
Declustering Objects for Visualization*

Ling Tony Chen Doron Rotemt

Lawrence Berkeley Laboratory
Berkeley, CA 94720

Abstract
In this paper we propose a new declustering method which is
particularly suitable for image and cartographic databases
used for visualization. Our declustering method is based
on algebraic techniques using vectors. The algorithm which
computes the disk assignment requires O(Kj log K) time
where K is the number of parallel disks in the system. The
resulting disk assignment maximizes the area that can be
visualized without accessing any disk more than once. The
method is easy to implement and works for any number
of parallel disks. Our mathematical analysis show that
for common visualization queries our declustering method
performs within seven percent from optimal for a wide range
of practical multiple disk configurations.

1 Introduction
Declustering files across multiple disk units is a well
known technique for enhancing I/O parallelism. The
idea is to partition the file among K disks such that
the work involved in retrieving the answer to a query is
balanced among the disks, i.e., retrieving an answer of
B bytes will involve accessing approximately $ bytes
from each disk.

Declustering of large files on multiple disk units
has received great attention recently. In [2] it was
shown that declustering leads to significant savings
in response times for single attribute partitioned files.

‘The support of the Defense Advanced Research Projects
Agency, as well as the support of the Department of Energy under
contract DEAC03-76SFOOO98 is nratefullv acknowledged.

‘Also with Department of MI$ School of Business, San Jose
State University

Permission to copy without fee all or part of this material
is granted provided 1hal the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice and
the Me of Ihe publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OP lo republish, require8 a fee
and/or special permission from ihe Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland 1993

Declustering for range queries is presented in [5] where
it is proposed to use a Hilbert curve linearization
algorithm and then assign records to disks in a round-
robin fashion. Declustering for partial match queries
using Cartesian Product Files is described in [lo, 4, 31.
In [6] declustering methods using error-correcting codes
are developed.

In this paper we present and analyze a declustering
method which is particularly suitable for image and
cartographic databases often used for visualization in
GIS and other scientific applications. In such applica-
tions the database contains a large collection of aerial
or satellite photographs or maps which cover some area
of interest. Users of such databases are typically in-
terested in visualizing specific areas around points of
interest. For example an area of radius P around some
pollution source or epicenter of an earthquake. Other
types of access may require visualizing a scenery along a
path of a moving airplane or land vehicle. An excellent
source of information about such databases and their
use in various applications is given in the report of a re-
cent NSF workshop on Visual Information Management
Systems 191.

The original maps or satellite images can be quite
large. For example a high resolution color aerial
photograph of a 20 by 20 km region at 1 meter per pixel
may require over 1.6 gigabytes of disk storage. For that
reason, the original image is further divided into tiles
of regular size which are stored on disk as atomic files
as shown in Figure l(b). Typical tile sizes range from
16 KB to 1 MB and depend on the storage device and
query characteristics used by the application.

An answer for visualization queries requires accessing
a set of image tiles that overlap circles of some radius
(See Figure l(c)). As the number of tiles needed
to answer a query may be large, it is desirable to
decluster them among the disks to optimize response
time. Furthermore, as explained in the next section,
restrictions on performance may require that each disk

85

will be hit at most once per each query.

In this paper we present a new class of declustering
methods which we call vector based declustering. We
then present an O(Kj log K) algorithm that finds a
member of this class with final declustering results
which are within a few percent from optimal. One
difference between the problem we are considering
here and other declustering methods such as the
one described by [5] is that we require worst case
performance guarantees rather than methods which
behave well on the average. These guarantees are
needed for applications that need to visualize a scenery
in real-time. For example, we can show that in the
Hilbert curve linearization scheme, some very small
radius queries may hit the same disk twice for any
value of K which is not acceptable in our applications.
Another difference is that we are interested in fixed
radius queries rather than arbitrary shaped orthogonal
range queries.

It is interesting to note that a closely related problem
was considered in [l] for the purpose of displaying raster
graphics images stored on M parallel memory modules.
The problem there was that of placing pixels on memory
modules such that no two pixels come from the same
memory module when displaying rectangular windows
of some fixed area. The approach of that work is not
suitable for our purposes as it assumes that M is a very
large number, and the solution only works for a specific
set of values of M.

The paper is organized as follows. In Section 2
we present some preliminaries and a more precise
formulation of the problem. In Section 3 we present our
algorithm for finding an optimal declustering scheme.
In Section 4 we discuss practical implications of our
results to the physical design of visualization database
systems. In Section 5 we present our conclusions and

(a) 6)

Figure 1: (a) An image (b) Tiling of an image (c) Tiles overlapping a fixed radius query

present some further problems raised by this work.
Proof of the asymptotic time bounds of our algorithm
is given in the Appendix.

