
Algebraic Optimization of Computations over Scientific Databases

Richard Wolniewicz, University of Colorado at Boulder
Goetz Graefe, Portland State University

Abstract
Although scientific data analysis increasingly requires

access and manipulation of large quantities of data, current
database technology fails to meet the needs of scientific
processing in a number of areas. To overcome acceptance
problems among scientific users, database systems must
provide performance and functionality comparable to
current combinations of scientific programs and file
systems. Therefore, we propose extending the concept of
a database query to include numeric computation over
scientific databases.

In this paper, we examine the specification of an
integrated algebra that includes traditional database
operators for pattern matching and search as well as
numeric operators for scientific data sets. Through the use
of a single integrated algebra, we can perform automatic
optimization on scientific computations, realizing all of the
traditional benefits of optimization.

We have experimented with a prototype optimizer
which integrates sets, time series and spectra data types
and operators on those types. Our results demonstrate that
scientific database computations using numeric operators
on multiple data types can’be effectively optimized and
permit performance gains that could not be realized
without the integration,

This research has been performed in collaboration with
the Space Grant College at the University of Colorado at
Boulder, where the results are being applied to the
analysis of experimental data from satellite observations.

1. Introduction
Modern scientific experiments in many fields, from

biology to space science, are generating and analyzing
large amounts of data. This necessitates greater
consideration of data management facilities, in addition to
the actual analysis of the experimental data. Therefore it
is natural to look to existing database management
technology to provide tools for managing scientific data.

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. TO
copy otherwise, or to republish, requires a fee andlor
special permission from the Endowment.

Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993.

Many of the operations that must be performed on
scientific data fall under the purview of traditional
database systems. The growing volume of data available
to scientists creates the need for facilities to correlate
multiple data sets, including data from multiple
experiments and historical data from past research [5, 281.
While database systems do provide facilities to manage
large data volumes, current database systems do not
provide support for the numeric computations required to
perform correlations of scientific data. This shortcoming
limits the use of database systems by scientific users.

The focus of this research is to extend the concept of a
database query to encompass numerical computations over
scientific databases, thereby creating an integrated algebra
combining traditional database operators for pattern
matching with scientific and numeric operators. Through
this integration into a single, combined algebra, we gain
the ability to perform automatic optimization of entire
computations, with the resulting benefits of query
optimization, algorithm selection and data independence
becoming available to computations on scientific
databases. This integration is illustrated in Figure 1,
where the removal of the barrier between the database
system and the computation allows the database optimizer
to manipulate a larger portion of the application.

To begin our research into this integration, we have
examined the addition of time series and spectra to the
Volcano extensible query processing system [6-81. The
time series is a common data type for scientific
computations, as it is often the basic format in which
experimental data is retrieved. Similarly, the analysis of
time series data is often performed in Fourier- (spectral)
space, making time series and spectrum types central for
the support of many scientific computations. These
aspects make time series and spectra natural starting
points for research into the optimization of scientific
computations. Additionally, the variety of alternative
computational techniques between spectral and time series
methods offer an opportunity to examine complex

Postprocessing

Computation

Postprocessing

/ Computation

DB Retrieval
Optimizatio
Scope

and
DB Search

Figure 1: Removing the barrier between
data management and numeric computation

13

transformations of numerical computations by an
algebraic optimizer. The results learned from the
examination of time series can then be used to extend this
research to transformation of computations on other
scientific data types, particularly multi-dimensional arrays.

Optimization has provided significant performance
improvements in existing database systems. Through
examination of operators on time series and spectra, we
show that many of the algebraic optimization techniques
used in current database optimizers can be extended to
scientific computations, enabling the same performance
improvements available through optimization in traditional
database systems. Moreover, optimization frees the user
from cancer% about ordering of computation steps,
algorithm selection, use of indices and other physical
properties such as data distribution. Therefore
optimization provides data independence to the user, a
benefit which is as useful to the scientist as to any other
database user. We believe optimization of integrated
algebras including numeric operators is an important
element for supporting scientific database users,

As part of this research, we have developed a
prototype scientific optimizer using the Volcano optimizer
generator [l, 7, 81. This optimizer manipulates
expressions over the integrated algebra, performing both
logical transformations and physical algorithm selection.
The optimizer takes advantage of physical properties of
data objects, such as sort order and storage format, and
performs resource planning. Since the greatest potential
for optimization of computations arises during loop
processing, i.e., processing of large bulk types in the
database such as sets and arrays, these portions of the
computation are the focus of the optimizer.

In Section 2, we discuss algebraic optimization in
general. Section 3 discusses the *data types supported by
our prototype optimizer, and Sectron 4 presents the logical
and physical operators manipulated by the prototype.
Sections 5 and 6 address the logical transformations and
implementation rules used by the optimizer. Section 7
presents two example computations that illustrate the
scope and power of the prototype optimizer. Related work
is discussed in Section 8, and our conclusions are
presented in Section 9.

2. Algebraic Query Optimization
In this section we present an overview of

transformation based algebraic query optimization, and
show how the optimization of scientific computations fits
into this framework.

