for a literal of the form
att(z, y, 21, t2), where att is an attribute of the class I,
if both z and y are uninstantiated then the concerned
class of the literal is the unique attribute class q with
components from(q) = X, label(q) = att, to(q) = Y and
when(q) = T, that is such that z is an instance of X for
t 1, y is an instance of Y for t 1 and both these are believed
during t2. In other words, the most specialized concerned
class is the attribute class that includes all instantiated
attributes that relate objects z and y of types X and Y
respectively, under the assumption that to each attribute
literal of AL, corresponds a unique proposition with the
above properties.

150

Concerned Clau

Skiikd Fom

Figure 2: A Parameterized Simplified Structure

l For a literal of the form prop(p,z, y, z,t), if the
components x and z are equal, then the concerned
class is the built-in class Individual; if not, the
concerned class is the class Attribute. In case none
of z and z are instantiated, the concerned class is the
class Proposition. However, because of the referenliol
integrity constraint imposed in Telos,’ the prop literals
will not be considered in the generation of simplified
forms.
Finally, the Simplified Form is derived by applying the
following steps to the constraint.
Step 1: the quantifiers binding instantiation variables
are dropped. Instantiation variables become parameters.
Step 2: the temporal variables are constrained with
respect to the history and belief times of the constraint,
and the resulting temporal relationships are conjoined
with the constraint
Step 3: the atom into (from) whose extension a tuple
is inserted (deleted) can be substituted by the Boolean
constant True (False) since after the update it is known
that the fact expressed by the literal is true (false
respectively).
Step 4: absorption rules are applied to simplify the
resulting formula as shown in table 3.1. ’
Step 5: temporal simplification rules are applied if
applicable. 6
Example: The concerned class for literal author of con-
straint ICI is the attribute class defined by the propo-
sition (Paper, author, Author, t), with t satisfying the
properties of the above rules. Applying the above steps
to constraint ICI for literal author yields:

Vr/Ref eree(ref(c, r, tl, ts)‘A during(ti, Ol/Ol/SS..*)
A during(tg, 02/01/88..*) a (r # a [at tl,
believed at ts])).

At update time, if the constraint is affected by an up-
date, the form that will have to be verified will be

‘It is possible to express au& a property as a mets-constraint
in AL.

5~ stands for any wff of AL.
61n several caees the combination of temporal predicates

introduced in step 2 with ones in the constraint may result in
simpler forms. Step 5 is applied repeatedly until no further
simplification is possible.

Vr/Referee (ref(c,r,tl,t2) a (r # a [at tl,
believed at t2])) o

Temporal Simplification

The last step in the generation of parameteriied simpli-
fied forms is the application of temporal simplification
rules. The objective of temporal simplification is to sim-
plify a conjunction of temporal relationships into a single
temporal relationship. Hence, the number of subformu-
lae to be evaluated at run-time is reduced. Carrying
out temporal simplification requires the employment of a
temporal reasoner for deducing, in those cases this is pas-
sible, a temporal expression simplifying a conjunction of
temporal relations. In its generality, the task may not be
feasible. It has been shown [l] that certain combinations
of temporal constraints introduce incomplete knowledge
(disjunction). In our case however, where at least one
of the temporal variables in the temporal relations intro-
duced is instantiated, it is feasible to define a number of
rules that allow to derive new temporal relations from
already existing ones.
Formally, the problem of temporal simplification is stated
as follows: given a conjunction during(t, ii) A ri(l, iz),
where ir and iz are known time intervals, find a temporal
relationship r and an interval i such that r(t, i) is satisfied
if and only if the original conjunction is satisfied. The
interval i is a function of the intervals ii and is. The fact
that the intervals ii and is are known permits us to derive
a relationship rz(il, is). This relationship is exploited
for restricting the possibly multiple alternatives for r. In
fact, the expression that is simplified is the conjunction
during(t,ii) A rl(t,iz) A rZ(il,iz). It is not always
possible to derive a single definite relation r that has
the above property. For some combinations of temporal
relationships r is a disjunction of temporal relationships.
In those cases, and for the sake of completeness, we
do not replace the original expression by the equivalent
disjunction.
The table in figure 3 contains all simplifications that can
be carried out at compile time. The rows are labeled
with all 13 possible relationships between the time in-
tervals ii and iz, whereas the columns are labeled with
those between intervals i and ir. The column labels are
abbreviations of the corresponding row labels. All rela-
tionships are treated as being mutually exclusive. The
content of each table entry is the relationship r between
t and i that fulfills the properties stated above, if such
a relationship can be found without introducing indefi-
niteness. In those cases where this is not possible, the