2 Problem Formulation and Notation
Let the plane be divided by horizontal and vertical grid
lines into square tiles each occupying unit area (i.e.
the sides of each tile are of unit length). Also, let the
coordinates of a tile be represented by the coordinates of
its lower left hand corner. Our tile placement problem
is basically that of assigning each tile to a disk in such a
way that only K disks are used, and fixed radius queries
on the plane will result in the shortest response time
required to read in all tiles overlapping the query. This
means that we should try to minimize the maximum
number of tiles read from the same disk for each query.

In this paper, we will only consider the problem
of finding the best tile allocation method, under the
restriction that at most one tile is read from each disk.
There are two reasons why we are only considering the
one hit per disk case.

For most practical purposes, in order to guarantee
smooth visualization without hiccups [12, 71 we can
only afford a response time which involves at most
one disk access per each parallel disk.

Usually, the number of disks I<, and the size of
tiles (relative to the query radius r) are changeable
parameters. Thus it is usually possible to transform
a fixed radius query problem that will require
multiple tile reads from each disk, into one that just
reads at most one tile per disk by increasing the tile
size or adding more disks.

Specifically, in this paper we focus on the solution to
the following two problems.

86

1. Given a system with K disks, what is the maximum
query radius P, that would not result in two tiles
being read per disk.

2. Given a query radius r, what is the minimum
number of disks required to place all the tiles such
that for all possible queries, at most one tile is read
per disk.

In Section 4 we will also discuss our observations
about the more general problem in which the one hit
per disk restriction is removed.

Problem number 1 above, can be solved by letting the
tiles that are assigned to the same disk be geometrically
as far apart as possible. In such a case the maximum
query radius r would simply be the minimal distance
between two tiles assigned to the same disk divided
by 2. Note that throughout this paper we make the
simplifying assumption that a tile need not be read
unless the center of the tile is accessed by the query
circle. This assumption is not restrictive in any way, as
in the case where a tile needs to be read in when any
small part of it is accessed, we can simply subtract the
constant $ (half the diagonal length of a tile) from r
to compute the real query radius. Problem number 2
has a complexity within a factor of O(K) of problem
1 as it can be solved by solving problem number 1 for
increasing values of K starting with K = 1, until we
encounter a value for K that will work for a query
radius larger or equal to P. In practice however, we
need only start the search from K = [2fir2] (this will
become obvious in Section 3.1), and usually the smallest
satisfying K will be found to be just slightly larger than
[24r2J.

In this paper we propose to use, what we call,
a vector based declustering method of tile placement.
This method takes a pair of linearly independent two
dimensional vectors u = (a, b) and v = (c,d), and
places all tiles with a relative position of mu + nv (for
all integer m, n) on the same disk. This is illustrated in
Figure,2 for the vector pair (4, -1) and (3,3). Another
way of viewing this method is to imagine that we are
tiling the plane with parallelograms with sides u and
v. Tiles that are at the same relative position on the
parallelograms are assigned to the same disk. Note that
since tiles are unit squares, a, b,c and d must all be
integers. Furthermore, since exactly K disks must be
used to hold all the tiles, the area of each parallelogram
must be equal to K (i.e. lad- bcl = K). Given a pair of
vectors u = (a, b) and v = (c, d) which satisfy the above
restriction, we can label tiles with their respective disks
as follows:

ForO<i<K-1

Label a random unlabeled tile, say, (z, y) with i.
Label all tiles with coordinates of the form

(z+ma+nc,y+mb+nd) with i
Endfor

It can be proved formally that this placement scheme
is feasible, i.e., each tile will be labeled with a number
from 0 to K - 1 and no tiles will be left unlabeled.
Intuitively, this can be seen by observing that each
tile is either totally contained in a parallelogram (such
as tiles numbered 3,4,6,7,A,B,D,E in Figure 2) or is
intersected by an edge of the parallelogram. Although
tiles which lie along edges might only be partially
covered by the parallelogram one can always find the
corresponding other part of that particular tile at the
opposite side of the parallelogram. For that reason,
the number of tiles occupied by the parallelogram will
always add up to the integer value K.

At first thought, it seems restrictive to only consider
vector baaed tile placement methods, since there are
other methods that can be considered (see Faulotsos
[5]). But as we will show in the following section, this
method is very attractive both for its performance and
simplicity. In fact, for fixed radius queries in which we
wish to read at most one tile from each disk, vector
based methods usually produce tile placement results
that are very close to optimal.