To perform optimization of a computation over a
scientific database system, the optimizer is given an
expression consisting of logical operators on bulk data
types. The bulk types we consider are sets (relations),
time series, and spectra. Time series and spectra are used
to illustrate the extension of the type system to scientific
computations. Each operator in the computation takes one

or more instances of a bulk type as its input, and produces
a new instance of a bulk type as its output. The initial
computation provided to the optimizer by the user does
not include physical issues such as the availability of
indices, the sort order of sets or the choice of specific
algorithms for evaluation of operations. As these physical
issues do not influence the result of the computation on the
logical level, it is advantageous to hide these details from
the user whenever possible. This provides data
independence as in relational systems. Unlike relational
optimizers, the model we are considering must address the
need for multiple bulk types, thereby requiring that the
initial computation be type-safe, i.e., that appropriate type
coercion operators are included in the computation. In
general, this can be verified as part of a preprocessing
step. In many cases it is also possible to automatically add
appropriate type coercion operators to a user computation
that is not type-safe. The issues involved in such a
preprocessor are not addressed in this paper. Rather, we
assume that the initial computation presented to the
optimizer is type-safe. 1

Starting with the initial computation, the optimizer
repeatedly applies transformation rules to the logical
expression to generate equivalent forms of that expression,
These transformation rules translate a portion of an
expression into a different form which will produce an
equivalent result. Join associativity is an example of such
a transformation in a relational query, as is performing
filtering in either time- or Fourier-space in scientific
computations. In the optimization of scientific
computations, the identification of suitable transformation
rules is of central importance. Unique problems must be
considered, including, the equivalence of two numeric
expressions given the issues of numerical accuracy and
stability. These issues are addressed in more detail below.

Once applicable transformation rules have been used
to generate equivalent logical expressions, the optimizer
must find a set of physical algorithms that can implement
or execute each expression. This process proceeds
through the application of implementation rules to the
logical expressions. Each rule translates one or more
logical operators into one or more physical operators
(algorithms). For instance, a join operator can be
implemented as either a merge- or hash-based algorithm,
while an interpolation can be implemented by any of
variety of curve fitting algorithms. In the process of
choosing physical algorithms, the optimizer considers
physical issues such as sortedness of data sequences. In
the optimization of scientific computations, this choice is
complicated by the need to consider numerical accuracy
and stability, as well as the diverse implementation
techniques for numerical operations.

Using the physical execution plans, a cost.calculation
determines an estimate of the overall cost to execute each
plan. In scientific computations, CPU costs are much
more varied than in relational queries, and often dominate

14

the cost of specific operators. The details of our cost
model are discussed in Section 6.3.

It is the role of the database implementor to derive
logical transformations, provide implementation rules and
define the cost model for the optimizer. As a scientific
database system is utilized, new operations and
algorithms, with their associated transformation and
implementation rules, may need to be added to the system,
particularly as the operator sets that we examine are not
computationally complete (which would present
difficulties in optimization). An extensible optimizer
allows this sort of continuing growth; managing this
growth will fall to the database implementor.

There are further issues specific to query optimizers
such as limiting the search space, detecting common sub-
expressions and improving cost estimation, among others.
While search efficiency was one of the central concerns in
the design and implementation of the Volcano optimizer
generator [8], these issues are orthogonal to the
optimization of scientific computations, and are not
addressed in this paper.

3. Data Types
This research focuses on optimization of computations

over bulk types. Three basic bulk types are supported by
our current system: sets, time series and spectra, the latter
two of which are provided as instances of scientific types.
In each case, the bulk type consists of a collection of
elements, which we will refer to as records, although they
may include structures more complicated than a simple
record. In this section, we address the logical view of
each bulk type explored in this research.

Sets are viewed similarly to relations in the relational
model. Ordering is unimportant on the logical level. The
cardinality is the only logical property that can be
determined for a set.

Time series are also viewed as sets, but each record is
assumed to be tagged with a time value. This model is
motivated by the fact that time series are representations
of functions, or samples of continuous functions, mapping
time to a physical value. Although an implicit sorting by
time is utilized by many algorithms, such sorting is not
necessary on the logical level.

Attached to a time series are a number of values in
addition to the cardinality. Start and stop time, the
average and maximum difference between samples, and
whether or not the time differences are constant between
adjacent records are all important for some operations.

We allow subtypes of time series and other types to be
determined by constraints on these logical attributes. This
allows the enforcement of logical constraints on data
objects through the type maintenance facilities of the
optimizer. The most common instance of this in our
prototype is the subtyping of time series based upon the
enforcement of a constant time difference between

consecutive records. This constraint is required by
numerous operations, such as filtering and conversion to
Fourier space (performed by the Fast Fourier Transform).

Finally, spectra are treated in a manner very similar to
time series, but with a frequency attribute attached to each
record rather than a time value. The same subtyping
facilities are available for spectra.

The logical transformations (discussed in Section 5)
ensure type-safety in all transformations, i.e., they ensure
that appropriate type conversion operators are always
included in the query to insure that operators receive
objects of the correct bulk type. The types supported by
our current prototype are summarized in Figure 2.

Having introduced the data types modeled within the
system, the next section presents the operators that are
provided to manipulate these objects.

4. Operators
The operators supported within the system are divided

into two groups, logical and physical. Logical operators
are those that operate on the logical data types without
addressing specific data storage formats or execution
algorithms, which are handled by the physical operators.
The user’s original computation is composed of logical
operators, while the final execution plan is expressed to
the database in terms of physical operators.

