
Global Memory Management in Client-Server DBMS Architectures

Michael J. Franklin, Michael J. Carey, Miron Livny

University of Wisconsin - Madison
{mjf, Carey, livny]@cs.wisc.edu

ABSTRACT - Earlier performance studies of client-server data-
base systems have investigated algorithms for caching locks and
data at client worhxtations to reafuce latency and offload the
server. These studies have been restricted to algorithms in which
d&abase pages that were not in the local client buffer pool or the
server buffer pool were read in from disk. In this paper we investi-
gate a technique that allows client page requests to be serviced by
other clients, thus treating the entire system as a single memory
hierarchy. We also present techniques for efficiently exploiting
this global memory hierarchy by reducing the replication of pages
between client and server buffer pools. Global memory manage-
ment algorithms that employ various combinalions of these tech-
niques are then described, and the performance tradeoffs among
the algorithms we investigated under a range of workloads and
system conjiguratio~ using a simulation model.

1. INTRODUCTION
Rapid improvement in the price/performance characteristics of

workstations, servers, and local-area networks has enabled sophis-
ticated database function to be migrated from machine rooms to
desktops. As a result, networks of high-performance workstations
and servers have become an important target environment for the
current generation of commercial and prototype database systems.
The workstation environment provides a new set of performance
opportunities and challenges for the design of database systems.
One important attribute of such an environment is the presence of a
complex memory hierarchy comprising local workstation memory,
remote workstation memories, server memory, and disks. Efficient
exploitation of the various levels of the hierarchy is necessary in
order to attain high performance for large database systems in such
an enviroMlertL

Database systems intended for a workstation environment are
implemented using a &r&server software architecture. Client
processes execute on workstations and provide interaction with
user applications. Server processes typically execute on shared
server machines and provide access to the database in response to
requests from multiple clients. Many recent client-server database
systems (e.g., ObServer [Hom87], ObjectStore [Lamb91], 02
[Deux91], and client-server EXODUS [Exod91, Fran92cl) utilize a

This work was partially supported by the Defense Advanced
Research Projects Agency under contract DAAB07-92-C-Q508, by the Na-
tional Science Foundation under grant IRI-8657323, and by a research grant
from IBM Corporation.

Permission lo copy without fee all or parr of thir material is granted pro-
vided lhat the copies are not made or dislributed for direct commercial ad-
vantage, the VLDB copyright notice and Ihe title of the publicalion and its
&are appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy o~knvise, or to republish, requires
a fee and/or special permission from tk Endmvmenl.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada, 1992

page server architecture. In these systems, clients interact with
servers by sending requests for specific database pages or groups
of pages. The server then provides the requested pages back to the
client. In a page server system, the server is also responsible for
providing transaction support, such as concurrency control and
recovery, as well as other shared services for the database.

1.1. Performance of Page Server Systems
Recently, there have been several studies of the performance

aspects of caching algorithms for page server systems wilk90,
Care91, Wang91, Fran92al. These studies have shown the advan-
tages and potential pitfalls of attempting to offload servers by cach-
ing locks and/or data at client workstations across transaction
boundaries. Such caching is referred to as inter-transaction cach-
ing. Inter-transaction lock caching allows workstations to avoid
sending lock request messages to the server; if a workstation
already has the proper lock cached for an object, it can access the
object without 6rs.t requesting permission from the server. This
reduction in lock requests results in reduced workstation and server
CPU requirements for processing messages, reduced access to the
lock manager on the server, and reduced competition for the net-
work itself. Thus, lock caching was shown to have two beneficial
effects: First, latency was improved due to the reduction in the
overall pathlength for transactions. Secondly, the processing load
on the server was lessened, thereby alleviating a potential
bottleneck in the system.

In addition to showing the potential performance benefits of
lock caching in many workloads, the above studies showed that
inter-transaction data caching could provide even more significant
performance benefits by offloading the server disk in addition to
reducing messages and CPU requirements. Data caching effec-
tively increases the size of the server’s buffer pool by extending it
to each client’s workstation. This extended buffer pool was found
to be particularly effective in the presence of locality (i.e., affinity
of clients for particular pages). In all of the studies mentioned
above, each client used a three-level memory hierarchy consisting
of: 1) the local workstation’s memory, 2) server memory, and 3)
server disk. Thus, each client workstation had access to only a
fraction of the total memory in the system. As a result of this, the
studies showed that in many cases, significant disk I/O was
required even though the aggregate memory of the system was as
large or larger than the portion of the database being accessed by
the workstations. Furthermore, two additional inefficiencies of this
type of data caching were identified in [Care91]. First, when small
numbers of workstations were present, there was often a high
correlation between the pages resident in the server buffer pool and
those resident in the client buffer pools. This correlation reduced
the effectiveness of the server buffer pool, as buffer misses at
clients often resulted in buffer misses at the server. Secondly, it
was shown that with large numbers of clients, each with a fairly
large buffer pool, excessive replication of pages in client buffer

596

pools could lead to sign&ant overhead for updates. Therefore, in
most of the workloads examined algorithms that insured con-
sistency by invalidating remote copies of pages on updates (hence,
reducing replication) outperformed algorithms that propagated
changes to remote copies.

1.2. Opportunities for Improvement
While the data-caching techniques used in these earlier studies

were effective in many situations, they were ultimately limited by
their primarily local nature. Performance was hindered since
clients were unable to exploit a large portion of the memory avail-
able in the system and since the memory that was available was not
efficiently utilized. However, in all of the algorithms that allowed
caching of both data and locks the server was required to have
knowledge of the location of all copies of pages in the system.
This information provides an opportunity to improve upon the pre-
vious techniques through the use of a global approach to memory
management. In this paper we investigate the tradeoffs involved
with three specific global memory management techniques. First,
the clients are allowed to exploit the entire memory of the system
by obtaining pages from other clients. Second, buffer replacement
policies at the server are modified to reduce the replication of the
buffer pool contents of the server and its clients. Third, a simple
protocol between clients and servers is used to extend the client
buffer pools by moving some of the pages that are forced out of a
client’s buffer pool into the server’s memory.

1.3. Overview of the Paper
The remainder of the paper is structured as follows: Section 2

details the techniques used for global memory management and a
set of algorithms that utilize these techniques. Section 3 describes
a simulation model used to investigate the tradeoffs among these
techniques over a range of system configurations and workloads.
Section 4 presents a series of experiments and their results. Set
tion 5 discusses related work. Finally, Section 6 presents conclu-
sions and future work.

2. GLOBAL MEMORY MANAGEMENT
In this section, we discuss three global memory management

techniques and a set of algorithms that use combinations of these
techniques. We then outline the expected performance tradeoffs
among the different techniques. In order to enable a clear discus-
sion of these techniques and algorithms, we first briefly present a
reference architecture for a page server system.

2.1. Page Server Architecture and Assumptions
An example instantiation of a page server DBMS is shown in

Figure 1. The system consists of a single server machine and a
number of client workstations connected over a local-area network
(e.g., an Ethernet). Each client has memory that is available for
use as a buffer pool by the database system. The server typically
has more available memory and more processing power than any
of the clients. The server also has disks on which the permanent
copy of the database resides and a (possibly mirrored) disk for the
recovery log. In this reference architecture, we assume that the
database system does not use client disks for logging or buffering
and thus, clients are shown as diskless. The use of client disks, if
presem is an interesting area for future work, but it is beyond the
scope of the current study.

The database system software consists of client database
processes that execute at workstations and a server database

process that runs at the server machine. A client application
accesses the database by making requests to its local client data-
base process. The method of interaction between applications and
client database process is left unspecified. They may be linked as a
single process or they may be separate processes communicating,
for example, via local IPCs or shared memory. A client database
process manages a single active transaction for its application at a
time, but it is also capable of handling requests from the server and
remote transactions. The client database processes communicate
with each other and with the server database process by sending
messages over the network. Such communication can be initiated
asynchronously by either party and is used to handle database
access, update propagation, concurrency control, and transaction
management functions. For the remainder of the study we assume
that single pages are the unit of buffering and locking. Also,
except where noted, we assume that an LRU page replacement
algorithm is used for each of the buffer pools in the system.

Btier Lock

Figure 1: Architecture of a Page Server DBMS

As stated previously, the caching studies described in Section 1
all used a three-level memory hierarchy, thus limiting the size of
the memory from which to satisfy the page requests of any one
client to a fraction of the total memory available to the database
system. The goal of the global memory management techniques
investigated in this study is to exploit the remaining fraction in an
opportunistic way. That is, as in the previous caching algorithms,
the contents of any one client’s memory are dictated by the
accesses made by that client, but in addition, those contents (if not
exclusively locked) can also be sent to other clients to satisfy their
local cache misses. The techniques also attempt to make better use
of the server memory in light of this new capability.

