
Experiences With an Object Manager
for a Process-Centered Environment

Dennis Heimbigner
Computer Science Dept.
University of Colorado

Boulder, CO 80309-0430

Abstract

Process-centered software engineering environments,
such as Arcadia, impose a variety of requirements
on database technology that to date have not been
well supported by available object-oriented databases.
Some of these requirements include multi-language ac-
cess and sharing, support for independent relations,
and support for triggers. Triton is an object-oriented
database management system designed to support the
Arcadia software engineering environment. It can be
used as a general purpose DBMS, although it has spe-
cialized features to support the software process capa-
bilities in Arcadia in the form of the APPL/A [SutSO]
language. Triton was developed as prototype to ex-
plore the requirements for software environments and
to provide prototypical solutions. By making these re-
quirements known it is hoped that better solutions will
eventually be provided by the database community.

This material is based upon work sponsored by the De-

fense Advanced Research Projects Agency under Grant

Number MDA972-91-J-1012.

Permission to copy without fee all or part of this material is

grantedprovided that the copies are not made or distributed

for direct commercial advantage, the VLDB copyright no-

tice and the title of the publication and its data appear,

and notice is given that copying is by permission of the

Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

1 Introduction

By now, there is a general understanding that object
management1 is central to software engineering envi-
ronments. It serves as one of the primary means for
integrating components of the environment by provid-
ing a common set of data structures (schema) and a
shared repository for persistent objects. A sufficiently
dynamic object manager is also important in providing
extensibility in an environment by allowing incremen-
tal extensions to the schema and hence to the range of
tools that can share information.

The Arcadia project jKad92, TBC+88] is construct-
ing an environment that is one of the first of a new class
of so-called software-process centered (or software-
process driven) engineering environments. A process
centered environment is one in which the programmer
is guided in the task of producing software according to
some methodology. Such an environment extends the
more traditional tool-oriented environment by adding
the capability to specify the process by which software
is to be constructed. This is in contrast to a typical
tool based environment in which the programmer is
presented only with a collection of tools and is given
no help in deciding how to apply those tools to produce
a software product.

It is assumed that a process-centered environment
will be controlled by a model of the process written
in some formalism. Osterweil [Ost87] has proposed
the use of an executable programming language as
that formalism. Such a language is called a process
programming language (PPL). Arcadia uses a process
programming language approach as the basis for its
environment.

Arcadia has been active in object management since
its inception. As its environment has evolved, it has
exposed a number of requirements for object man-

‘The software engineering community tends to use terms
such as object management rather than terms such as database
management. But the various terms should be considered es-
sentially interchangeable.

585

agement needed to support a process centered en-
vironment. The Arcadia approach has consistently
been to use existing database systems and to augment
them with innovative features as necessary for meeting
those requirements. We (Arcadia) have taken this ap-
proach because we have found that database research
prototypes2 provide many, but not all, of the capa-
bilities needed to support a process-centered environ-
ment. Modern database systems are very large and
complicated pieces of software, spending tremendous
amounts of effort to furnish reliable, secure, efficient
storage management and concurrency control. Differ-
ent research database prototypes provide, in addition,
such features as schema dynamism, long transactions,
and very large object management. Arcadia has no
wish to duplicate these capabilities. Unfortunately, at
the time that Arcadia needed them, no single database
system provided a combination of these capabilities
sufficient to support a process-centered environment.
Even today, it is not clear if any such system exists.
Our approach has been to augment existing systems
in order both to provide increasingly satisfactory ob-
ject management in Arcadia and to gain clearer under-
standing of the requirements for object management in
a process-centered environment.

Triton is one of the object managers in use in Arca-
dia. It has been our primary vehicle for exploring the
needs of the process-related activities within the Arca-
dia environment3. Triton may be briefly characterized
as a general purpose object-oriented database system.
More specifically, it is a serverized repository provid-
ing persistent storage for typed objects, plus functions
for manipulating those objects.

It is important to understand that Triton is not be-
ing held out as a serious competitor to other databases
being developed in the database community; it has a
number of flaws in performance, robustness, and data
model. Rather, it is a vehicle for demonstrating pos-
sible solutions for the needs of software environments.
The primary thrust of this report is to describe those
requirements and the solutions embodied in Triton
with the hope that the database community will incor-
porate better solutions in their next round of research
prototypes.