In this section, we present the operators supported by
the present system, which are shown in Figure 3. These
operators are instances of general scientific operators, and
are chosen for their common use in scientific processing
and for their illustration of special issues that must be
addressed by an optimizer for scientific databases.

For each numeric operator, we discuss the issues raised
for optimization by the inclusion of that operator in the
algebra. Our prototype relies heavily on the extensibility
features of the Volcano optimizer generator, [8] which
enables us to explore a variety of alternative logical and
physical operators, properties, and optimization rules.

Type Logical Physical
Properties Properties

Sets Cardinality Sort order, Record size
Time series Start / stop time Physical format

Average or fixed Sort order, Record size
time deltas

Spectra Frequency range Physical format
Average or fixed Sort order, Record size
freouencv deltas

Figure 2: Logical and Physical Properties

1.5

Time series-set,

Figure 3: Logical and Physical Operators

4.1. Operators on Sets, Time series and
Spectra

As we are extending the relational model to handle
new data types and operations, we include the standard
relational operators select, project and join. In addition,
we add a random sampling operator which can select a
random subset of a set, which illustrates the extension of
the relational operators to scientific set-based operators.
This is the simplest form of extension, as it does not
require any new type considerations. Random sampling
assigns a fixed probability of inclusion for every record of
the set, and may also designate that the cardinality of the
output set be fixed. Random sampling acts much as a
selection, with the exception that no predicate is enforced
on the result set, and the sampling does not depend in any
way upon the value of the records in the set.

Three basic time series operators are included in the
current prototype. Computation based on nearby records
(in time) is a frequent operation in scientific analysis, and
digital filtering is a common instance of this type of
operation, in which specific frequency ranges are removed
or augmented in a time series. This operator recomputes
the value of a single record based upon an averaging
function applied to nearby records.

An operator for interpolation and extrapolation of time
series is included in the prototype as an instance of an
operation that can generate new data records in a time
series. Regular sampling can be performed by this
operator as well. Individual records are added to or
removed from a time series by these operations, and thus

the logical attributes of the time series can be changed.
The actual interpolation formula is generally unimportant
to the optimization of the logical computation, although it
may influence the physical algorithm cost.

Finally, an operator for merging two time series is
included. This is essentially a join by time, though it is
necessary that the two time series have corresponding time
tags. Typically this is ensured by having identical start
and end times, and fixed and equal time deltas between
records.

Two operations are provided for manipulating spectra.
First, a spectral filter (a frequency filter performed in
spectral space) may be applied to a spectrum. This
corresponds to the digital filter available for time series,
and is illustrative of the many operations which can be
performed in either time space or Fourier-space. In many
cases, one or the other will be simpler or less expensive to
apply, and one may be more accurate than the other.
Second, merging of spectra is supported by a merge
operation similar to that for time series.

4.2. Other Logical Operators
There are some operations which can be applied to all

data types. The primary such operation considered here is
a simple math function application, which is included to
support many common scientific operations. Through this
operation, each output record is generated by a
mathematical expression from an input record. Scientific
operations such as correlation, convolution and
deconvolution of spectra are mathematical functions
applied to the result of merging two bulk types. Other
examples are relational projection without duplicate
elimination, as well as the transformation of a time series
consisting of polar coordinates (latitude, longitude,
altitude) into an equivalent time series consisting of
Euclidean coordinates (x, y, z).

Operators are also used to convert data objects from
one type to another, and provide the basis for the type
maintenance facilities in our prototype. In some cases,
these operators do not require any physical data
manipulation. For example, converting a time series or a
spectrum to or from a set (with the appropriate record
fields for time or frequency) requires no computation.

When converting between time series and spectra, a
Fourier transform or its inverse must be applied. As this is
generally an expensive operation to perform, the decision
on when to move between normal and Fourier-space is
important for optimization, illustrating the importance of
the type system in the optimization process.

4.3. Physical Operators
Physical operators in the Volcano system are

implemented as iterators [6]. Volcano iterators already
exist to implement relational operations, as well as
sampling, merging, sorting and mathematical function

16

application. Some additional scientific operations were
developed as part of this research.

A new operator has been added to pass a window over
a sorted data set. This provides the implementation of
algorithms for interpolation and extrapolation, as well as
digital filtering. Aspects such as the window size and the
function to apply can be set by the user, allowing the
operator to support most algorithms requiring a window
over a data sequence.

A second operator considered within the system is the
Fast Fourier Transform (FFT). We modeled FFTs in two
steps which are considered separately by the database.
First, a “bit-reverse sort” must be performed, in which
each element in the input sequence is re-ordered to a new
position in the output sequence, which is the bit-reverse of
the original position index. This is normally an O(N)
algorithm when performed in memory, but the page access
pattern causes poor execution when the data set does not
fit into memory, resulting eventually in O(N x log(N))
performance, similar to other sorting techniques.

The actual Fourier transform, which involves
combining each element with every other element in a
tree-like pattern, can be performed in O(N x log(N)) time,
and can be adapted to the iterator approach, implemented
as a series of log,(N) iterators each processing a single
level in the FFT processing tree. Each of these operators
performs a scan and reordering operation on its input, in
addition to the FFT computation.

The next section present the rules used to manipulate
expressions of logical operators.