The ability to exploit the contents of remote client memory
results in a four-level memory hierarchy. The level closest to the
client is the local client memory, which can be directly accessed by
a client database process. The second level of the hierarchy is the
server memory, which is managed by the server database process.
In terms of response time, this memory costs one small message
from the client to the server (for the page request) and one large
message (containing the page itself) from the server to the request-
ing client. Messages incur costs not only for their actual on-the-
wire tune, but also for CPU processing at both the sender and the
receiver. The third level of the hierarchy is remote client memory.
The server is the only site with knowledge of where page copies
are cached in the system, so access to this level of the hierarchy
must go through the server. Therefore, access to remote client

597

memory costs two small messages and one page-sized message:
the client first sends a small message to request the page from the
server, the server then forwards that request to another client, and
the remote client sends a large message containing the page to the
requesting client.’ Finally. the fourth level of the hierarchy is the
server’s disk. An access to this level of the hierarchy is the most
expensive, costing one small message and one page-sized message
as well as one or two disk accesses. (Two disk accesses are
required if a dirty page must tist be forced from the server’s buffer
pool in order to make room for the requested page to be read in
from disk). In general, the goal of the global memory management
techniques studied here is to move accesses from the lowest (and
most expensive) level of the hierarchy to the higher levels. In par-
ticular, the techniques will attempt to convert what would have
been disk accesses in a non-global scheme into cheaper accesses to
the server memory or to remote client memories.

Up to this point, the discussion of memory management issues
has been wncemed primarily with the use of memory to avoid disk
reads. However, in order to provide durability for the updates of
committed transactions, the pages containing these updates must
eventually be written to stable storage. In a client-server system,
the server is responsible for ensuring the durability of committed
updates and also for ensuring that all sites see a transaction-
consistent view of the database. The server implementation can be
simplified if the server always has the most recent wmmitted copy
of a page (either in its memory or on disk). This can be achieved
by requiring all pages dirtied by a transaction to be copied to the

server before the transaction is allowed to commit.2 Dirty pages
that are copied back to the server have two wntlicting characteris-
tics that complicate the buffer replacement policy at the server. On
one hand, reclaiming a dirty page’s buffer slot requires an I/O to
write the page to disk, so keeping a dirty page in the buffer longer
can reduce I/O by combining multiple writes to the same page into
a single disk write [Chen84]. On the other hand, many of the dirty
pages present in the server’s buffer pool may not actually be valu-
able pages, as their placement in the server buffer pool is based on
considerations other than their probability of being accessed; the
presence of such dirty pages may result in additional disk reads for
other pages that are relatively hotter. As will be seen in later sec-
tions, these conflicting characteristics affect the performance of the
different global memory management techniques.

2.2. Global Memory Management Techniques
As stated previously, this study wncentrates on three related

global memory management techniques. The techniques are out-
lined below and then presented in more detail in the following sec-
tion. The three techniques are:

Forwarding - The main technique we investigate is to allow a
request for a page that is not in the server’s buffer pool to be

’ We do not require perfed knowledge of page copy locations at the
server, so there is a small possibility that the remote site will not be able to
forward the requested page. Handling of this situation results in an extra
message and possibly a disk access, as will be explained in Section 2.3.2.

’ The relaxation of this restriction requires that the server keep track
of the location of any committed updates that are not reflected in either its
memory or disk. Also, the server must be able to selectively recover any
committed updates that are lost as the result of a client crashing (e.g., using
techniques similar to those for handling media recovery).

forwarded to a remote client if that client has a copy of the page in
its buffer pool. Upon receipt of a forwarded request, the remote
client sends a copy of the page directly to the requesting client.
The goal of this technique is to reduce disk I/O by extending the
amount of memory available to satisfy client page requests. This
technique has the highest potential for performance improvement
of the three studied, but also requires the most modification to
existing data caching algorithms.

Hare Hints - Hate hints are a simple heuristic that can help to
keep a larger portion of the database available in memory when the
forwarding technique is in use. When the server transfers a page to
a client, the server marks that page as hated (i.e., it makes it the
“least recently used” page in its buffer pool). The page will then
be likely to be replaced when a buffer frame is needed for a new
page. This heuristic is an attempt to reduce page replication
between the buffer contents of a server and its clients, thereby
allowing a larger number of distinct pages to reside in the global
memory. When a page is transferred to a clienf it is known that
the page is in memory elsewhere in the system, and thus, the copy
at the server does not contribute to the percentage of the database
available in global memory.

Sending Dropped Pages - This technique attempts to use the
server buffer pool to prevent a page from being completely
dropped out of the global memory. With this technique, a client
informs the server when it intends to drop a particular page from
its buffer pool by piggybacking that information on a page request
message it sends to the server. If the server determines that the
copy to be dropped is the only copy of the page that resides in glo-
bal memory, it asks the client to send it the page when it is
replaced horn the client’s buffer pool.

2.3. Memory Management Algorithms
In this section, we describe five memory management algo-

rithms that will be used to compare the effectiveness of the global
techniques under different workloads and system configurations.
One algorithm is a baseline algorithm that does not use any of the
global techniques. The other four algorithms are extensions of the
baseline algorithm, each of which uses the forwarding technique
along with neither, one, or both of the other two global techniques.

2.3.1. Callback Locking (CBL)
CBL is a lock and data caching algorithm based on callback

locking [Howa88. Lamb91, Wang91]. In this algorithm, clients
initially obtain locks and data by sending requests to the server.
Once a page and its corresponding lock are obtained, they can be
cached at the client across transaction boundaries. The variant stt-
died here allows caching of read locks but not write locks, as cach-
ing write locks was found to be somewhat detrimental to perfor-
mance for the workloads used in this study [Fran92a]. The caching
of a page at a client gives that client an implicit read lock on the
page at the server. From the server’s point of view, the client then
owns the read lock as long as the page is kept in its local buffer.
Write locks, on the other hand, are requested explicitly at the
server and are released at the end of a transaction. When a client
requests a write lock that conflicts with one or more read locks that
are currently cached at other clients, the server “calls back’ the
wnflicting locks by sending requests to the sites which have those
locks (and page copies) cached. When a client receives a callback
request, it checks to see if it is currently using the page. If not, the
client removes its copy of the page (if it indeed has one) from its

598

buffer pool and replies to the server. If the page is currently in use,
however, the client queues the callback request and then immedi-
ately informs the server that the page is in use. This immediate
notification allows the server to perform deadlock detection using
accurate information [Lamb91]. The server grants the write lock
request only after all conllicting locks have been released.

Because the caching of a page at a client grants the client an
implicit read lock, the server must be informed when a page is
replaced from a client’s buffer pool. Rather than send a message
to the server each time it replaces a page, a client simply piggy-
backs the page numbers of any pages it has dropped on the next
message that it sends to the server. As a result of this mechanism,
the server’s lock table can be used to determine the location of
cached data pages throughout the system. This information is
slightly conservative in that there is a window during which the
server may have an entry for a page copy that has just been
dropped from a client This conservatism does not affect correct-
ness, but may result in an occasional unnecessary callback request.

In the CBL algorithm the server buffer is managed using an
LRU policy. Pages become the “most recently used” (i.e., least
likely to be replaced) page when they are accessed to be sent to
requesting clients. Dirty pages that are copied back to the server
by committing transactions are marked as most recently used when
they arrive at the server.

2.3.2. The Forwarding Algorithm (FWD)
The first global algorithm, FWD, is simply the callback algo-

rithm extended with the forwarding technique described in Section
2.2. When the server receives a request for a page (and hence, an
implicit request for a read lock) from a client, it first it obtains a
read lock on the page for the requesting transaction. Once the lock
has been obtained, it checks to see if the page is in its local buffer
pool and if so, it sends a copy of the page to the requester. If the
page is not in the server’s buffer, it checks to see if the page is
cached at another client and if so, forwards the page request to a
remote client that has a copy of the page. When a client receives a
forwarded reques4 it checks to see if it has a copy of the page that
it can send to the requesting client, and if so, sends it. A client
cannot forward a page if it no longer has that page cached or if it is
in the process of trying to obtain a write lock on the page from the
server. If the client can not forward the page, it returns the request
with a negative acknowledgement to the server. If there are no sites
that have copies of the page or if a server receives a negative ack-
nowledgement from a remote c&n& it reads the page into its buffer
pool from disk (as is done for all server buffer misses in the CBL
algorithm) and sends it to the requesting client.

2.33. Forwarding - Hate Hints (FWD-H)
The FWD-H algorithm is a simple extension of FWD that uses

hate hints. The algorithm works similarly to FWD except that
when the server sends a page to a client the page becomes “hated”
(i.e., it is marked as the current “least recently used” page) at the
server, making it likely to be replaced from the server’s buffer
pool. Using the LRU mechanism to implement hate hints has two
effects: 1) a non-hated page will never be aged out of the server’s
buffer pool while the buffer pool contains any hated pages, and 2)
hated pages are aged out in a LIFO manner. As described in Sec-
tion 2.1, transactions send their dirty pages to the server when they
commit. When a dirty page arrives at the server, it is marked as
the most recently used page. If a page is present in the buffer pool

when a dirty copy of the page arrives at the server, the dirty copy
replaces the prior copy and it becomes the most recently used page.
Conversely, if a page that is marked as dirty in the server buffer
pool is sent to a client, it becomes a hated (and still dirty) page.