151

entries in the table indicate that no simplification is per-
formed. Inconsistencies arising in some of the 169 possi-
ble combinations are also discovered. F indicates that a
combination of relationships is unsatisfiable. In the case
that the negation of a temporal relationship appears in
~1 one can only suggest a weaker condition r, which if
satisfied guarantees that the original conjunction is sat-
isfied. A table similar to that of figure 3 can be defined
for the cases where negation appears in ~1. The opera-
tions of intersection and difference can be performed ef-
ficiently for intervals with known endpoints. We assume
that the cost of performing these operations is negligible
compared to that of evaluating an atomic formula of the
assertion language. The task of temporal simplification
does not introduce any prohibitive complexity. Its re-
quirements include determining the relationship between
the known time intervals, a constant time operation, a
table lookup for finding the simplifying expression and
simple operations between interval endpoints.
Example: Consider the conjunction
during(& 01/88..09/88) A bef ore(t, 05/88..12/88) A
overlapa(01/88..09/88,O5/88..12/88). According to the
table in figure 3, the above expression can be simpli-
fied into during@, 01/88..05/88). It is also easy to verify
that, if duxing(t, 01/88..05/88) is satisfied, then the con-
junction duxing(t, 01/88..09/88) A yoverlaps(t, 05/88..
12/88) A overlaps(01/88..09/88,05/88..12/88) is satis-
fied. o
Soundness and Completeness: the simplification
method consists of a number of truth-preserving transfor-
mations that produce formulae which, if proven not to be
satisfied in the resulting KB, imply that the original for-
mulae are not satisfied. Moreover, no inconsistency can
be introduced by any of the simplification steps. Hence,
the simplification method is sound. The method is also
complete in the sense that all possible temporal transfor-
mations are performed. No transformation takes place in
those cases where the derived temporal relationship is a
disjunction of temporal predicates. Detailed proofs are
found in [15].

Dynamic Constraints

Simplification is applicable .in the case of dynamic
(epistemic) constraints as well. The validity of the
constraints in the KB history up to the state prior
to the update and the system’s knowledge about it is
exploited for producing, in those cases possible, forms
with a reduced munber of literals. Dynamic (epistemic)
constraints are distinguished from state constraints by
the presence of explicit temporal constraints on the
history (belief) time variables. In addition, since
dynamic constraints express properties depending on two
or more KB states some literals will occur more than
once in the expression of constraints. In such cases,

the compilation process will generate one PSS for each
literal occurrence. The forms will differ in their lists of
parameters, as well as in their simplified forms. The
original constraint will be violated if any of the simplified
forms is. However, in such a case, not all occurrences of
the literal can be replaced by their truth values on the
basis that both the update and the fact that constraints
were satisfied before the update are known. This would
be possible only if it were known that the constraints
were non-trivially satisfied in the previous state. This
kind of knowledge requires the maintenance of meta-level
information about the satisfaction of constraints. For
the moment we will assume that no such knowledge is
available and that a PSS is generated for each literal
occurrence in an integrity constraint. The following
example shows the application of the compilation process
in the case of a dynamic constraint.
Example: Assume that the history and belief time
intervals of constraint IC3 of section 2.4 are T and
T' respectively. The literal salary occurs twice in the
expression of the constraint. Hence, two simplified forms
are generated from the compilation process. Only one of
the history time variables ti and ts will be instantiated
in each of the two forms. It is known that the constraint
is satisfied before an update to a salary literal occurs.
This means that, according to the current beliefs of the
system, either all employees have not had a change in
salary, or for those that have had a salary change, this
change was an increase. These two cases correspond to
trivial and strict constraint satisfaction respectively. If
no information exists about whether the satisfaction of
the constraint prior to the update is strict or trivial, the
following two forms can be generated by the compilation
process:

t/s/Integer Wr/TimeInterval (sdary(p, 8, 21, tz) A
during(tr , T) A during(ts, T) A bef ore(tr , ts) A
during(ta, T') j (s 5 s'))
Vs’/Integer Ws/TirneInterval (sahry(p, s’, t3, t2) A
duxing(ti,T) A during(ts, T) A before(ti,ts) A
dnxing(ts,T’) =+ (8 5 8’))

