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Abstract 
Although scientific data analysis increasingly requires 

access and manipulation of large quantities of data, current 
database technology fails to meet the needs of scientific 
processing in a number of areas. To overcome acceptance 
problems among scientific users, database systems must 
provide performance and functionality comparable to 
current combinations of scientific programs and file 
systems. Therefore, we propose extending the concept of 
a database query to include numeric computation over 
scientific databases. 

In this paper, we examine the specification of an 
integrated algebra that includes traditional database 
operators for pattern matching and search as well as 
numeric operators for scientific data sets. Through the use 
of a single integrated algebra, we can perform automatic 
optimization on scientific computations, realizing all of the 
traditional benefits of optimization. 

We have experimented with a prototype optimizer 
which integrates sets, time series and spectra data types 
and operators on those types. Our results demonstrate that 
scientific database computations using numeric operators 
on multiple data types can’be effectively optimized and 
permit performance gains that could not be realized 
without the integration, 

This research has been performed in collaboration with 
the Space Grant College at the University of Colorado at 
Boulder, where the results are being applied to the 
analysis of experimental data from satellite observations. 

1. Introduction 
Modern scientific experiments in many fields, from 

biology to space science, are generating and analyzing 
large amounts of data. This necessitates greater 
consideration of data management facilities, in addition to 
the actual analysis of the experimental data. Therefore it 
is natural to look to existing database management 
technology to provide tools for managing scientific data. 
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Many of the operations that must be performed on 
scientific data fall under the purview of traditional 
database systems. The growing volume of data available 
to scientists creates the need for facilities to correlate 
multiple data sets, including data from multiple 
experiments and historical data from past research [5, 281. 
While database systems do provide facilities to manage 
large data volumes, current database systems do not 
provide support for the numeric computations required to 
perform correlations of scientific data. This shortcoming 
limits the use of database systems by scientific users. 

The focus of this research is to extend the concept of a 
database query to encompass numerical computations over 
scientific databases, thereby creating an integrated algebra 
combining traditional database operators for pattern 
matching with scientific and numeric operators. Through 
this integration into a single, combined algebra, we gain 
the ability to perform automatic optimization of entire 
computations, with the resulting benefits of query 
optimization, algorithm selection and data independence 
becoming available to computations on scientific 
databases. This integration is illustrated in Figure 1, 
where the removal of the barrier between the database 
system and the computation allows the database optimizer 
to manipulate a larger portion of the application. 

To begin our research into this integration, we have 
examined the addition of time series and spectra to the 
Volcano extensible query processing system [6-81. The 
time series is a common data type for scientific 
computations, as it is often the basic format in which 
experimental data is retrieved. Similarly, the analysis of 
time series data is often performed in Fourier- (spectral) 
space, making time series and spectrum types central for 
the support of many scientific computations. These 
aspects make time series and spectra natural starting 
points for research into the optimization of scientific 
computations. Additionally, the variety of alternative 
computational techniques between spectral and time series 
methods offer an opportunity to examine complex 
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Figure 1: Removing the barrier between 
data management and numeric computation 
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transformations of numerical computations by an 
algebraic optimizer. The results learned from the 
examination of time series can then be used to extend this 
research to transformation of computations on other 
scientific data types, particularly multi-dimensional arrays. 

Optimization has provided significant performance 
improvements in existing database systems. Through 
examination of operators on time series and spectra, we 
show that many of the algebraic optimization techniques 
used in current database optimizers can be extended to 
scientific computations, enabling the same performance 
improvements available through optimization in traditional 
database systems. Moreover, optimization frees the user 
from cancer% about ordering of computation steps, 
algorithm selection, use of indices and other physical 
properties such as data distribution. Therefore 
optimization provides data independence to the user, a 
benefit which is as useful to the scientist as to any other 
database user. We believe optimization of integrated 
algebras including numeric operators is an important 
element for supporting scientific database users, 

As part of this research, we have developed a 
prototype scientific optimizer using the Volcano optimizer 
generator [l, 7, 81. This optimizer manipulates 
expressions over the integrated algebra, performing both 
logical transformations and physical algorithm selection. 
The optimizer takes advantage of physical properties of 
data objects, such as sort order and storage format, and 
performs resource planning. Since the greatest potential 
for optimization of computations arises during loop 
processing, i.e., processing of large bulk types in the 
database such as sets and arrays, these portions of the 
computation are the focus of the optimizer. 

In Section 2, we discuss algebraic optimization in 
general. Section 3 discusses the *data types supported by 
our prototype optimizer, and Sectron 4 presents the logical 
and physical operators manipulated by the prototype. 
Sections 5 and 6 address the logical transformations and 
implementation rules used by the optimizer. Section 7 
presents two example computations that illustrate the 
scope and power of the prototype optimizer. Related work 
is discussed in Section 8, and our conclusions are 
presented in Section 9. 

