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ABSTRACT - Earlier performance studies of client-server data- 
base systems have investigated algorithms for caching locks and 
data at client worhxtations to reafuce latency and offload the 
server. These studies have been restricted to algorithms in which 
d&abase pages that were not in the local client buffer pool or the 
server buffer pool were read in from disk. In this paper we investi- 
gate a technique that allows client page requests to be serviced by 
other clients, thus treating the entire system as a single memory 
hierarchy. We also present techniques for efficiently exploiting 
this global memory hierarchy by reducing the replication of pages 
between client and server buffer pools. Global memory manage- 
ment algorithms that employ various combinalions of these tech- 
niques are then described, and the performance tradeoffs among 
the algorithms we investigated under a range of workloads and 
system conjiguratio~ using a simulation model. 

1. INTRODUCTION 
Rapid improvement in the price/performance characteristics of 

workstations, servers, and local-area networks has enabled sophis- 
ticated database function to be migrated from machine rooms to 
desktops. As a result, networks of high-performance workstations 
and servers have become an important target environment for the 
current generation of commercial and prototype database systems. 
The workstation environment provides a new set of performance 
opportunities and challenges for the design of database systems. 
One important attribute of such an environment is the presence of a 
complex memory hierarchy comprising local workstation memory, 
remote workstation memories, server memory, and disks. Efficient 
exploitation of the various levels of the hierarchy is necessary in 
order to attain high performance for large database systems in such 
an enviroMlertL 

Database systems intended for a workstation environment are 
implemented using a &r&server software architecture. Client 
processes execute on workstations and provide interaction with 
user applications. Server processes typically execute on shared 
server machines and provide access to the database in response to 
requests from multiple clients. Many recent client-server database 
systems (e.g., ObServer [Hom87], ObjectStore [Lamb91], 02 
[Deux91], and client-server EXODUS [Exod91, Fran92cl) utilize a 
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page server architecture. In these systems, clients interact with 
servers by sending requests for specific database pages or groups 
of pages. The server then provides the requested pages back to the 
client. In a page server system, the server is also responsible for 
providing transaction support, such as concurrency control and 
recovery, as well as other shared services for the database. 

1.1. Performance of Page Server Systems 
Recently, there have been several studies of the performance 

aspects of caching algorithms for page server systems wilk90, 
Care91, Wang91, Fran92al. These studies have shown the advan- 
tages and potential pitfalls of attempting to offload servers by cach- 
ing locks and/or data at client workstations across transaction 
boundaries. Such caching is referred to as inter-transaction cach- 
ing. Inter-transaction lock caching allows workstations to avoid 
sending lock request messages to the server; if a workstation 
already has the proper lock cached for an object, it can access the 
object without 6rs.t requesting permission from the server. This 
reduction in lock requests results in reduced workstation and server 
CPU requirements for processing messages, reduced access to the 
lock manager on the server, and reduced competition for the net- 
work itself. Thus, lock caching was shown to have two beneficial 
effects: First, latency was improved due to the reduction in the 
overall pathlength for transactions. Secondly, the processing load 
on the server was lessened, thereby alleviating a potential 
bottleneck in the system. 

In addition to showing the potential performance benefits of 
lock caching in many workloads, the above studies showed that 
inter-transaction data caching could provide even more significant 
performance benefits by offloading the server disk in addition to 
reducing messages and CPU requirements. Data caching effec- 
tively increases the size of the server’s buffer pool by extending it 
to each client’s workstation. This extended buffer pool was found 
to be particularly effective in the presence of locality (i.e., affinity 
of clients for particular pages). In all of the studies mentioned 
above, each client used a three-level memory hierarchy consisting 
of: 1) the local workstation’s memory, 2) server memory, and 3) 
server disk. Thus, each client workstation had access to only a 
fraction of the total memory in the system. As a result of this, the 
studies showed that in many cases, significant disk I/O was 
required even though the aggregate memory of the system was as 
large or larger than the portion of the database being accessed by 
the workstations. Furthermore, two additional inefficiencies of this 
type of data caching were identified in [Care91]. First, when small 
numbers of workstations were present, there was often a high 
correlation between the pages resident in the server buffer pool and 
those resident in the client buffer pools. This correlation reduced 
the effectiveness of the server buffer pool, as buffer misses at 
clients often resulted in buffer misses at the server. Secondly, it 
was shown that with large numbers of clients, each with a fairly 
large buffer pool, excessive replication of pages in client buffer 
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pools could lead to sign&ant overhead for updates. Therefore, in 
most of the workloads examined algorithms that insured con- 
sistency by invalidating remote copies of pages on updates (hence, 
reducing replication) outperformed algorithms that propagated 
changes to remote copies. 

1.2. Opportunities for Improvement 
While the data-caching techniques used in these earlier studies 

were effective in many situations, they were ultimately limited by 
their primarily local nature. Performance was hindered since 
clients were unable to exploit a large portion of the memory avail- 
able in the system and since the memory that was available was not 
efficiently utilized. However, in all of the algorithms that allowed 
caching of both data and locks the server was required to have 
knowledge of the location of all copies of pages in the system. 
This information provides an opportunity to improve upon the pre- 
vious techniques through the use of a global approach to memory 
management. In this paper we investigate the tradeoffs involved 
with three specific global memory management techniques. First, 
the clients are allowed to exploit the entire memory of the system 
by obtaining pages from other clients. Second, buffer replacement 
policies at the server are modified to reduce the replication of the 
buffer pool contents of the server and its clients. Third, a simple 
protocol between clients and servers is used to extend the client 
buffer pools by moving some of the pages that are forced out of a 
client’s buffer pool into the server’s memory. 

1.3. Overview of the Paper 
The remainder of the paper is structured as follows: Section 2 

details the techniques used for global memory management and a 
set of algorithms that utilize these techniques. Section 3 describes 
a simulation model used to investigate the tradeoffs among these 
techniques over a range of system configurations and workloads. 
Section 4 presents a series of experiments and their results. Set 
tion 5 discusses related work. Finally, Section 6 presents conclu- 
sions and future work. 

2. GLOBAL MEMORY MANAGEMENT 
In this section, we discuss three global memory management 

techniques and a set of algorithms that use combinations of these 
techniques. We then outline the expected performance tradeoffs 
among the different techniques. In order to enable a clear discus- 
sion of these techniques and algorithms, we first briefly present a 
reference architecture for a page server system. 

2.1. Page Server Architecture and Assumptions 
An example instantiation of a page server DBMS is shown in 

Figure 1. The system consists of a single server machine and a 
number of client workstations connected over a local-area network 
(e.g., an Ethernet). Each client has memory that is available for 
use as a buffer pool by the database system. The server typically 
has more available memory and more processing power than any 
of the clients. The server also has disks on which the permanent 
copy of the database resides and a (possibly mirrored) disk for the 
recovery log. In this reference architecture, we assume that the 
database system does not use client disks for logging or buffering 
and thus, clients are shown as diskless. The use of client disks, if 
presem is an interesting area for future work, but it is beyond the 
scope of the current study. 

The database system software consists of client database 
processes that execute at workstations and a server database 

process that runs at the server machine. A client application 
accesses the database by making requests to its local client data- 
base process. The method of interaction between applications and 
client database process is left unspecified. They may be linked as a 
single process or they may be separate processes communicating, 
for example, via local IPCs or shared memory. A client database 
process manages a single active transaction for its application at a 
time, but it is also capable of handling requests from the server and 
remote transactions. The client database processes communicate 
with each other and with the server database process by sending 
messages over the network. Such communication can be initiated 
asynchronously by either party and is used to handle database 
access, update propagation, concurrency control, and transaction 
management functions. For the remainder of the study we assume 
that single pages are the unit of buffering and locking. Also, 
except where noted, we assume that an LRU page replacement 
algorithm is used for each of the buffer pools in the system. 

Btier Lock 

Figure 1: Architecture of a Page Server DBMS 

As stated previously, the caching studies described in Section 1 
all used a three-level memory hierarchy, thus limiting the size of 
the memory from which to satisfy the page requests of any one 
client to a fraction of the total memory available to the database 
system. The goal of the global memory management techniques 
investigated in this study is to exploit the remaining fraction in an 
opportunistic way. That is, as in the previous caching algorithms, 
the contents of any one client’s memory are dictated by the 
accesses made by that client, but in addition, those contents (if not 
exclusively locked) can also be sent to other clients to satisfy their 
local cache misses. The techniques also attempt to make better use 
of the server memory in light of this new capability. 