Were it known that IC3 was non-trivially satisfied, only
one simplified form would be generated, namely the form
resulting from dropping all quantifiers from the above
forms and replacing the salary literals by True. If
however it was trivially satisfied before the update, i.e.,
at least one of the salary literals was false or the temporal
constraint was violated, then the salary literals cannot
be eliminated. The rest of the simplification steps are
applied as before. o

3.2 Dependence Graph Organization

In the compilation phase, along with each integrity
constraint, deductive rules that may contribute to the
constraint’s evaluation are compiled. These are the

152

I I I I - 1 ob mb sb m

Legend F: false no simp. : no simplification possible
* l intersection operator . t- : left endpoiit
- : differenceoperator t+ : right endpoint

Figure 3: Temporal Simplification Table

rules whose conclusion literal unifies with literals of the
constraint. In this case, it is said that the constraint
directly depends on the deductive rules. A constraint
cannot directly depend on a rule whose conclusion literal
does not match any of the constraint’s literals. It can
however depend transitively on a rule whose conclusion
literal matches a condition literal of a rule on which
the constraint depends either directly or transitively.
Formally, we can define the notions of dependence and
direct dependence along the lines of [7].
Definition:(Direct Dependence) A literal L directly
depends on literal K if and only if there exists a rule
of the form Vzl/C1 . . .Vt,,/C,, (F =+ A) such that, there
exists a literal in the body F of the rule unifying with L
with most general unifier 0 and Ati = K. (Dependence)
A literal L depends on literal K if and only if it directly
depends on K, or depends on a‘literal M that directly
depends on K. A constraint/rule depends on a rule if its
literal depends on the rule’s conclusion literal.0
The above relationships define a dependence graph for
a set of rules and constraints. The dependence graph
is a directed graph representing how implicitly derived
facts from deductive rules can affect the integrity of
the KB. The graph nodes are the PSSs of rules and
constraints. Edges denote dependence of constraints on
rules. There exists an edge form the node of a rule
R to that of a constraint C, if C directly depends on

R. An edge from a node of a rule R to the node
of a constraint C is labeled "T", if the history and
belief time intervals of R overlap those of the constraint
C. Formally, the dependence graph of a KB is defined
as G(KB) = (V,E), where V comprises one node
for each PSS of an integrity constraint or deductive
rule of KB. The set V of nodes is equal to the
union of the set of nodes corresponding to integrity
constraints (I) with the set of nodes corresponding to
deductive rules (R). Hence, V = VI U VR, where
VI and VR are the aforementioned sets. The set E
of edges is defined a~: E = {(Ui,Uj)lvi E vR,uj E
VI and vj directly depends on vi} U {(vi, uj)lvi, vj E VR
and vi di(rectly depends on uj}. The set E of edges is
made up of edges between rule nodes (ERR) and edges
from rule to constraint nodes (ERc). From the graph
definition it can be seen that the graph has a particular
structure: there are no edges initiating at constraint
nodes. A dependence graph may contain cycles among
deductive rule nodes. This happens in the case the KB
contains mutually recursive rules. As shown in [15] the
graph is free of trivial cycles and enjoys the property
expressed in the following lemma.
Lemma: For any Telos KB, dependence graph construc-
tion yields a graph that may contain cycles of length at
most equal to the number of deductive rules participating
in the same recursive scheme. o