5. Logical Transformations
Logical transformations are used to reorganize a

computation consisting of operators, such as the
application of join associativity in relational systems.
Identifying logical transformations for scientific oper_ators
is vital to the application of optimization. Of particular
importance is identifying transformations with expensive
operators, primarily joins and Fourier Transforms.

The central issue in identifying logical transformations
is equivalence. This is straightforward in relational
transformations, where a transformation results in a
logical expression that generates an identical output
relation. Due to the effects of numerical accuracy and
stability, the results of transformations which include
numerical operators occasionally do not produce exactly
identical results, even though the transformation is
considered valid by the scientific user. This issue can
influence which transformations can be used on a given
expression, In many cases, some of which are illustrated
in the following subsections, the transformations do not
change the output of an expression. Thus significant
optimizations can be performed without worrying about
numerical accuracy and stability.

Nonetheless, many advantageous transformations are
available in which numerical accuracy and stability issues
are important. This area is open to further research. Here,
we present some possible considerations when addressing
this issue. First, there are a member of transformations in
specific scientific domains that are considered generally
valid. For the field of space science, in which we have
done most of our examination, there are many filtering
operations which can be performed in either time- or
Fourier-space. Second, there are transformations which
may require input from the user, or notification to the user
of their use. In these cases allowing the user to disable or
enable certain transformations to control the accuracy of
the results of the equation would be desirable. Third, it
may be possible for the database optimizer to consider
numerical accuracy directly, insuring that the final
accuracy does not exceed some limit, or even making a
trade-off between accuracy and execution time by
factoring accuracy into the cost formulas. These
possibilities will be explored through future research.

5.1. Set Operator Transformations
Within our system the standard relational

transformations apply. Transformations are also available
for the random sampling operator. For sampling which is
purely probabilistic (i.e. which makes no assurances about
the output cardinality), transformations are similar to those
for a relational selection, although attention must be paid
to sample-join transformations. Here, a sample may be
interchanged with a join only when there is statistical
confidence that the selection or rejection of a given record
will not skew the join results beyond an accuracy
acceptable to the user. When allowed, a sample moved
below a join can be split almost arbitrarily between the
two join inputs, provided that the product of the two
probabilities of the resulting samples equals that of the
original sampling operator. This is illustrated in Figure 4.
When the sampling must insure a fixed output cardinality
(i.e. must select exactly N out of all of the records), the
available transformations are limited to those in which the
second operator does not modify the output cardinality.
For example, in scientific computations it is common to
merge two data sets knowing that every record in each
input set will match exactly one record in the other set. In
this case, a sample may always be performed before or

where a% x b% = c%

Figure 4: Probabilistic Sampling / Join Transformation

17

after the merge, although performing it before the merge
causes the merge to lose that property.

The similarities between sampling and selection
transformations show that many transformations available
to scientific operators mirror those of existing operators.

5.2. Math Operator Transformations
Math operators, which apply mathematical functions to

records in a bulk type, can be transformed with one
another using the standard rules for manipulating
expressions. In this way they act like relational selections,
except that the expressions involved are not limited to
Boolean expressions. Similar techniques for splitting off
subexpressions and combining multiple expressions can be
applied. For such an operator it is useful to maintain those
attributes that are used by the operator, and those that are
updated or added by the operator. The operator can then
be interchanged with any other operator with which it has
no input or output conflicts.

The math operator transformations illustrate that many
scientific transformations can be identified through an
analysis of which attributes an operator reads or writes.

5.3. Time series and Spectra Operator
Transformations

Both digital filtering and interpolation operations
illustrate transformation restrictions unique to scientific
operators. In these cases, the restrictions arise from the
window of nearby records used by these operators when
determining a single output record. This limits
transformations to those that do not add or remove
records, or modify the attributes used by these operators,
unless the operator can account for this change.

In the case of digital filtering, this prevents most
transformations with other operators. Filters can be
transformed before or after merge operations when it is
known that the merge will be exactly one-to-one, with no
unmatched records, and the filter does not use or modify
the merge field. Also, filters can often be performed in
either time or frequency domains, which we model by
allowing a time-based filter followed by a conversion to a
spectrum to be replaced by a conversion to a spectrum
followed by a spectral filter, as shown in Figure 5.

For interpolations, an additional option is available.
As interpolations can account for non-existing values in
records, an interpolation occurring before a one-to-one

merge can be moved after the merge, provided that the
merge or join operator is replaced with the appropriate
outer join operation. This is illustrated in Figure 6.

5.4. Extensibility of Transformations
In general, when dealing with numeric operators in this

framework, it is possible to provide guidance to the
scientific database implementor for identifying logical
transformations, but it is difficult to ensure that all possible
transformations have been identified. This is a
consequence of the differing nature of equivalence in
scientific computations, and the differing requirements of
specific applications in terms of numeric accuracy. As a
result, the ability to extend the set of available
transformations is important in scientific databases,
leading to the need for an extensible optimizer such as the
Volcano optimizer generator [8].

6. Implementation Rules
From logical expressions generated through the

transformation rules, implementations with physical
operators are selected. The cost model is applied to the
resulting plans to select an optimal execution strategy.

To convert a logical expression to an execution plan,
implementation rules are applied. An implementation rule
defines an execution strategy for a sub-expression of one
or more logical operators. For instance, in relational
systems implementation rules are used to indicate that a
join operator can be implemented through either a hash-
based or a sort-based algorithm.