The ability to exploit the contents of remote client memory 
results in a four-level memory hierarchy. The level closest to the 
client is the local client memory, which can be directly accessed by 
a client database process. The second level of the hierarchy is the 
server memory, which is managed by the server database process. 
In terms of response time, this memory costs one small message 
from the client to the server (for the page request) and one large 
message (containing the page itself) from the server to the request- 
ing client. Messages incur costs not only for their actual on-the- 
wire tune, but also for CPU processing at both the sender and the 
receiver. The third level of the hierarchy is remote client memory. 
The server is the only site with knowledge of where page copies 
are cached in the system, so access to this level of the hierarchy 
must go through the server. Therefore, access to remote client 
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memory costs two small messages and one page-sized message: 
the client first sends a small message to request the page from the 
server, the server then forwards that request to another client, and 
the remote client sends a large message containing the page to the 
requesting client.’ Finally. the fourth level of the hierarchy is the 
server’s disk. An access to this level of the hierarchy is the most 
expensive, costing one small message and one page-sized message 
as well as one or two disk accesses. (Two disk accesses are 
required if a dirty page must tist be forced from the server’s buffer 
pool in order to make room for the requested page to be read in 
from disk). In general, the goal of the global memory management 
techniques studied here is to move accesses from the lowest (and 
most expensive) level of the hierarchy to the higher levels. In par- 
ticular, the techniques will attempt to convert what would have 
been disk accesses in a non-global scheme into cheaper accesses to 
the server memory or to remote client memories. 

Up to this point, the discussion of memory management issues 
has been wncemed primarily with the use of memory to avoid disk 
reads. However, in order to provide durability for the updates of 
committed transactions, the pages containing these updates must 
eventually be written to stable storage. In a client-server system, 
the server is responsible for ensuring the durability of committed 
updates and also for ensuring that all sites see a transaction- 
consistent view of the database. The server implementation can be 
simplified if the server always has the most recent wmmitted copy 
of a page (either in its memory or on disk). This can be achieved 
by requiring all pages dirtied by a transaction to be copied to the 

server before the transaction is allowed to commit.2 Dirty pages 
that are copied back to the server have two wntlicting characteris- 
tics that complicate the buffer replacement policy at the server. On 
one hand, reclaiming a dirty page’s buffer slot requires an I/O to 
write the page to disk, so keeping a dirty page in the buffer longer 
can reduce I/O by combining multiple writes to the same page into 
a single disk write [Chen84]. On the other hand, many of the dirty 
pages present in the server’s buffer pool may not actually be valu- 
able pages, as their placement in the server buffer pool is based on 
considerations other than their probability of being accessed; the 
presence of such dirty pages may result in additional disk reads for 
other pages that are relatively hotter. As will be seen in later sec- 
tions, these conflicting characteristics affect the performance of the 
different global memory management techniques. 

2.2. Global Memory Management Techniques 
As stated previously, this study wncentrates on three related 

global memory management techniques. The techniques are out- 
lined below and then presented in more detail in the following sec- 
tion. The three techniques are: 

Forwarding - The main technique we investigate is to allow a 
request for a page that is not in the server’s buffer pool to be 

’ We do not require perfed knowledge of page copy locations at the 
server, so there is a small possibility that the remote site will not be able to 
forward the requested page. Handling of this situation results in an extra 
message and possibly a disk access, as will be explained in Section 2.3.2. 

’ The relaxation of this restriction requires that the server keep track 
of the location of any committed updates that are not reflected in either its 
memory or disk. Also, the server must be able to selectively recover any 
committed updates that are lost as the result of a client crashing (e.g., using 
techniques similar to those for handling media recovery). 

forwarded to a remote client if that client has a copy of the page in 
its buffer pool. Upon receipt of a forwarded request, the remote 
client sends a copy of the page directly to the requesting client. 
The goal of this technique is to reduce disk I/O by extending the 
amount of memory available to satisfy client page requests. This 
technique has the highest potential for performance improvement 
of the three studied, but also requires the most modification to 
existing data caching algorithms. 

Hare Hints - Hate hints are a simple heuristic that can help to 
keep a larger portion of the database available in memory when the 
forwarding technique is in use. When the server transfers a page to 
a client, the server marks that page as hated (i.e., it makes it the 
“least recently used” page in its buffer pool). The page will then 
be likely to be replaced when a buffer frame is needed for a new 
page. This heuristic is an attempt to reduce page replication 
between the buffer contents of a server and its clients, thereby 
allowing a larger number of distinct pages to reside in the global 
memory. When a page is transferred to a clienf it is known that 
the page is in memory elsewhere in the system, and thus, the copy 
at the server does not contribute to the percentage of the database 
available in global memory. 

Sending Dropped Pages - This technique attempts to use the 
server buffer pool to prevent a page from being completely 
dropped out of the global memory. With this technique, a client 
informs the server when it intends to drop a particular page from 
its buffer pool by piggybacking that information on a page request 
message it sends to the server. If the server determines that the 
copy to be dropped is the only copy of the page that resides in glo- 
bal memory, it asks the client to send it the page when it is 
replaced horn the client’s buffer pool. 

2.3. Memory Management Algorithms 
In this section, we describe five memory management algo- 

rithms that will be used to compare the effectiveness of the global 
techniques under different workloads and system configurations. 
One algorithm is a baseline algorithm that does not use any of the 
global techniques. The other four algorithms are extensions of the 
baseline algorithm, each of which uses the forwarding technique 
along with neither, one, or both of the other two global techniques. 

2.3.1. Callback Locking (CBL) 
CBL is a lock and data caching algorithm based on callback 

locking [Howa88. Lamb91, Wang91]. In this algorithm, clients 
initially obtain locks and data by sending requests to the server. 
Once a page and its corresponding lock are obtained, they can be 
cached at the client across transaction boundaries. The variant stt- 
died here allows caching of read locks but not write locks, as cach- 
ing write locks was found to be somewhat detrimental to perfor- 
mance for the workloads used in this study [Fran92a]. The caching 
of a page at a client gives that client an implicit read lock on the 
page at the server. From the server’s point of view, the client then 
owns the read lock as long as the page is kept in its local buffer. 
Write locks, on the other hand, are requested explicitly at the 
server and are released at the end of a transaction. When a client 
requests a write lock that conflicts with one or more read locks that 
are currently cached at other clients, the server “calls back’ the 
wnflicting locks by sending requests to the sites which have those 
locks (and page copies) cached. When a client receives a callback 
request, it checks to see if it is currently using the page. If not, the 
client removes its copy of the page (if it indeed has one) from its 
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buffer pool and replies to the server. If the page is currently in use, 
however, the client queues the callback request and then immedi- 
ately informs the server that the page is in use. This immediate 
notification allows the server to perform deadlock detection using 
accurate information [Lamb91]. The server grants the write lock 
request only after all conllicting locks have been released. 

Because the caching of a page at a client grants the client an 
implicit read lock, the server must be informed when a page is 
replaced from a client’s buffer pool. Rather than send a message 
to the server each time it replaces a page, a client simply piggy- 
backs the page numbers of any pages it has dropped on the next 
message that it sends to the server. As a result of this mechanism, 
the server’s lock table can be used to determine the location of 
cached data pages throughout the system. This information is 
slightly conservative in that there is a window during which the 
server may have an entry for a page copy that has just been 
dropped from a client This conservatism does not affect correct- 
ness, but may result in an occasional unnecessary callback request. 

In the CBL algorithm the server buffer is managed using an 
LRU policy. Pages become the “most recently used” (i.e., least 
likely to be replaced) page when they are accessed to be sent to 
requesting clients. Dirty pages that are copied back to the server 
by committing transactions are marked as most recently used when 
they arrive at the server. 

2.3.2. The Forwarding Algorithm (FWD) 
The first global algorithm, FWD, is simply the callback algo- 

rithm extended with the forwarding technique described in Section 
2.2. When the server receives a request for a page (and hence, an 
implicit request for a read lock) from a client, it first it obtains a 
read lock on the page for the requesting transaction. Once the lock 
has been obtained, it checks to see if the page is in its local buffer 
pool and if so, it sends a copy of the page to the requester. If the 
page is not in the server’s buffer, it checks to see if the page is 
cached at another client and if so, forwards the page request to a 
remote client that has a copy of the page. When a client receives a 
forwarded reques4 it checks to see if it has a copy of the page that 
it can send to the requesting client, and if so, sends it. A client 
cannot forward a page if it no longer has that page cached or if it is 
in the process of trying to obtain a write lock on the page from the 
server. If the client can not forward the page, it returns the request 
with a negative acknowledgement to the server. If there are no sites 
that have copies of the page or if a server receives a negative ack- 
nowledgement from a remote c&n& it reads the page into its buffer 
pool from disk (as is done for all server buffer misses in the CBL 
algorithm) and sends it to the requesting client. 