2.3.4. Forwarding - Sending Dropped Pages (FWD-S)
The next algorithm, FWD-S, is an extension of the FWD algo-

rithm in which clients send some of the pages that they drop to the
server. This algorithm takes advantage of the message patterns
inherent in the baseline CBL algorithm. When a client determines
that it needs to request a page fTom the server, it also checks to see
if the new page will force an existing cached page out of the
buffer. If so, the client piggybacks the page number of the page it
plans to drop on the request message that it sends to the server.
When the server receives such a page request, it checks to see if
the page to be dropped is the only copy of the page that is currently
in the global memory. If so, the server sets a flag in the message
that it uses to respond to the page request; this flag informs the
client that it should send the page (asynchronously) back to the
server rather than simply drop it. When the dropped page arrives
at the server, it is marked as the most recently used page.

There are two additional cases that the algorithm must handle.
First, if the server forwards the request to a remote client, the
remote client must forward the server’s send-back decision to the
requester along with the page. The second case occurs when the
server determines that it will have the only remaining memory-
resident copy of the page once the requester drops its copy. In this
case, the server marks its copy of the page as most recently used
and informs the client that it need not send the dropped page.

2.3.5. Forwarding - Hate Hints and Sending Dropped
Pages (FWD-HS)

The linal global algorithm is the FWD algorithm extended with
both the hate hints and sending dropped pages techniques. It is
simply the combination of the FWD-H and FWJX algorithms.

2.4. Performance Tradeoffs
The previous sections described three techniques for improving

performance through global memory management and presented
algorithms that use these techniques to extend an algorithm that
uses only local memory management. Before presenting the
detailed results from our simulation study of these algorithms, it
will be useful to consider the expected performance rradeoffs
among them. CBL, the baseline algorithm, does not exploit remote
client memory and must therefore rely only on the local client
memory, the server memory, and disk. The FWD algorithm uses
messages and some extTa client CPU processing in an attempt to
avoid doing disk I/O on server buffer misses. The FWD-H algo-
rithm attempts to further reduce disk I/O by avoiding replication
between the contents of the server and its clients, thus increasing
the portion of the database that is available in memory. The
FWD-S algorithm also tries to replace disk I/O by messages; it
attempts to increase the portion of the database retained in memory
by sending a copy of a page to the server rather than dropping it, if
that copy is the only one resident in global memory. In comparing
the FWD-H and FWD-S algorithms, it can be noted that the hate
hints and sending techniques have similar goals in that both try to
increase the portion of the database that is available in memory.
Hate hints is an indirect approach which tries to accomplish its
goal by reducing replication. In contrast the sending technique is
a more direct approach, as the system actively tries to keep pages

599

from being dropped from the global memory. Finally, FWD-HS
combines all of these techniques and. if the benefits of the hate
hints and sending techniques are additive, should keep even more
of the database in memory than the other algorithms.

3. MODELING A CLIENT-SERVER DBMS
In order to study the performance of alternative global memory

management techniques, we have extended the simulation model
that was used in our earlier studies [Care91, Fran92a]. In this sec-
tion we describe how the model captures the database, workload,
and physical resources of a client-server DBMS that supports the
proposed global memory management techniques.

3.1. Database and Workload Models
Table 1 presents the parameters used to model the database and

its workload. The database is modeled as a collection of Data-
base&e pages of PageSize bytes each. The system workload is
generated by a collection of NurnClients client workstations. Each
client workstation generates a single stream of transactions, where
the arrival of a new transaction is separated from the completion of
the previous transaction by an exponential think time with a mean
of ThinkTime. A client transaction reads between 0.5~Transaction-
Size and 1.5.TrarrsacrionSize distinct pages from the database. It
spends an average of PerPageInst CPU instructions processing
each page that it reads (this amount is doubled for pages that it
writes); the actual per-page CPU requirements are drawn from an
exponential distribution.

The model’s scheme for detlning the page access patterns of
workloads allows different types of locality at clients and data-
sharing among clients to be easily specified. The workload is
specitied on a per client basis. For each client two (possibly over-
lapping) regions of the database can be specified. These ranges are
specified by the HotBounds and Cold.Bounds parameters. The
parameter HotAccessProb specifies the probability that a page
access will be to a page in the hot region, with the remainder of
accesses being to pages in the cold region. Within each region,
pages are chosen without replacement using a uniform distribution.
The HotWriteProb and ColdWriteProb parameters specify the
region-specific probabilities of writing an accessed page.

3.2. Physical Resource Model
The model parameters that specify the physical resources of the

system and their usage are listed in Table 2. The client and server
CPU speeds are specified in MIPS (ClienfCPU and ServerCPU).
The service discipline of the client and server CPUs is first-come,
fist-served (FIFO) for system services such as message and I/O
handling. Such system processing preempts other CPU activity.
For non-system processing, a processor-sharing discipline is used.
The sizes of the buffer pools on the clients and on the server
(ClienrBujSize and ServerBufSize) are specified as a percentage of
the database size. The client and server buffer pools are both
managed using an LRU replacement policy as a &fault, but facili-
ties such as hate hints are provided to allow the implementation of
the policies described in Section 2. Dirty pages are not given pre-
ferential treatment by the replacement algorithm but are written to
disk when they are selected for replacement. Note that on clients,
dirty pages exist only during the course of a transaction. Dirty
pages are held on the client until commit time, at which point they
are copied back to the server; once the transaction commits, the
updated pages are marked as clean on the client.

TransactionSize Mean no. of pages accessed per transaction
HotBounds Page bounds of hot range
c01dL30unds Page bounds of cold range
HotAccessProb
HotWriteProb
ColdWriteProb
PerPageInst

Prob. of accessing a page in the hot range
Prob. of writing to a page in the hot range
Prob. of writing to a page in the cold range
Mean no. of instructions per page on read
(doubled on write)

ThinkTime 1 Mean think time between client transactions

Table 1: Database and Workload Parameters

L

ClientCPU
ServerCPiJ
ClientBuflize
ServerBufSize
ServerDisks
MinDiskTime
MaxDiskTime
DiskOverheadlnst
NetworkBandwidrh
Fixedvlsglmt
PerByteMsgInst
ControlMsgSize
LockInst
RegisterCopyImt

7

Instruction rate of client CPU
Instruction rate of server CPU
Per-client buffer size
Server buffer size
Number of disks at server
Minimum disk access time
Maximum disk access time
CPU overhead for performing disk I/O
Network bandwidth
Fixed no. of inst. per message
No. of addl. inst. per message byte
Size of a control message (in bytes)
No. of inst. per lock/unlock pair
No. of inst. to register/tmregister a copy

Table 2: Resource and Overhead Parameters

The parameter ServerDisks specifies the n~ber of database
disks attached to the server, and each is modeled as having an
access time that is uniformly distributed over the range from Min-
DiskTime to MaxDtikTime. The disk used to service a given
request is chosen at random from among the server disks, so the
model assumes that the database is uniformly partitioned across all
server disks. The service discipline for each of the disks is FIFO.
A CPU charge of DisloOverheudInst instructions is incurred for
each I/O request. We do not explicitly model logging, as it is not
expected to impact the relative performance of the algorithms
being studied. A very simple network model is used in the
simulator’s Network Manager component: the network is modeled
as a FIFO server with a service rate of NetworkBandwidth. We did
not model the details of a specific type of network (e.g., Ethernet,
token ring, etc.). Rather, the approach we took was to separate the
CPU costs of messages from their on-the-wire costs, and to allow
the on-the-wire costs of messages to be adjusted using the
bandwidth parameter. The CPU cost for managing the protocol for
a message send or receive is modeled as FixedMsgInst instructions
per message plus PerByteMsglnst instructions per message byte.

Finally, the model allows the specification of several other
resource-related parameters. The size of a control message (such
as a lock request or a commit protocol packet) is given by the
parameter ControZMsgSize; messages that contain one or more
data pages are sized based on Table l’s PageSize parameter. Other
costs include LockInst, the cost involved in a lock/unlock pair on
the client or server, and RegisterCopyInst, the cost (on the server)
to register and unregister (i.e., to track the existence of) a newly
cached page copy or to look up the copy sites for a given page.

600

3.3. Client-Server Execution Model
In the simulator, each client consists of several modules. These

include: a Source, which generates the workload; a Client
Manager, which executes the transaction reference strings gen-
erated by the Source and processes requests and page receipts from

the server and other clients; a CC Munuger, which is in charge of
concurrency control (i.e., locking) on the client; a Buffer Manager,
which manages the client buffer pool; and a Resource Manager,
which models the other physical resources of the client worksta-
tion. The server is organized similarly, except that it is controlled
by the Server Munager, which acts in response to the requests sent
to it by the clients.