2. Algebraic Query Optimization 
In this section we present an overview of 

transformation based algebraic query optimization, and 
show how the optimization of scientific computations fits 
into this framework. 

To perform optimization of a computation over a 
scientific database system, the optimizer is given an 
expression consisting of logical operators on bulk data 
types. The bulk types we consider are sets (relations), 
time series, and spectra. Time series and spectra are used 
to illustrate the extension of the type system to scientific 
computations. Each operator in the computation takes one 

or more instances of a bulk type as its input, and produces 
a new instance of a bulk type as its output. The initial 
computation provided to the optimizer by the user does 
not include physical issues such as the availability of 
indices, the sort order of sets or the choice of specific 
algorithms for evaluation of operations. As these physical 
issues do not influence the result of the computation on the 
logical level, it is advantageous to hide these details from 
the user whenever possible. This provides data 
independence as in relational systems. Unlike relational 
optimizers, the model we are considering must address the 
need for multiple bulk types, thereby requiring that the 
initial computation be type-safe, i.e., that appropriate type 
coercion operators are included in the computation. In 
general, this can be verified as part of a preprocessing 
step. In many cases it is also possible to automatically add 
appropriate type coercion operators to a user computation 
that is not type-safe. The issues involved in such a 
preprocessor are not addressed in this paper. Rather, we 
assume that the initial computation presented to the 
optimizer is type-safe. 1 

Starting with the initial computation, the optimizer 
repeatedly applies transformation rules to the logical 
expression to generate equivalent forms of that expression, 
These transformation rules translate a portion of an 
expression into a different form which will produce an 
equivalent result. Join associativity is an example of such 
a transformation in a relational query, as is performing 
filtering in either time- or Fourier-space in scientific 
computations. In the optimization of scientific 
computations, the identification of suitable transformation 
rules is of central importance. Unique problems must be 
considered, including, the equivalence of two numeric 
expressions given the issues of numerical accuracy and 
stability. These issues are addressed in more detail below. 

Once applicable transformation rules have been used 
to generate equivalent logical expressions, the optimizer 
must find a set of physical algorithms that can implement 
or execute each expression. This process proceeds 
through the application of implementation rules to the 
logical expressions. Each rule translates one or more 
logical operators into one or more physical operators 
(algorithms). For instance, a join operator can be 
implemented as either a merge- or hash-based algorithm, 
while an interpolation can be implemented by any of 
variety of curve fitting algorithms. In the process of 
choosing physical algorithms, the optimizer considers 
physical issues such as sortedness of data sequences. In 
the optimization of scientific computations, this choice is 
complicated by the need to consider numerical accuracy 
and stability, as well as the diverse implementation 
techniques for numerical operations. 

Using the physical execution plans, a cost.calculation 
determines an estimate of the overall cost to execute each 
plan. In scientific computations, CPU costs are much 
more varied than in relational queries, and often dominate 

14 



the cost of specific operators. The details of our cost 
model are discussed in Section 6.3. 

It is the role of the database implementor to derive 
logical transformations, provide implementation rules and 
define the cost model for the optimizer. As a scientific 
database system is utilized, new operations and 
algorithms, with their associated transformation and 
implementation rules, may need to be added to the system, 
particularly as the operator sets that we examine are not 
computationally complete (which would present 
difficulties in optimization). An extensible optimizer 
allows this sort of continuing growth; managing this 
growth will fall to the database implementor. 

There are further issues specific to query optimizers 
such as limiting the search space, detecting common sub- 
expressions and improving cost estimation, among others. 
While search efficiency was one of the central concerns in 
the design and implementation of the Volcano optimizer 
generator [8], these issues are orthogonal to the 
optimization of scientific computations, and are not 
addressed in this paper. 

3. Data Types 
This research focuses on optimization of computations 

over bulk types. Three basic bulk types are supported by 
our current system: sets, time series and spectra, the latter 
two of which are provided as instances of scientific types. 
In each case, the bulk type consists of a collection of 
elements, which we will refer to as records, although they 
may include structures more complicated than a simple 
record. In this section, we address the logical view of 
each bulk type explored in this research. 

Sets are viewed similarly to relations in the relational 
model. Ordering is unimportant on the logical level. The 
cardinality is the only logical property that can be 
determined for a set. 

Time series are also viewed as sets, but each record is 
assumed to be tagged with a time value. This model is 
motivated by the fact that time series are representations 
of functions, or samples of continuous functions, mapping 
time to a physical value. Although an implicit sorting by 
time is utilized by many algorithms, such sorting is not 
necessary on the logical level. 