At this point, problem 1 has been transformed into
the problem of finding a pair of vectors u,v, such
that the distance between the closest endpoints among
mu + nv are as far apart as possible. Under vector
based tile placement methods, the disks are treated
symmetrically, i.e., for a specific tile (z, y) assigned to
disk i, the relative positions of all other tiles assigned
to disk i are the same regardless of the position of (t, y)
as well as the value of i. Because of this we need only
consider the relative positions of tiles assigned to the
same disk as tile (0,O). Let the set of vectors spanned
by u and v be denoted as S(u, v). In other words, let
S(u, v) = (w 1 Vm, ra E Z, w = mu + nv). Also define
L(W) = min{]w] I w E W, w # (0, 0)). In other words,
L(W) is the length of the shortest non-zero vector in the
set W. Thus problem 1 is transformed into the problem
of finding a pair of vectors that maximize L(S(u,v)),
under the constraint that the parallelogram spanned by
u and v has an area of K. Note that the solution will
;t be:t$que, since S(u,v) = S(-u,v) = S(u, -v) =

-u,
Table 1 lists all the Major notations used in this paper

along with their meaning. Some of them have already
been defined, whereas others will be defined later in this
paper.

87

Figure 2: Tile placement on 15 disks with base vectors (4, -1) and (3,3)

1 Notation 1 Meaning I
I K I Number of narallel disks 1

r Radius of query in tile length units
u= (qb) 2-D vector and its z, y coordinates

I4 the length of u, da2 + bfj
au, v) {wlVm,nEZ, w=mu+nv}

L(W) min{lwl I w E W, w # (O,O)I
Wi Temporary vector used at stage i

I 8i I Angle between vectors wi and wi-1 I

Table 1: List of all notations used in this paper

3 Algorithm to find best u,v pair

In this section we will discuss how to find the best
u, v pair such that L(S(u, v)) is maximized, under the
constraint that the parallelogram spanned by u and v
has an area of K. In order to get some bounds against
which we can measure the quality of our solution, we
start by discussing the optimal tile placement solution
obtained by removing all restrictions, i.e., we allow tiles
to be placed at non integer coordinate positions, and
also lift the assumption that we only consider vector
based solutions. Based on this optimal solution, we
then investigate how close to optimal we can get with
the restrictions. Next, we show that even with our
restrictions we were able to come up with closed form
solutions to vectors u,v for a large range of practical
values of K which take a special form. Following that

........

........

........

........

........

........

........

Figure 3: Hexagon Pattern

. . .

. .

. . .

. .

. . .

. .

. . .

we present our general solution in the form of a fast
algorithm that can compute the best u, v pair for any
given K.

3.1 Optimal solution
Let us assume that the coordinate space we are dealing
with is continuous, i.e., that the tile centers can be
placed anywhere on the plane. Let us consider the
points which represent tiles residing on the same disk.
The problem is to place these points on a 2-D plane
in such a way that the distance between the closest
points are as far apart ss possible. Also, since we are
using K disks, we must have one point per area K on
the average. In formal mathematical terms, this means
that the number of points contained in a circle with
radius R approaches aR2/K as R goes toward infinity.

This problem is a variant of the classical circle

88

b) @)

Figure 4: Closed form solutions when K = h2 and
K = 2h2

packing problem and has been long solved [ll]. Its
solution statea that the points must be distributed
according to the hexagon pattern as shown in Figure 3.
Note that the problem did not assume that the solution
needed to be vector based, though the solution turned
out to be vector based. The optimal solution is for u
and v to be of the same length with a 60 (or 120) degree
angle between them. Note that the smallest distance

between any two points is
J-

2K Thus the maximum z.

query radius allowed would be
J-

s/2.

3.2 Solving the problem for certain K values

Though the problem of finding the best u,v pair can

be solved optimally by letting u = (&O) and

v=(+&&SJyg, in continuous space. In our tile

placement problem, the t and y components of u and
v must be integers.

Although we have not been able to come up with
closed form solutions for u and v for ail K, we have
been able to find closed form solutions for some often
used subsets of K. These special cases are illustrated
in Figure 4.

As in most practical applications the number of disks
used is a power of 2, we are interested in the quality of
a vector based declustering solution for K = 2’ for an
integer 1. In fact we will deal with an even more general
class of values for K of the form h2 and 2h2. Note that
any number which is a power of 2 can be represented as
h2 or 2h2 for some integer h. If K = h2 for some integer
h, the base vector pair could be set to u = (0, h) and
v = (h, 0) ss shown in Figure 4(a). This would result
in a maximum query radius of a/2, which is 6.94

percent off from the optimal of
J-

s/2 achieved by the

hexagonal pattern.
If K = 2h2 for some integer h, the base vector pair

could be set to u = (h, h) and v = (2h,O) as shown
in Figure 4(b). This would also result in a maximum

query radius of e/2, thus being 6.94 percent off from
the hexagon optimal.

Also note that we are not saying that these solutions
for K = h2 and K = 2h2 are the best we can do.
We are merely saying that being off from optimal by
6.94 percent is a worst case upper bound for these sets
of K’s. In the following subsection, we will describe
an algorithm that will compute the best possible u,v
vector pair for a given K. As will be seen later, we can
often do better than the 6.94 percent for most values of
K.