Client nansactions execute on the workstations that submit
them. When a transaction references a page, the Client Manager
must lock the page appropriately and check the local buffer pool
for a cached copy of the page; if no such copy exists, the client
sends a request for the page and a read lock to the server. Both
locking and buffer management are simulated in detail based on
referenced page numbers. Once a local copy of the page exists, the
transaction processes the page and decides whether or not to
update it. In the event of an update, the client obtains a write lock
on the page from its local lock manager and then requests a write
lock from the server. The server may be required to callback read
locks from other clients before it can grant the write lock request.
Once the write lock is obtained, further CPU processing is per-
formed on the page. At commit time, the Client Manager sends a
commit request together with copies of any updated pages to the
server, which performs the commit processing for the transaction
(e.g., placing the copies of the dirty pages in its buffer and releas-
ing locks) and then informs the client that the commit was success-
ful. The server performs deadlock detection based on the informa-
tion in its lock table and the responses received to its callback
requests if a callback is involved in a potential deadlock. If the
server decides that it must abort a transaction, it chooses a victim
and informs the victim’s client manager that the transaction must
be aborted. If the victim has an outstanding callback request, the
other clients participating in the callback are also informed. When
a uansaction’s client receives an abort request. its Client Manager
arranges for the abort, asks the Buffer Manager to purge any
updated pages, and then resubmits the same transaction.

4. EXPERIMENTS AND RESULTS
In this section, we present the results of a simulation study of

the global memory management algorithms described in Section
2.3. Due to space limitations, we describe only a subset of our
results. Additional experiments and analysis can be found in
[Fran92b].

4.1. Metrics and Parameter Settings
The primary performance metric employed in this study is the

throughput (i.e., transaction completion rate) of the system.? A
number of additional metrics are also used to aid in the analysis of
the experimental results, including the server buffer hit rate, the
client and server resource utilizations, the average number of mes-
sages required to execute a transaction and several others. One
special metric that we use is the “database portion available in

3 We use a closed queuing model so the inverse relationship between
throughput and response time makes either a sufficient metric.

memory”. This is the percentage of the pages of the database that
are available to a client without performing a diik I/O. For the for-
warding algorithms, this metric is the union of the contents of the
server buffer pool and all client buffer pools, whereas for CBL it is
only the union of the server buffer pool contents and the contents
of a single client. The various me&s that are presented on a “per
commit” basis are computed by dividing the total count for the
metric by the number of transaction commits over the duration of a
simulation run. To ensure the statistical validity of our results, we
verified that the 90% confidence intervals for transaction response
times (computed using batch means) were within a few percent of
the mean which is more than sufficient for our purposes.
Throughout the paper we discuss only performance differences that
were found to be statistically significant.

Table 3 describes the workloads considered in this study.
These workloads and their motivations will be explained as their
corresponding experiments are presented Briefly, the HOTCOLD
workloads have a high degree of locality per client and a moderate
amount of sharing among clients. Two variants of HOTCOLD are
studied: RO-HOTCOLD, a read-only variant, and RW-
HOTCOLD, which has a moderate write probability (20%). UNI-
FORM is a moderate write probability workload with no client
locality. Table 4 shows the system parameter settings used in the
experiments reported here. In setting these parameters we
attempted to choose values that are reasonable approximations to
what might be expected of systems today or in the near future. The

1 HOTCOLD (UNIFORM j i
Transactwrhe I 20~a~es I 20 Dazes I

~

Table 3: Workload Parameter Values for Client n

DatabaseSize 1,250 pages (5 megabytes)
PageSize 4,096 bytes
NumCliellts 1 to 25 client workstations
ClientCPV 15 MIPS
ServerCPU 30 MIPS
ClientBltfSize 5% or 15% of database size
ServerBufSize 30% of database size
ServerDisks 2 disks
MinDiskTime 10 millisecond
MaxDiskTime 30 milliseconds
DiskOverheadInst 5000 insmctions
NetworkBandwidth 8 or 80 megabits second per
FixedMsgInst 20,000 insmlctions
PerByteMsghst 10,000 instmctions per 4 kilobyte page
ControlMsgSize 256 bytes
LQckIrlst 300 instructions
RegisterCopyIrut 300 instructions

Table 4: System Parameter Settings

601

experiments that we &scribe here were run with 15 MIPS client
workstations and a 30 MIPS server. We ran experiments with two
network bandwidths, one corresponding roughly to current Ether-
net speeds (referred to as the slow network in the following XX-
tions) and one corresponding roughly to FDDI technology
(referred to as the fast network). The bandwidth values used (8
Mbits& and 80 Mbits& respectively) represent slightly
discounted values of the stated bandwidths of those networks. The
number of client workstations is varied from 1 to 25 in order to
study how the various algorithms scale. The database size is 1,250
pages, with a page size of 4 kilobytes. We used a relatively small
database in or&r to make simulations involving fractionally large
buffer pools and transactions feasible in terms of simulation time;
moreover, our intent is to capture that portion of the database
which is of relatively current interest to the client workstations,
rather than to model the entire database.

4.2. Experiment 1: Read-Only HOTCOLD Workload
The 6rst set of results that we will examine uses a version of

the HOTCOLD workload that performs no updates. Although
such a read-only workload is not expected to be common, we
analyze it first in order to examine the buffering behavior of the
various algorithms in the absence of the complications that are
introduced by dirty pages. In the RO-HOTCOLD workload, as
shown in Table 3, each client has its own 50 page region of the
database to which 80% of its accesses are directed. The hot region
of one client is contained in the cold regions of all other clients, so
there is substantial sharing of pages in this workload in addition to
high per-client locality.

4.2.1. RO-HOTCOLD, Small Client Buffer Pools
The aim of each of the global memory management techniques

is to reduce the need for disk I/O by increasing the portion of the
database that is available in memory. However, there are two rea-
sons why such an increase may not Ranslate into a performance
improvement: 1) the resources used to increase the portion of the
database available in memory may be more expensive than the
resources saved by the increase, and 2) in a skewed workload such
as RO-HOTCOLD, some pages are more valuable than others, so a
higher portion of the database available in memory does not neces-
sarily imply reduced disk I/O. In the following, we first compare
the algorithms based on the portion of the database that they keep
available in memory, and then examine the resulting resource
demands. Finally, we examine how these demands translate into
throughput, given the system parameters of Section 4.1.

4.2.1.1. Portion of Database Available In Memory
Figure 2 shows the percentage of the database available in

memory for each of the algorithms when running the RO-
HOTCOLD workload with small client buffer pools (5% of the
database size). The dotted line shows the highest in-memory per-
centage that could be obtained ideaIly (based on the amount of
memory in the system). Algorithms typically have less than the
ideal amount of the database in memory due to replication among
the contents of the system’s buffers pools. There are two types of
replication that can arise: server-client correlation, and client-client
replication. Server-client correlation can arise when the server and
the client buffer managers use the same page replacement policy
(LRU). In this situation, when the ratio of the number of pages
resident in the server buffer pool to the number of distinct pages

that are resident in client buffer pools is high (e.g., greater than
one), a page that is in a client’s buffer pool is also likely to be in
the server’s buffer pool. Server-client correlation is most prom-
inent with small client populations. As clients are added to the
system, the ratio of pages at the server to pages at the clients
becomes smaller, and as this ratio decreases, the server can repli-
cate fewer of the pages that are kept at clients. Client-client repli-
cation arises from overlapping client requests and becomes more
likely as clients are added to the system.

Turning to Figure 2, we lirst note that CBL has the smallest
portion of the database available in memory. CBL does not use
forwarding, so the addition of clients does not increase the amount
of memory that can be used to service a particular client’s requests.
CBL has a slight increase the percentage of the database it has
available in memory as clients are added to the system, which is
due to the reduction in server-client replication. CBL is unaffected
by client-client replication, as each client has access only to the
contents of the server’s buffer pool and its own buffer pool. In
contrast to CBL, the forwarding algorithms can capitalize upon the
buffer pools brought fo the system by additional clients and thus,
they all show a significant increase in the portion of the database
available in memory as clienrs are added. However, as seen in Fig-
ure 2, none of the forwarding algorithms are able to attain the ideal
in-memory percentage. The forwarding algorithms are affected by
both types of replication described above. However, all of the for-
warding algorithms incur the same level of client-client replication,
as the g!obal memory management techniques they use do not alter
the buffering behavior at clients. Therefore, the differences among
the forwarding algorithms shown in Figure 2 are the result of
differences in their server-client correlation.

FWD, the simplest forwarding algorithm, initially shows very
little improvement over CBL. This is due to the correlation
between server and client buffers - the contents of the additional
client buffers are replicated in the server’s buffer pool. As clients
are added, the impact of the server-client correlation decreases,
until at 25 clients, FWD has access to almost 90% of the database
in memory. Compared to FWD, the FWD-H algorithm attains a
relatively high in-memory percentage with smaIl numbers of
clients because hate hints reduce the server-client correlation.
Beyond 15 clients, however, FWD-H’s advantage over FWD
begins to dissipate, until at 25 clients, FWD-H is only slightly
better than FWD. This is because as clients are added to the sys-
tem, the fraction of FWD-H’s page requests that are serviced by
forwarding increases. Requests serviced by forwarding do not go
through the server’s buffer pool, so the hate hints become less
effective at reducing the server-client correlation.

