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Abstract 
In this paper we propose a new declustering method which is 
particularly suitable for image and cartographic databases 
used for visualization. Our declustering method is based 
on algebraic techniques using vectors. The algorithm which 
computes the disk assignment requires O(Kj log K) time 
where K is the number of parallel disks in the system. The 
resulting disk assignment maximizes the area that can be 
visualized without accessing any disk more than once. The 
method is easy to implement and works for any number 
of parallel disks. Our mathematical analysis show that 
for common visualization queries our declustering method 
performs within seven percent from optimal for a wide range 
of practical multiple disk configurations. 

1 Introduction 
Declustering files across multiple disk units is a well 
known technique for enhancing I/O parallelism. The 
idea is to partition the file among K disks such that 
the work involved in retrieving the answer to a query is 
balanced among the disks, i.e., retrieving an answer of 
B bytes will involve accessing approximately $ bytes 
from each disk. 

Declustering of large files on multiple disk units 
has received great attention recently. In [2] it was 
shown that declustering leads to significant savings 
in response times for single attribute partitioned files. 
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Declustering for range queries is presented in [5] where 
it is proposed to use a Hilbert curve linearization 
algorithm and then assign records to disks in a round- 
robin fashion. Declustering for partial match queries 
using Cartesian Product Files is described in [lo, 4, 31. 
In [6] declustering methods using error-correcting codes 
are developed. 

In this paper we present and analyze a declustering 
method which is particularly suitable for image and 
cartographic databases often used for visualization in 
GIS and other scientific applications. In such applica- 
tions the database contains a large collection of aerial 
or satellite photographs or maps which cover some area 
of interest. Users of such databases are typically in- 
terested in visualizing specific areas around points of 
interest. For example an area of radius P around some 
pollution source or epicenter of an earthquake. Other 
types of access may require visualizing a scenery along a 
path of a moving airplane or land vehicle. An excellent 
source of information about such databases and their 
use in various applications is given in the report of a re- 
cent NSF workshop on Visual Information Management 
Systems 191. 

The original maps or satellite images can be quite 
large. For example a high resolution color aerial 
photograph of a 20 by 20 km region at 1 meter per pixel 
may require over 1.6 gigabytes of disk storage. For that 
reason, the original image is further divided into tiles 
of regular size which are stored on disk as atomic files 
as shown in Figure l(b). Typical tile sizes range from 
16 KB to 1 MB and depend on the storage device and 
query characteristics used by the application. 

An answer for visualization queries requires accessing 
a set of image tiles that overlap circles of some radius 
(See Figure l(c)). As the number of tiles needed 
to answer a query may be large, it is desirable to 
decluster them among the disks to optimize response 
time. Furthermore, as explained in the next section, 
restrictions on performance may require that each disk 
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will be hit at most once per each query. 

In this paper we present a new class of declustering 
methods which we call vector based declustering. We 
then present an O(Kj log K) algorithm that finds a 
member of this class with final declustering results 
which are within a few percent from optimal. One 
difference between the problem we are considering 
here and other declustering methods such as the 
one described by [5] is that we require worst case 
performance guarantees rather than methods which 
behave well on the average. These guarantees are 
needed for applications that need to visualize a scenery 
in real-time. For example, we can show that in the 
Hilbert curve linearization scheme, some very small 
radius queries may hit the same disk twice for any 
value of K which is not acceptable in our applications. 
Another difference is that we are interested in fixed 
radius queries rather than arbitrary shaped orthogonal 
range queries. 

It is interesting to note that a closely related problem 
was considered in [l] for the purpose of displaying raster 
graphics images stored on M parallel memory modules. 
The problem there was that of placing pixels on memory 
modules such that no two pixels come from the same 
memory module when displaying rectangular windows 
of some fixed area. The approach of that work is not 
suitable for our purposes as it assumes that M is a very 
large number, and the solution only works for a specific 
set of values of M. 

The paper is organized as follows. In Section 2 
we present some preliminaries and a more precise 
formulation of the problem. In Section 3 we present our 
algorithm for finding an optimal declustering scheme. 
In Section 4 we discuss practical implications of our 
results to the physical design of visualization database 
systems. In Section 5 we present our conclusions and 

(a) 6) 

Figure 1: (a) An image (b) Tiling of an image (c) Tiles overlapping a fixed radius query 

present some further problems raised by this work. 
Proof of the asymptotic time bounds of our algorithm 
is given in the Appendix. 