3.3 Solving the problem for any K
Let u = (a,b) and v = (c,d), where a,b,c and d are
all integers. Under these constraints, trying to find
the optimal vector pair by exhaustively considering all
u, v pairs would involve a search through 4 dimensional
integer space. This search space is actually reduced to
3 dimensional space since we must have lad - bcl =
K. For each u,v pair that is encountered in this
search, L(S(u, v)) would need to be computed. A naive
approach to computing L(S(u, v)) would involve a 2
dimensional search through m, n space, thus leading to
a 5 dimensional search for each K. In this subsection,
we introduce an algorithm that can search for the best
possible u, v pair for a fixed K in O(K# log K) time.
We first discuss how to further reduce the search space
size to O(Kj), then we will describe an algorithm that
can compute L(S(u, v)) in O(log K) time. We begin by
presenting the following theorems.

THEOREM 3.1 For all integer j, il will be true ihal

S(u, v) = S(u, v + ju)

S(u, v) = S(v, u + jv)

PROOF: We shall only prove the case for u and v + ju.
The other proof is similar.

In order to prove this we need to show that all vectors
in the set m’u+n’(v+ ju) are found in the set mu+nv.
This can be easily-achieved by setting m = ml+ jn’ and
n = n’ for any m’, nt pair.

The inverse can just ss easily be shown. All vectors in
the set mu+nv can be four+ in the set m’u+n’(v+ ju)
by setting n’ = n and mt = m - jn. Cl

Note that the area of the parallelogram spanned by
these vector pairs is also preserved. This can be easily
verified by computing lad - bcl for the vector pairs.

THEOREM 3.2 For any p&r ofu, v vectors with integer
x,y components, we can always find another pair of
vectors ut,vt such that S(u,v) = S(ut,vt) and the y
component of vt is always 0.

89

PROOF: Based on Theorem 3.1 we know that we can
transform the vector pair u, v into a different pair that
spans the same vector set. The question now is just how
to select the j values while repeatedly performing this
transformation, such that at the end, the y component
of one of the two vectors will be 0.

This can be easily done by applying the Euclidian
method of finding the greatest common divisors to the
original vector pair in such a way that we end up with
a vector in which its y component is equal to the gcd
of the original two y components. When this happens,
we only need to apply this procedure one more time
in order to bring the y component of one of these two
vectors to 0. q

Because of this we can always transform the vectors
u, v into a pair of vectors such that d is always 0, and
this pair of new vectors would span the exact same set
of vectors as the original u, v pair. Thus it is sufficient
to consider only the vector pairs with d = 0. Since
d = 0, we must have lbcI= K, and since b, c and K are
all integers, K must be divisible by b and c. Due to the
fact that S(u, v) = S(-u, v) = S(u, -v) = S(-u, -v),
it is sufficient to consider only positive b and c.

We have now reduced the search space to 2 dimen-
sions. We proceed with the search by setting b to a
divisor of K. For each such b that we try (there will
be at most [2fil of them), c can be determined by
computing K/b. Then, because S(u, v) = S(v, u+jv),
we need only try all values of a between -c + 1 and
c - 1. Since there are only O(a) possibilities to try
for b, and only O(K) for a. The total number of u,v
pairs we would need to search is of O(K4).

For each u, v pair that we come across in this search,
we need to compute L(S(u, v)). We find this value by
applying an O(logK) time algorithm that iteratively
transforms the vector pair u,v into different vector
pairs that preserve the positions of the spanned vectors
mu + nv. We terminate the algorithm when we finally
come to a vector pair u’, v’ such that

Iu’ . v’l 5 i(min(Iu’I, Iv’1))2 (1)

When this is true, we shall prove that L(S(u,v)) =
min(lu’l, Iv/I).

THEOREM 3.3 If u’ and v’ are two 2 dimensional
vectors that satisfy Equation 1, then the vector with the
minimal length among the set of vectors mu’ + nv’,
where m and n are integers that are not simultaneously
0, will have length equal to min(lu’j, Iv/I).

PROOF: Without loss of generality, we shall make
the assumption that Iu’I 2 Iv/I. Clearly by setting

(m, n) = (0,l) we will have found a vector with length
min(lu’l, Iv/I) = Iv/I. So all we need to do is show that
for all m, n pairs not simultaneously 0

Imu’ + nv’l 1 Iv’1

This is true if and only if

(mu’ + nv’) . (mu’ + nv’) > Iv/l2

The left side of the equation can be rewritten as:

m2 IdI + 2nmu’ 1 v’ + n2 Iv/l2 2

m21v’12 -)nmllv’12 + n21v’12 =

(I4 . I4 - I4 . Id + InI. 14>lv’12
The last term can be easily verified to be greater

or equal to Iv’12, by considering the three cases where
InI = I4 # 0, InI > 14, and 14 > 14. q

Now let us describe the algorithm to find a pair of
vectors u’, v’ that satisfy Equation 1. The algorithm is
as follows:

1.