Attached to a time series are a number of values in 
addition to the cardinality. Start and stop time, the 
average and maximum difference between samples, and 
whether or not the time differences are constant between 
adjacent records are all important for some operations. 

We allow subtypes of time series and other types to be 
determined by constraints on these logical attributes. This 
allows the enforcement of logical constraints on data 
objects through the type maintenance facilities of the 
optimizer. The most common instance of this in our 
prototype is the subtyping of time series based upon the 
enforcement of a constant time difference between 

consecutive records. This constraint is required by 
numerous operations, such as filtering and conversion to 
Fourier space (performed by the Fast Fourier Transform). 

Finally, spectra are treated in a manner very similar to 
time series, but with a frequency attribute attached to each 
record rather than a time value. The same subtyping 
facilities are available for spectra. 

The logical transformations (discussed in Section 5) 
ensure type-safety in all transformations, i.e., they ensure 
that appropriate type conversion operators are always 
included in the query to insure that operators receive 
objects of the correct bulk type. The types supported by 
our current prototype are summarized in Figure 2. 

Having introduced the data types modeled within the 
system, the next section presents the operators that are 
provided to manipulate these objects. 

4. Operators 
The operators supported within the system are divided 

into two groups, logical and physical. Logical operators 
are those that operate on the logical data types without 
addressing specific data storage formats or execution 
algorithms, which are handled by the physical operators. 
The user’s original computation is composed of logical 
operators, while the final execution plan is expressed to 
the database in terms of physical operators. 

In this section, we present the operators supported by 
the present system, which are shown in Figure 3. These 
operators are instances of general scientific operators, and 
are chosen for their common use in scientific processing 
and for their illustration of special issues that must be 
addressed by an optimizer for scientific databases. 

For each numeric operator, we discuss the issues raised 
for optimization by the inclusion of that operator in the 
algebra. Our prototype relies heavily on the extensibility 
features of the Volcano optimizer generator, [8] which 
enables us to explore a variety of alternative logical and 
physical operators, properties, and optimization rules. 

Type Logical Physical 
Properties Properties 

Sets Cardinality Sort order, Record size 
Time series Start / stop time Physical format 

Average or fixed Sort order, Record size 
time deltas 

Spectra Frequency range Physical format 
Average or fixed Sort order, Record size 
freouencv deltas 

Figure 2: Logical and Physical Properties 
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Time series-set, 

Figure 3: Logical and Physical Operators 

4.1. Operators on Sets, Time series and 
Spectra 

As we are extending the relational model to handle 
new data types and operations, we include the standard 
relational operators select, project and join. In addition, 
we add a random sampling operator which can select a 
random subset of a set, which illustrates the extension of 
the relational operators to scientific set-based operators. 
This is the simplest form of extension, as it does not 
require any new type considerations. Random sampling 
assigns a fixed probability of inclusion for every record of 
the set, and may also designate that the cardinality of the 
output set be fixed. Random sampling acts much as a 
selection, with the exception that no predicate is enforced 
on the result set, and the sampling does not depend in any 
way upon the value of the records in the set. 

Three basic time series operators are included in the 
current prototype. Computation based on nearby records 
(in time) is a frequent operation in scientific analysis, and 
digital filtering is a common instance of this type of 
operation, in which specific frequency ranges are removed 
or augmented in a time series. This operator recomputes 
the value of a single record based upon an averaging 
function applied to nearby records. 

An operator for interpolation and extrapolation of time 
series is included in the prototype as an instance of an 
operation that can generate new data records in a time 
series. Regular sampling can be performed by this 
operator as well. Individual records are added to or 
removed from a time series by these operations, and thus 

the logical attributes of the time series can be changed. 
The actual interpolation formula is generally unimportant 
to the optimization of the logical computation, although it 
may influence the physical algorithm cost. 

Finally, an operator for merging two time series is 
included. This is essentially a join by time, though it is 
necessary that the two time series have corresponding time 
tags. Typically this is ensured by having identical start 
and end times, and fixed and equal time deltas between 
records. 

Two operations are provided for manipulating spectra. 
First, a spectral filter (a frequency filter performed in 
spectral space) may be applied to a spectrum. This 
corresponds to the digital filter available for time series, 
and is illustrative of the many operations which can be 
performed in either time space or Fourier-space. In many 
cases, one or the other will be simpler or less expensive to 
apply, and one may be more accurate than the other. 
Second, merging of spectra is supported by a merge 
operation similar to that for time series. 