2 Problem Formulation and Notation 
Let the plane be divided by horizontal and vertical grid 
lines into square tiles each occupying unit area (i.e. 
the sides of each tile are of unit length). Also, let the 
coordinates of a tile be represented by the coordinates of 
its lower left hand corner. Our tile placement problem 
is basically that of assigning each tile to a disk in such a 
way that only K disks are used, and fixed radius queries 
on the plane will result in the shortest response time 
required to read in all tiles overlapping the query. This 
means that we should try to minimize the maximum 
number of tiles read from the same disk for each query. 

In this paper, we will only consider the problem 
of finding the best tile allocation method, under the 
restriction that at most one tile is read from each disk. 
There are two reasons why we are only considering the 
one hit per disk case. 

For most practical purposes, in order to guarantee 
smooth visualization without hiccups [12, 71 we can 
only afford a response time which involves at most 
one disk access per each parallel disk. 

Usually, the number of disks I<, and the size of 
tiles (relative to the query radius r) are changeable 
parameters. Thus it is usually possible to transform 
a fixed radius query problem that will require 
multiple tile reads from each disk, into one that just 
reads at most one tile per disk by increasing the tile 
size or adding more disks. 

Specifically, in this paper we focus on the solution to 
the following two problems. 
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1. Given a system with K disks, what is the maximum 
query radius P, that would not result in two tiles 
being read per disk. 

2. Given a query radius r, what is the minimum 
number of disks required to place all the tiles such 
that for all possible queries, at most one tile is read 
per disk. 

In Section 4 we will also discuss our observations 
about the more general problem in which the one hit 
per disk restriction is removed. 

Problem number 1 above, can be solved by letting the 
tiles that are assigned to the same disk be geometrically 
as far apart as possible. In such a case the maximum 
query radius r would simply be the minimal distance 
between two tiles assigned to the same disk divided 
by 2. Note that throughout this paper we make the 
simplifying assumption that a tile need not be read 
unless the center of the tile is accessed by the query 
circle. This assumption is not restrictive in any way, as 
in the case where a tile needs to be read in when any 
small part of it is accessed, we can simply subtract the 
constant $ (half the diagonal length of a tile) from r 
to compute the real query radius. Problem number 2 
has a complexity within a factor of O(K) of problem 
1 as it can be solved by solving problem number 1 for 
increasing values of K starting with K = 1, until we 
encounter a value for K that will work for a query 
radius larger or equal to P. In practice however, we 
need only start the search from K = [2fir2] (this will 
become obvious in Section 3.1), and usually the smallest 
satisfying K will be found to be just slightly larger than 
[24r2J. 

In this paper we propose to use, what we call, 
a vector based declustering method of tile placement. 
This method takes a pair of linearly independent two 
dimensional vectors u = (a, b) and v = (c,d), and 
places all tiles with a relative position of mu + nv (for 
all integer m, n) on the same disk. This is illustrated in 
Figure,2 for the vector pair (4, -1) and (3,3). Another 
way of viewing this method is to imagine that we are 
tiling the plane with parallelograms with sides u and 
v. Tiles that are at the same relative position on the 
parallelograms are assigned to the same disk. Note that 
since tiles are unit squares, a, b,c and d must all be 
integers. Furthermore, since exactly K disks must be 
used to hold all the tiles, the area of each parallelogram 
must be equal to K (i.e. lad- bcl = K). Given a pair of 
vectors u = (a, b) and v = (c, d) which satisfy the above 
restriction, we can label tiles with their respective disks 
as follows: 

ForO<i<K-1 

Label a random unlabeled tile, say, (z, y) with i. 
Label all tiles with coordinates of the form 

(z+ma+nc,y+mb+nd) with i 
Endfor 

It can be proved formally that this placement scheme 
is feasible, i.e., each tile will be labeled with a number 
from 0 to K - 1 and no tiles will be left unlabeled. 
Intuitively, this can be seen by observing that each 
tile is either totally contained in a parallelogram (such 
as tiles numbered 3,4,6,7,A,B,D,E in Figure 2) or is 
intersected by an edge of the parallelogram. Although 
tiles which lie along edges might only be partially 
covered by the parallelogram one can always find the 
corresponding other part of that particular tile at the 
opposite side of the parallelogram. For that reason, 
the number of tiles occupied by the parallelogram will 
always add up to the integer value K. 

At first thought, it seems restrictive to only consider 
vector baaed tile placement methods, since there are 
other methods that can be considered (see Faulotsos 
[5]). But as we will show in the following section, this 
method is very attractive both for its performance and 
simplicity. In fact, for fixed radius queries in which we 
wish to read at most one tile from each disk, vector 
based methods usually produce tile placement results 
that are very close to optimal. 