2.

3.

4.

Let u,v be assigned to wi and ~2, where wi is
assigned the longer of the two vectors and wz is
assigned the shorter.

Compute wi+l to be the vector wi-1 + jwi where
j is an integer selected to minimize Iwi+i I.

Repeat Step 2 until either Iwi+rl 2 lwil or j = 0
for a certain step.

If the algorithm was terminated because j = 0, the
two vectors wi-1 and wi that caused j to be zero
in Step 2 are the resulting vectors u’ and v’. If the
algorithm was terminated because Iwi+il 1 Iwil,
then wi+i and wi will be the resulting vectors.

The fact that the vectors spanned by wi+i and wi
are exactly equal to the vectors spanned by wi and
wi-1 has already been shown in Theorem 3.1. It should
also be obvious that at Step 2, we will always have
lwil < Iwi-I(, otherwise the algorithm would have
terminated previously. As an example, consider an
initial vector pair of (55,O) and (-39,l) Table 2 shows
the sequence of j’s selected and the computed wi’s. The
final u’, v’ pair in this example are 2,7 and (-7,3),
and thus L(S(u, v)) = 1(2,7)1 = a 2 + 7

Also, note that every step of the algorithm, including
Step 2, can be performed in constant time. This is
because in Step 2, we can select j as follows: Let
wi-1 = (a, b) and wi = (c, d). We know that

Iwi+l12 = Jwi-1 + jwi12 = (a + jc)’ + (b + jd)2 (2)

90

:\ :

\ i
a

- w a
Wi :

-

i j=-1 i j=O i j=+l i i j=-1 i j=-2 i j=-3 i

(a) (b)

Figure 5: Proof that equation holds when algorithm terminates

Wi j vector Wi-l+jWi I

Table 2: Example of algorithm to compute
L(S((55, O), t-39, 1)))

To find the value of j that minimizes this equation, we
take its derivative and set it to zero. The result is that j
should be -$$. But this value will not necessarily be
an integer. However, since Equation 2 is a parabola, we
know that the integer j that will minimize Equation 2
must be one of the two integers next to -$$. Thus
the correct j value to use can be easily found in constant
time.

We shall now prove that when the algorithm termi-
nates, the condition in Equation 1 will hold. But first
we show the following lemma.

LEMMA 3.1 Equation 1 will hold if the following is true:

Iu’ + VII 2 max.(lu’l, Iv’])

and Iu’ - v’l 1 max(lu’l, Iv/I) (3)

PROOF: Without loss of generality, let us assume that
lu’l 1 lv’l.

From Iu’ + v’l 2 Iu’I we can deduce that:

(u’ + v’) * (u’ + v’) 2 IdI

u’ . v’ 1 -$,I2

Similarly, we deduce from Iu’ - v’l 1 lu’l that
u’ . v’ _< +‘I2

And from these two results, we have:

IU’ . V’I < $,I2

cl

Now let us prove that the algorithm works correctly.
In other words, we shall show that Equation 1 will hold
for u’, v’ when the algorithm terminates.
PROOF: First we shall consider the case where the
algorithm terminated because j = 0 at Step 2. Under
this condition, wi-1 and wi become u’ and v’, and
we know that Iwi-il 2 IwiI. This is illustrated in
Figure 5(a). The fact that j was selected to be 0
means that if j were -1 or +l, the vector wi-i + jwi
will be greater or equal to wi-1 (These vectors are
illustrated by dashed lines). This is basically the same
as Equation 3. Hence, baaed on the lemma, we know
that Equation 1 will hold for the output vectors wi-1
and wi.

Now we consider the case where the algorithm
terminated because Iwi+il > lwil at Step 2 (as
illustrated in Figure 5(b)). Under this circumstance,
wi+i and wi will become the output vectors u’ and v’.
The fact that j was not one more or one less than what
it was at Step 2 also implies that Equation 3 holds for
wi+i and wi. Hence, based on the lemma, we know that
Equation 1 will hold for the output vectors too. q

Now the only thing left to show is that the algorithm
does indeed terminate and does so in logarithmic time
bounds. Because the details of this proof are tedious
and diverge away from the major topic of this paper,
we have put the detailed proof in Appendix A. A sketch

91

of the proof can be seen from the following lemmas and
theorems.

Let t9i be the angle between wi-1 and wi measured
in the direction that makes 0i 5 A.

LEMMA 3.2 If during Step 2, the newly computed wi+l
resulted in I 5 &+I 5 q. Then the algorithm will at
most execute Step 2 one more time before terminating.

LEMMA 3.3 If j was not selected to be 0 when comput-
ing wi+l at Step 2 of the algorithm, then it will either
be true that 1 tmOi+lI 1 3-I tmBi(or it will be true that
5 5 ej+l 5 4.