2.33. Forwarding - Hate Hints (FWD-H) 
The FWD-H algorithm is a simple extension of FWD that uses 

hate hints. The algorithm works similarly to FWD except that 
when the server sends a page to a client the page becomes “hated” 
(i.e., it is marked as the current “least recently used” page) at the 
server, making it likely to be replaced from the server’s buffer 
pool. Using the LRU mechanism to implement hate hints has two 
effects: 1) a non-hated page will never be aged out of the server’s 
buffer pool while the buffer pool contains any hated pages, and 2) 
hated pages are aged out in a LIFO manner. As described in Sec- 
tion 2.1, transactions send their dirty pages to the server when they 
commit. When a dirty page arrives at the server, it is marked as 
the most recently used page. If a page is present in the buffer pool 

when a dirty copy of the page arrives at the server, the dirty copy 
replaces the prior copy and it becomes the most recently used page. 
Conversely, if a page that is marked as dirty in the server buffer 
pool is sent to a client, it becomes a hated (and still dirty) page. 

2.3.4. Forwarding - Sending Dropped Pages (FWD-S) 
The next algorithm, FWD-S, is an extension of the FWD algo- 

rithm in which clients send some of the pages that they drop to the 
server. This algorithm takes advantage of the message patterns 
inherent in the baseline CBL algorithm. When a client determines 
that it needs to request a page fTom the server, it also checks to see 
if the new page will force an existing cached page out of the 
buffer. If so, the client piggybacks the page number of the page it 
plans to drop on the request message that it sends to the server. 
When the server receives such a page request, it checks to see if 
the page to be dropped is the only copy of the page that is currently 
in the global memory. If so, the server sets a flag in the message 
that it uses to respond to the page request; this flag informs the 
client that it should send the page (asynchronously) back to the 
server rather than simply drop it. When the dropped page arrives 
at the server, it is marked as the most recently used page. 

There are two additional cases that the algorithm must handle. 
First, if the server forwards the request to a remote client, the 
remote client must forward the server’s send-back decision to the 
requester along with the page. The second case occurs when the 
server determines that it will have the only remaining memory- 
resident copy of the page once the requester drops its copy. In this 
case, the server marks its copy of the page as most recently used 
and informs the client that it need not send the dropped page. 

2.3.5. Forwarding - Hate Hints and Sending Dropped 
Pages (FWD-HS) 

The linal global algorithm is the FWD algorithm extended with 
both the hate hints and sending dropped pages techniques. It is 
simply the combination of the FWD-H and FWJX algorithms. 

2.4. Performance Tradeoffs 
The previous sections described three techniques for improving 

performance through global memory management and presented 
algorithms that use these techniques to extend an algorithm that 
uses only local memory management. Before presenting the 
detailed results from our simulation study of these algorithms, it 
will be useful to consider the expected performance rradeoffs 
among them. CBL, the baseline algorithm, does not exploit remote 
client memory and must therefore rely only on the local client 
memory, the server memory, and disk. The FWD algorithm uses 
messages and some extTa client CPU processing in an attempt to 
avoid doing disk I/O on server buffer misses. The FWD-H algo- 
rithm attempts to further reduce disk I/O by avoiding replication 
between the contents of the server and its clients, thus increasing 
the portion of the database that is available in memory. The 
FWD-S algorithm also tries to replace disk I/O by messages; it 
attempts to increase the portion of the database retained in memory 
by sending a copy of a page to the server rather than dropping it, if 
that copy is the only one resident in global memory. In comparing 
the FWD-H and FWD-S algorithms, it can be noted that the hate 
hints and sending techniques have similar goals in that both try to 
increase the portion of the database that is available in memory. 
Hate hints is an indirect approach which tries to accomplish its 
goal by reducing replication. In contrast the sending technique is 
a more direct approach, as the system actively tries to keep pages 
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from being dropped from the global memory. Finally, FWD-HS 
combines all of these techniques and. if the benefits of the hate 
hints and sending techniques are additive, should keep even more 
of the database in memory than the other algorithms. 

3. MODELING A CLIENT-SERVER DBMS 
In order to study the performance of alternative global memory 

management techniques, we have extended the simulation model 
that was used in our earlier studies [Care91, Fran92a]. In this sec- 
tion we describe how the model captures the database, workload, 
and physical resources of a client-server DBMS that supports the 
proposed global memory management techniques. 

3.1. Database and Workload Models 
Table 1 presents the parameters used to model the database and 

its workload. The database is modeled as a collection of Data- 
base&e pages of PageSize bytes each. The system workload is 
generated by a collection of NurnClients client workstations. Each 
client workstation generates a single stream of transactions, where 
the arrival of a new transaction is separated from the completion of 
the previous transaction by an exponential think time with a mean 
of ThinkTime. A client transaction reads between 0.5~Transaction- 
Size and 1.5.TrarrsacrionSize distinct pages from the database. It 
spends an average of PerPageInst CPU instructions processing 
each page that it reads (this amount is doubled for pages that it 
writes); the actual per-page CPU requirements are drawn from an 
exponential distribution. 

The model’s scheme for detlning the page access patterns of 
workloads allows different types of locality at clients and data- 
sharing among clients to be easily specified. The workload is 
specitied on a per client basis. For each client two (possibly over- 
lapping) regions of the database can be specified. These ranges are 
specified by the HotBounds and Cold.Bounds parameters. The 
parameter HotAccessProb specifies the probability that a page 
access will be to a page in the hot region, with the remainder of 
accesses being to pages in the cold region. Within each region, 
pages are chosen without replacement using a uniform distribution. 
The HotWriteProb and ColdWriteProb parameters specify the 
region-specific probabilities of writing an accessed page. 

3.2. Physical Resource Model 
The model parameters that specify the physical resources of the 

system and their usage are listed in Table 2. The client and server 
CPU speeds are specified in MIPS (ClienfCPU and ServerCPU). 
The service discipline of the client and server CPUs is first-come, 
fist-served (FIFO) for system services such as message and I/O 
handling. Such system processing preempts other CPU activity. 
For non-system processing, a processor-sharing discipline is used. 
The sizes of the buffer pools on the clients and on the server 
(ClienrBujSize and ServerBufSize) are specified as a percentage of 
the database size. The client and server buffer pools are both 
managed using an LRU replacement policy as a &fault, but facili- 
ties such as hate hints are provided to allow the implementation of 
the policies described in Section 2. Dirty pages are not given pre- 
ferential treatment by the replacement algorithm but are written to 
disk when they are selected for replacement. Note that on clients, 
dirty pages exist only during the course of a transaction. Dirty 
pages are held on the client until commit time, at which point they 
are copied back to the server; once the transaction commits, the 
updated pages are marked as clean on the client. 

TransactionSize Mean no. of pages accessed per transaction 
HotBounds Page bounds of hot range 
c01dL30unds Page bounds of cold range 
HotAccessProb 
HotWriteProb 
ColdWriteProb 
PerPageInst 

Prob. of accessing a page in the hot range 
Prob. of writing to a page in the hot range 
Prob. of writing to a page in the cold range 
Mean no. of instructions per page on read 
(doubled on write) 

ThinkTime 1 Mean think time between client transactions 

Table 1: Database and Workload Parameters 

L 

ClientCPU 
ServerCPiJ 
ClientBuflize 
ServerBufSize 
ServerDisks 
MinDiskTime 
MaxDiskTime 
DiskOverheadlnst 
NetworkBandwidrh 
Fixedvlsglmt 
PerByteMsgInst 
ControlMsgSize 
LockInst 
RegisterCopyImt 
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Instruction rate of client CPU 
Instruction rate of server CPU 
Per-client buffer size 
Server buffer size 
Number of disks at server 
Minimum disk access time 
Maximum disk access time 
CPU overhead for performing disk I/O 
Network bandwidth 
Fixed no. of inst. per message 
No. of addl. inst. per message byte 
Size of a control message (in bytes) 
No. of inst. per lock/unlock pair 
No. of inst. to register/tmregister a copy 

Table 2: Resource and Overhead Parameters 

The parameter ServerDisks specifies the n~ber of database 
disks attached to the server, and each is modeled as having an 
access time that is uniformly distributed over the range from Min- 
DiskTime to MaxDtikTime. The disk used to service a given 
request is chosen at random from among the server disks, so the 
model assumes that the database is uniformly partitioned across all 
server disks. The service discipline for each of the disks is FIFO. 
A CPU charge of DisloOverheudInst instructions is incurred for 
each I/O request. We do not explicitly model logging, as it is not 
expected to impact the relative performance of the algorithms 
being studied. A very simple network model is used in the 
simulator’s Network Manager component: the network is modeled 
as a FIFO server with a service rate of NetworkBandwidth. We did 
not model the details of a specific type of network (e.g., Ethernet, 
token ring, etc.). Rather, the approach we took was to separate the 
CPU costs of messages from their on-the-wire costs, and to allow 
the on-the-wire costs of messages to be adjusted using the 
bandwidth parameter. The CPU cost for managing the protocol for 
a message send or receive is modeled as FixedMsgInst instructions 
per message plus PerByteMsglnst instructions per message byte. 