4.2. Other Logical Operators 
There are some operations which can be applied to all 

data types. The primary such operation considered here is 
a simple math function application, which is included to 
support many common scientific operations. Through this 
operation, each output record is generated by a 
mathematical expression from an input record. Scientific 
operations such as correlation, convolution and 
deconvolution of spectra are mathematical functions 
applied to the result of merging two bulk types. Other 
examples are relational projection without duplicate 
elimination, as well as the transformation of a time series 
consisting of polar coordinates (latitude, longitude, 
altitude) into an equivalent time series consisting of 
Euclidean coordinates (x, y, z). 

Operators are also used to convert data objects from 
one type to another, and provide the basis for the type 
maintenance facilities in our prototype. In some cases, 
these operators do not require any physical data 
manipulation. For example, converting a time series or a 
spectrum to or from a set (with the appropriate record 
fields for time or frequency) requires no computation. 

When converting between time series and spectra, a 
Fourier transform or its inverse must be applied. As this is 
generally an expensive operation to perform, the decision 
on when to move between normal and Fourier-space is 
important for optimization, illustrating the importance of 
the type system in the optimization process. 

4.3. Physical Operators 
Physical operators in the Volcano system are 

implemented as iterators [6]. Volcano iterators already 
exist to implement relational operations, as well as 
sampling, merging, sorting and mathematical function 
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application. Some additional scientific operations were 
developed as part of this research. 

A new operator has been added to pass a window over 
a sorted data set. This provides the implementation of 
algorithms for interpolation and extrapolation, as well as 
digital filtering. Aspects such as the window size and the 
function to apply can be set by the user, allowing the 
operator to support most algorithms requiring a window 
over a data sequence. 

A second operator considered within the system is the 
Fast Fourier Transform (FFT). We modeled FFTs in two 
steps which are considered separately by the database. 
First, a “bit-reverse sort” must be performed, in which 
each element in the input sequence is re-ordered to a new 
position in the output sequence, which is the bit-reverse of 
the original position index. This is normally an O(N) 
algorithm when performed in memory, but the page access 
pattern causes poor execution when the data set does not 
fit into memory, resulting eventually in O(N x log(N)) 
performance, similar to other sorting techniques. 

The actual Fourier transform, which involves 
combining each element with every other element in a 
tree-like pattern, can be performed in O(N x log(N)) time, 
and can be adapted to the iterator approach, implemented 
as a series of log,(N) iterators each processing a single 
level in the FFT processing tree. Each of these operators 
performs a scan and reordering operation on its input, in 
addition to the FFT computation. 

The next section present the rules used to manipulate 
expressions of logical operators. 

5. Logical Transformations 
Logical transformations are used to reorganize a 

computation consisting of operators, such as the 
application of join associativity in relational systems. 
Identifying logical transformations for scientific oper_ators 
is vital to the application of optimization. Of particular 
importance is identifying transformations with expensive 
operators, primarily joins and Fourier Transforms. 

The central issue in identifying logical transformations 
is equivalence. This is straightforward in relational 
transformations, where a transformation results in a 
logical expression that generates an identical output 
relation. Due to the effects of numerical accuracy and 
stability, the results of transformations which include 
numerical operators occasionally do not produce exactly 
identical results, even though the transformation is 
considered valid by the scientific user. This issue can 
influence which transformations can be used on a given 
expression, In many cases, some of which are illustrated 
in the following subsections, the transformations do not 
change the output of an expression. Thus significant 
optimizations can be performed without worrying about 
numerical accuracy and stability. 

Nonetheless, many advantageous transformations are 
available in which numerical accuracy and stability issues 
are important. This area is open to further research. Here, 
we present some possible considerations when addressing 
this issue. First, there are a member of transformations in 
specific scientific domains that are considered generally 
valid. For the field of space science, in which we have 
done most of our examination, there are many filtering 
operations which can be performed in either time- or 
Fourier-space. Second, there are transformations which 
may require input from the user, or notification to the user 
of their use. In these cases allowing the user to disable or 
enable certain transformations to control the accuracy of 
the results of the equation would be desirable. Third, it 
may be possible for the database optimizer to consider 
numerical accuracy directly, insuring that the final 
accuracy does not exceed some limit, or even making a 
trade-off between accuracy and execution time by 
factoring accuracy into the cost formulas. These 
possibilities will be explored through future research. 