At this point, problem 1 has been transformed into 
the problem of finding a pair of vectors u,v, such 
that the distance between the closest endpoints among 
mu + nv are as far apart as possible. Under vector 
based tile placement methods, the disks are treated 
symmetrically, i.e., for a specific tile (z, y) assigned to 
disk i, the relative positions of all other tiles assigned 
to disk i are the same regardless of the position of (t, y) 
as well as the value of i. Because of this we need only 
consider the relative positions of tiles assigned to the 
same disk as tile (0,O). Let the set of vectors spanned 
by u and v be denoted as S(u, v). In other words, let 
S(u, v) = (w 1 Vm, ra E Z, w = mu + nv). Also define 
L(W) = min{ ]w] I w E W, w # (0, 0)). In other words, 
L(W) is the length of the shortest non-zero vector in the 
set W. Thus problem 1 is transformed into the problem 
of finding a pair of vectors that maximize L(S(u,v)), 
under the constraint that the parallelogram spanned by 
u and v has an area of K. Note that the solution will 
;t be:t$que, since S(u,v) = S(-u,v) = S(u, -v) = 

-u, 
Table 1 lists all the Major notations used in this paper 

along with their meaning. Some of them have already 
been defined, whereas others will be defined later in this 
paper. 
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Figure 2: Tile placement on 15 disks with base vectors (4, -1) and (3,3) 

1 Notation 1 Meaning I 
I K I Number of narallel disks 1 

r Radius of query in tile length units 
u= (qb) 2-D vector and its z, y coordinates 

I4 the length of u, da2 + bfj 
au, v) {wlVm,nEZ, w=mu+nv} 

L(W) min{lwl I w E W, w # (O,O)I 
Wi Temporary vector used at stage i 

I 8i I Angle between vectors wi and wi-1 I 

Table 1: List of all notations used in this paper 

3 Algorithm to find best u,v pair 

In this section we will discuss how to find the best 
u, v pair such that L(S(u, v)) is maximized, under the 
constraint that the parallelogram spanned by u and v 
has an area of K. In order to get some bounds against 
which we can measure the quality of our solution, we 
start by discussing the optimal tile placement solution 
obtained by removing all restrictions, i.e., we allow tiles 
to be placed at non integer coordinate positions, and 
also lift the assumption that we only consider vector 
based solutions. Based on this optimal solution, we 
then investigate how close to optimal we can get with 
the restrictions. Next, we show that even with our 
restrictions we were able to come up with closed form 
solutions to vectors u,v for a large range of practical 
values of K which take a special form. Following that 
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Figure 3: Hexagon Pattern 
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we present our general solution in the form of a fast 
algorithm that can compute the best u, v pair for any 
given K. 

3.1 Optimal solution 
Let us assume that the coordinate space we are dealing 
with is continuous, i.e., that the tile centers can be 
placed anywhere on the plane. Let us consider the 
points which represent tiles residing on the same disk. 
The problem is to place these points on a 2-D plane 
in such a way that the distance between the closest 
points are as far apart ss possible. Also, since we are 
using K disks, we must have one point per area K on 
the average. In formal mathematical terms, this means 
that the number of points contained in a circle with 
radius R approaches aR2/K as R goes toward infinity. 

This problem is a variant of the classical circle 
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Figure 4: Closed form solutions when K = h2 and 
K = 2h2 

packing problem and has been long solved [ll]. Its 
solution statea that the points must be distributed 
according to the hexagon pattern as shown in Figure 3. 
Note that the problem did not assume that the solution 
needed to be vector based, though the solution turned 
out to be vector based. The optimal solution is for u 
and v to be of the same length with a 60 (or 120) degree 
angle between them. Note that the smallest distance 

between any two points is 
J- 

2K Thus the maximum z. 

query radius allowed would be 
J- 

s/2. 

3.2 Solving the problem for certain K values 

Though the problem of finding the best u,v pair can 

be solved optimally by letting u = (&O) and 

v=(+&&SJyg, in continuous space. In our tile 

placement problem, the t and y components of u and 
v must be integers. 

Although we have not been able to come up with 
closed form solutions for u and v for ail K, we have 
been able to find closed form solutions for some often 
used subsets of K. These special cases are illustrated 
in Figure 4. 

As in most practical applications the number of disks 
used is a power of 2, we are interested in the quality of 
a vector based declustering solution for K = 2’ for an 
integer 1. In fact we will deal with an even more general 
class of values for K of the form h2 and 2h2. Note that 
any number which is a power of 2 can be represented as 
h2 or 2h2 for some integer h. If K = h2 for some integer 
h, the base vector pair could be set to u = (0, h) and 
v = (h, 0) ss shown in Figure 4(a). This would result 
in a maximum query radius of a/2, which is 6.94 

percent off from the optimal of 
J- 

s/2 achieved by the 

hexagonal pattern. 
If K = 2h2 for some integer h, the base vector pair 

could be set to u = (h, h) and v = (2h,O) as shown 
in Figure 4(b). This would also result in a maximum 

query radius of e/2, thus being 6.94 percent off from 
the hexagon optimal. 