THEOREM 3.4 If the 2 and y components of the initial
u,v pair are less than or equal to K in absolute value,
then the entire algorithm will terminate in O(log K)
time.

4 Implementation Results and
Discussion

We have implemented this algorithm and found the
best vector pairs for all K values from 4 through 1024.
Table 3 lists the results for K from 4 through 32.

One interesting observation about our results, which
seems a bit counter-intuitive, is that the maximal query
radius P is not guaranteed to increase monotonically
with the number of disks K. For example, we can come
up with a tile placement method that can satisfy any
query with radius less than 2.062 using only 15 disks.
But with 16 disks, the best we can do is place tiles
in such .a way that queries with radius less than 2.0
be satisfied. Though queries with radius between 2.0
and 2.062 might result in two hits per disk. This does
not always mean that we should always throw one disk
away from a 16 disk system. There are other benefits
for using this extra disk, such as added storage capacity
(each disk only needs to store & of the entire tile set,
instead of A), and smaller number of disks being hit
when the query radius is much larger than 2. The
system integrator would need to weigh these issues and
determine whether to use the 16th disk or not.

The difference in percentage from the maximal query
radius P to that of the optimal hexagon pattern is
illustrated in Figure 6. As one can see the solution
gets better as K becomes larger. This is due to
the fact that as K becomes larger *the resolution of
grid points relative to the vector lengths become more
and more like continuous space, and thus we are able
to approximate the hexagon vectors more and more
closely.

In Figure 7 we show the same data in a different way.
We show the maximum achievable query radius r (the

Numbs of dish

Figure 6: Percentage off from hexagon optimal for
different values of K

Numba of diih

Figure 7: Optimal and actual query radius for different
values of K

dots) compared with the optimal r in continuous space
(the line) for all values of K from 4 through 1024.

One interesting question is: What will happen under
these allocations when the query radius is larger than
the maximum allowed to guarantee at most one hit per
disk? We can easily show that regardless of the vector
base used, the average number of tiles from the same
disk hit by a query of radius r will always be ?rr2/K
(See Chapter 1 of [S]). Thus saying that no matter
what pair of base vectors are used, the average number
of hits per disks will always be equal to the area of the
query divided by the area of the parallelogram. This
might lead one to come to the conclusion that when T
is large (relative to a), it does not make a difference
what vector base to choose, since “on the average”
the number of hits per disk is always the same. This,
however, is incorrect because we are not concerned with
the average number of times a disk is hit, but with
the number of times the maximally hit disk is accessed.
This is due to the fact that the query response time on
that disk will dominate the total response time.

92

1 K 1 Initial (a, a), (c,d) 1 Final u’,v’ 1 maximal r optimal r % difference

t 4 1 (-2.1). (4,O) 1 (0,2)(-2.1) ! 1.000 1.075 6.94
1.201 6.94 5 &3jlj;i5;oj ” i 2, q-1; 2j 1.118 , _.___ , _._ _

6 (-4,1), (6,O) (2,1)(-2,2) 1.118 I 1.316 -.--- I lS.05 --.--

7 (-5,1), (790) (2,1)(-L3)
I .A,.?. I 1.118 I 1.4LLZ I ,.* nC -.--- i4l..m --.-.

8 (-5,1), (8,O) (-2,2)(-l, -3) 1.414 1 1.520 I , I 6.94 I
9 (-6.1). (9.0) to. 3113.1) 1.500 1 1.612 1 6.94 I \ I/I\,,
10 (-7, l), (10,O) (3,1)(-i, 3) 1 1.581 I 1 s99 -.--- I R 94 -_- - 1

11 t-&l), (ll,O) (3. I\(-2.31 \-‘-I\ -7-I i , 1.581

1 1.782 1 11.27
12 (-3,2), (690) t-3.2)(3.2)

(-3.2k-2: -3)
1 1.803 1 1.861 I\ I I ~~~- I ~~~ 1 3.14 I

13 (-8.1). (13.0) 1 1.803 1 1.937 I 6.94 1
’ ’ 14 1 (‘-16,lj;(14,d) 1 (-2,‘3)(4; 1) 1 1.803 1 2.010 1 10.32

1.5 I (-ii iI (1.5 nl I l4.1\(1 A\ I 2nb2 I 2.m I n.98 --

16
L 17

i--;$;j; i;6: 0) I to: ij(i: \ ;j -.--_ -.---

2.000 1 2.149
(-13, l), (17,O) (4,1)(-L 4) 2.062 -_--

18 2.121 2.28(
L 19

-13,1), (18,O)
t-15, l), (19,O)

(-3,3)(2,4)
(4,1)(-394) 2.062 2.34:

20 (-12, l), (20,O) (-4,2)(0, -5) 2.236 2.403
21 (-15, l), (21,O) (-3,3)(3,4) 2.121 2.462
22 (-17.1). (22.0) (-2.4M5.1) 2.236 2.520

-.- -- -._ -
1 2.215 6.94

3 6.94
2 11.97

L
31 (‘-Ii, lj, (3i,O) (2; -5)(-5; -3) 1 2.693 1 2.991 1 9.99
32 (-25, l), (32,0) (-4,4)(3,5) 1 2.828 1 3.039 1 6.94

Table 3: Listing of best vectors for K = 4 through 32

We have thought about the question: What is the
optimal way to place tiles such that the query radius
is maximized when we allow to hit each disk at most p
times? So far we have not been able to come up with
a definite answer ‘for each individual value of p. Our
initial findings indicate that tile placement methods
good for one value of p will not necessarily be good for
other values of p. Although we only solved the problem
for p = 1 in this paper, we still feel that this is a very
important case, since most fixed radius query problems
can be transformed into one in which p = 1 by simply
increasing the tile size. This also makes sense from the
stand point of decreasing total access time, since the
total disk access time involved in reading a tile of size
X is usually much smaller than that of reading n tiles
of size $ each. This is due to the fact that the number
of seeks in the latter case increases by a factor of n
although transfer time remains the same.

Based on these observations, our recommendation to
system designers is to tune-up the parameters of the

system carefully by allowing the maximum tile size such
that p = 1 and the total time to seek and transfer a tile
is within the application specified allowable response
time. Other options include of course adding more disks
or using faster disks.

5 Conclusion and Future Work
In this work we presented a new method of declustering
image tiles in databases used for the purpose of
visualization in GIS and scientific applications. Our
algorithm was shown to find tile placement methods
within 7 percent from optimum for a large range of
system architectures used in practice. Unlike some
other declustering algorithms, our method provides
worst case guarantees such that for all queries up to
a certain radius at most one disk will be hit. The
declustering obtained follows a repetitive pattern which
is easily computable for every value of K, the number
of disks in the system.

it is interesting to note that the same declustering

93

method is not limited to image tiles but can also be
applied to databases which store information about
objects which are geometrically positioned on a grid.
Such databases are used for example in high energy
physics for storing information about sensors in a
detector.

Some questions raised by this work which we plan to
investigate are:

Solving the declustering problem for heterogeneous
environments that contain non-symmetrical disks.
In such environments we may require that some of
the faster disks be “hit” more than others to balance
the response time of all disks.

fl ~
Wi wi+2 Wi wi+2

8. I+
Wi+l

8. s+l
wi+1

How can we use image tile replication (i.e. duplicat-
ing tiles on multiple disks) to further optimize the
declustering algorithm.

(4 0)

Figure 8: Proof that algorithm terminates after 60
degree vector angle

Prom a theoretical point of view it is interesting to
find a closed form solution for the optimal vector
pair for each given K.

Finding a tile allocation method that can optimize
(in a global sense) the number of times the maxi-
mally hit disk is accessed, regardless of the query
radius r.

If Iwi+r 1 1 iwi 1 then the algorithm would terminate
immediately, and there would not be a need to execute
Step 2 one more time. So in the following discussion,
we will only consider the case where Iwi+ll < IwiI. If
when computing wi+2 on the following step, it turns
out that j = 0 then the algorithm will also terminate.
The only thing left to show is that when j # 0, it will be
true that Iwi+4 1 I wi+l I, which would also terminate
the algorithm.

Finding declustering schemes (vector based or oth-
erwise) for 3-D visualization.

We show this by considering two cases. If Iwi+il <
lwil . cosei+r (i.e. The length of the projection of wi
onto wi+l), then we have

Acknowledgement IWi+Zl L Iwi(*sinei+l > lwil .coS&+l L Iwi+ll

The authors wish to thank William Johnston head of
the Imaging Technology Group at LBL for useful dis-
cussions regarding the motivation and results included
in this work.

7 Appendix A: Proof of Algorithm’s
Asymptotic Bounds

In this appendix we shall show that the algorithm to
compute L(S(u,v)) for any u,v pair (encountered in
the search for the optimal tile placement method for K
disks) does indeed terminate and does so in logarithmic
time bounds. We shall first prove two lemmas before
showing this.

Let 0i be the angle between wi-1 and wi measured
in the direction that makes t+ 5 a.

LEMMA 3.2 If during Step 2, the newly computed wi+l
resulted in 5 5 Bi+l 5 %f. Then the algorithm will at
most execute Step 2 one more time before terminating.

PROOF: We shall only consider the case where 5 <
8i+r 5 f . When + < 0i+i 5 4, the proof is similar.

This is illustrated in Figure 8(a). The first inequality
holds because the newly computed vector wi+z must be
longer than the perpendicular distance from the tip of
wi to the line spanned by wi+r. The second inequality
holds due to the fact that 5 5 &+I ,< i.