5.1. Set Operator Transformations 
Within our system the standard relational 

transformations apply. Transformations are also available 
for the random sampling operator. For sampling which is 
purely probabilistic (i.e. which makes no assurances about 
the output cardinality), transformations are similar to those 
for a relational selection, although attention must be paid 
to sample-join transformations. Here, a sample may be 
interchanged with a join only when there is statistical 
confidence that the selection or rejection of a given record 
will not skew the join results beyond an accuracy 
acceptable to the user. When allowed, a sample moved 
below a join can be split almost arbitrarily between the 
two join inputs, provided that the product of the two 
probabilities of the resulting samples equals that of the 
original sampling operator. This is illustrated in Figure 4. 
When the sampling must insure a fixed output cardinality 
(i.e. must select exactly N out of all of the records), the 
available transformations are limited to those in which the 
second operator does not modify the output cardinality. 
For example, in scientific computations it is common to 
merge two data sets knowing that every record in each 
input set will match exactly one record in the other set. In 
this case, a sample may always be performed before or 

where a% x b% = c% 

Figure 4: Probabilistic Sampling / Join Transformation 
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after the merge, although performing it before the merge 
causes the merge to lose that property. 

The similarities between sampling and selection 
transformations show that many transformations available 
to scientific operators mirror those of existing operators. 

5.2. Math Operator Transformations 
Math operators, which apply mathematical functions to 

records in a bulk type, can be transformed with one 
another using the standard rules for manipulating 
expressions. In this way they act like relational selections, 
except that the expressions involved are not limited to 
Boolean expressions. Similar techniques for splitting off 
subexpressions and combining multiple expressions can be 
applied. For such an operator it is useful to maintain those 
attributes that are used by the operator, and those that are 
updated or added by the operator. The operator can then 
be interchanged with any other operator with which it has 
no input or output conflicts. 

The math operator transformations illustrate that many 
scientific transformations can be identified through an 
analysis of which attributes an operator reads or writes. 

5.3. Time series and Spectra Operator 
Transformations 

Both digital filtering and interpolation operations 
illustrate transformation restrictions unique to scientific 
operators. In these cases, the restrictions arise from the 
window of nearby records used by these operators when 
determining a single output record. This limits 
transformations to those that do not add or remove 
records, or modify the attributes used by these operators, 
unless the operator can account for this change. 

In the case of digital filtering, this prevents most 
transformations with other operators. Filters can be 
transformed before or after merge operations when it is 
known that the merge will be exactly one-to-one, with no 
unmatched records, and the filter does not use or modify 
the merge field. Also, filters can often be performed in 
either time or frequency domains, which we model by 
allowing a time-based filter followed by a conversion to a 
spectrum to be replaced by a conversion to a spectrum 
followed by a spectral filter, as shown in Figure 5. 

For interpolations, an additional option is available. 
As interpolations can account for non-existing values in 
records, an interpolation occurring before a one-to-one 

merge can be moved after the merge, provided that the 
merge or join operator is replaced with the appropriate 
outer join operation. This is illustrated in Figure 6. 

5.4. Extensibility of Transformations 
In general, when dealing with numeric operators in this 

framework, it is possible to provide guidance to the 
scientific database implementor for identifying logical 
transformations, but it is difficult to ensure that all possible 
transformations have been identified. This is a 
consequence of the differing nature of equivalence in 
scientific computations, and the differing requirements of 
specific applications in terms of numeric accuracy. As a 
result, the ability to extend the set of available 
transformations is important in scientific databases, 
leading to the need for an extensible optimizer such as the 
Volcano optimizer generator [8]. 

6. Implementation Rules 
From logical expressions generated through the 

transformation rules, implementations with physical 
operators are selected. The cost model is applied to the 
resulting plans to select an optimal execution strategy. 

To convert a logical expression to an execution plan, 
implementation rules are applied. An implementation rule 
defines an execution strategy for a sub-expression of one 
or more logical operators. For instance, in relational 
systems implementation rules are used to indicate that a 
join operator can be implemented through either a hash- 
based or a sort-based algorithm. 

Scientific database optimization requires special 
consideration of implementation rules, as circumstances 
arise which differ significantly from those in pure 
relational systems. 

6.1. Example Implementation Rules 
As one example implemented in the current system, a 

windowing operator which can pass a window over a 
sequence of data while performing some operation on the 
data can be used to implement both interpolation and 

(to regular sampling) 

Figure 5: Time / Spectral Space Transformations 
Figure 6: Interpolation /Join Transformation 
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extrapolation operations as well as digital filtering 
operations. This situation, where different data 
manipulations make use of similar algorithms, is not 
uncommon in scientific processing. If the optimizer is 
extensible, it is straightforward to implement new logical 
operators using existing physical algorithms. 