FWD and FWD-H both have somewhat less than the ideal in-
memory database percentage at 25 clients. FWD-S, on the other
hand, comes close to having the entire database in memory at this
point. The success of FWD-S is due to its effective use of the
server buffer pool - it uses the servez buffer pool to retain pages
that would otherwise have been dropped from the global memory.
However, with smal1 client populations, the sending technique has
little effect. When server-client buffer correlation is high, pages
that are aged out of clients are likely to be in the server buffer pool,
so few dropped pages are sent to the server. The sending tech-
nique is quite effective for larger client populations but less effec-
tive for smaller populations, while the hate hints technique has the
opposite characteristics. For this reason, the available in-memory
percentages for the two algorithms eventually cross. FWD-HS,

602

.-.- Ideal

+FWD-HS :

Figure 2: % of DB Available in Memory
(RO-HOTCOLD, 5% Client Bufs)

0
! 2n-

+ FWD-HS
z 4 FWD-s

0 FWD-H
*FWD
8 CBL

0 ,...,....,....,....,....,
0 5 10 15 20 25

clkllts

Figure 5: Message Volume per Commit
(RO-HOTCOLD, 5% Client Bufs)

Figure 3: Disk I/O Operations per Commit
(RO-HOTCOLD, 5% Client Bufs)

1.0 + FWD-HS
0.9 + FWD-s

0.8 0 FWJI-H

i
*l-W

0.7
CL 8 CBL

Figure 6: Server Buffer Hit Rate
(RO-HOTCOLD, 5% Client Bufs)

which combines the hate hints and sending techniques, keeps the
largest portion of the database available in memory throughout the
range of 1 to 25 clients. At 25 clients, FWD-HS has almost 100%
of the database available in memory. The interaction of the two
techniques is effective throughout the range of client populations,
as it tends to keep a copy of a page in memory at either a client or
at the server, but not at both.

4.2.1.2. Resource Requirements
We now turn our attention to the resource requirements of the

five global memory management algorithms. As expected, the
general trend is that in most cases, an increase in the percentage of
the database available in memory results in a decrease in diik I/O
(since more requested Rages are found in memory) and an increase
in messages (for serving such requests and for managing the con-
tents of global memory). Figure 3 shows the total number of disk
I/OS per committed transaction (in this workload, all disk I/OS are
reads) for the various algorithms. The message requirements are
shown in Figure 4, which shows the average number of messages
sent per committed transaction, and Figure 5, which shows the
total number of message bytes sent per committed transaction.
The latter two metrics can differ because some messages are con-
uol messages (256 bytes), while other messages contain one or

+ FWD-HS
+ FWD-s
0 FWD-H
*FWD
8 CBL

,",',"",""(""I
5 IO 15 20 25

it Clknts

Figure 4: Messages Sent per Commit
(RO-HOTCOLD, 5% Client Bufs)

Clients

Figure 7: % Server Misses Forwarded
(RO-HOTCOLD, 5% Client Bufs)

more 4K byte pages. The message and disk I/O requirements for
transactions depend on the client buffer hit rate (not shown), the
server buffer hit rate (shown in Figure 6). and the percent of server
misses that are forwarded to other clients (shown in Figure 7). The
sending algorithms also incur additional page-sized messages for
sending dropped pages back to the server. All of the algorithms
have the same client buffer hit rate (slightly over 65%), so for all
of the algorithms, clients send the same number of page requests to
the server. Overall, CBL sends the fewest messages per commit,
because it never forwards requests to other clients. For the same
reason. its disk I/O requirements are inversely proportional to its
server buffer hit rate. CBL has the highest disk I/O requirements
at 10 clients and beyond. Note that beyond 10 clients, CBL is the
only algorithm for which disk requirements do not decrease as
clients (and hence, more buffers) are added to the system.

CBL’s server buffer hit rate drops from 58% to 24% (where
30% is what would be expected with a uniform access pattern).
This drop is due to the combination of the skewed nature of the
RO-HOTCOLD workload and the small client buffer pools. Due
to the small client buffer pools (62 pages), the LRU mechanism at
each client frequently ages out pages that belong to the client’s hot
range (at the clients, the hit rate for hot region pages is about 81%).
With small numbers of clients in the system, the server buffer pool

603

can hold all of the hot region pages for all of the active clients, and
therefore, client misses due to aged-out hot pages are likely to be
found at the server. However, as clients are added, the server can
hold fewer of the active clients’ hot region pages, so the server hit
rate for each client’s hot region pages drops; in this case, to below
18% at fifteen clients and beyond (compared to over 28% for cold
region requests). The lower hot region hit rate is due to another
correlation phenomenon: the server tends to keep only the hot
region pages that were most recently requested by a client. Unfor-
tunately, these pages are the wrong pages to keep, as hot region
pages tend to reside in a client’s buffer pool for a long time before

they are finally aged-out and subsequently re-requested!

As shown in Figure 6, FWD has a similar overall server hit rate
to CBL. However, FWD is able to satisfy a significant number of
server buffer misses by forwarding requests to other clients (see
Figure 7). so as clients are added, it has an increase in messages
but a decrease in disk I/O. In contrast to FWD, the other forward-
ing algorithms take a more active role in affecting the server’s
buffering behavior. FWD-H has a server buffer hit rate that
remains around 30%. The hate hints reduce the impact of the
skewed workload on the server buffer hit rate, and thus, the hot
region and cold region hit rates both remain close to 30%. Unfor-
tunately, for small numbers of clients, FWD-H has a much lower
hit rate than those obtained by the other algorithms. In its attempt
to reduce server-client correlation, FWD-H removes hot pages
from the server’s buffer pool. Many of those pages, while repli-
cated for a brief time, will be eventually aged out of the client’s
buffer pool and re-referenced at the server. Thus, with small
numbers of clients, the reduction in server-client correlation causes
a lower server hit rate, and as a result, FWD-H has the highest disk
requirements up to 5 clients (Figure 3). However, at 10 clients and
beyond, FWD-H’s server hit rate becomes better than that of CBL
and FWD because it avoids the server-client correlation that causes
those algorithms to have a low hit rate for hot region pages. The
reduction in server-client correlation also allows FWD-H to be
more successful than FWD at forwarding requests missed at the
server to other clients (Figure 7). As a result of the server hit rate
and forwarding behavior, FWD-H sends more messages than CBL
and FWD, but beyond 5 clients, performs fewer disk I/OS.

The sending technique provides a substantial improvement in
the server hit rate. FWD-S’s high server hit rate is due to the send-
ing technique’s ability to keep hot region pages in memory. The
influence of the sending technique can be seen in Figure 4, which
shows the number of messages sent by FWD-S increasing until 10
clients are in the system. The number of dropped pages sent to the
server (not shown) increases due to the reduction in server-client
buffer correlation - hot pages that are aged out of client buffers
become less likely to be in the server’s buffer pool as clients are
added. Beyond 10 clients, the number of pages sent by FWD-S
begins to decrease, as it becomes more likely that a page dropped
by a client is resident in the memory of another client. Despite the
reduction in sent pages, FWD-S’s message count remains fairly
constant due to an increase in forwarded requests. However, its per
transaction network bandwidth demands actually decrease (see

1 In fact, the 18% hit rate obtained for hot region pages is due pri-
marily to requests for hot region pages that were recently accessed as cold
region pages by other clients. lf there were no overlapping cold region
accesses, the hot region hit rate would approach zero.

Figure 5). As shown in Figure 7, at 10 clients and beyond, FWD-S
forwards a larger percent of its server misses than the non-sending
algorithms. It is important to note that the crossover point of the
forwarded percentages of FWD-S and FWD-H occurs with fewer
clients than the crossover of their respective in-memory percen-
tages shown in Figure 2. This is because FWD-S does a better job
of keeping hot range pages at the server so a miss at the server is
likely to be for a cold range page. Cold range pages are typically in
the hot range of another client+ and will often be cached in that
client’s local buffer pool.

The combination of hate hints and the sending technique gives
FWD-HS the best server hit rate of the five algorithms. FWD-HS
also has the highest forwarded percentage of all of the algorithms.
In fact at 20 clients and beyond, FWD-HS reads a page from disk
only once; all subsequent transactions can access the page in
memory. As a resulL FWD-HS has the lowest disk I/O require-
ments and the highest message count of the five algorithms.
FWD-HS also exhibits an interesting, and potentially expensive,
behavior with small client populations: hot region pages are
“bounced” between clients and the server. With 2 clients in the
system, over 95% of the pages dropped by the clients are sent back
to the server. This occurs at a large cost in messages and network
bandwidth, and provides only a small savings in disk I/O. As with
FWD-S, the number of dropped pages sent to the server decreases
for FWD-HS as clients are added to the system. This reduction,
combined with an increase in forwarded requests, results in a slight
decrease in message count and a significant drop in network
bandwidth requirements.

4.2.13. Throughput Results
The last two sub-sections examined the effectiveness of the

algorithms in keeping pages available in memory and studied their
resource requirements. With these results in mind, we now tum to
the resulting performance of the algorithms. Figure 8 shows the
throughput results for this experiment with the slow network set-
ting (NetworkBandwidth = 1 MByte/set). All of the forwarding
algorithms eventually outperform CBL, showing the potential
advantages of avoiding I/O - even at the cost of additional mes-
sages. FWD-H has the highest throughput through much of the
range, with FWD equaling it at 25 clients. Beyond 10 clients, the
sending algorithms perform below the level of FWD and FWD-H.
In this case, all of the forwarding algorithms eventually become
network-bound and their relative performance becomes inversely
proportional to their message bandwidth requirements. With small
client populations, however, the relative performance results are
somewhat different. The forwarding technique provides no clear
performance improvement over the CBL algorithm; in fact, FWD-
H and FWD-HS perform slightly worse than CBL up to 5 clients.