Finally, the model allows the specification of several other 
resource-related parameters. The size of a control message (such 
as a lock request or a commit protocol packet) is given by the 
parameter ControZMsgSize; messages that contain one or more 
data pages are sized based on Table l’s PageSize parameter. Other 
costs include LockInst, the cost involved in a lock/unlock pair on 
the client or server, and RegisterCopyInst, the cost (on the server) 
to register and unregister (i.e., to track the existence of) a newly 
cached page copy or to look up the copy sites for a given page. 
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3.3. Client-Server Execution Model 
In the simulator, each client consists of several modules. These 

include: a Source, which generates the workload; a Client 
Manager, which executes the transaction reference strings gen- 
erated by the Source and processes requests and page receipts from 

the server and other clients; a CC Munuger, which is in charge of 
concurrency control (i.e., locking) on the client; a Buffer Manager, 
which manages the client buffer pool; and a Resource Manager, 
which models the other physical resources of the client worksta- 
tion. The server is organized similarly, except that it is controlled 
by the Server Munager, which acts in response to the requests sent 
to it by the clients. 

Client nansactions execute on the workstations that submit 
them. When a transaction references a page, the Client Manager 
must lock the page appropriately and check the local buffer pool 
for a cached copy of the page; if no such copy exists, the client 
sends a request for the page and a read lock to the server. Both 
locking and buffer management are simulated in detail based on 
referenced page numbers. Once a local copy of the page exists, the 
transaction processes the page and decides whether or not to 
update it. In the event of an update, the client obtains a write lock 
on the page from its local lock manager and then requests a write 
lock from the server. The server may be required to callback read 
locks from other clients before it can grant the write lock request. 
Once the write lock is obtained, further CPU processing is per- 
formed on the page. At commit time, the Client Manager sends a 
commit request together with copies of any updated pages to the 
server, which performs the commit processing for the transaction 
(e.g., placing the copies of the dirty pages in its buffer and releas- 
ing locks) and then informs the client that the commit was success- 
ful. The server performs deadlock detection based on the informa- 
tion in its lock table and the responses received to its callback 
requests if a callback is involved in a potential deadlock. If the 
server decides that it must abort a transaction, it chooses a victim 
and informs the victim’s client manager that the transaction must 
be aborted. If the victim has an outstanding callback request, the 
other clients participating in the callback are also informed. When 
a uansaction’s client receives an abort request. its Client Manager 
arranges for the abort, asks the Buffer Manager to purge any 
updated pages, and then resubmits the same transaction. 

4. EXPERIMENTS AND RESULTS 
In this section, we present the results of a simulation study of 

the global memory management algorithms described in Section 
2.3. Due to space limitations, we describe only a subset of our 
results. Additional experiments and analysis can be found in 
[Fran92b]. 

4.1. Metrics and Parameter Settings 
The primary performance metric employed in this study is the 

throughput (i.e., transaction completion rate) of the system.? A 
number of additional metrics are also used to aid in the analysis of 
the experimental results, including the server buffer hit rate, the 
client and server resource utilizations, the average number of mes- 
sages required to execute a transaction and several others. One 
special metric that we use is the “database portion available in 

3 We use a closed queuing model so the inverse relationship between 
throughput and response time makes either a sufficient metric. 

memory”. This is the percentage of the pages of the database that 
are available to a client without performing a diik I/O. For the for- 
warding algorithms, this metric is the union of the contents of the 
server buffer pool and all client buffer pools, whereas for CBL it is 
only the union of the server buffer pool contents and the contents 
of a single client. The various me&s that are presented on a “per 
commit” basis are computed by dividing the total count for the 
metric by the number of transaction commits over the duration of a 
simulation run. To ensure the statistical validity of our results, we 
verified that the 90% confidence intervals for transaction response 
times (computed using batch means) were within a few percent of 
the mean which is more than sufficient for our purposes. 
Throughout the paper we discuss only performance differences that 
were found to be statistically significant. 

Table 3 describes the workloads considered in this study. 
These workloads and their motivations will be explained as their 
corresponding experiments are presented Briefly, the HOTCOLD 
workloads have a high degree of locality per client and a moderate 
amount of sharing among clients. Two variants of HOTCOLD are 
studied: RO-HOTCOLD, a read-only variant, and RW- 
HOTCOLD, which has a moderate write probability (20%). UNI- 
FORM is a moderate write probability workload with no client 
locality. Table 4 shows the system parameter settings used in the 
experiments reported here. In setting these parameters we 
attempted to choose values that are reasonable approximations to 
what might be expected of systems today or in the near future. The 

1 HOTCOLD ( UNIFORM j i 
Transactwrhe I 20~a~es I 20 Dazes I 

~ 

Table 3: Workload Parameter Values for Client n 

DatabaseSize 1,250 pages (5 megabytes) 
PageSize 4,096 bytes 
NumCliellts 1 to 25 client workstations 
ClientCPV 15 MIPS 
ServerCPU 30 MIPS 
ClientBltfSize 5% or 15% of database size 
ServerBufSize 30% of database size 
ServerDisks 2 disks 
MinDiskTime 10 millisecond 
MaxDiskTime 30 milliseconds 
DiskOverheadInst 5000 insmctions 
NetworkBandwidth 8 or 80 megabits second per 
FixedMsgInst 20,000 insmlctions 
PerByteMsghst 10,000 instmctions per 4 kilobyte page 
ControlMsgSize 256 bytes 
LQckIrlst 300 instructions 
RegisterCopyIrut 300 instructions 

Table 4: System Parameter Settings 

601 



experiments that we &scribe here were run with 15 MIPS client 
workstations and a 30 MIPS server. We ran experiments with two 
network bandwidths, one corresponding roughly to current Ether- 
net speeds (referred to as the slow network in the following XX- 
tions) and one corresponding roughly to FDDI technology 
(referred to as the fast network). The bandwidth values used (8 
Mbits& and 80 Mbits& respectively) represent slightly 
discounted values of the stated bandwidths of those networks. The 
number of client workstations is varied from 1 to 25 in order to 
study how the various algorithms scale. The database size is 1,250 
pages, with a page size of 4 kilobytes. We used a relatively small 
database in or&r to make simulations involving fractionally large 
buffer pools and transactions feasible in terms of simulation time; 
moreover, our intent is to capture that portion of the database 
which is of relatively current interest to the client workstations, 
rather than to model the entire database. 

4.2. Experiment 1: Read-Only HOTCOLD Workload 
The 6rst set of results that we will examine uses a version of 

the HOTCOLD workload that performs no updates. Although 
such a read-only workload is not expected to be common, we 
analyze it first in order to examine the buffering behavior of the 
various algorithms in the absence of the complications that are 
introduced by dirty pages. In the RO-HOTCOLD workload, as 
shown in Table 3, each client has its own 50 page region of the 
database to which 80% of its accesses are directed. The hot region 
of one client is contained in the cold regions of all other clients, so 
there is substantial sharing of pages in this workload in addition to 
high per-client locality. 

4.2.1. RO-HOTCOLD, Small Client Buffer Pools 
The aim of each of the global memory management techniques 

is to reduce the need for disk I/O by increasing the portion of the 
database that is available in memory. However, there are two rea- 
sons why such an increase may not Ranslate into a performance 
improvement: 1) the resources used to increase the portion of the 
database available in memory may be more expensive than the 
resources saved by the increase, and 2) in a skewed workload such 
as RO-HOTCOLD, some pages are more valuable than others, so a 
higher portion of the database available in memory does not neces- 
sarily imply reduced disk I/O. In the following, we first compare 
the algorithms based on the portion of the database that they keep 
available in memory, and then examine the resulting resource 
demands. Finally, we examine how these demands translate into 
throughput, given the system parameters of Section 4.1. 