A second example is the Fast Fourier Transform 
(FFT), which is a direct implementation of a type 
conversion between time series and spectra. There is a 
well-known technique by which two sequences of the 
same size which are known to be real (i.e., do not have 
imaginary components) can be packed together into a 
single sequence of complex numbers before being 
processed by the FFT, resulting in a factor of two speed 
improvement (two FFTs vs. one FFT). This situation is 
very common, as time series are generally of real data, and 
correlations require converting two or more time series 
into spectra simultaneously. The use of this technique is 
illustrated in the second example in Section 7.2. The FPT 
algorithm presents an instance of a CPU intensive 
operator. Such operators are common in scientific 
applications, and influence the development of the cost 
model chosen by the database implementor. 

6.2. Cost Model 
Once the implementation rules have been applied to 

generate an execution plan, the cost of that plan must be 
estimated to allow comparison of alternatives. To 
determine the cost of an operation, the optimizer assumes 
that, given the properties of its inputs such as cardinality, 
sortedness, etc., the cost of the operation can be estimated 
using cost functions supplied by the database 
implementor. These cost functions may make use of 
database statistics for selectivity estimation and/or cost 
computations. It is worth noting that selectivity estimation 
is often perfect in scientific computations, as a selection of 
a range of time tags in a time series generates a calculable 
result size, and many algebraic operations do not change 
the result size, or else modify it in predictable ways. 

It is our belief that the high CPU costs of many 
scientific operations leads to the need for CPU cost 
consideration during optimization. Therefore, in our 
prototype, we have chosen to use time to completion as 
the basis for optimization. I/O and CPU costs are 
maintained separately, and we assume that we can utilize 
asynchronous I/O. The greater of I/O and CPU costs for 
the computation is used as the time to completion. 

Having presented the model used in our research, the 
next sections give two example computations processed 
by the existing optimizer, illustrating the applicability of 
the approach presented in this paper. 

7. Examples 
In this section we provide two example applications of 

the prototype optimizer to scientific computations. These 
examples are presented to illustrate the applicability of this 
research to real-world scientific computations. In 
particular, the second example is derived from a 
computation used at the Space Grant College at the 
University of Colorado at Boulder, in the analysis of 
satellite data. 

7.1. Example 1 
This example illustrates the application of 

transformation rules involving scientific operators mixed 
with set-oriented relational operators. The query requires 
matching two separate sets containing experimental 
measurements of pressure and temperature values. These 
values are matched by time tag, then a calculation is 
applied to the result. The calculation requires a data point 
every second. The pressure data has measurements every 
second, but the temperature data has lo-second intervals 
between values, and will need to be interpolated. This 
query is shown in Figure 7. 

The optimization on this query is performed twice. 
During the first pass the final output data is requested 
sorted by time. A second optimization is made with no 
sorting requirements. The results of the first optimization 
are shown in Figure 8. In this optimization, the 
requirement for sorting results in the selection of a 
merge-join based join algorithm, with the interpolation 
applied after the join. The same query, when optimized 
without sorting requirements, results in plan shown in 
Figure 9. Here, the optimizer has chosen to place the 
interpolation operator before the join. This allows the 
database to sort only the smaller (temperature) data set to 
perform the interpolation. By avoiding the sort for the 
larger (pressure) data set, the estimated execution time for 
this query is reduced to one-third of the previous plan’s 

Figure 7: Logical Query for Example 1 
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Figure 8: First Execution Plan for Example 1 

Figure 9: Second Execution Plan for Example 1 

estimated execution time. 
This example illustrates the benefit of performing 

scientific operations within the database query execution 
system, and of providing the capability to optimize those 
operations in the query optimizer. 

7.2. Example 2 
This example demonstrates the application of our 

prototype optimizer to a complex scientific computation, 
with a number of data preparation and cleaning steps in 
both time- and Fourier-space. The computation compares, 
in Fourier-space, high-energy ultraviolet light from the 
Sun to ozone concentrations in the atmosphere. 

The initial computation is shown in Figure 10. It 
consists of the merging of two pre-processed data sets, one 
containing the high-energy ultraviolet (EUV) data and the 
other containing the ozone (C)S) concentrations. The pre- 
processing is similar for both inputs. 

[time, photon count, WelQht on altitude 

[altitude, latitude, 

Figure 10: Logical Computation for Example 2 

The EUV pre-processing consists of selecting by the 
measurement wavelength, interpolating the data to a 
regular sampling frequency, applying a filter function, and 
convoluting the data with a response function to remove 
noise sources. This last step is performed in Fourier- 
space. Similarly, the O3 processing begins by weighting 
the data to account for measurement altitudes, selecting 
the relevant longitude and latitude, interpolating to a 
regular sampling frequency, applying the filter function, 
and convoluting the data with the noise response function. 

When optimized, the computation is re-written as 
shown in Figure 11. Pre-processing steps which were 
identical for both data sets in the initial computation are 
brought together, and some reordering is performed. 