The CBL algorithm initially performs well because it has low
message requirements and its disk requirements are in line with the
other algorithms. However, the other algorithms soon produce a
decrease in I/O requirements, while CBL does not. CBL
approaches a disk bottleneck at 10 clients and ultimately has the
lowest performance. FWD performs similarly to CBL up to 5
clients, but decreasing I/O requirements allow it to eventually per-
form much better than CBL, approaching a network bottleneck at
2.5 clients. FWD-H initially suffers due to high I./O requirements
with small client populations. However, as clients are added to the
system, its I/O requirements diminish and, because it has moderate

604

+ FWD-HS
+l=wx
8 FWD-H
*FwD
4cBL

o,....,....,....,....,....,
0 5 10 I5 20 25

#CUfSk

Figure 8: Throughput
(RO-HOTCOLD, 5% Cli Bufs, Slow Net)

+ FWD-HS
. em-s

Figure 9: Throughput
(RO-HOTCOLD, 5% Cli Bufs, Fast Net)

message requirements, it becomes the best performing algorithm.
FWD-S has the best performance at 5 clients due to its very low
I/O requirements. Beyond 5 clients, however, the increase in
dropped pages sent by FWD-S causes its performance to suffer
relative to the FWD and FWD-H algorithms, which have lower
bandwidth requirements. FWD-S is network-bound at 10 clients
and beyond, its throughput improvement beyond this point is due
to the reduction in network bandwidth requirements as fewer
dropped pages are sent to the server. FWD-HS has the lowest I/O
requirements throughout the range of client populations, but due to
its high message requirements and the slow network, it performs
poorly compared to FWD and FWD-H. FWD-HS is the first algo-
rithm to hit the network bottleneck, it becomes network-bound at 5
clients. Its network bandwidth requirements cause it to perform
below FWD-S prior to 15 clients, and only slightly better than
FWD-S thereafter. Figure 9 shows the throughput results for the
same workload and buffer pool sizes as the previous case, but with
a faster (e.g., FDDI) network. The faster network has the effect of
reducing the cost of using network bandwidth, and thus, the trade-
off of messages for disk I/O becomes a better bargain. In this case,
therefore, FWD-HS has the best performance, followed by FWD-
S, FWD-H, and FWD. CBL, the non-forwarding algorithm, has
the lowest performance.

4.2.2. RO-HOTCOLD, Large Client Buffer Pools
We now turn our attention to the RO-HOTCOLD workload

with the client buffer pool size increased to 15% of the database
size. The larger client buffers have two important effects for this
workload: 1) more of the database is available in memory with
smaller numbers of clients than in the cases previously studied, and
2) the client buffers are large enough so that hot region pages are
very rarely dropped from a client’s buffer pool. Figure 10 shows
the throughput results for this case using the slow network. As can
be seen in the figure, the forwarding algorithms all converge at 20
clients and beyond, while the CBL algorithm has lower perfor-
mance than the forwarding algorithms at Eve clients and beyond.
The CBL algorithm is once again disk-bound (although at a higher
performance level than in the previous cases), and the forwarding
algorithms all become network-bound at 15 clients and beyond.
Prior to converging, the sending algorithms perform somewhat
worse than the other forwarding algorithms. This is because they

a

J + FWD-HS
-e m-s
8 FWD-H
*FWl
4 CBL

Figure 10: Throughput
(RO-HOTCOLD, 15% CIi Bufs, Slow Ket)

incur large message costs for sending dropped pages back to the
server, and in this case most dropped pages are cold region pages,
so there is little benefit to having these pages at the server. FWD
H has a slight performance advantage up to 10 clients due to its
effectiveness at reducing server-client correlation with small client
populations. Unlike in the small buffer case. this reduction pro-
vides an improvement in the server buffer hit rate, as clients tend
to request only cold region pages from the server. FWD-HS has a
slightly better initial server hit rate than FWD-H, but its perfor-
mance is penalized by its high message requirements.

The forwarding algorithms eventually converge in Figure 10
for three reasons: First, all of the forwarding algorithms have
access to the entire database in global memory at 20 clients and
beyond, so they perform no disk I/O at that point. Second, the
large buffer pools cause the sending algorithms to send fewer
pages back to the server as clients are added to the system - it
becomes less likely that a client has the only copy of a cold region
page. Third, at 20 clients and beyond, all of the forwarding algo-
rithms have the same server hit rate (around 30%). This is because
with a large number of clients, the potential overlap of each
client’s buffer contents with the server is small, and since most
page requests sent to the server are for cold region pages, the
server sees a non-skewed access pattern.

4.2.3. Summary of the RO-HOTCOLD Results
The study of the HOTCOLD workload in the absence of

updates revealed a number of im.portant aspects of the performance
of the global memory management techniques. Most importantly,
it was shown that forwarding page requests to remote clients can
provide significant performance improvements. The hate hints
technique was found to improve the performance of forwarding by
reducing the correlation of buffer contents between clients and the
server. An important exception to this was in cases with small
client buffer pools and small numbers of clients. In such cases, the
hate hints were found to hurt the server hit rate by removing valu-
able hot region pages from the server buffer pool. As a result,
there were cases in which the FWD-H algorithm had a larger por-
tion of the database available in memory, but had higher disk
requirements than other algorithms. In contrast the sending tech-
nique was found to be effective at keeping hot region pages in
memory. However, the sending technique was found to pay a

605

large price in message bandwidth to avoid disk I/OS, often causing
the slow network to become a bottleneck while the disk became
underutilized. Furthermore, when the size of the client buffer
pools was large enough to keep hot region pages from being
replaced at the clients, the sending technique was detrimental to
performance because it used valuable network bandwidth to keep
cold region pages in memory.

The FWD-HS algorithm, which uses a combination of the hate
hints and sending techniques, was able to keep more of the data-
base available in memory than any of the other algorithms studied
due to its ability to make effective use of the server buffer pool.
However, this did not always translate into better ~~~~OIIIICIII~.
With small buffer pools, the combination of the techniques resulted
in hot region pages being bounced between clients and the server
across the network, resulting in heavy network traffic. With larger
buffer pools, its performance was negatively affected by the ten-
dency of the sending technique to waste network bandwidth on
cold region pages. Message costs hurt the throughput of FWD-HS
in the slow network cases, but when the fast network was used.
FWD-HS was the best performing algorithm.

In general, the experiments showed that the global memory
management techniques were effective in offloading the server’s
disks by increasing the amount of the database available in
memory. However, it was also seen that while offloading the disk
in this manner can provide substantial performance gains, doing so
is not a guarantee of improved performance. In particular, if the
wrong pages are kept in memory, or if the price paid to keep pages
available in memory is too high, performance can suffer.

4.3. Experiment 2: Read-Write HOTCOLD Workload
The previous section analyzed the five memory management

algorithms in the absence of writes in or&r to examine their
behavior without the complications introduced by dirty pages. In
this section, we investigate the performance of the algorithms
using the HOTCOLD workload with a write probability of 20%
(HotWriteProb = ColdWriteProb = 0.20). In the following discus-
sion, we concentrate on those aspects of performance that are
caused by the introduction of writes.

4.3.1. RW-HOTCOLD, Small Client Buffer Pools
Figure 11 shows the percentage of the database available in

memory for the RW-HOTCOLD workload with small client buffer
pools and the slow network. Compared to the read-only case (Fig-
ure 2) CBL remains largely unchanged, FWD and FWD-H initially
have a slight degradation but eventually have an improvement at
larger client populations, and FWD-HS suffers degradation
throughout the range of clients. Most strikingly, the large benefit
of FWD-HS observed in the earlier experiment is not present here.
With small client populations, the server-client buffer correlation is
increased by the dii pages that are sent to the server by commit-
ting transactions. This particularly hurts the FWD-H and FWD-HS
algorithms, which gained by reducing this correlation in the read-
only case. However, as more cIients are added, callback requests
begin to reduce the replication among client buffer contents; before
a page is updated at one clienb it is removed from the buffers at
any other clients that have it cached. Therefore, the result of the
addition of writes is to increase server-client correlation while
slightly decreasing client-client replication.

Figure 12 shows the total number of disk I/OS (shown as solid
ties) and the number of disk writes (dotted lines) performed per
committed transaction. The most noticeable change in overall disk
requirements is that the FWD-HS and FWD-S algorithms no
longer enjoy the large advantage that they had in the read-only
case (shown in Figure 3). The disk requirements are affected by
the need to perform disk writes for dirty pages that are aged out of
the server’s buffer pool and by the changes in the client and server
buffer contents caused by the handling of dirty pages. Disk writes
are an additional cost that is incurred by all of the algorithms, how-
ever, with 1 to 5 clients the FWD-H and FWD-HS algorithms write
more pages than the other algorithms. This is because the hate
hints cause requested dirty pages to be moved to the head of the
LRU chain, reducing their residence time in the server’s buffer
pool and thereby reducing the opportunity for combining multiple
client writes into a single disk write. As more clients are added, the
other algorithms also incur an increase in disk writes due to addi-
tional traffic through the server buffer pool. This trafEc is caused
by disk reads for the FWD and CBL algorithms, and by dropped
pages that are sent to the server for FWD-S.