153

The number of nodes in the dependence graph is in the
order of the number of literals occurring in rule and
constraint bodies, since one node is created for each
compiled form. Let us also assume that the average
number of attribute literals per rule or constraint can be
estimated and let Q denote this number. The number
of compiled forms generated, will then be equal to
IV = a * (111 +]Rj); The number of edges is 1EI =
IERRI + IERcI. IERcI can be at most equal to]R]
since, there exists an edge between compiled forms of
a rule and a constraint only if the rule’s head unifies
with the constraint’s literal. Hence IERcI is at most
equal to the number of different literals occurring in rule
heads which, in turn, is at most equal to .the number
of deductive rules in the knowledge base. Similarly
PRRI I IW Thus, 14 = PRCI + IERRI I 2 * I@
For Q > 2, IV1 = a * (III+ IRI) > 2 * IR] > IE], which
means that the graph is sparse. The graph’s sparsity
will be exploited for deriving efficient algorithms for
transitive closure computation. The dependence graph is
constructed once when the KB is compiled and is updated
incrementally when new rules or constraints are inserted
or deleted. Although sparse, the dependence graph for
a large KB will be quite large, even too large to fit in
main memory. The problem of storage of the dependence
graph in secondary storage remains as a future research
problem.

The graph reflects both the logical and temporal interde-
pendence of rules and constraints. Following paths from
rules to constraints in the graph permits us to derive im-
plicit updates caused by explicit ones. The set of implicit
updates can be precomputed at the time of graph con-
struction using efficient algorithms for transitive closure
computation, such as the C-wavefront algorithm of [17]
for solving the reachabiliiy problem. The algorithm, ap-
plicable to directed acyclic graphs, has been modified to
take advantage of the dependence graph properties. The
time complexity for computing implicit updates caused
by an explicit update matching some node in the graph
is O(]E]), and O(IVRI * IE]) for computing the transi-
tive closure of the entire graph by solving IVRI single-
source problems. Experiments with randomly generated
dependence graphs have shown that, on the average, the
complexity of computing transitive closure is sublinear
in IEl. At evaluation time, reachability information does
not have to be recomputed. Space restrictions do not
permit a detailed analysis of the algorithm in this per
per. The algorithm and its analysis are found in [15].
The implicit updates computed in this manner are only
potential updates. The actual updates can be obtained
by instantiating the potential updates and evaluating the
rule bodies in which they occur, starting with the ones
matching the update’s literal and following the order in
which the implicit updates were computed. This process

ICl-d C2-ofganizdby
Ic2_submitted_to

0
0

0
ICI-WltW C2_workr_n

0

Figure 4: A Dependence Graph

can take place only after the explicit update is specified
and interleaves the generation of actual implicit updates
with formula evaluation. Its complexity is linear on the
number of potential implicit updates multiplied by the
cost of formula evaluation.
Figure 4 shows the dependence graph organization for
our working example. The edge from the compiled
structure for literal address of rule DRl to the uorkain
literal of IC2 denotes the direct dependence of 1~2 on
constraint DBl, whereas the path from node DRZJlniv
to ICl-uorkain denotes that an update on literal univ
might cause a violation of constraint 1~2. o

4 Updates of Integrity Constraints and
Deductive Rules

The compilation scheme presented in section 3.1 per-
mits the efficient treatment of transactions of literal up-
dates: for every update in a transaction, the simplified
constraints affected by the update are selected and in-
stantiated along with the simplified rules whose literal
matches the update. The set of implicit updates corre-
sponding to the rule’s evaluation is instantiated and each
implicit update is treated 3 a normal update. The situ-
ation is more complicated in the case of transactions that
insert or delete constraints and rules. The organization
of simplified forms in a dependence graph allows for in-
cremental compilation of newly inserted constraints and
rules without having to reconsider those that have al-
ready been compiled. In both the cases of insertion and
deletion the dependence graph must be modified mini-
mally. Determining however how dependence is affected
and updating the stored transitive closure is a difficult
and costly task for cyclic graphs. In this section we de-
scribe incremental graph modification procedures, char-
acterize their complexity and show how the computed
transitive closure can be updated without having to re-
compute it from scratch. We also present results from
experiments with random graphs. It will be assumed
that the computed transitive closure (TC) is represented
in a form that permits checking reachability between any
two graph nodes in O(1) time. A detailed presentation
and analysis of the algorithms is found in [15].