Also note that we are not saying that these solutions 
for K = h2 and K = 2h2 are the best we can do. 
We are merely saying that being off from optimal by 
6.94 percent is a worst case upper bound for these sets 
of K’s. In the following subsection, we will describe 
an algorithm that will compute the best possible u,v 
vector pair for a given K. As will be seen later, we can 
often do better than the 6.94 percent for most values of 
K. 

3.3 Solving the problem for any K 
Let u = (a,b) and v = (c,d), where a,b,c and d are 
all integers. Under these constraints, trying to find 
the optimal vector pair by exhaustively considering all 
u, v pairs would involve a search through 4 dimensional 
integer space. This search space is actually reduced to 
3 dimensional space since we must have lad - bcl = 
K. For each u,v pair that is encountered in this 
search, L(S(u, v)) would need to be computed. A naive 
approach to computing L(S(u, v)) would involve a 2 
dimensional search through m, n space, thus leading to 
a 5 dimensional search for each K. In this subsection, 
we introduce an algorithm that can search for the best 
possible u, v pair for a fixed K in O(K# log K) time. 
We first discuss how to further reduce the search space 
size to O(Kj), then we will describe an algorithm that 
can compute L( S( u, v)) in O(log K) time. We begin by 
presenting the following theorems. 

THEOREM 3.1 For all integer j, il will be true ihal 

S(u, v) = S(u, v + ju) 

S(u, v) = S(v, u + jv) 

PROOF: We shall only prove the case for u and v + ju. 
The other proof is similar. 

In order to prove this we need to show that all vectors 
in the set m’u+n’(v+ ju) are found in the set mu+nv. 
This can be easily-achieved by setting m = ml+ jn’ and 
n = n’ for any m’, nt pair. 

The inverse can just ss easily be shown. All vectors in 
the set mu+nv can be four+ in the set m’u+n’(v+ ju) 
by setting n’ = n and mt = m - jn. Cl 

Note that the area of the parallelogram spanned by 
these vector pairs is also preserved. This can be easily 
verified by computing lad - bcl for the vector pairs. 

THEOREM 3.2 For any p&r ofu, v vectors with integer 
x,y components, we can always find another pair of 
vectors ut,vt such that S(u,v) = S(ut,vt) and the y 
component of vt is always 0. 
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PROOF: Based on Theorem 3.1 we know that we can 
transform the vector pair u, v into a different pair that 
spans the same vector set. The question now is just how 
to select the j values while repeatedly performing this 
transformation, such that at the end, the y component 
of one of the two vectors will be 0. 

This can be easily done by applying the Euclidian 
method of finding the greatest common divisors to the 
original vector pair in such a way that we end up with 
a vector in which its y component is equal to the gcd 
of the original two y components. When this happens, 
we only need to apply this procedure one more time 
in order to bring the y component of one of these two 
vectors to 0. q 

Because of this we can always transform the vectors 
u, v into a pair of vectors such that d is always 0, and 
this pair of new vectors would span the exact same set 
of vectors as the original u, v pair. Thus it is sufficient 
to consider only the vector pairs with d = 0. Since 
d = 0, we must have lbcI= K, and since b, c and K are 
all integers, K must be divisible by b and c. Due to the 
fact that S(u, v) = S(-u, v) = S(u, -v) = S(-u, -v), 
it is sufficient to consider only positive b and c. 

We have now reduced the search space to 2 dimen- 
sions. We proceed with the search by setting b to a 
divisor of K. For each such b that we try (there will 
be at most [2fil of them), c can be determined by 
computing K/b. Then, because S(u, v) = S(v, u+jv), 
we need only try all values of a between -c + 1 and 
c - 1. Since there are only O(a) possibilities to try 
for b, and only O(K) for a. The total number of u,v 
pairs we would need to search is of O(K4). 

For each u, v pair that we come across in this search, 
we need to compute L(S( u, v)). We find this value by 
applying an O(logK) time algorithm that iteratively 
transforms the vector pair u,v into different vector 
pairs that preserve the positions of the spanned vectors 
mu + nv. We terminate the algorithm when we finally 
come to a vector pair u’, v’ such that 

Iu’ . v’l 5 i(min( Iu’I, Iv’1))2 (1) 

When this is true, we shall prove that L(S(u,v)) = 
min(lu’l, Iv/I). 