The disk read requirements of the algorithms are changed by
the introduction of writes in two ways. First, dirty pages sent to
the server by committing transactions impact the server hit rate
(shown in Figure 13) in an algorithm-dependent msnner. For
FWD-H, these pages improve the server hit rate significantly for
small client populations (e.g., with 2 clients the server hit rate is
43%. as compared to 30% in the read-only case). The pages dir-
tied by a client are likely to be hot region pages for that cliens so
sending those pages to the server helps overcome FWD-H’s ten-
dency to remove hot pages born the server’s buffer pool. In con-
trast, FWD-S and FWD-HS suffer a reduction in server hit rate due
to dirty pages. A page that is sent to the server because it is dirtied
is not necessarily the only copy of the page in the system. Such
dirty pages therefore reduce the effective use of the server buffer
pool that was exhibited by the sending algorithms in the read-only
case. The second way that writes affect the diik read requirements
is via callbacks. Callbacks reduce client-client buffer replication,
which increases the effectiveness of forwarding, thereby reducing
disk read requirements. Therefore the disk read requirements for
the FWD algorithm at 15 clients and beyond are somewhat lower
than in the read-only case.

In terms of message requirements, the differences among the
algorithms are much smaller here than in read-only case. This
occurs for two reasons. Firsf writes increase the message require-
ments of all of the algorithms by intioducing four new kinds of
messages: 1) write lock requests, 2) callback requests for cached
read locks, 3) subsequent re-requests for pages and locks that were
called-back and 4) messages for dirty pages sent to the server prior
to commit. Secondly, the dii pages sent to the server (which are
sent by all algorithms) reduce the number of dropped pages that
FWD-HS and FWD-S send to the server.

Figure 14 shows the throughput for the RW-HOTCOLD work-
load with small client buffer pools and the slow network. The for-
warding algorithms all outperform CBL at 10 clients and beyond.
This is due once again to CBL’s high disk requirements. All of the
forwarding algorithms have similar throughput at 25 clients.
FWD-H attains the highest throughput at 10 clients and beyond,
but has poor throughput with small client populations due to high
disk read and write requirements. The sending algorithms, which
reach a network bottleneck at 20 clients, perform close to FWD-H

606

Figure 11: % of DB Available in Memory
(RW-HOTCOLD, 5% Cli Bufs, Slow Net)

+ FWD-HS
; c + m-s

5 0 FWD-H
*FWD

1 8 CBL

Ol
0 5 10 15 20 25

XClhb

Figure 14: Throughput
(RW-HOTCOLD, 5% Cli Bufs, Slow Net)

.... Writes

g 0.6
I.

c 0.5

2
$ a4
t

$ 0.3

0.2

0.1

ao,....,....,....,....I....,
0 5 10 15 20 25

Clients

Figure 12: Disk Writes and Total I/O Figure 13: Server Buffer Hit Rate
(RW-HOTCOLD, 5% Cli Bufs, Slow Net) (RW-HOTCOLD, 5% Cli Bufs, Slow Net)

0 I....,....,....,....,.,..,
0 5 10 I5 20 25

It Clieals

Figure 15: Throughput
(RW-HOTCOLD, 5% Cli Bufs, Fast Net)

due to the reduction in differences in message requirements.
FWD-H and FWD both approach, but do not quite reach, a net-
work bottleneck at 25 clients. FWD-HS initially performs poorly
due to message costs and disk writes caused by the sending of
dropped pages that force dirty “hated” pages out of the server’s
buffer pool. When the faster network is used, the throughput
results (shown in Figure 15) display similar trends but smaller
differences compared to what was observed in the read-only case
(Figure 9). One difference is that here, all of the algorithms
become disk-bound, so FWD-H and FWD-HS are impacted by
their increased disk requirements (compared to Figure 9).

4.3.2. RW-HOTCOLD, Large Client Buffer Pools
We now briefly examine the results of running the RW-

HOTCOLD workload with the larger client buffer pools. When
the slow network is used (not shown) CBL once again performs at
a much lower level than the forwarding algorithms due to its high
disk requirements. The forwarding algorithms all have similar
throughput; their performance of the forwarding algorithms is pri-
marily dictated by their message behavior, which becomes nearly
identical at 15 clients and beyond. This convergence is similar to
what was observed in the read-only case (Figure 10) and occurs for
the same reasons. When the fast network is used in conjunction

1.0
+ FWDHS

0.9 +FwDs

0.8 0 FWD-H

{ *FwD 0.7

CI: 8 CBL

Y I” + IWD-s
0 FWLI-H

*FWD

8 CBL

o,....,....,....,....,....,
0 5 10 15 20 2.5

Ckots

Figure 16: Throughput
(RW-HOTCOLD, 15% Cli Bufs, Fast Net)

with the larger client buffer pools (Figure 16) the relative perfor-
mance of the algorithms is driven by disk demands, and an
interesting effect occurs: at 10 clients and beyond, the forwarding
algorithms separate into two distinct classes - the algorithms that
use hate hints, and those that do not. FWD and FWD-S ourper-
form the other forwarding algorithms because hate hints lead to
more disk writes by reducing the amount of time that dirty pages
are retained in the server buffer pool. The sending technique has
no differentiating effect in this case because few pages are sent
back to the server beyond 10 clients.

4.3.3. Summary of the RW-HOTCOLD Results
The introduction of writes to the HOTCOLD workload was

found to have a number of complex effects on the message and
disk requirements of the global algorithms; however, the relative
perfom~ance of the algorithms was not greatly affected in most of
the cases studied here. When the slow network was used, the most
important impact of the writes was a reduction in the differences
among the message requirements of the algorithms. This reduction
was the result of additional messages incurred by all algorithms
and a decrease in the number of dropped pages sent to the server
by the sending algorithms. When the fast network was used, the
effects of updates on disk requirements played a greater role in

607

determining the relative performance of the algorithms. These
effects varied greatly among the algorithms. All algorithms had
increased disk requirements due to disk writes. The sending algo-
rithms incurred an additional increase in disk requirements due to a
reduction in server buffer hit rates caused by dii pages sent to the
server by committing transactions, which increased the server-
client buffer correlation. FWD-H and FWD-HS paid a high price
in diik writes when few clients were present because the hate hints
reduced the residency time of dirty hot region pages in the server
buffer pool. The FWD-S, FWD, and CBL algorithms all saw a
slight decrease in disk reads because the dirty pages sent to the
server increased their server buffer hit rates. Also, the utility of
forwarding was slightly im&oved by the callback mechanism,
which reduces client-client buffer replication.

4.4. Experiment 3: UNIFORM Workload
As described in Table 3, the UNIFORM workload has no local-

ity and has a write probability of 20%. With small client buffers
and the slow network (not shown), FWD-H performs the best until
it is matched by the FWD algorithm at 25 clients. Initially, FWD-
H’s advantage is due to a high server buffer hit rate. In this case,
the hate hints improve the server buffer hit rate for small client
populations by reducing server-client correlation. In contrast to
what was observed in the skewed workloads, decreasing server-
client correlation actually improves the server buffer hit rate here,
since all pages are equally likely to be accessed. As more clients
are added, FWD-H’s advantage is the result of it having lower
message requirements than the sending algorithms. The lack of
locality reduces the importance of the sending technique, so
FWD-S keeps a smaller portion of the database in memory than
FWD-H until 25 clients (at which point they are equal). FWD
keeps the smallest portion of the database in memory among the
forwarding algorithms but its lower message requirements allow it
to perform relatively well with larger numbers of clients,

Figure 17: Throughput
(UNIFORM, 15% Cli Bufs, Fast Net)

With larger client buffer pools and the fast network (shown in
Figure 17), the forwarding algorithms begin to approach the bifur-
cated state that they reached in the RW-HOTCOLD case (Figure
16). However, there are two noticeable differences in the trends
compared to the RW-HOTCOLD case: FWD-HS initially performs
better than FWD-H, and FWD-S initially performs better than
FWD. This is because FWD-HS initially keeps more of the data-
base available in memory than FWD-H, and FWD-S initially keeps
more of the database available in memory than FWD. Once all of

the forwarding algorithms have the entire database available in
memory, FWD-H and FWD-HS pay a slight penalty due to addi-
tional disk writes caused by hate hints.

5. RELATED WORK
This section briefly outlines work related to global memory

management. See [Fran92b] for a more detailed discussion.

5.1. Workstation-Server Database Systems
Two recent papers have investigated issues of global memory

management in a workstation-server environment. In [Left91] the
problem of replica management for efficient use of the global
memory resources of a distributed system was addressed. An
analytical model was used to investigate the tradeoffs between a
“greedy” algorithm, where each site makes its own caching deci-
sions to maximize its own performance, and two algorithms where
caching decisions are made (statically) in order to maximize
overall system performance. Broadcast-based algorithms for using
the memory of underutilized sites to keep more of the database in
memory were proposed and studied in [F’u91]. The algorithms
included variations in which the sender and/or the receiver played
active roles in initiating the caching of a page at a site.