4.2.1.1. Portion of Database Available In Memory 
Figure 2 shows the percentage of the database available in 

memory for each of the algorithms when running the RO- 
HOTCOLD workload with small client buffer pools (5% of the 
database size). The dotted line shows the highest in-memory per- 
centage that could be obtained ideaIly (based on the amount of 
memory in the system). Algorithms typically have less than the 
ideal amount of the database in memory due to replication among 
the contents of the system’s buffers pools. There are two types of 
replication that can arise: server-client correlation, and client-client 
replication. Server-client correlation can arise when the server and 
the client buffer managers use the same page replacement policy 
(LRU). In this situation, when the ratio of the number of pages 
resident in the server buffer pool to the number of distinct pages 

that are resident in client buffer pools is high (e.g., greater than 
one), a page that is in a client’s buffer pool is also likely to be in 
the server’s buffer pool. Server-client correlation is most prom- 
inent with small client populations. As clients are added to the 
system, the ratio of pages at the server to pages at the clients 
becomes smaller, and as this ratio decreases, the server can repli- 
cate fewer of the pages that are kept at clients. Client-client repli- 
cation arises from overlapping client requests and becomes more 
likely as clients are added to the system. 

Turning to Figure 2, we lirst note that CBL has the smallest 
portion of the database available in memory. CBL does not use 
forwarding, so the addition of clients does not increase the amount 
of memory that can be used to service a particular client’s requests. 
CBL has a slight increase the percentage of the database it has 
available in memory as clients are added to the system, which is 
due to the reduction in server-client replication. CBL is unaffected 
by client-client replication, as each client has access only to the 
contents of the server’s buffer pool and its own buffer pool. In 
contrast to CBL, the forwarding algorithms can capitalize upon the 
buffer pools brought fo the system by additional clients and thus, 
they all show a significant increase in the portion of the database 
available in memory as clienrs are added. However, as seen in Fig- 
ure 2, none of the forwarding algorithms are able to attain the ideal 
in-memory percentage. The forwarding algorithms are affected by 
both types of replication described above. However, all of the for- 
warding algorithms incur the same level of client-client replication, 
as the g!obal memory management techniques they use do not alter 
the buffering behavior at clients. Therefore, the differences among 
the forwarding algorithms shown in Figure 2 are the result of 
differences in their server-client correlation. 

FWD, the simplest forwarding algorithm, initially shows very 
little improvement over CBL. This is due to the correlation 
between server and client buffers - the contents of the additional 
client buffers are replicated in the server’s buffer pool. As clients 
are added, the impact of the server-client correlation decreases, 
until at 25 clients, FWD has access to almost 90% of the database 
in memory. Compared to FWD, the FWD-H algorithm attains a 
relatively high in-memory percentage with smaIl numbers of 
clients because hate hints reduce the server-client correlation. 
Beyond 15 clients, however, FWD-H’s advantage over FWD 
begins to dissipate, until at 25 clients, FWD-H is only slightly 
better than FWD. This is because as clients are added to the sys- 
tem, the fraction of FWD-H’s page requests that are serviced by 
forwarding increases. Requests serviced by forwarding do not go 
through the server’s buffer pool, so the hate hints become less 
effective at reducing the server-client correlation. 

FWD and FWD-H both have somewhat less than the ideal in- 
memory database percentage at 25 clients. FWD-S, on the other 
hand, comes close to having the entire database in memory at this 
point. The success of FWD-S is due to its effective use of the 
server buffer pool - it uses the servez buffer pool to retain pages 
that would otherwise have been dropped from the global memory. 
However, with smal1 client populations, the sending technique has 
little effect. When server-client buffer correlation is high, pages 
that are aged out of clients are likely to be in the server buffer pool, 
so few dropped pages are sent to the server. The sending tech- 
nique is quite effective for larger client populations but less effec- 
tive for smaller populations, while the hate hints technique has the 
opposite characteristics. For this reason, the available in-memory 
percentages for the two algorithms eventually cross. FWD-HS, 
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Figure 6: Server Buffer Hit Rate 
(RO-HOTCOLD, 5% Client Bufs) 

which combines the hate hints and sending techniques, keeps the 
largest portion of the database available in memory throughout the 
range of 1 to 25 clients. At 25 clients, FWD-HS has almost 100% 
of the database available in memory. The interaction of the two 
techniques is effective throughout the range of client populations, 
as it tends to keep a copy of a page in memory at either a client or 
at the server, but not at both. 

4.2.1.2. Resource Requirements 
We now turn our attention to the resource requirements of the 

five global memory management algorithms. As expected, the 
general trend is that in most cases, an increase in the percentage of 
the database available in memory results in a decrease in diik I/O 
(since more requested Rages are found in memory) and an increase 
in messages (for serving such requests and for managing the con- 
tents of global memory). Figure 3 shows the total number of disk 
I/OS per committed transaction (in this workload, all disk I/OS are 
reads) for the various algorithms. The message requirements are 
shown in Figure 4, which shows the average number of messages 
sent per committed transaction, and Figure 5, which shows the 
total number of message bytes sent per committed transaction. 
The latter two metrics can differ because some messages are con- 
uol messages (256 bytes), while other messages contain one or 
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Figure 4: Messages Sent per Commit 
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Figure 7: % Server Misses Forwarded 
(RO-HOTCOLD, 5% Client Bufs) 

more 4K byte pages. The message and disk I/O requirements for 
transactions depend on the client buffer hit rate (not shown), the 
server buffer hit rate (shown in Figure 6). and the percent of server 
misses that are forwarded to other clients (shown in Figure 7). The 
sending algorithms also incur additional page-sized messages for 
sending dropped pages back to the server. All of the algorithms 
have the same client buffer hit rate (slightly over 65%), so for all 
of the algorithms, clients send the same number of page requests to 
the server. Overall, CBL sends the fewest messages per commit, 
because it never forwards requests to other clients. For the same 
reason. its disk I/O requirements are inversely proportional to its 
server buffer hit rate. CBL has the highest disk I/O requirements 
at 10 clients and beyond. Note that beyond 10 clients, CBL is the 
only algorithm for which disk requirements do not decrease as 
clients (and hence, more buffers) are added to the system. 

CBL’s server buffer hit rate drops from 58% to 24% (where 
30% is what would be expected with a uniform access pattern). 
This drop is due to the combination of the skewed nature of the 
RO-HOTCOLD workload and the small client buffer pools. Due 
to the small client buffer pools (62 pages), the LRU mechanism at 
each client frequently ages out pages that belong to the client’s hot 
range (at the clients, the hit rate for hot region pages is about 81%). 
With small numbers of clients in the system, the server buffer pool 
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can hold all of the hot region pages for all of the active clients, and 
therefore, client misses due to aged-out hot pages are likely to be 
found at the server. However, as clients are added, the server can 
hold fewer of the active clients’ hot region pages, so the server hit 
rate for each client’s hot region pages drops; in this case, to below 
18% at fifteen clients and beyond (compared to over 28% for cold 
region requests). The lower hot region hit rate is due to another 
correlation phenomenon: the server tends to keep only the hot 
region pages that were most recently requested by a client. Unfor- 
tunately, these pages are the wrong pages to keep, as hot region 
pages tend to reside in a client’s buffer pool for a long time before 

they are finally aged-out and subsequently re-requested! 

As shown in Figure 6, FWD has a similar overall server hit rate 
to CBL. However, FWD is able to satisfy a significant number of 
server buffer misses by forwarding requests to other clients (see 
Figure 7). so as clients are added, it has an increase in messages 
but a decrease in disk I/O. In contrast to FWD, the other forward- 
ing algorithms take a more active role in affecting the server’s 
buffering behavior. FWD-H has a server buffer hit rate that 
remains around 30%. The hate hints reduce the impact of the 
skewed workload on the server buffer hit rate, and thus, the hot 
region and cold region hit rates both remain close to 30%. Unfor- 
tunately, for small numbers of clients, FWD-H has a much lower 
hit rate than those obtained by the other algorithms. In its attempt 
to reduce server-client correlation, FWD-H removes hot pages 
from the server’s buffer pool. Many of those pages, while repli- 
cated for a brief time, will be eventually aged out of the client’s 
buffer pool and re-referenced at the server. Thus, with small 
numbers of clients, the reduction in server-client correlation causes 
a lower server hit rate, and as a result, FWD-H has the highest disk 
requirements up to 5 clients (Figure 3). However, at 10 clients and 
beyond, FWD-H’s server hit rate becomes better than that of CBL 
and FWD because it avoids the server-client correlation that causes 
those algorithms to have a low hit rate for hot region pages. The 
reduction in server-client correlation also allows FWD-H to be 
more successful than FWD at forwarding requests missed at the 
server to other clients (Figure 7). As a result of the server hit rate 
and forwarding behavior, FWD-H sends more messages than CBL 
and FWD, but beyond 5 clients, performs fewer disk I/OS. 