The implementation of the resulting computation 
realizes a speed improvement greater than a factor of two 
under our cost model, when compared to the direct 
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Figure 11: Optimized Computations for Example 2 

implementation of the original computation without using 
any algebraic transformation rules. This improvement 
arises from three sources: the use of a two-part Fast 
Fourier Transform algorithm, presented in Section 6.2, the 
performance of selections at earlier stages of the 
computation and the reduction of data copying. 

By re-writing the computation to perform a single 
conversion to Fourier-space, the computation can benefit 
from the use of the two-part FFT. This almost doubles the 
speed over a pair of normal FFTs (minus some overhead). 
This change dominates the performance improvement of 
the computation due to the high cost of FFTs in 
comparison to other operations. 

As in relational optimization, it is desirable to perform 
selections as early as possible in a computation to reduce 
data volumes. In this example a performance 

improvement is realized by pushing the selection by 
latitude and longitude before the weighting by altitude. 

Finally, the reduction in the number of merge 
operations from 3 to 2 results in less copying of data, and 
thus better performance. 

This example illustrates the applicability of algebraic 
query optimization to real scientific computations, and 
shows that significant performance improvements can 
result from optimization. This examples was taken from 
an analysis application at CU’s Space Grant College. 

8. Related Work 
A number of researchers have considered the needs of 

database support for scientific applications [5]. Much of 
the previous research has focused on identifying the 
unique requirements of scientific databases. Shoshani, 
Olken and Wong have enumerated the different kinds of 
data used in scientific systems [25]. Time series based 
experimentation data is identified as one of the primary 
special types of data required within scientific databases. 
Operators for manipulating the data are not addressed in 
the paper, though later work by the same authors [26] 
addresses database operations specifically. Operations for 
performing sampling, nearest neighbor search, estimation 
and interpolation, transposition, aggregation and relational 
operations, integrated into one system, are identified as 
being of particular importance. The need to support more 
complex data types, particularly temporal data and time 
series, is discussed, and query optimization of scientific 
database operators is mentioned but not examined further. 
More recent efforts to identify what database systems 
must provide to meet the needs of the scientific 
community can be found in two recent survey articles [5, 
281. Among the needs identified are effective use of 
parallelism and distribution, database extensibility, 
management of large amounts of data, special data 
structures and storage formats, and integration of analysis 
operations into database managements systems. All of 
this work has focussed primarily upon identifying the 
needs of scientific database systems, rather than exploring 
specific solutions to meeting those needs. 

Many researchers have investigated data modeling and 
storage structures for scientific databases. Kim has 
investigated the application of object-oriented database 
technology, with the resulting support for complex data 
types, to scientific storage issues [12]. Kim essentially 
concludes that, while an object-oriented system provides 
support for many of the needs of scientific and statistical 
systems, such as multi-dimensional bulk types, many 
important scientific database issues are orthogonal to data 
model issues. Thus, while an object-oriented data model 
and interface language might be well suited to scientific 
database management, the issue of user interface 
languages and models is beyond the scope of this paper. 

Special issues for access to and storage of scientific 
data have been considered [18, 241. Much research has 
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been focussed on the special needs of temporal data, 
which constitutes much of the data in scientific databases 
[2, 9, 10, 19-23, 271, though this research has dealt with 
histories, joining historical data and logical reasoning 
about time in databases, rather than time series data types 
and optimization technology. 

There has been less research on scientific database 
processing issues. Many similarities exist between 
scientific operations and statistical operations, which have 
been explored more extensively. Olken and Rotem have 
researched operators for random sampling [14-171. Much 
of this research has addressed the performance of random 
sampling from various storage structures such as B+ trees 
and hash indices. This research illustrates the kind of 
physical algorithm for non-relational computations that 
will be required in scientific database systems, but does 
not address algebraic optimization issues for computations 
including such operators. 

Band joins, are important in scientific databases. 
These are joins performed with a join argument of the 
form R.A + c s S.B s R.A - d, where R and S are the 
relations to be joined, A and B are attributes of the 
respective relations and c and d are the tolerances that 
define the width of the band over which the join is to be 
performed. Algorithms for efficient execution of such 
joins, using both sort-based and hash-based methods, have 
been considered by Dewitt, Naughton and Schneider in 
[4]. This provides another example of a database operator 
useful in scientific processing. Again, optimization issues 
are not addressed within this research, as the focus is upon 
the implementation of a specific database operator. 