Scientific database optimization requires special
consideration of implementation rules, as circumstances
arise which differ significantly from those in pure
relational systems.

6.1. Example Implementation Rules
As one example implemented in the current system, a

windowing operator which can pass a window over a
sequence of data while performing some operation on the
data can be used to implement both interpolation and

(to regular sampling)

Figure 5: Time / Spectral Space Transformations
Figure 6: Interpolation /Join Transformation

8

extrapolation operations as well as digital filtering
operations. This situation, where different data
manipulations make use of similar algorithms, is not
uncommon in scientific processing. If the optimizer is
extensible, it is straightforward to implement new logical
operators using existing physical algorithms.

A second example is the Fast Fourier Transform
(FFT), which is a direct implementation of a type
conversion between time series and spectra. There is a
well-known technique by which two sequences of the
same size which are known to be real (i.e., do not have
imaginary components) can be packed together into a
single sequence of complex numbers before being
processed by the FFT, resulting in a factor of two speed
improvement (two FFTs vs. one FFT). This situation is
very common, as time series are generally of real data, and
correlations require converting two or more time series
into spectra simultaneously. The use of this technique is
illustrated in the second example in Section 7.2. The FPT
algorithm presents an instance of a CPU intensive
operator. Such operators are common in scientific
applications, and influence the development of the cost
model chosen by the database implementor.

6.2. Cost Model
Once the implementation rules have been applied to

generate an execution plan, the cost of that plan must be
estimated to allow comparison of alternatives. To
determine the cost of an operation, the optimizer assumes
that, given the properties of its inputs such as cardinality,
sortedness, etc., the cost of the operation can be estimated
using cost functions supplied by the database
implementor. These cost functions may make use of
database statistics for selectivity estimation and/or cost
computations. It is worth noting that selectivity estimation
is often perfect in scientific computations, as a selection of
a range of time tags in a time series generates a calculable
result size, and many algebraic operations do not change
the result size, or else modify it in predictable ways.

It is our belief that the high CPU costs of many
scientific operations leads to the need for CPU cost
consideration during optimization. Therefore, in our
prototype, we have chosen to use time to completion as
the basis for optimization. I/O and CPU costs are
maintained separately, and we assume that we can utilize
asynchronous I/O. The greater of I/O and CPU costs for
the computation is used as the time to completion.

Having presented the model used in our research, the
next sections give two example computations processed
by the existing optimizer, illustrating the applicability of
the approach presented in this paper.

7. Examples
In this section we provide two example applications of

the prototype optimizer to scientific computations. These
examples are presented to illustrate the applicability of this
research to real-world scientific computations. In
particular, the second example is derived from a
computation used at the Space Grant College at the
University of Colorado at Boulder, in the analysis of
satellite data.

7.1. Example 1
This example illustrates the application of

transformation rules involving scientific operators mixed
with set-oriented relational operators. The query requires
matching two separate sets containing experimental
measurements of pressure and temperature values. These
values are matched by time tag, then a calculation is
applied to the result. The calculation requires a data point
every second. The pressure data has measurements every
second, but the temperature data has lo-second intervals
between values, and will need to be interpolated. This
query is shown in Figure 7.

The optimization on this query is performed twice.
During the first pass the final output data is requested
sorted by time. A second optimization is made with no
sorting requirements. The results of the first optimization
are shown in Figure 8. In this optimization, the
requirement for sorting results in the selection of a
merge-join based join algorithm, with the interpolation
applied after the join. The same query, when optimized
without sorting requirements, results in plan shown in
Figure 9. Here, the optimizer has chosen to place the
interpolation operator before the join. This allows the
database to sort only the smaller (temperature) data set to
perform the interpolation. By avoiding the sort for the
larger (pressure) data set, the estimated execution time for
this query is reduced to one-third of the previous plan’s

Figure 7: Logical Query for Example 1

19

Figure 8: First Execution Plan for Example 1

Figure 9: Second Execution Plan for Example 1

estimated execution time.
This example illustrates the benefit of performing

scientific operations within the database query execution
system, and of providing the capability to optimize those
operations in the query optimizer.

7.2. Example 2
This example demonstrates the application of our

prototype optimizer to a complex scientific computation,
with a number of data preparation and cleaning steps in
both time- and Fourier-space. The computation compares,
in Fourier-space, high-energy ultraviolet light from the
Sun to ozone concentrations in the atmosphere.

The initial computation is shown in Figure 10. It
consists of the merging of two pre-processed data sets, one
containing the high-energy ultraviolet (EUV) data and the
other containing the ozone (C)S) concentrations. The pre-
processing is similar for both inputs.

[time, photon count, WelQht on altitude

[altitude, latitude,

Figure 10: Logical Computation for Example 2

The EUV pre-processing consists of selecting by the
measurement wavelength, interpolating the data to a
regular sampling frequency, applying a filter function, and
convoluting the data with a response function to remove
noise sources. This last step is performed in Fourier-
space. Similarly, the O3 processing begins by weighting
the data to account for measurement altitudes, selecting
the relevant longitude and latitude, interpolating to a
regular sampling frequency, applying the filter function,
and convoluting the data with the noise response function.

When optimized, the computation is re-written as
shown in Figure 11. Pre-processing steps which were
identical for both data sets in the initial computation are
brought together, and some reordering is performed.