154

4.1 Updates of Integrity Constraints
Insertion: For the time being we assume the traditional
semantics attributed to the insertion of an integrity con-
straint, namely that a new constraint must be evaluated
against the KB and be accepted only if found true; oth-
erwise. it has to be rejected. Only when a new constraint
is found true, it is transformed into a set of parame-
terized forms, one for each of its literals. These forms
are added as nodes to the dependence graph and in case
there exist rules already in the graph on which the con-
straint directly depends, edges from the rule nodes to
the constraint nodes are added and labeled. The worst-
case complexity of the dependence graph modification is
0(IVRI), since the newly introduced nodes have to be con-
nected with as many rule nodes as the number of rules
whose conclusion literal matches the constraint literal.
On the average, it is expected that the complexity of de-
pendence graph modification will be much smaller, since
only a subset of the deductive rules will match the con-
straint literals. To characterize the cost of insertion more
precisely, let us define a function F : L + [0, 11, which
returns, for each literal 1, the frequency of its occurrences
in rule heads.7 On the average the number of edge addi-
tions required for the insertion of an integrity constraint
will be equal to Cost~~~,,,~,t = c,eIc IVRI * F(I) * Q.

Deletion: Deletion of constraints cannot cause an
inconsistency. All nodes corresponding to some simplified
form of the constraint are removed along with their
incident edges.” The worst-case complexity of the
deletion process is O(]E]) and corresponds to a situation
in which all edges are adjacent to the nodes to be deleted.
The average cost of edge deletion is CostIcdelele =
&C Iv.1 * F(I) * a.

4.2 Updates of Deductive Rules

The case of updates of deductive rules appears to be more
complicated since insertion or deletion may cause implicit
changes which are also candidates for violating integrity.

Insertion: When a new rule B + H is inserted,
its direct dependence relationships to existing rules or
constraints must be determined* and represented in the
graph. It must be checked whether there exist PSSs
of constraints or rules with literals unifying with the
rule’s conclusion literal. In that case, the conclusions
of the rule must be derived and checked for possible con-
straint violations. These implicit updates may trigger

‘This type of information can be available after KB compilation
and can be maintained incrementally after modifications.

sin [7], if this process results in isolated nodes representing sim-
plified rules on which the deleted constraint previously depended,
then these nodes are removed as well. In our approach, these nodes
are not removed in order to avoid their recompilation in case future
updates introduce constraints depending on these rules.

subsequent implicit updates if there exist already com-
piled rules with body literals that unify with the inserted
rule’s conclusion literal. This information is available
since the graph’s transitive closure has been computed
and updated after each insertion/deletion of rules and
constraints. One only has to check if a constraint node
appears as a successor of the deductive rule nodes that
match the inserted rule’s conclusion literal. If no vi-
olation of constraints arises, and if there does exist a
literal of a rule/constraint that unifies with the rule’s
conclusion, then the rule is transformed into a set of
PSSs and inserted in the dependence graph. The worst-
case complexity of this process is O(~VRI * IEI). More
specifically, the number of graph nodes corresponding
to deductive rules matching the rule head H is equal
to IVRI * F(H). Moreover each such node can have
at most IERcI successors in the transitive closure. In
the worst case, all these successors will be in VI which
makes the cost of computing possibly affected constraints
equal to IVRI * F(H) * ~ERC 1. Similarly, there will be
at most IV11 * F(H) nodes matching H. Hence, the to
tal maximum cost of identifying the possibly affected
constraints is IVRI * F(H) * IERcI + IV11 * F(H). Let
c = H.Then w w c and the above cost becomes

IV11 *F(H) * (1+ /El * +). Let also P =
t-i
L . Then the

cost can be written as tl+c)a -*F(H)*(l+c+c*(EI)*IEI.
Finally, the modification of the dependence graph re-
quires that edges are added from rule nodes to the
newly added ones. This cost is derived as in the case
of constraint insertion and is, on the average, equal to
xIEB IvRl * J’(i) * a. In total, COStDRinrert = I+c *

IEI * (Q * &B WI + J’(H) * (I+ & * IEI)h

Deletion: If an already compiled rule is to be deleted,
then, if there exist rules or constraints with literals
matching the rule’s negated conclusion, the literals
deducible with this rule must be treated as normal
deletions. If they do not cause integrity violation,
the parameterized forms of the rule must be deleted
along with all their incident edges. The computed
transitive closure provides the information of whether
an implicit deletion caused by the rule’s deletion can
violate an integrity constraint. As was the case for
rule insertion, rule deletion requires worst-case time of
O(JV.I * IEI). As before, the edge removal cost is
estimated as COStDR-&,ete =

FW) * u+ * * IW
**lEl*b*C&B w+

From the above description, it can be seen that an
adequate treatment of updates of rules and constraints
requires interleaving compilation and evaluation. This
increase in complexity however is a tradeoff for the cost
of KB roll-back in case a violation is discovered.