THEOREM 3.3 If u’ and v’ are two 2 dimensional 
vectors that satisfy Equation 1, then the vector with the 
minimal length among the set of vectors mu’ + nv’, 
where m and n are integers that are not simultaneously 
0, will have length equal to min(lu’j, Iv/I). 

PROOF: Without loss of generality, we shall make 
the assumption that Iu’I 2 Iv/I. Clearly by setting 

(m, n) = (0,l) we will have found a vector with length 
min(lu’l, Iv/I) = Iv/I. So all we need to do is show that 
for all m, n pairs not simultaneously 0 

Imu’ + nv’l 1 Iv’1 

This is true if and only if 

(mu’ + nv’) . (mu’ + nv’) > Iv/l2 

The left side of the equation can be rewritten as: 

m2 IdI + 2nmu’ 1 v’ + n2 Iv/l2 2 

m21v’12 - )nmllv’12 + n21v’12 = 

(I4 . I4 - I4 . Id + InI. 14>lv’12 
The last term can be easily verified to be greater 

or equal to Iv’12, by considering the three cases where 
InI = I4 # 0, InI > 14, and 14 > 14. q 

Now let us describe the algorithm to find a pair of 
vectors u’, v’ that satisfy Equation 1. The algorithm is 
as follows: 

1. 

2. 

3. 

4. 

Let u,v be assigned to wi and ~2, where wi is 
assigned the longer of the two vectors and wz is 
assigned the shorter. 

Compute wi+l to be the vector wi-1 + jwi where 
j is an integer selected to minimize Iwi+i I. 

Repeat Step 2 until either Iwi+rl 2 lwil or j = 0 
for a certain step. 

If the algorithm was terminated because j = 0, the 
two vectors wi-1 and wi that caused j to be zero 
in Step 2 are the resulting vectors u’ and v’. If the 
algorithm was terminated because Iwi+il 1 Iwil, 
then wi+i and wi will be the resulting vectors. 

The fact that the vectors spanned by wi+i and wi 
are exactly equal to the vectors spanned by wi and 
wi-1 has already been shown in Theorem 3.1. It should 
also be obvious that at Step 2, we will always have 
lwil < Iwi-I(, otherwise the algorithm would have 
terminated previously. As an example, consider an 
initial vector pair of (55,O) and (-39,l) Table 2 shows 
the sequence of j’s selected and the computed wi’s. The 
final u’, v’ pair in this example are 2,7 and (-7,3), 
and thus L(S(u, v)) = 1(2,7)1 = a 2 + 7 

Also, note that every step of the algorithm, including 
Step 2, can be performed in constant time. This is 
because in Step 2, we can select j as follows: Let 
wi-1 = (a, b) and wi = (c, d). We know that 

Iwi+l12 = Jwi-1 + jwi12 = (a + jc)’ + (b + jd)2 (2) 
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Figure 5: Proof that equation holds when algorithm terminates 

Wi j vector Wi-l+jWi I 

Table 2: Example of algorithm to compute 
L(S((55, O), t-39, 1))) 

To find the value of j that minimizes this equation, we 
take its derivative and set it to zero. The result is that j 
should be -$$. But this value will not necessarily be 
an integer. However, since Equation 2 is a parabola, we 
know that the integer j that will minimize Equation 2 
must be one of the two integers next to -$$. Thus 
the correct j value to use can be easily found in constant 
time. 

We shall now prove that when the algorithm termi- 
nates, the condition in Equation 1 will hold. But first 
we show the following lemma. 

LEMMA 3.1 Equation 1 will hold if the following is true: 

Iu’ + VII 2 max.(lu’l, Iv’]) 

and Iu’ - v’l 1 max(lu’l, Iv/I) (3) 

PROOF: Without loss of generality, let us assume that 
lu’l 1 lv’l. 

From Iu’ + v’l 2 Iu’I we can deduce that: 

(u’ + v’) * (u’ + v’) 2 IdI 

u’ . v’ 1 -$,I2 

Similarly, we deduce from Iu’ - v’l 1 lu’l that 
u’ . v’ _< +‘I2 

And from these two results, we have: 

IU’ . V’I < $,I2 

cl 

Now let us prove that the algorithm works correctly. 
In other words, we shall show that Equation 1 will hold 
for u’, v’ when the algorithm terminates. 
PROOF: First we shall consider the case where the 
algorithm terminated because j = 0 at Step 2. Under 
this condition, wi-1 and wi become u’ and v’, and 
we know that Iwi-il 2 IwiI. This is illustrated in 
Figure 5(a). The fact that j was selected to be 0 
means that if j were -1 or +l, the vector wi-i + jwi 
will be greater or equal to wi-1 (These vectors are 
illustrated by dashed lines). This is basically the same 
as Equation 3. Hence, baaed on the lemma, we know 
that Equation 1 will hold for the output vectors wi-1 
and wi. 