The implementation of the resulting computation
realizes a speed improvement greater than a factor of two
under our cost model, when compared to the direct

20

Figure 11: Optimized Computations for Example 2

implementation of the original computation without using
any algebraic transformation rules. This improvement
arises from three sources: the use of a two-part Fast
Fourier Transform algorithm, presented in Section 6.2, the
performance of selections at earlier stages of the
computation and the reduction of data copying.

By re-writing the computation to perform a single
conversion to Fourier-space, the computation can benefit
from the use of the two-part FFT. This almost doubles the
speed over a pair of normal FFTs (minus some overhead).
This change dominates the performance improvement of
the computation due to the high cost of FFTs in
comparison to other operations.

As in relational optimization, it is desirable to perform
selections as early as possible in a computation to reduce
data volumes. In this example a performance

improvement is realized by pushing the selection by
latitude and longitude before the weighting by altitude.

Finally, the reduction in the number of merge
operations from 3 to 2 results in less copying of data, and
thus better performance.

This example illustrates the applicability of algebraic
query optimization to real scientific computations, and
shows that significant performance improvements can
result from optimization. This examples was taken from
an analysis application at CU’s Space Grant College.

8. Related Work
A number of researchers have considered the needs of

database support for scientific applications [5]. Much of
the previous research has focused on identifying the
unique requirements of scientific databases. Shoshani,
Olken and Wong have enumerated the different kinds of
data used in scientific systems [25]. Time series based
experimentation data is identified as one of the primary
special types of data required within scientific databases.
Operators for manipulating the data are not addressed in
the paper, though later work by the same authors [26]
addresses database operations specifically. Operations for
performing sampling, nearest neighbor search, estimation
and interpolation, transposition, aggregation and relational
operations, integrated into one system, are identified as
being of particular importance. The need to support more
complex data types, particularly temporal data and time
series, is discussed, and query optimization of scientific
database operators is mentioned but not examined further.
More recent efforts to identify what database systems
must provide to meet the needs of the scientific
community can be found in two recent survey articles [5,
281. Among the needs identified are effective use of
parallelism and distribution, database extensibility,
management of large amounts of data, special data
structures and storage formats, and integration of analysis
operations into database managements systems. All of
this work has focussed primarily upon identifying the
needs of scientific database systems, rather than exploring
specific solutions to meeting those needs.

Many researchers have investigated data modeling and
storage structures for scientific databases. Kim has
investigated the application of object-oriented database
technology, with the resulting support for complex data
types, to scientific storage issues [12]. Kim essentially
concludes that, while an object-oriented system provides
support for many of the needs of scientific and statistical
systems, such as multi-dimensional bulk types, many
important scientific database issues are orthogonal to data
model issues. Thus, while an object-oriented data model
and interface language might be well suited to scientific
database management, the issue of user interface
languages and models is beyond the scope of this paper.

Special issues for access to and storage of scientific
data have been considered [18, 241. Much research has

21

been focussed on the special needs of temporal data,
which constitutes much of the data in scientific databases
[2, 9, 10, 19-23, 271, though this research has dealt with
histories, joining historical data and logical reasoning
about time in databases, rather than time series data types
and optimization technology.

There has been less research on scientific database
processing issues. Many similarities exist between
scientific operations and statistical operations, which have
been explored more extensively. Olken and Rotem have
researched operators for random sampling [14-171. Much
of this research has addressed the performance of random
sampling from various storage structures such as B+ trees
and hash indices. This research illustrates the kind of
physical algorithm for non-relational computations that
will be required in scientific database systems, but does
not address algebraic optimization issues for computations
including such operators.

Band joins, are important in scientific databases.
These are joins performed with a join argument of the
form R.A + c s S.B s R.A - d, where R and S are the
relations to be joined, A and B are attributes of the
respective relations and c and d are the tolerances that
define the width of the band over which the join is to be
performed. Algorithms for efficient execution of such
joins, using both sort-based and hash-based methods, have
been considered by Dewitt, Naughton and Schneider in
[4]. This provides another example of a database operator
useful in scientific processing. Again, optimization issues
are not addressed within this research, as the focus is upon
the implementation of a specific database operator.

Neugebauer examined the inclusion of interpolation
operations in a relational database system, including some
optimizations of the interpolation procedures developed in
the research [13]. The problem addressed was the
inclusion of interpolation processing, similar to the
interpolation operator in our system but potentially in
multiple dimensions, into a relational database system.
The solution was to add special procedures to a standard
relational database system, where the interpolation
procedures read in data from the source tables and
produce a relation with the correct interpolated data. SQL
syntax to incorporate these procedures was also supplied.
The results, while accomplishing the objective of
providing interpolation capability to a database system,
illustrate the difficulties encountered when forcing
scientific data processing into a relational model, with no
support for sequence data types or non-set-oriented
operators.

Other systems have explored extensibility in
optimization technology, including EXODUS [3] and
Starburst [ll]. Extensible optimization technology is a
necessary foundation for the research in this paper. For a
more complete discussion of this technology and further
references, see [1,8].

9. Summary and Conclusions
This paper has explored the integration of traditional

database pattern matching operators and numeric scientific
operators. We have shown that a mixed algebra and type
model can be used to perform algebraic specification and
optimization of scientific computations. The model
developed in this research supports operators on multiple
bulk types, such as sets, time series and spectra.