155

Edge Insertion (r=2.00) Edge Deletion (r-2.00)
Iterations / Edges Iterations / Edges

4.00

3.00

200

1.00

0.00

0.00 500.00 0.00

Figure 5: Performance of Incremental T.C. Computation

4.3 Incremental Modification of Transitive
Closure

In the previous @ures for dependence graph main-
tenance during rule or constraint updates, the precom-
puted transitive closure has to be updated, since changes
in the direct dependence relation induce changes to the
dependenke relation between literals. A number of algo
rithms have been proposed for on-line maintenance of
transitive closure (e.g. [S]) but are not applicable to
cyclic graphs. In [15] we propose algorithms that main-
tain reachability information for edge insertions and dele-
tions in the dependence graph. These algorithms are
shown to be correct for graphs with the properties of a
dependence graph. We briefly describe each of them here.
Insertion of an edge from node u to node u makes v and
all its successors reachable from u and every node from
which u is reachable. The reachability between any other
pair of nodes is not affected. For every pair of nodes (z, y)
such that y is reachable from E before the insertion, y
remains reachable from z after the insertion. The worst-
case complexity of edge insertion is O(]ERR] +]E]). In
particular, when an edge from a rule node to a constraint
node is inserted the worst-case cost is]E], whereas the
cost is]ERR]*]El h w en an edge between two rule nodes
is inserted. The cause for the high cost is the possible
presence of cycles in the graph. When an edge (u, u) is re-
moved, for all nodes t whose only path to v is via u, (z, u)
must be removed from TC. Moreover, if the only path
from each such node z to a successor y of v is via (u, v),
then (z, y) must be removed from TC. The maintenance
of TC in the case of an edge removal assumes path infor-
mation is available. This information can be computed
along with TC and be maintained incrementally with a
total added cost of at most]E]. The complexity of the
deletion process is quadratic on the number of edges in
the graph.

It becomes apparent from the description of the mainte-
nance procedures, that the presence of cycles complicates
the on-line transitive closure computation. We expect to
be able to perform better in the average case because
of the structure of the dependence graph. Specifically,
no inference path can involve a constraint node unless
it is the final node in the path. Hence, if the edge to
be removed is between a rule and a constraint node only
paths formed by edges connecting rule nodes have to be
searched. In this case the number of edges to be ex-
amined is]ERc] rather than]E]. The graphs in figure 5
compare the cost of incremental computation of TC with
that of recomputing it from scratch in the cases of edge
insertion and removal and for random sparse dependence
graphs. The graphs show that on-line maintenance of
the implicit update information can be carried out effi-
ciently, with a cost as low as 0.1 *]E] on the average.
The performance of the incremental algorithms improves
even more when the degree of sparsity of the dependence
graph increases (r = 3, P = 4).

5 Conclusions and Outlook

This paper presented an integrity constraint simplifica-
tion method for large Telos KBs. The main contribution
of this work lies in the definition of a sound and com-
plete simplification method that treats uniformly tempo-
ral and non-temporal (static and dynamic) constraints.
Temporal simplification is performed efficiently by a ta-
ble lookup. Other attempts to treat uniformly static and
dynamic constraints restrict attention to specific types of
constraints (e.g. transition constraints) and do not con-
tain explicit temporal information [14]. Chomicki’s tech-
niques [3] are beneficial to the enforcement of dynamic
constraints since they permit their evaluation without
having to consider the entire history of the KB. The

156

method assumes a rather cumbersome formulation of
constraints in Past Temporal Logic with no explicit pres-
ence of time and that the set of constraints does not
change. We consider this to be a major restriction for
temporal KBs modeling an evolving domain. Techniques
proposed for temporal integrity monitoring (e.g. [5]) are
run-time methods, whereas we have focused on simpli-
fying formulae as much as possible at schema definition
time. Performance is less critical at compile-time.
Current research focuses on the definition of an efficient
hybrid theorem prover for the evaluation of temporal
constraints, in the flavor of [lo]. Such a theorem
prover may be enhanced with techniques for reduction
of temporal formulae referring to long histories into
formulae evaluable in a pair of states only [18]. A
performance assessment of the method is in progress.
The method needs to be compared against one-phase
methods that interleave simplification and evaluation [8]
and run-time methods. Moreover, the I/O complexity of
graph computations and the secondary-memory storage
of rules and constraints need to be studied.