Now we consider the case where the algorithm 
terminated because Iwi+il > lwil at Step 2 (as 
illustrated in Figure 5(b)). Under this circumstance, 
wi+i and wi will become the output vectors u’ and v’. 
The fact that j was not one more or one less than what 
it was at Step 2 also implies that Equation 3 holds for 
wi+i and wi. Hence, based on the lemma, we know that 
Equation 1 will hold for the output vectors too. q 

Now the only thing left to show is that the algorithm 
does indeed terminate and does so in logarithmic time 
bounds. Because the details of this proof are tedious 
and diverge away from the major topic of this paper, 
we have put the detailed proof in Appendix A. A sketch 

91 



of the proof can be seen from the following lemmas and 
theorems. 

Let t9i be the angle between wi-1 and wi measured 
in the direction that makes 0i 5 A. 

LEMMA 3.2 If during Step 2, the newly computed wi+l 
resulted in I 5 &+I 5 q. Then the algorithm will at 
most execute Step 2 one more time before terminating. 

LEMMA 3.3 If j was not selected to be 0 when comput- 
ing wi+l at Step 2 of the algorithm, then it will either 
be true that 1 tmOi+lI 1 3-I tmBi( or it will be true that 
5 5 ej+l 5 4. 

THEOREM 3.4 If the 2 and y components of the initial 
u,v pair are less than or equal to K in absolute value, 
then the entire algorithm will terminate in O(log K) 
time. 

4 Implementation Results and 
Discussion 

We have implemented this algorithm and found the 
best vector pairs for all K values from 4 through 1024. 
Table 3 lists the results for K from 4 through 32. 

One interesting observation about our results, which 
seems a bit counter-intuitive, is that the maximal query 
radius P is not guaranteed to increase monotonically 
with the number of disks K. For example, we can come 
up with a tile placement method that can satisfy any 
query with radius less than 2.062 using only 15 disks. 
But with 16 disks, the best we can do is place tiles 
in such .a way that queries with radius less than 2.0 
be satisfied. Though queries with radius between 2.0 
and 2.062 might result in two hits per disk. This does 
not always mean that we should always throw one disk 
away from a 16 disk system. There are other benefits 
for using this extra disk, such as added storage capacity 
(each disk only needs to store & of the entire tile set, 
instead of A), and smaller number of disks being hit 
when the query radius is much larger than 2. The 
system integrator would need to weigh these issues and 
determine whether to use the 16th disk or not. 

The difference in percentage from the maximal query 
radius P to that of the optimal hexagon pattern is 
illustrated in Figure 6. As one can see the solution 
gets better as K becomes larger. This is due to 
the fact that as K becomes larger *the resolution of 
grid points relative to the vector lengths become more 
and more like continuous space, and thus we are able 
to approximate the hexagon vectors more and more 
closely. 

In Figure 7 we show the same data in a different way. 
We show the maximum achievable query radius r (the 

Numbs of dish 

Figure 6: Percentage off from hexagon optimal for 
different values of K 

Numba of diih 

Figure 7: Optimal and actual query radius for different 
values of K 

dots) compared with the optimal r in continuous space 
(the line) for all values of K from 4 through 1024. 

One interesting question is: What will happen under 
these allocations when the query radius is larger than 
the maximum allowed to guarantee at most one hit per 
disk? We can easily show that regardless of the vector 
base used, the average number of tiles from the same 
disk hit by a query of radius r will always be ?rr2/K 
(See Chapter 1 of [S]). Thus saying that no matter 
what pair of base vectors are used, the average number 
of hits per disks will always be equal to the area of the 
query divided by the area of the parallelogram. This 
might lead one to come to the conclusion that when T 
is large (relative to a), it does not make a difference 
what vector base to choose, since “on the average” 
the number of hits per disk is always the same. This, 
however, is incorrect because we are not concerned with 
the average number of times a disk is hit, but with 
the number of times the maximally hit disk is accessed. 
This is due to the fact that the query response time on 
that disk will dominate the total response time. 
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1 K 1 Initial (a, a), (c,d) 1 Final u’,v’ 1 maximal r optimal r % difference 

t 4 1 (-2.1). (4,O) 1 (0,2)(-2.1) ! 1.000 1.075 6.94 
1.201 6.94 5 &3jlj;i5;oj ” i 2, q-1; 2j 1.118 , _.___ , _._ _ 

6 (-4,1), (6,O) (2,1)(-2,2) 1.118 I 1.316 -.--- I lS.05 --.-- 

7 (-5,1), (790) (2,1)(-L3) 
I .A,.?. I 1.118 I 1.4LLZ I ,.* nC -.--- i4l..m --.-. 