The sending technique provides a substantial improvement in 
the server hit rate. FWD-S’s high server hit rate is due to the send- 
ing technique’s ability to keep hot region pages in memory. The 
influence of the sending technique can be seen in Figure 4, which 
shows the number of messages sent by FWD-S increasing until 10 
clients are in the system. The number of dropped pages sent to the 
server (not shown) increases due to the reduction in server-client 
buffer correlation - hot pages that are aged out of client buffers 
become less likely to be in the server’s buffer pool as clients are 
added. Beyond 10 clients, the number of pages sent by FWD-S 
begins to decrease, as it becomes more likely that a page dropped 
by a client is resident in the memory of another client. Despite the 
reduction in sent pages, FWD-S’s message count remains fairly 
constant due to an increase in forwarded requests. However, its per 
transaction network bandwidth demands actually decrease (see 

1 In fact, the 18% hit rate obtained for hot region pages is due pri- 
marily to requests for hot region pages that were recently accessed as cold 
region pages by other clients. lf there were no overlapping cold region 
accesses, the hot region hit rate would approach zero. 

Figure 5). As shown in Figure 7, at 10 clients and beyond, FWD-S 
forwards a larger percent of its server misses than the non-sending 
algorithms. It is important to note that the crossover point of the 
forwarded percentages of FWD-S and FWD-H occurs with fewer 
clients than the crossover of their respective in-memory percen- 
tages shown in Figure 2. This is because FWD-S does a better job 
of keeping hot range pages at the server so a miss at the server is 
likely to be for a cold range page. Cold range pages are typically in 
the hot range of another client+ and will often be cached in that 
client’s local buffer pool. 

The combination of hate hints and the sending technique gives 
FWD-HS the best server hit rate of the five algorithms. FWD-HS 
also has the highest forwarded percentage of all of the algorithms. 
In fact at 20 clients and beyond, FWD-HS reads a page from disk 
only once; all subsequent transactions can access the page in 
memory. As a resulL FWD-HS has the lowest disk I/O require- 
ments and the highest message count of the five algorithms. 
FWD-HS also exhibits an interesting, and potentially expensive, 
behavior with small client populations: hot region pages are 
“bounced” between clients and the server. With 2 clients in the 
system, over 95% of the pages dropped by the clients are sent back 
to the server. This occurs at a large cost in messages and network 
bandwidth, and provides only a small savings in disk I/O. As with 
FWD-S, the number of dropped pages sent to the server decreases 
for FWD-HS as clients are added to the system. This reduction, 
combined with an increase in forwarded requests, results in a slight 
decrease in message count and a significant drop in network 
bandwidth requirements. 

4.2.13. Throughput Results 
The last two sub-sections examined the effectiveness of the 

algorithms in keeping pages available in memory and studied their 
resource requirements. With these results in mind, we now tum to 
the resulting performance of the algorithms. Figure 8 shows the 
throughput results for this experiment with the slow network set- 
ting (NetworkBandwidth = 1 MByte/set). All of the forwarding 
algorithms eventually outperform CBL, showing the potential 
advantages of avoiding I/O - even at the cost of additional mes- 
sages. FWD-H has the highest throughput through much of the 
range, with FWD equaling it at 25 clients. Beyond 10 clients, the 
sending algorithms perform below the level of FWD and FWD-H. 
In this case, all of the forwarding algorithms eventually become 
network-bound and their relative performance becomes inversely 
proportional to their message bandwidth requirements. With small 
client populations, however, the relative performance results are 
somewhat different. The forwarding technique provides no clear 
performance improvement over the CBL algorithm; in fact, FWD- 
H and FWD-HS perform slightly worse than CBL up to 5 clients. 

The CBL algorithm initially performs well because it has low 
message requirements and its disk requirements are in line with the 
other algorithms. However, the other algorithms soon produce a 
decrease in I/O requirements, while CBL does not. CBL 
approaches a disk bottleneck at 10 clients and ultimately has the 
lowest performance. FWD performs similarly to CBL up to 5 
clients, but decreasing I/O requirements allow it to eventually per- 
form much better than CBL, approaching a network bottleneck at 
2.5 clients. FWD-H initially suffers due to high I./O requirements 
with small client populations. However, as clients are added to the 
system, its I/O requirements diminish and, because it has moderate 
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message requirements, it becomes the best performing algorithm. 
FWD-S has the best performance at 5 clients due to its very low 
I/O requirements. Beyond 5 clients, however, the increase in 
dropped pages sent by FWD-S causes its performance to suffer 
relative to the FWD and FWD-H algorithms, which have lower 
bandwidth requirements. FWD-S is network-bound at 10 clients 
and beyond, its throughput improvement beyond this point is due 
to the reduction in network bandwidth requirements as fewer 
dropped pages are sent to the server. FWD-HS has the lowest I/O 
requirements throughout the range of client populations, but due to 
its high message requirements and the slow network, it performs 
poorly compared to FWD and FWD-H. FWD-HS is the first algo- 
rithm to hit the network bottleneck, it becomes network-bound at 5 
clients. Its network bandwidth requirements cause it to perform 
below FWD-S prior to 15 clients, and only slightly better than 
FWD-S thereafter. Figure 9 shows the throughput results for the 
same workload and buffer pool sizes as the previous case, but with 
a faster (e.g., FDDI) network. The faster network has the effect of 
reducing the cost of using network bandwidth, and thus, the trade- 
off of messages for disk I/O becomes a better bargain. In this case, 
therefore, FWD-HS has the best performance, followed by FWD- 
S, FWD-H, and FWD. CBL, the non-forwarding algorithm, has 
the lowest performance. 

4.2.2. RO-HOTCOLD, Large Client Buffer Pools 
We now turn our attention to the RO-HOTCOLD workload 

with the client buffer pool size increased to 15% of the database 
size. The larger client buffers have two important effects for this 
workload: 1) more of the database is available in memory with 
smaller numbers of clients than in the cases previously studied, and 
2) the client buffers are large enough so that hot region pages are 
very rarely dropped from a client’s buffer pool. Figure 10 shows 
the throughput results for this case using the slow network. As can 
be seen in the figure, the forwarding algorithms all converge at 20 
clients and beyond, while the CBL algorithm has lower perfor- 
mance than the forwarding algorithms at Eve clients and beyond. 
The CBL algorithm is once again disk-bound (although at a higher 
performance level than in the previous cases), and the forwarding 
algorithms all become network-bound at 15 clients and beyond. 
Prior to converging, the sending algorithms perform somewhat 
worse than the other forwarding algorithms. This is because they 
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incur large message costs for sending dropped pages back to the 
server, and in this case most dropped pages are cold region pages, 
so there is little benefit to having these pages at the server. FWD 
H has a slight performance advantage up to 10 clients due to its 
effectiveness at reducing server-client correlation with small client 
populations. Unlike in the small buffer case. this reduction pro- 
vides an improvement in the server buffer hit rate, as clients tend 
to request only cold region pages from the server. FWD-HS has a 
slightly better initial server hit rate than FWD-H, but its perfor- 
mance is penalized by its high message requirements. 

The forwarding algorithms eventually converge in Figure 10 
for three reasons: First, all of the forwarding algorithms have 
access to the entire database in global memory at 20 clients and 
beyond, so they perform no disk I/O at that point. Second, the 
large buffer pools cause the sending algorithms to send fewer 
pages back to the server as clients are added to the system - it 
becomes less likely that a client has the only copy of a cold region 
page. Third, at 20 clients and beyond, all of the forwarding algo- 
rithms have the same server hit rate (around 30%). This is because 
with a large number of clients, the potential overlap of each 
client’s buffer contents with the server is small, and since most 
page requests sent to the server are for cold region pages, the 
server sees a non-skewed access pattern. 

4.2.3. Summary of the RO-HOTCOLD Results 
The study of the HOTCOLD workload in the absence of 

updates revealed a number of im.portant aspects of the performance 
of the global memory management techniques. Most importantly, 
it was shown that forwarding page requests to remote clients can 
provide significant performance improvements. The hate hints 
technique was found to improve the performance of forwarding by 
reducing the correlation of buffer contents between clients and the 
server. An important exception to this was in cases with small 
client buffer pools and small numbers of clients. In such cases, the 
hate hints were found to hurt the server hit rate by removing valu- 
able hot region pages from the server buffer pool. As a result, 
there were cases in which the FWD-H algorithm had a larger por- 
tion of the database available in memory, but had higher disk 
requirements than other algorithms. In contrast the sending tech- 
nique was found to be effective at keeping hot region pages in 
memory. However, the sending technique was found to pay a 
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large price in message bandwidth to avoid disk I/OS, often causing 
the slow network to become a bottleneck while the disk became 
underutilized. Furthermore, when the size of the client buffer 
pools was large enough to keep hot region pages from being 
replaced at the clients, the sending technique was detrimental to 
performance because it used valuable network bandwidth to keep 
cold region pages in memory. 