We conclude from our experimental results that there
is a clear, realizable benefit to be achieved from removing
the barrier between the database system and scientific
computations over the database. Removing this barrier
entails incorporating scientific operations and data types
into the query processing framework of the database.
Thus, automatic optimization of integrated algebras is a
crucial step in supporting scientific computations over
database systems.

As part of our work on database support for
computational models of turbulence, we are developing a
more complete system based on these concepts and built
on the Volcano extensible database system. This work is
being performed in conjunction with the Space Grant
College at the University of Colorado, where it will be
applied to the analysis of atmospheric and solar data from
satellite and other space science experiments.

In addition to sets, time series and spectra, scientific
processing often requires the analysis of large, multi-
dimensional arrays. Integrating support for arrays, as well
as operations on them, is an important extension of this
research which we are currently investigating.

Acknowledgements
We would like to thank Elaine Hansen and Tony

Colaprete, of Space Grant College, for their help in
applying this research to real-world applications.

This paper is based on research partially supported by
the National Science Foundation with grants IRI-8912618,
IRI-9116547, IRI-9119446, and ASC-9217394, ARPA
with contract DAAB 07-91-CQ518, Texas Instruments,
and Digital Equipment Corp.

Appendix A
This appendix presents the operators, transformation

rules and implementation rules in our. prototype scientific
optimizer. It also provides example code from the model
input file used to implement the system under the Volcano
optimizer generator.

Figure 3, presented earlier, lists the operators used in
our prototype. Operators are specified by type, name and
number of inputs. For instance,

%operator JOIN 2
%algorithm HASH-JOIN 2

specifies logical and physical join operators.

22

Figure 12 lists the transformation rules applicable to
set operators, primarily the standard relational
transformations. For some transformation rules, there are
conditions which must be met before the rule can be
applied. The join / merge interaction requires the
inclusion of type conversion operations. Likewise,
interactions between join and sample operators require
that the split be statistically valid. Finally, some
interactions require that attributes remain valid, such as in
the case of a math operator and a projection operator,
where the projection must not eliminate attributes used by
the math operator.

As an example transformation rule, the join
associativity rule is coded as follows:

%trans-rule (JOIN ?op-argl
((JOIN ?op_arg2 (?l ?2)) ?3))

-> (JOIN ?op_arg3
(?l (JOIN ?op_arg4 (?2 ?3))))

%cond-code { (
/* Check the validity of this transformation */

1)
%appl-code { {

I* Set up the ?op_arg3 and ?op_arg4 arguments. *I
))

Figure 13 lists the transformation rules applicable to
time series and spectrum operators, as well as the any bulk
type and type conversion operators. Once again, some
interactions require type conversion operators, such as the
equivalence between digital and spectral filters. Also, as

Figure 12: Set Operator Logical Transformation Rules

Interpolations become the last interpolation

~~

Spectral Filter CD Two spectral filters combine

Merge CM Merge inputs reverse
Merge I AS I Consecutive mergesassociate II

Merge

Merge,
Interpolate

EL

IN

Identical merges become one merge

Interpolations push through merges

Merge, NI
Digital Filter

Merge, Math Nl

Digital filters push through merges

Math operators push through merges

Merge, NI

I I

Spectral filters push through merges
Spectral Filter II

Math I CD I ~womathooeratorscombine II

Conversions I CD I Multiple conversions combine II

Figure 13: Time Series & Spectrum
Logical Transformation Rules

noted earlier, interpolation / join interactions can convert
the join operation into an outer join. Finally, conversions
between sets and other types require that the set have
appropriate time or frequency attributes.

On these two tables, rule names are abbreviated as
follows: AS Associativity, CB Combination, CM
Commutativity, EL Elimination, EQ Equivalence, IN
Interchange, NI Non-interference.

Figure 14 lists the implementations rules used to
implement the logical operators, along with the conditions
under which the implementation rule can be applied. The
code for the hash join implementation rule is given below:

%impl-rule (JOIN ?op-argl (?l ?2))
-> (HASH-JOIN ?al-argl (?l ?2))

Condition code can also be included on implementation
rules. In our prototype, it is only required for the FFT
implementation, in which the input sequence must have a
fixed delta between records.

References
[l] J. A. Blakeley, W. J. McKenna and G. Graefe,

“Experiences Building the Open OODB Query
Optimizer”, Proc. ACM SIGMOD Conf., Washington,
DC, May 1993,287.

[2] A. Bolour, T. L. Anderson, L. J. Dekeyser and H. K. T.
Wong, “The Role of Time in Information Processing: A
Survey”, ACM SIGMOD Record 12,3 (April 1982).