8 (-5,1), (8,O) (-2,2)(-l, -3) 1.414 1 1.520 I , I 6.94 I 
9 (-6.1). (9.0) to. 3113.1) 1.500 1 1.612 1 6.94 I \ I/I\,, 
10 (-7, l), (10,O) (3,1)(-i, 3) 1 1.581 I 1 s99 -.--- I R 94 -_- - 1 

11 t-&l), (ll,O) (3. I\(-2.31 \-‘-I\ -7-I i , 1.581 
----- 

1 1.782 1 11.27 
12 (-3,2), (690) t-3.2)(3.2) 

(-3.2k-2: -3) 
1 1.803 1 1.861 I\ I I ~~~- I ~~~ 1 3.14 I 

13 (-8.1). (13.0) 1 1.803 1 1.937 I 6.94 1 
’ ’ 14 1 (‘-16,lj;(14,d) 1 (-2,‘3)(4; 1) 1 1.803 1 2.010 1 10.32 

1.5 I (-ii iI (1.5 nl I l4.1\(1 A\ I 2nb2 I 2.m I n.98 -- 

16 
L 17 

i--;$ ;j; i;6: 0) I to: ij(i: \ ;j -.--_ -.--- 

2.000 1 2.149 
(-13, l), (17,O) (4,1)(-L 4) 2.062 -_-- 

18 2.121 2.28( 
L 19 

-13,1), (18,O) 
t-15, l), (19,O) 

(-3,3)(2,4) 
(4,1)(-394) 2.062 2.34: 

20 (-12, l), (20,O) (-4,2)(0, -5) 2.236 2.403 
21 (-15, l), (21,O) (-3,3)(3,4) 2.121 2.462 
22 (-17.1). (22.0) (-2.4M5.1) 2.236 2.520 

-.- -- -._ - 
1 2.215 6.94 

3 6.94 
2 11.97 

L 
31 (‘-Ii, lj, (3i,O) (2; -5)(-5; -3) 1 2.693 1 2.991 1 9.99 
32 (-25, l), (32,0) (-4,4)(3,5) 1 2.828 1 3.039 1 6.94 

Table 3: Listing of best vectors for K = 4 through 32 

We have thought about the question: What is the 
optimal way to place tiles such that the query radius 
is maximized when we allow to hit each disk at most p 
times? So far we have not been able to come up with 
a definite answer ‘for each individual value of p. Our 
initial findings indicate that tile placement methods 
good for one value of p will not necessarily be good for 
other values of p. Although we only solved the problem 
for p = 1 in this paper, we still feel that this is a very 
important case, since most fixed radius query problems 
can be transformed into one in which p = 1 by simply 
increasing the tile size. This also makes sense from the 
stand point of decreasing total access time, since the 
total disk access time involved in reading a tile of size 
X is usually much smaller than that of reading n tiles 
of size $ each. This is due to the fact that the number 
of seeks in the latter case increases by a factor of n 
although transfer time remains the same. 

Based on these observations, our recommendation to 
system designers is to tune-up the parameters of the 

system carefully by allowing the maximum tile size such 
that p = 1 and the total time to seek and transfer a tile 
is within the application specified allowable response 
time. Other options include of course adding more disks 
or using faster disks. 

5 Conclusion and Future Work 
In this work we presented a new method of declustering 
image tiles in databases used for the purpose of 
visualization in GIS and scientific applications. Our 
algorithm was shown to find tile placement methods 
within 7 percent from optimum for a large range of 
system architectures used in practice. Unlike some 
other declustering algorithms, our method provides 
worst case guarantees such that for all queries up to 
a certain radius at most one disk will be hit. The 
declustering obtained follows a repetitive pattern which 
is easily computable for every value of K, the number 
of disks in the system. 

it is interesting to note that the same declustering 
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method is not limited to image tiles but can also be 
applied to databases which store information about 
objects which are geometrically positioned on a grid. 
Such databases are used for example in high energy 
physics for storing information about sensors in a 
detector. 

Some questions raised by this work which we plan to 
investigate are: 

Solving the declustering problem for heterogeneous 
environments that contain non-symmetrical disks. 
In such environments we may require that some of 
the faster disks be “hit” more than others to balance 
the response time of all disks. 

fl ~ 
Wi wi+2 Wi wi+2 

8. I+ 
Wi+l 

8. s+l 
wi+1 

How can we use image tile replication (i.e. duplicat- 
ing tiles on multiple disks) to further optimize the 
declustering algorithm. 