The FWD-HS algorithm, which uses a combination of the hate 
hints and sending techniques, was able to keep more of the data- 
base available in memory than any of the other algorithms studied 
due to its ability to make effective use of the server buffer pool. 
However, this did not always translate into better ~~~~OIIIICIII~. 
With small buffer pools, the combination of the techniques resulted 
in hot region pages being bounced between clients and the server 
across the network, resulting in heavy network traffic. With larger 
buffer pools, its performance was negatively affected by the ten- 
dency of the sending technique to waste network bandwidth on 
cold region pages. Message costs hurt the throughput of FWD-HS 
in the slow network cases, but when the fast network was used. 
FWD-HS was the best performing algorithm. 

In general, the experiments showed that the global memory 
management techniques were effective in offloading the server’s 
disks by increasing the amount of the database available in 
memory. However, it was also seen that while offloading the disk 
in this manner can provide substantial performance gains, doing so 
is not a guarantee of improved performance. In particular, if the 
wrong pages are kept in memory, or if the price paid to keep pages 
available in memory is too high, performance can suffer. 

4.3. Experiment 2: Read-Write HOTCOLD Workload 
The previous section analyzed the five memory management 

algorithms in the absence of writes in or&r to examine their 
behavior without the complications introduced by dirty pages. In 
this section, we investigate the performance of the algorithms 
using the HOTCOLD workload with a write probability of 20% 
(HotWriteProb = ColdWriteProb = 0.20). In the following discus- 
sion, we concentrate on those aspects of performance that are 
caused by the introduction of writes. 

4.3.1. RW-HOTCOLD, Small Client Buffer Pools 
Figure 11 shows the percentage of the database available in 

memory for the RW-HOTCOLD workload with small client buffer 
pools and the slow network. Compared to the read-only case (Fig- 
ure 2) CBL remains largely unchanged, FWD and FWD-H initially 
have a slight degradation but eventually have an improvement at 
larger client populations, and FWD-HS suffers degradation 
throughout the range of clients. Most strikingly, the large benefit 
of FWD-HS observed in the earlier experiment is not present here. 
With small client populations, the server-client buffer correlation is 
increased by the dii pages that are sent to the server by commit- 
ting transactions. This particularly hurts the FWD-H and FWD-HS 
algorithms, which gained by reducing this correlation in the read- 
only case. However, as more cIients are added, callback requests 
begin to reduce the replication among client buffer contents; before 
a page is updated at one clienb it is removed from the buffers at 
any other clients that have it cached. Therefore, the result of the 
addition of writes is to increase server-client correlation while 
slightly decreasing client-client replication. 

Figure 12 shows the total number of disk I/OS (shown as solid 
ties) and the number of disk writes (dotted lines) performed per 
committed transaction. The most noticeable change in overall disk 
requirements is that the FWD-HS and FWD-S algorithms no 
longer enjoy the large advantage that they had in the read-only 
case (shown in Figure 3). The disk requirements are affected by 
the need to perform disk writes for dirty pages that are aged out of 
the server’s buffer pool and by the changes in the client and server 
buffer contents caused by the handling of dirty pages. Disk writes 
are an additional cost that is incurred by all of the algorithms, how- 
ever, with 1 to 5 clients the FWD-H and FWD-HS algorithms write 
more pages than the other algorithms. This is because the hate 
hints cause requested dirty pages to be moved to the head of the 
LRU chain, reducing their residence time in the server’s buffer 
pool and thereby reducing the opportunity for combining multiple 
client writes into a single disk write. As more clients are added, the 
other algorithms also incur an increase in disk writes due to addi- 
tional traffic through the server buffer pool. This trafEc is caused 
by disk reads for the FWD and CBL algorithms, and by dropped 
pages that are sent to the server for FWD-S. 

The disk read requirements of the algorithms are changed by 
the introduction of writes in two ways. First, dirty pages sent to 
the server by committing transactions impact the server hit rate 
(shown in Figure 13) in an algorithm-dependent msnner. For 
FWD-H, these pages improve the server hit rate significantly for 
small client populations (e.g., with 2 clients the server hit rate is 
43%. as compared to 30% in the read-only case). The pages dir- 
tied by a client are likely to be hot region pages for that cliens so 
sending those pages to the server helps overcome FWD-H’s ten- 
dency to remove hot pages born the server’s buffer pool. In con- 
trast, FWD-S and FWD-HS suffer a reduction in server hit rate due 
to dirty pages. A page that is sent to the server because it is dirtied 
is not necessarily the only copy of the page in the system. Such 
dirty pages therefore reduce the effective use of the server buffer 
pool that was exhibited by the sending algorithms in the read-only 
case. The second way that writes affect the diik read requirements 
is via callbacks. Callbacks reduce client-client buffer replication, 
which increases the effectiveness of forwarding, thereby reducing 
disk read requirements. Therefore the disk read requirements for 
the FWD algorithm at 15 clients and beyond are somewhat lower 
than in the read-only case. 

In terms of message requirements, the differences among the 
algorithms are much smaller here than in read-only case. This 
occurs for two reasons. Firsf writes increase the message require- 
ments of all of the algorithms by intioducing four new kinds of 
messages: 1) write lock requests, 2) callback requests for cached 
read locks, 3) subsequent re-requests for pages and locks that were 
called-back and 4) messages for dirty pages sent to the server prior 
to commit. Secondly, the dii pages sent to the server (which are 
sent by all algorithms) reduce the number of dropped pages that 
FWD-HS and FWD-S send to the server. 

Figure 14 shows the throughput for the RW-HOTCOLD work- 
load with small client buffer pools and the slow network. The for- 
warding algorithms all outperform CBL at 10 clients and beyond. 
This is due once again to CBL’s high disk requirements. All of the 
forwarding algorithms have similar throughput at 25 clients. 
FWD-H attains the highest throughput at 10 clients and beyond, 
but has poor throughput with small client populations due to high 
disk read and write requirements. The sending algorithms, which 
reach a network bottleneck at 20 clients, perform close to FWD-H 
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Figure 11: % of DB Available in Memory 
(RW-HOTCOLD, 5% Cli Bufs, Slow Net) 
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Figure 15: Throughput 
(RW-HOTCOLD, 5% Cli Bufs, Fast Net) 

due to the reduction in differences in message requirements. 
FWD-H and FWD both approach, but do not quite reach, a net- 
work bottleneck at 25 clients. FWD-HS initially performs poorly 
due to message costs and disk writes caused by the sending of 
dropped pages that force dirty “hated” pages out of the server’s 
buffer pool. When the faster network is used, the throughput 
results (shown in Figure 15) display similar trends but smaller 
differences compared to what was observed in the read-only case 
(Figure 9). One difference is that here, all of the algorithms 
become disk-bound, so FWD-H and FWD-HS are impacted by 
their increased disk requirements (compared to Figure 9). 

4.3.2. RW-HOTCOLD, Large Client Buffer Pools 
We now briefly examine the results of running the RW- 

HOTCOLD workload with the larger client buffer pools. When 
the slow network is used (not shown) CBL once again performs at 
a much lower level than the forwarding algorithms due to its high 
disk requirements. The forwarding algorithms all have similar 
throughput; their performance of the forwarding algorithms is pri- 
marily dictated by their message behavior, which becomes nearly 
identical at 15 clients and beyond. This convergence is similar to 
what was observed in the read-only case (Figure 10) and occurs for 
the same reasons. When the fast network is used in conjunction 
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with the larger client buffer pools (Figure 16) the relative perfor- 
mance of the algorithms is driven by disk demands, and an 
interesting effect occurs: at 10 clients and beyond, the forwarding 
algorithms separate into two distinct classes - the algorithms that 
use hate hints, and those that do not. FWD and FWD-S ourper- 
form the other forwarding algorithms because hate hints lead to 
more disk writes by reducing the amount of time that dirty pages 
are retained in the server buffer pool. The sending technique has 
no differentiating effect in this case because few pages are sent 
back to the server beyond 10 clients. 