6 Acknowledgements
The author wishes to thank Professors John Mylopoulos
and Yannis Ioannidis for their valuable advice, as well
as Thodoros Topaloglou, Manolis Koubarakis and the
anonymous referees for comments that helped improve
the paper. Financial support was provided by the
Department of Computer Science and the Information
Technology Research Centre.

References

PI

PI

PI

VI

[51

J. Allen. Maintaining Knowledge about Temporal
Intervals. Communications of the ACM, 26(11):832-
843, November 1983.

F. Bry, II. Decker, and R. Manthey. A Uniform
Approach to Constraint Satisfaction and Constraint
Satisfiability in Deductive Databases. In 1st Int.
Conference on Extending Data Base Technology,
pages 488-505, Venice, Italy, 1988.

J. Chomicki. History-less. Checking of Dynamic In-
tegrity Constraints. In 8th Int. Conference on Data
Engineering, pages 557-564, Phoenix,AZ, 1992.

H. Decker. Integrity Enforcement in Deductive
Databases. In Expert Database Systems, 1st Int.
Conference , pages 271-285, 1986.

K. Hulsmann and G. Saake. Representation of
the Historical Information Necessary for Temporal
Integrity Monitoring. In 2nd Int. Conference on
Extending Data Base Technology, pages 378-392,
Venice, Italy, 1990.

bl

[71

PI

191

[lOI

illI

P21

P31

PI

P51

M

P71

W31

G. Italiano. Finding Paths and Deleting Edges in
Directed Acyclic Graphs. Information Processing
Letters, 28(1):5-11, 1988.

M. Jeusfeld and M. Jarke. From Relational to
Object-Oriented Integrity Simplification. In 2nd
Int. Conference on Deductive and Object-Oriented
Databases, pages 460-477, Munich, Germany, 1991.

V. Kuchenhoff. On the Efficient Computation of the
Difference Between Consecutive Database States.
In 2nd International Conference on Deductive and
Object-Oriented Databases, pages 478-502, Munich,
Germany, 1991.

J. Lloyd. Foundations of Logic Programming.
Springer Verlag, 1987. 2nd edition.

S. Miller and L. Schubert. Time Revisited. Compu-
tational Intelligence, 6:108-118, 1990.

J. Mylopoulos, A. Borgida, M. Jarke, and
M. Koubarakis. Telos: A Language for Representing
Knowledge in Information Systems. ACM Tkansac-
lions On Information Systems, 8(4):325-362, 1990.

J. Mylopoulos, V. Chaudhri, D. Plexousakis, and
T. Topaloglou. A Performance Oriented Approach
to Knowledge Base Management. In 1st Int. Confer-
ence on Information and Knowledge Management,
pages 68-75, Baltimore, MD, 1992.

J.-M. Nicolas. Logic for Improving Integrity Check-
ing in Relational Databases. Acta Informatica,
18:227-253, 1982.

Olive, A. Integrity Constraints Checking in Deduc-
tive Databases. In 17th VLDB Conference, pages
513-523, Barcelona, Spain, 1991.

D. Plexousakis. Integrity Maintenance in a Telos
baaed KBMS. Technical report, Department of
Computer Science, University of Toronto, 1993.
Forthcoming.

D. Plexousakis. Semantical and Ontological Consid-
erations in Telos: a Lanugage for Knowledge Rep-
resentation. Computational Intelligence, 9(1):41-72,
1993.

G. Qaddah, L. Henschen, and J. Kim. Efficient
Algorithms for the Instantiated Transitive Closure
Queries. IEEE fiansactions on Software Engineer-
ing, 17(3):296-309, 1991.

G. Saake and U. Lipeck. Foundations of Temporal
Integrity Monitoring. In C. Roland, editor, Temporal
Aspects in Information Systems, pages 235-249.
North Holland, 1988.

157