(4 0) 

Figure 8: Proof that algorithm terminates after 60 
degree vector angle 

Prom a theoretical point of view it is interesting to 
find a closed form solution for the optimal vector 
pair for each given K. 

Finding a tile allocation method that can optimize 
(in a global sense) the number of times the maxi- 
mally hit disk is accessed, regardless of the query 
radius r. 

If Iwi+r 1 1 iwi 1 then the algorithm would terminate 
immediately, and there would not be a need to execute 
Step 2 one more time. So in the following discussion, 
we will only consider the case where Iwi+ll < IwiI. If 
when computing wi+2 on the following step, it turns 
out that j = 0 then the algorithm will also terminate. 
The only thing left to show is that when j # 0, it will be 
true that Iwi+4 1 I wi+l I, which would also terminate 
the algorithm. 

Finding declustering schemes (vector based or oth- 
erwise) for 3-D visualization. 

We show this by considering two cases. If Iwi+il < 
lwil . cosei+r (i.e. The length of the projection of wi 
onto wi+l), then we have 

Acknowledgement IWi+Zl L Iwi(*sinei+l > lwil .coS&+l L Iwi+ll 
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7 Appendix A: Proof of Algorithm’s 
Asymptotic Bounds 

In this appendix we shall show that the algorithm to 
compute L(S(u,v)) for any u,v pair (encountered in 
the search for the optimal tile placement method for K 
disks) does indeed terminate and does so in logarithmic 
time bounds. We shall first prove two lemmas before 
showing this. 

Let 0i be the angle between wi-1 and wi measured 
in the direction that makes t+ 5 a. 

LEMMA 3.2 If during Step 2, the newly computed wi+l 
resulted in 5 5 Bi+l 5 %f. Then the algorithm will at 
most execute Step 2 one more time before terminating. 

PROOF: We shall only consider the case where 5 < 
8i+r 5 f . When + < 0i+i 5 4, the proof is similar. 

This is illustrated in Figure 8(a). The first inequality 
holds because the newly computed vector wi+z must be 
longer than the perpendicular distance from the tip of 
wi to the line spanned by wi+r. The second inequality 
holds due to the fact that 5 5 &+I ,< i. 

On the other hand, if Iwi+ll > lwil . cos&+r (as 
illustrated in Figure 8(b)) then the only possible j value 
that could be selected besides 0 is -1. Any other j value 
would result in a longer wi+r. But when j = -1, by 
the Law of Cosines we know that 

IWi+212 = IWi+112 + IWi I2 - 2 . lwi+lI - IWil . cos ei+l 

1 IWi+112 + IWi12 - IWi+ll . lWil2 IWi+l I2 

0 

LEMMA 3.3 If j was not selected to be 0 when comput- 
ing wi+l at Step 2 of the algorithm, then it will either 
be true that I tan&+r I 2 3. I tanoil or it will be true that 
5 5 ei+l 5 9. 
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(a) 09 
Figure 9: Proof that tangent increases by a factor of 3 

63 

PROOF: We shall only consider the case where 8i 5 5. 
When Bi > T, the proof is similar. 

We shall also prove this lemma by considering two 
cases. If lwil 1 Iwi-11 . cos&, it must be true that 
j = -1. Consider the triangle formed by wi-1, wi, and 
wi+r as illustrated in Figure 9(a). Because we know 
that Iwi-11 1 lwil and Iwi-11 2 Jwi+iJ, by the Law 
of Sines B must be the largest angle of the three inner 
angles of the triangle. This implies that g 5 B 5 4, 
which means that t < &+I 5 9. 

On the other hand if lwil < Iwi-11 . cos Bi, we can 
easily see from Figure 9(b) and 9(c) that I tan&) = t 
and I tanBi+rJ = 3. B ecause j was selected to minimize 
Iwi+il, it must be true that f 5 $Iwil. Thus in both 
of the cases shown in the figure, it will be true that 
e 2 3f, which in turn leads us to the conclusion that 
) tanBi+rJ 2 3. I tanoil. cl 

THEOREM 3.4 If the x and y components of the initial 
u,v pair are less than or equal to K in absolute value, 
then the entire algorithm will terminate in O(logK) 
time. 

PROOF: Because of the restrictions on the x and y 
components of the initial u,v pair, and the fact that 
they must be linearly independent. It can be easily 
shown that the tangent value of the angle between u 
and v must be at least &. Based on this fact and the 
previous two lemmas, it should be obvious that Step 2 
of the algorithm will be executed at most logs 2fiK+2 
times before the algorithm terminates. Since every step 
of the algorithm can be performed in constant time, the 
entire algorithm can be executed in O(log K) time. 0 
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