‘T’riton uses an existing system, Exodus [CDG+SO],
to provide much of its functionality (basic type model,
buffering, persistence, etc.). Exodus was originally
characterized as a database toolkit [CDF+86] where a
database implementor used the elements of Exodus to
build a custom DBMS. In practice, Exodus is better

2The issue of commercial systems is addressed in section 9.
3Arcadia uses several object managers for a variety of pur-

poses. See [WWFT88] for information about another object
management activity within the Arcadia project.

characterized as a persistent programming language
system. It consists of a storage manager and a persis-
tent programming language named E [RC87]. E may
be considered as a persistent version of C++, and like
C++ it has the C type system augmented by classes
with behaviorally defined methods. The original ex-
pectation, as with most persistent programming lan-
guage systems, was that application programs would
be implemented as E programs and the collection of
such programs would constitute a customized DBMS.
Triton adds value to Exodus by adding features needed
in Arcadia, but not directly provided by Exodus. Some
of these additions, such as triggers, are driven by the
needs of process support -and some by the problem of
ger ‘ralizing persistent programming language systems
to support software environments.

This report may occasionally seem to be overly crit-
ical of Exodus, but this is misleading. In many ways,
the Triton effort pushes Exodus in directions for which
it was never designed. We understand that its goals
were not our goals and so mismatches should not be
surprising. Exodus has performed well in Triton and
it has demonstrated a remarkable degree of flexibility
in meeting the requirements we imposed upon it.

In this paper, we will address the requirements for
software environments in the context of describing the
architecture and associated rationale for Triton. We
will then show some of its features: heterogeneity, the
interface, dynamic definition, process language sup-
port, and triggers. Finally, we will describe our obser-
vations, insights, and lessons gained in the process of
constructing and using Triton.

2 Requirements

The initial design of Triton was influenced by three
general requirements that we felt were essential to sup-
port any process-centered environment.

l Efficient representation for the wide variety of
software artifacts used within Arcadia: abstract
syntax graphs, requirements and design nodes,
configuration management graphs, test cases,
documentation, and so on. In practice, the soft-
ware community believes that only some form of
behavioral object-oriented model extended with
relations is sufficient.

l Support for process coding languages-especially
APPL/A. This requires a system supporting at
least relations and triggers, or some equivalent
form of event notification.

l Standard and non-standard database concurrency
and recovery mechanisms. This issue will not be

586

addressed in this paper.

As the Triton project progressed, our understand-
ing of the problems of object management deepened.
The general requirements were elaborated and addi-
tional requirements were added to reflect our increased
knowledge.

Multi-language interoperability is such an additional
requirement. This requirement has become increas-
ingly important as Arcadia has evolved and we now
view this requirement as one that is co-equal in impor-
tance with process support. This requirement stems
from a variety of constraints. For example, many DOD
programs mandate the use of Ada as the language for
implementing systems. Many artificial intelligence sys-
tems, such as AP5 [Coh88], already have a heavy in-
vestment in Lisp, but could benefit from access to a
object base.

Additionally, we have seen that a single persistent
programming language interface makes too many as-
sumptions that turn out to be invalid for one or an-
other application. For example, Arcadia uses two
rather different models of persistence: persistence by
type (as in E), and persistence by instance (as in
PGraphite [WWFT88]. Both of these models have
good justifications in terms of the applications that
use them, but it is rare to find a database system that
supports more than one model of persistence.

Multi-language interoperability covers two capabili-
ties. First, we require the object manager to be acces-
sible from programs written in a variety of program-
ming languages. Currently, Arcadia has components
written using Ada, C, C++, Lisp, and Prolog.

Second, it must be possible for programs written in
various languages to share data. There are two typical
ways to achieve sharing: (1) pair-wise conversion or
(2) use of a common data model. We rejected choice
one as being ultimately too time consuming and chose
instead to use the common data model approach, even
at the expense of such problems as incomplete model
mappings. 28 The multi-language issue is part of the
larger issue of support for general heterogeneity. Ar-
cadia has had to face not only language heterogeneity
but heterogeneity of machine architectures and com-
piler heterogeneity (same language, same machine, but
different compilers). Many of the issues that we first
identified with multiple languages in fact can appear
even within a single language. To state it strongly,
interoperability over heterogeneous systems has now
become a driving factor in the architecture of Briton.

Dynamic definition of schema elements (including
object methods) is another requirement for Triton.
It is assumed that although any one application may
use a stable schema, new applications will be contin-
ually added to the environment, thus requiring new

schemas. A catalog (or meta-database, or data dic-
tionary) is a necessary corollary of dynamic schema
definition. The catalog is needed to define the known
schema and to allow browsing of existing schemas. In
many database systems, this requirement would seem
to be automatically provided. Unfortunately, Exodus,
like many persistent programming language systems,
did not have (or need) this capability, and so it became
an additional problem for us to address.