4.3.3. Summary of the RW-HOTCOLD Results 
The introduction of writes to the HOTCOLD workload was 

found to have a number of complex effects on the message and 
disk requirements of the global algorithms; however, the relative 
perfom~ance of the algorithms was not greatly affected in most of 
the cases studied here. When the slow network was used, the most 
important impact of the writes was a reduction in the differences 
among the message requirements of the algorithms. This reduction 
was the result of additional messages incurred by all algorithms 
and a decrease in the number of dropped pages sent to the server 
by the sending algorithms. When the fast network was used, the 
effects of updates on disk requirements played a greater role in 
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determining the relative performance of the algorithms. These 
effects varied greatly among the algorithms. All algorithms had 
increased disk requirements due to disk writes. The sending algo- 
rithms incurred an additional increase in disk requirements due to a 
reduction in server buffer hit rates caused by dii pages sent to the 
server by committing transactions, which increased the server- 
client buffer correlation. FWD-H and FWD-HS paid a high price 
in diik writes when few clients were present because the hate hints 
reduced the residency time of dirty hot region pages in the server 
buffer pool. The FWD-S, FWD, and CBL algorithms all saw a 
slight decrease in disk reads because the dirty pages sent to the 
server increased their server buffer hit rates. Also, the utility of 
forwarding was slightly im&oved by the callback mechanism, 
which reduces client-client buffer replication. 

4.4. Experiment 3: UNIFORM Workload 
As described in Table 3, the UNIFORM workload has no local- 

ity and has a write probability of 20%. With small client buffers 
and the slow network (not shown), FWD-H performs the best until 
it is matched by the FWD algorithm at 25 clients. Initially, FWD- 
H’s advantage is due to a high server buffer hit rate. In this case, 
the hate hints improve the server buffer hit rate for small client 
populations by reducing server-client correlation. In contrast to 
what was observed in the skewed workloads, decreasing server- 
client correlation actually improves the server buffer hit rate here, 
since all pages are equally likely to be accessed. As more clients 
are added, FWD-H’s advantage is the result of it having lower 
message requirements than the sending algorithms. The lack of 
locality reduces the importance of the sending technique, so 
FWD-S keeps a smaller portion of the database in memory than 
FWD-H until 25 clients (at which point they are equal). FWD 
keeps the smallest portion of the database in memory among the 
forwarding algorithms but its lower message requirements allow it 
to perform relatively well with larger numbers of clients, 

Figure 17: Throughput 
(UNIFORM, 15% Cli Bufs, Fast Net) 

With larger client buffer pools and the fast network (shown in 
Figure 17), the forwarding algorithms begin to approach the bifur- 
cated state that they reached in the RW-HOTCOLD case (Figure 
16). However, there are two noticeable differences in the trends 
compared to the RW-HOTCOLD case: FWD-HS initially performs 
better than FWD-H, and FWD-S initially performs better than 
FWD. This is because FWD-HS initially keeps more of the data- 
base available in memory than FWD-H, and FWD-S initially keeps 
more of the database available in memory than FWD. Once all of 

the forwarding algorithms have the entire database available in 
memory, FWD-H and FWD-HS pay a slight penalty due to addi- 
tional disk writes caused by hate hints. 

5. RELATED WORK 
This section briefly outlines work related to global memory 

management. See [Fran92b] for a more detailed discussion. 

5.1. Workstation-Server Database Systems 
Two recent papers have investigated issues of global memory 

management in a workstation-server environment. In [Left91 ] the 
problem of replica management for efficient use of the global 
memory resources of a distributed system was addressed. An 
analytical model was used to investigate the tradeoffs between a 
“greedy” algorithm, where each site makes its own caching deci- 
sions to maximize its own performance, and two algorithms where 
caching decisions are made (statically) in order to maximize 
overall system performance. Broadcast-based algorithms for using 
the memory of underutilized sites to keep more of the database in 
memory were proposed and studied in [F’u91]. The algorithms 
included variations in which the sender and/or the receiver played 
active roles in initiating the caching of a page at a site. 

5.2. Transaction Processing Systems 
Issues related to global memory management are addressed in a 

data-sharing context in several papers from IBM Yorktown. In 
one paper [Dan911 an analytical model was used to study a two- 
level buffer hierarchy. The paper investigated policies for placing 
pages in a shared buffer based on when pages are updated, read in 
from disk, and/or aged-out of a private buffer. The study identified 
a number of buffer correlation effects similar to those discussed in 
Section 4, especially those dealing with the relative sizes of the 
shared (server) and private (client) buffers. However, this study 
did not investigate global algorithms that allowed shared-buffer 
misses to be serviced by private buffers. Callback-style shared- 
disk caching algorithms are studied in [Dan92]. This paper inves- 
tigates the performance gains that are available by avoiding disk 
writes for dirty pages when transferring a page between sites. 
Adding this optimization to a shared-disk system results in more 
complex recovery schemes, as described in [Moha91]. An algo- 
rithm which avoids replicating copies at multiple sites was studied 
and was found to have tradeoffs similar to some of those seen for 
our forwarding techniques. 

The performance impact of using several types of extended 
memory in a uansaction processing system is studied in [Rahm92]. 
Extended memory adds a new memory hierarchy level between 
main memory and disk. An ad&d dimension is the use of non- 
volatile memory to avoid data and log diik writes. Many of the 
correlation issues found in our study also arise in this environment, 
such as the correlation caused by forcing dirty pages to the 
extended memory (similar to our copying of dirty pages back to 
the server). This study differs from ours because of fundamental 
differences in the system architecture, including the use of a single 
main memory buffer (versus multiple clients) and lower communi- 
cation costs between the levels of the hierarchy. 

5.3. Non-DBMS Approaches 
Issues related to global memory management have also been 

addressed in distributed object systems such as Emerald [Ju188], 
where methods for allowing objects to migrate among sites were 
addressed. The idea of using the memory of idle workstations as a 
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backing store for virtual memory was investigated in [Felt91]. 
Finally, work in Non-Uniform Memory Access architectures (e.g., 
[LaRo91]), in which the memories of nodes in a multiprocessor 
system are viewed as a single memory hierarchy, is also relevant. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have studied performance tradeoffs for global 

memory management in page-server database systems. Three dif- 
ferent memory management techniques were presented. Each of 
the proposed techniques can be implemented within the context of 
existing client-server DBMS data and lock caching algorithms, and 
they require no information to be kept at the server or at the clients 
beyond what is already required by such algorithms. The primary 
technique, forwarding, attempts to avoid disk I/O at the server by 
forwarding page requests to remote clients that have a requested 
page in their buffer pool. Forwarding allows the buffer pools of 
remote clients to be treated as an additional level in a global 
memory hierarchy. The two other techniques are intended to 
increase the utility of forwarding by more efficiently managing the 
global memory of the system. These techniques attempt to exploit 
the server’s buffer pool in order to keep a larger portion of the 
database available in the global memory. One technique, called 
hate hints, is a simple heuristic which tries to reduce replication 
between the buffer pool contents of the server and its clients. The 
other technique, called sending dropped pages, attempts to retain 
pages in memory by keeping a client from simply dropping a valu- 
able page from its buffer pool. 

These three techniques were compared under a range of work- 
loads and system configurations using a simulation model. The 
results of the performance study show that, as expected, forward- 
ing can provide significant performance gains over a non- 
forwarding cache management algorithm. The study also showed 
that the hate hints and sending techniques were indeed effective in 
keeping a larger portion of the database in memory. However, 
while these techniques achieved their objectives, they did not 
always yield performance improvements and in some cases were 
even detrimental to performance. For example, the hate hints tech- 
nique was successful at reducing replication, but in some situations 
it removed valuable pages from the server buffer pool - thereby 
increasing I/O demands. The sending technique was found to be 
expensive in networkconstrained situations in which using mes- 
sages to avoid disk I/OS is the wrong approach to take. However, 
in many situations the sending and hate hints techniques were both 
shown to provide substantial performance gains. The study also 
investigated the impact of updates on the buffering behavior and 
performance of the algorithms, and it identified issues in the 
interaction of global memory management and the management of 
dirty pages for supporting transaction durability. 

A number of areas for future work were raised by this study. 
First, the experiments identified situations where the global tech- 
niques caused the system to become unbalanced or perform extra 
work. These situations demonstrate the need for algorithms that 
can adapt to the resource and memory usage patterns of the system. 
Several extensions along these lines could be easily added to the 
existing techniques. Another important area for future study is the 
recovery and performance implications of techniques that would 
avoid having clients send dirty pages to the server prior to commit- 
ting a transaction. Finally, we also plan to investigate global 
memory management algorithms that take a more active role in 
determining where pages should reside in the system. Such 

algorithms could control issues such as the amount of replication 
allowed at various levels in the system and the placement of page 
copies in the memories of idle or under-utilized workstations. 
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