23

[31

(41

PI

161

[71

PI

PI

IlO1

PI

WI

1131

Logical operators

Join, Merge

Project, Select, Sample
Spectral Filter, Math

Physical Algorithms

Hash Join, Merge Join

Filter

Interpolate, Digital Filter Window

SetdTime series, Set--Spectrum, NOP
Time Scries~Set, Spectrum4et

Tie Series-+ctruq
Spectrum~Tiic se&s

FFr

Get (Set, Time series, Spectrum) File Scan, Btree Scan

Figure 14: Physical Implementation Rules

M. J. Carey, D. J. Dewitt, G. Graefe, D. M. Haight, J. E.
Richardson, D. T. Schuh, E. J. Shekita and S.
Vandenberg, “The EXODUS Extensible DBMS Project:
An Overview”, in Readings on Object-Oriented Database
SYS., D. Maier and S. Zdonik (editor), Morgan
Kaufman, San Mateo, CA, 1990.
D. J. Dewitt, J. E. Naughton and D. A. Schneider, “An
Evaluation of Non-Equijoin Algorithms”, Proc. Int’l.
Conf on Very Large Data Bases, Barcelona, Spain,
September 1991,443.
J. C. French, A. K Jones and J. L. Pfaltz, “Scientific Data
Management”, ACM SIGMOD Record Special Issue on
Directions for Future Database Research and
Development 19,4 (December 1990), 32.
G. Graefe, “Volcano, An Extensible and Parallel
Dataflow Query Processing System”, to appear in IEEE
Trans. on Knowledge and Data Eng., 1993.
G. Graefe, R. L. Cole, D. L. Davison, W. J. McKenna and
R. H. Wolniewicz, “Extensible Query Optimization and
Parallel Execution in Volcano”, in Query Processing for
Advanced Database Applications,
J. C. Freytag, G. Vossen and D. Maier (editor),
Morgan-Kaufman, San Mateo, CA, 1993.
G. Graefe and W. J. McKenna, “The Volcano Optimizer
Generator: Extensibility and Efficient Search”, Proc.
IEEE Conf on Data Eng., Vienna, Austria, April 1993,
209.
H. Gunadhi and A. Segev, “A Framework for Query
Optimization in Temporal Databases”, Proc. Fifth Int’l.
Conf on Statistical and Scientific Database Management,
April 1990.
H. Gunadhi and A. Segev, “Query Processing Algorithms
for Temporal Intersection Joins”, Proc. IEEE Conf on
Dam Eng., Kobe, Japan, April 1991,336.
L. Haas, J. C. Freytag, G. Lohman and H. Pirahesh,
“Extensible Query Processing in Starburst”, Proc. ACM
SIGMOD Conf, Portland, OR, May-June 1989,377.
W. Kim, “Object-Oriented Approach to Managing
Statistical and Scientific Databases”, Proc. Fifth Int’l.
Con& on Statistical and Scientific Database Management,
April 1990.
L. Neugebauer, “Optimization and Evaluation of
Database Queries Including Embedded Interpolation

P41

PI

WI

1171

P81

[191

PO1

PI

PI

1231

1241

PI

1261

1271

PI

Procedures”, Proc. ACM SiGMOD Con&, Denver, CO,
May 1991,118.
F. Olken and D. Rotem, “Simple Random Sampling from
Relational Databases”, Proc. Znt’l. Conf on Very Large
Data Buses, Kyoto, Japan, August 1986,160.
F. Olken and D. Rotem, “Random Sampling from B+
Trees”, Proc. Int’l. Conf: on Very Large Data Bases,
Amsterdam, The Netherlands, August 1989,269.
F. Olken and D. Rotem, “Random Sampling from
Database Files: A Survey”, Proc. Fifih Int’l. Conf on
Statistical and Scientific Database Management, April
1990.
F. Olken, D. Rotem and P. Xu, “Random Sampling from
Hash Files”, Proc. ACM SIGMOD Conf, Atlantic City,
NJ, May 1990,375.
R. K. Rew and G. P. Davis, “NetCDF: An Interface for
Scientific Data Access”, Computer Graphics and
Applications, July 1990,76.
D. Rotem and A. Segev, “Physical Organization of
Temporal Data”, Proc. IEEE Conf on Data Eng., Los
Angeles, CA, February 1987,547.
A. Segev and A. Shoshani, “Logical Modeling of
Temporal Data”, Proc. ACM SIGMOD Conf , San
Francisco, CA, May 1987,454.
A. Segev and A. Shoshani, “The Representation of a
Temporal Data Model in the Relational Environment”,
Proc. Fourth Znt’l. Working Con& on Statistical and
Scientific Database Management, June 1988.
A. Segev and H. Gunadhi, “Event-Join Optimization in
Temporal Relational Databases”, Proc. Znt’l. Conf on
Very Large Data Buses, Amsterdam, The Netherlands,
August 1989,205.
R. Shodgrass and I. Ahn, “A Taxonomy of Time in
Databases”, Proc. ACM SIGMOD Conf., Austin, TX,
May 1985,236.
A. Shoshani, “Statistical Databases: Characteristics,
Problems, and Some Solutions”, Proc. Znt’l. Conf on
Very Large Data Buses, Mexico City, Mexico, September
1982,208.
A. Shoshani, F. Olken and H. K. T. Wong,
“Characteristics of Scientific Databases”, Proc. Znt’l.
Con& on Very Large Data Bases, Singapore, August 1984,
147.
A. Shoshani and H. K. T. Wong, “Statistical and
Scientific Database Issues”, IEEE Trans. on Softw. Eng.
11,lO (October 1985).
A. Shoshani and K. Kawagoe, “Temporal Data
Management”, Proc. Int’l. Conf on Very Large Data
Bases, Kyoto, Japan, August 1986,79.
A. Silberschatz, M. Stonebraker and J. D. Ullman,
“Database Systems: Achievements and Opportunities”,
ACM SIGMOD Record Special Issue on Directions for
Future Database Research and Development 19, 4
(December 1990), 6.

24