Neugebauer examined the inclusion of interpolation 
operations in a relational database system, including some 
optimizations of the interpolation procedures developed in 
the research [13]. The problem addressed was the 
inclusion of interpolation processing, similar to the 
interpolation operator in our system but potentially in 
multiple dimensions, into a relational database system. 
The solution was to add special procedures to a standard 
relational database system, where the interpolation 
procedures read in data from the source tables and 
produce a relation with the correct interpolated data. SQL 
syntax to incorporate these procedures was also supplied. 
The results, while accomplishing the objective of 
providing interpolation capability to a database system, 
illustrate the difficulties encountered when forcing 
scientific data processing into a relational model, with no 
support for sequence data types or non-set-oriented 
operators. 

Other systems have explored extensibility in 
optimization technology, including EXODUS [3] and 
Starburst [ll]. Extensible optimization technology is a 
necessary foundation for the research in this paper. For a 
more complete discussion of this technology and further 
references, see [ 1,8]. 

9. Summary and Conclusions 
This paper has explored the integration of traditional 

database pattern matching operators and numeric scientific 
operators. We have shown that a mixed algebra and type 
model can be used to perform algebraic specification and 
optimization of scientific computations. The model 
developed in this research supports operators on multiple 
bulk types, such as sets, time series and spectra. 

We conclude from our experimental results that there 
is a clear, realizable benefit to be achieved from removing 
the barrier between the database system and scientific 
computations over the database. Removing this barrier 
entails incorporating scientific operations and data types 
into the query processing framework of the database. 
Thus, automatic optimization of integrated algebras is a 
crucial step in supporting scientific computations over 
database systems. 

As part of our work on database support for 
computational models of turbulence, we are developing a 
more complete system based on these concepts and built 
on the Volcano extensible database system. This work is 
being performed in conjunction with the Space Grant 
College at the University of Colorado, where it will be 
applied to the analysis of atmospheric and solar data from 
satellite and other space science experiments. 

In addition to sets, time series and spectra, scientific 
processing often requires the analysis of large, multi- 
dimensional arrays. Integrating support for arrays, as well 
as operations on them, is an important extension of this 
research which we are currently investigating. 
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Appendix A 
This appendix presents the operators, transformation 

rules and implementation rules in our. prototype scientific 
optimizer. It also provides example code from the model 
input file used to implement the system under the Volcano 
optimizer generator. 

Figure 3, presented earlier, lists the operators used in 
our prototype. Operators are specified by type, name and 
number of inputs. For instance, 

%operator JOIN 2 
%algorithm HASH-JOIN 2 

specifies logical and physical join operators. 
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Figure 12 lists the transformation rules applicable to 
set operators, primarily the standard relational 
transformations. For some transformation rules, there are 
conditions which must be met before the rule can be 
applied. The join / merge interaction requires the 
inclusion of type conversion operations. Likewise, 
interactions between join and sample operators require 
that the split be statistically valid. Finally, some 
interactions require that attributes remain valid, such as in 
the case of a math operator and a projection operator, 
where the projection must not eliminate attributes used by 
the math operator. 

As an example transformation rule, the join 
associativity rule is coded as follows: 

%trans-rule (JOIN ?op-argl 
((JOIN ?op_arg2 (?l ?2)) ?3)) 

-> (JOIN ?op_arg3 
(?l (JOIN ?op_arg4 (?2 ?3)))) 

%cond-code { ( 
/* Check the validity of this transformation */ 

1) 
%appl-code { { 

I* Set up the ?op_arg3 and ?op_arg4 arguments. *I 
)) 

Figure 13 lists the transformation rules applicable to 
time series and spectrum operators, as well as the any bulk 
type and type conversion operators. Once again, some 
interactions require type conversion operators, such as the 
equivalence between digital and spectral filters. Also, as 

Figure 12: Set Operator Logical Transformation Rules 
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Spectral filters push through merges 
Spectral Filter II 

Math I CD I ~womathooeratorscombine II 

Conversions I CD I Multiple conversions combine II 

Figure 13: Time Series & Spectrum 
Logical Transformation Rules 

noted earlier, interpolation / join interactions can convert 
the join operation into an outer join. Finally, conversions 
between sets and other types require that the set have 
appropriate time or frequency attributes. 

On these two tables, rule names are abbreviated as 
follows: AS Associativity, CB Combination, CM 
Commutativity, EL Elimination, EQ Equivalence, IN 
Interchange, NI Non-interference. 

Figure 14 lists the implementations rules used to 
implement the logical operators, along with the conditions 
under which the implementation rule can be applied. The 
code for the hash join implementation rule is given below: 

%impl-rule (JOIN ?op-argl (?l ?2)) 
-> (HASH-JOIN ?al-argl (?l ?2)) 

Condition code can also be included on implementation 
rules. In our prototype, it is only required for the FFT 
implementation, in which the input sequence must have a 
fixed delta between records. 
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