In addition to purely technical requirements, there
was a requirement to reuse as much existing soft-
ware as possible. If constructed from scratch, Triton
would have taken too many resources to be practi-
cal. So from the outset, it was important to avoid
m-implementation. As a consequence, niton was con-
structed using as much existing database technology as
possible. It was important to focus the Triton effort
onto those features essential to Arcadia and to reuse
those components that were properly the domain of
the database community.

Obviously, a number of desirable capabilities (e.g.,
versioning), are missing from this list of requirements.
But, at the time that the Triton project started (in
early 1989), no system that was obtainable appeared
capable of completely satisfying even this minimal set
of requirements. We could find systems that had, for
example, transaction management and triggers, but
that were only accessible through a fixed program-
ming language, or had difficulty with dynamic type
creation. We decided that our only recourse was ob-
tain a database manager offering a close match to our
needs and to modify it.

3 Overview of the Diton Ar-
chitecture

Figure 1 shows the architecture of Triton. It is a client-
server architecture in which the client communicates
with the server using a Remote Procedure Call (RPC)
protocol. In this case, we use Q [MS89], which is a
variant of the Sun RPC/XDR protocol that has some
adaptations for multi-language interoperability. This
is indicated in the figure by the arrow labeled “Q”.
It represents a “calls” relationship between client and
server. Discussion of the architecture of the client
shown in the figure will be deferred to section 7. Suf-
fice it to say that it communicates using RPC to call
the interface functions provided by the server.

The server has five major components.

1. The server interface handles the details of receiv-
ing requests from clients (there may be more than
one), invoking the appropriate local procedure to

587

2.

3.

4.

5.

4

(Application
Schema

Application Program Definitions)

Application
(in APPL/A)

APPL/A Relation
Bodies

APPL/A Relation
(Method

Triton Client & Function
Interface Bodies)

Client
I

V b -c ..A Server

Server Meta-Data Trigger Application Interface
Interface Catalog Manager :e.g. for APPL/A Relations:

Exodus Storage Manager -----‘--------~
Triton Objects 1

r-----‘--------
1 Application Objects

Triton Object Manager

Calls Uses Dataflow
* a -e-m>

Figure 1: Triton Architecture.

field the request, and returning any result back to
the client.

The catalog component is a meta-database written
as a collection of E types. It records the structure
of the schema currently known to the server.

The ftigger manager interacts closely with the
catalog and manages the attachment of triggers
to various schema elements and their subsequent
invocation.

The application interface is the collection of meth-
ods and functions defined by client applications.

The Exodus Storage h!anagerprovides for the per-
sistent storage of objects from the other compo-
nents. In particular, it will store any data objects
defined by Triton itself: trigger references and cat-
alog objects, for example. Additionally, the stor-
age manager stores actual application objects.

The Triton Interface

The Briton server presents a procedural interface to
its clients. That is, to a client it “looks” like a library
of procedures for manipulating schema elements and

objects. Triton makes significant use of handles, which
are references to objects in the server. The client can
only get handles from server, copy them around, and
send them as arguments back to the server. The client
has no knowledge of the internal structure (if any) of
the handles.

Manipulating and accessing the Triton catalog rep-
resents a significant portion of the operations provided
by the server. The ‘Xton Catalog provides two major
capabilities.

Schema Definition: These operations allow a client
to dynamically define schema elements into the
catalog. Many operations return a handle to the
defined schema element. The definable schema
elements are classes, methods, functions, and for-
mal arguments to methods and functions. There
are corresponding schema operations to destroy
elements, but their semantics are admittedly not
well-defined.

Name Space: The space of schema elements in the
catalog is almost flat. At the top level are
uniquely named classes and functions. Classes
‘Lcontain” named methods, and methods and
functions “contain” named formal arguments.
The name space operations allow clients to con-

588

vert a name of a schema element into a handle for
that element.

The primary actions of the interface code are to re-
ceive requests from clients to invoke methods or func-
tions defined in the catalog. The typical E operation
of invoking a method (roughly speaking, results = In-
stance.method(inpzlts)) is mirrored by specific opera-
tions in the interface.

5 Managing Client-Server Het-
erogeneity

Triton is designed to operate in a heterogeneous envi-
ronment. Heterogeneous in this case refers to differing
machine architectures and/or differing client side pro-
gramming languages. Minimally, it is assumed that it
is possible to have TCP/IP connections between the
client and the Triton server. In order to understand
some of the Triton interface, it is necessary to under-
stand how Triton manages these various kinds of het-
erogeneity.