5.2. Transaction Processing Systems
Issues related to global memory management are addressed in a

data-sharing context in several papers from IBM Yorktown. In
one paper [Dan911 an analytical model was used to study a two-
level buffer hierarchy. The paper investigated policies for placing
pages in a shared buffer based on when pages are updated, read in
from disk, and/or aged-out of a private buffer. The study identified
a number of buffer correlation effects similar to those discussed in
Section 4, especially those dealing with the relative sizes of the
shared (server) and private (client) buffers. However, this study
did not investigate global algorithms that allowed shared-buffer
misses to be serviced by private buffers. Callback-style shared-
disk caching algorithms are studied in [Dan92]. This paper inves-
tigates the performance gains that are available by avoiding disk
writes for dirty pages when transferring a page between sites.
Adding this optimization to a shared-disk system results in more
complex recovery schemes, as described in [Moha91]. An algo-
rithm which avoids replicating copies at multiple sites was studied
and was found to have tradeoffs similar to some of those seen for
our forwarding techniques.

The performance impact of using several types of extended
memory in a uansaction processing system is studied in [Rahm92].
Extended memory adds a new memory hierarchy level between
main memory and disk. An ad&d dimension is the use of non-
volatile memory to avoid data and log diik writes. Many of the
correlation issues found in our study also arise in this environment,
such as the correlation caused by forcing dirty pages to the
extended memory (similar to our copying of dirty pages back to
the server). This study differs from ours because of fundamental
differences in the system architecture, including the use of a single
main memory buffer (versus multiple clients) and lower communi-
cation costs between the levels of the hierarchy.

5.3. Non-DBMS Approaches
Issues related to global memory management have also been

addressed in distributed object systems such as Emerald [Ju188],
where methods for allowing objects to migrate among sites were
addressed. The idea of using the memory of idle workstations as a

608

backing store for virtual memory was investigated in [Felt91].
Finally, work in Non-Uniform Memory Access architectures (e.g.,
[LaRo91]), in which the memories of nodes in a multiprocessor
system are viewed as a single memory hierarchy, is also relevant.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied performance tradeoffs for global

memory management in page-server database systems. Three dif-
ferent memory management techniques were presented. Each of
the proposed techniques can be implemented within the context of
existing client-server DBMS data and lock caching algorithms, and
they require no information to be kept at the server or at the clients
beyond what is already required by such algorithms. The primary
technique, forwarding, attempts to avoid disk I/O at the server by
forwarding page requests to remote clients that have a requested
page in their buffer pool. Forwarding allows the buffer pools of
remote clients to be treated as an additional level in a global
memory hierarchy. The two other techniques are intended to
increase the utility of forwarding by more efficiently managing the
global memory of the system. These techniques attempt to exploit
the server’s buffer pool in order to keep a larger portion of the
database available in the global memory. One technique, called
hate hints, is a simple heuristic which tries to reduce replication
between the buffer pool contents of the server and its clients. The
other technique, called sending dropped pages, attempts to retain
pages in memory by keeping a client from simply dropping a valu-
able page from its buffer pool.

These three techniques were compared under a range of work-
loads and system configurations using a simulation model. The
results of the performance study show that, as expected, forward-
ing can provide significant performance gains over a non-
forwarding cache management algorithm. The study also showed
that the hate hints and sending techniques were indeed effective in
keeping a larger portion of the database in memory. However,
while these techniques achieved their objectives, they did not
always yield performance improvements and in some cases were
even detrimental to performance. For example, the hate hints tech-
nique was successful at reducing replication, but in some situations
it removed valuable pages from the server buffer pool - thereby
increasing I/O demands. The sending technique was found to be
expensive in networkconstrained situations in which using mes-
sages to avoid disk I/OS is the wrong approach to take. However,
in many situations the sending and hate hints techniques were both
shown to provide substantial performance gains. The study also
investigated the impact of updates on the buffering behavior and
performance of the algorithms, and it identified issues in the
interaction of global memory management and the management of
dirty pages for supporting transaction durability.

A number of areas for future work were raised by this study.
First, the experiments identified situations where the global tech-
niques caused the system to become unbalanced or perform extra
work. These situations demonstrate the need for algorithms that
can adapt to the resource and memory usage patterns of the system.
Several extensions along these lines could be easily added to the
existing techniques. Another important area for future study is the
recovery and performance implications of techniques that would
avoid having clients send dirty pages to the server prior to commit-
ting a transaction. Finally, we also plan to investigate global
memory management algorithms that take a more active role in
determining where pages should reside in the system. Such

algorithms could control issues such as the amount of replication
allowed at various levels in the system and the placement of page
copies in the memories of idle or under-utilized workstations.

REFERENCES
[Care911 Carey, M., Franklin M., Livny, M., Shekita, E., “Data
Caching Tradeoffs in Client-Server DBMS Architectures”, Proc.
ACM SIGMOD Co& Denver, CO, June, 199 1.
Khen841 Cheng, J., Loosley, C., Shibamiya, A., Worthington, P.,
“IBM Database 2 performance: Design Implementation, and Tun-
ing”, IBM Systems Journal, Vol. 23, No. 2., 1984.
~a1.191] Dan, A., Dias, D., Yu, P., “Analytical Modelling of a
Hierarchical Buffer for a Data Sharing Environment”, Proc. ACM
SIGMETRICS Conf., San Diego, CA, May, 1991.
IDan921 Dan, A., Yu, P., “Performance Analysis of Coherency
Control Policies through Lock Retention”, Proc. ACM SIGMOD
Conf., San Diego, CA, June, 1992.
fDeux911 Deux, 0.. et al., ‘The 02 System”, Communications of
theACM. Vol. 34, No. 10, Oct., 1991.
[Exod91] EXODUS Project Group, EXODUS Storage Manager
Architectural Overview, EXODUS Project Document, University
of Wisconsin -Madison, Nov., 1991.
[Felt911 Felten, E., Zahorjan, J., “Issues in the Implementation of
a Remote Memory Paging System”, Tech. Rept. 91-03-09, Univer-
sity of Washington, March, 1991.
[Fran92a] Franklin M., Carey, M., “Client-Server Caching
Revisited”, Proc. of the Iti’l Workshop on Distributed Object
Mgmt., Edmonton, Canada, Aug., 1992.
Fran92bl Franklin M., Carey, M., Livny, M., “Global Memory
Management in Client-Server DBMS Architectures”, Technical
Report, Comp. Sci. Dept., Univ. of Wise.-Madison, June, 1992.
@?ran92cl Franklin, M., Zwilling, M., Tan, C., Carey, M.,
Dewitt, D., “Crash Recovery in Client-Server EXODUS”, Proc.
ACM SIGMOD Co&, San Diego, CA, June, 1992.
[Horn871 M. Homick and S. Zdonik, “A Shared, Segmented
Memory System for an Object-Oriented Database,” ACM Trans.
Office InformationSys. 5, 1, Jan., 1987.
@Iowa&X] Howard, J., et al, “Scale and Performance in a Distri-
buted File System,” ACM Trans. Computer Sys. 6,1, Feb., 1988.
[JuBS] Jul. E., Levy, H., Hutchinson, N., Black, A., “Fine
Grained Mobility in the Emerald System”, ACM Trans. Computer
Sys., Vol. 6. No. 1, February, 1988.
[Lamb911 Lamb, C., Landis, G., Orenstein, J. Weinreb, D., ‘The
Object&ore Database System”, Communications of the ACM, Vol.
34, No. 10, Oct., 1991.
fLaRo911 L&owe, P., Ellis, C., Kaplan, L, ‘The Robusmess of
NUMA Memory Management”, Proc. 13th ACM Symp. on
Operating Systems Principles, Pacific Grove, CA, Oct., 1991.
[Leff91] Leff, A., Yu, P., Wolf, J., “Policies for Efficient Memory
Utilization in a Remote Caching Architecture”, Proc. I&l Conf. on
Parallel and Distributed Info. Sys.. Miami Beach, FL, Dec., 1991.
Moha911 Mohm, C., Namng, I., “Recovery and Coherency-
Control Protocols for Fast Intersystem Page Transfer and Fine-
Granularity Locking in a Shared Disks Transaction Environment”,
Proc. 17th VLDB Con-f., Barcelona, Sept., 1991.
[pu91] Pu. C., Florissi, D., Soares, P., Yu, P.. Wu, K., “Perfor-
mance Comparison of Sender-Active and Receiver-Active Mutual
Data Serving”, TR CVCS-014-090, Columbia Univ., 1991.
iRahm921 Rahm, E., “Performance Evaluation of Extended
Storage Architectures for Transaction Processing”, Proc. ACM
SIGMOD Co@., San Diego, CA. June, 1992.
[Wang911 Wang, Y., Rowe, L., “Cache Consistency and Con-
currency Control in a Client/Server DBMS Architecture”, Proc.
ACM SIGMOD Conf., Denver, June 1991.
wilk90] Wilkinson, W., and Neimat, M.-A., “Maintaining Con-
sistency of Client Cached Data,” Proc. 16th VLDB Conf., Bris-
bane, Aug., 1990.

609