On the other hand, if Iwi+ll > lwil . cos&+r (as
illustrated in Figure 8(b)) then the only possible j value
that could be selected besides 0 is -1. Any other j value
would result in a longer wi+r. But when j = -1, by
the Law of Cosines we know that

IWi+212 = IWi+112 + IWi I2 - 2 . lwi+lI - IWil . cos ei+l

1 IWi+112 + IWi12 - IWi+ll . lWil2 IWi+l I2

0

LEMMA 3.3 If j was not selected to be 0 when comput-
ing wi+l at Step 2 of the algorithm, then it will either
be true that I tan&+r I 2 3. I tanoil or it will be true that
5 5 ei+l 5 9.

94

(a) 09
Figure 9: Proof that tangent increases by a factor of 3

63

PROOF: We shall only consider the case where 8i 5 5.
When Bi > T, the proof is similar.

We shall also prove this lemma by considering two
cases. If lwil 1 Iwi-11 . cos&, it must be true that
j = -1. Consider the triangle formed by wi-1, wi, and
wi+r as illustrated in Figure 9(a). Because we know
that Iwi-11 1 lwil and Iwi-11 2 Jwi+iJ, by the Law
of Sines B must be the largest angle of the three inner
angles of the triangle. This implies that g 5 B 5 4,
which means that t < &+I 5 9.

On the other hand if lwil < Iwi-11 . cos Bi, we can
easily see from Figure 9(b) and 9(c) that I tan&) = t
and I tanBi+rJ = 3. B ecause j was selected to minimize
Iwi+il, it must be true that f 5 $Iwil. Thus in both
of the cases shown in the figure, it will be true that
e 2 3f, which in turn leads us to the conclusion that
) tanBi+rJ 2 3. I tanoil. cl

THEOREM 3.4 If the x and y components of the initial
u,v pair are less than or equal to K in absolute value,
then the entire algorithm will terminate in O(logK)
time.

PROOF: Because of the restrictions on the x and y
components of the initial u,v pair, and the fact that
they must be linearly independent. It can be easily
shown that the tangent value of the angle between u
and v must be at least &. Based on this fact and the
previous two lemmas, it should be obvious that Step 2
of the algorithm will be executed at most logs 2fiK+2
times before the algorithm terminates. Since every step
of the algorithm can be performed in constant time, the
entire algorithm can be executed in O(log K) time. 0

References

PI

PI

[31

PI

PI

PI

PI

B. Chor, C. E. Leiserson, R. L. Rivest, and J.B.
Shearer. “An Application of Number theory to
the Organization of Raster-Graphics Memory”.
Journal of the ACM, 33(1):86-104, 1986.

David J. Dewitt and S. Ghandeharizadeh.
“Hybrid-Range Partitioning Strategy: A New
Declustering Strategy for Multiprocessor Database
Machine”. In Proc. 16th international Conference
on VLDB, pages 481-492, August 1990.

H. C. Du. “Disk Allocation Methods for Binary
Cartesian Product Files”. BIT, 26:138-147, 1986.

H. C. Du and J. S. Sobolewski. “Disk Allocation
for Cartesian Product Files on Multiple Disk
Systems”. ACM Trans. on Database Systems,
7(1):82-101, 1982.

C. Faloutsos and P. Bhagwat. “Declustering Using
Fractals”. In Second International Conference on
Parallel and Distributed Computing (PDIS), pages
18-25, January 1992.

F. Faloutsos and D. Metaxas. “Disk Allocation
Methods Using Error Correcting Codes”. IEEE
trans. on Computers, 40(8):907-914, August 1991.

S. Ghandeharizadeh, I. Ramos, Z. Asad, and
W. Qureshi. “Object Placement in Parallel Hy-
perMedia Systems”. In Proc. 17th international
Conference on VLDB, pages 243-254, September
1991.

95

[8] Peter Hall. Inirodvction to Ihe Theory of Coverage
Processes. John Wiley and Sons, New York, NY,
1988.

[9] Ramesh Jam. NSF Workshop on Visual Informa-
tion Management Systems. Available by anony-
mous ftp from ftp.eecs.umich.edu, 1992.

[lo] M. H. Kim and S. Pramanik. “Optimal File
Distribution for Partial Match Retrieval”. In Proc.

_ ACM SIGMOD Conf., pages 173-182, June 1988.

[ll] Herbert Meschkowski. Unsolved and Unsolvable
Problems in Geometry. Oliver and Boyd, Edin-
burgh, London, 1966.

[12] C. Yu, W. Sun, D. Bitton, Q. Yang, R. Brunno,
and J. Tullis. “Efficient Placement of Audio
on Optical Disks for Real-time Applications”.
Communications of the ACM, 32(7):862-871,1989.

96