Managing multi-language access and sharing has
had a pervasive influence on Triton. Multi-language
data sharing is achieved using a common data model.
A subset of E, the Exodus persistent programming lan-
guage, is used as the common data model. We exam-
ined and rejected the idea of defining a new model as
too resource intensive. The supported E-subset model
includes basic types such as integer and float, as well
as constructors such as struct and class.

The major problem in using a common data model is
data model mapping between the languages and types
defined in the client and the types defined in the server.
For any given type in the client language there must be
a mapping to some equivalent E type(s). In practice,
we have had little difficulty finding a reasonably large
subset of E types that can be mapped to and from the
other language type systems (see [HeiSO]).

Multi-language access to Triton is provided by a
standard remote procedure call protocol (Q) on top
of TCPJIP. Q is designed to make access between Ada
and C as simple as possible, and defines standard map-
pings between a subset of C types and a subset of Ada
types. A remote procedure call operates by marshaling
the inputs to the procedure on the client side. That
data is sent to the server along with some handle spec-
ifying the remote procedure to be invoked. The server
vnmarshals that data, and calls the appropriate proce-
dure. It then takes any result, marshals it and returns
it to the client. Without going into details, suffice it to
say that any marshaling mechanism must provide two
features: (1) linearization of arbitrary data structures
and (2) a standard intermediate data representation.

The requirement for multi-language access was crit-
ical in determining the final Triton architecture. Ex-
perience shows that we could not count on being able
to place any portion of the code for the object man-
ager (including method code) in the client (see section
8.2 for more on this issue). As a result, we settled on
the client-server architecture of Figure 1 with a Triton
server residing in one Unix process and each client re-
siding in a separate Unix process. This architecture
closely resembles the original Gemstone [BOS91] ar-
chitecture and the proposed Thor [Lis92] architecture.
This separation solves many of the multi-language
problems by placing the Triton system in one address
space and restricting other language programs to sep-
arate address spaces. In principle, any language that
can support RPC can use the Triton server.

6 Dynamic Definition

In E, a method (or function) schema element is defined
behaviorally. That is, it is associated with a piece of
code that is executed when the method is invoked via
an interface operation of the server. Methods may be
dynamically defined in the catalog and so Triton must
have some means for dynamically obtaining the code
associated with the method.

Our approach is to dynamically load compiled E
code into the Triton server. This is represented in
Figure 1 by the column of objects in the upper right.
It shows E source code for the methods as input t.o the
E compiler, which produces E object code. This code
is loaded into the server to define methods, functions,
and triggers.

For this to work, Triton requires the use of a dy-
namic loader. For the details behind dynamic loading,
see [HeiSO]. After the method has been loaded, sub-
sequent invocations are direct. Additionally, it is pos-
sible (and common) to load multiple methods at one
time, thus speeding up the process considerably.

Unfortunately, in Triton there are two definitions
of the structure of, for example, a class type. One is
the structure defined in the catalog. The other is the
structure implicit in the compiled method code. It is
possible to have inconsistencies between the two defi-
nitions, and this is, of course, deprecated. When and
if the server takes more control over the source code
for methods, this inconsistency will be eliminated.

7 Triton Support for Process

The key feature of a process centered environment
is its ability to support and enforce processes for

constructing software. It is assumed that multi-
ple processes may be defined using a so-called “pro-
cess programming” (or “process coding”) language.
APPL/A [SutSO, SHOSO] is a prototype of one such
process programming language. It is defined as an ex-
tension to Ada [Uni83].

There is some consensus in the software engineer-
ing community that object management support for
process (and the products produced by the process)
entails at least the following features: relations, trig-
gers, constraints, and non-standard transactions. All
of these are present in some form in APPL/A, and the
first two have direct representations in Triton. The
last two are subjects of ongoing research in Arcadia
and will not be discussed further4. Section 8 will pro-
vide some rationale for relations and triggers. As an
aside, we note that each of these features can be used
for other purposes; none of these capabilities is only
for supporting process.

This section will briefly describe the Triton support
for APPLfA relations and triggers. We do assume
some familiarity with Ada. Note that the relation sup-
port is built on top of the object-oriented data model
of Triton; it represents a notational extension to the
model.

7.1 APPL/A Relation Support

In APPL/A, a relation looks like a combination of an
Ada package and an Ada task. It defines the structure
of the relation tuple and a limited set of operations:
insert, delete, update, and find, This last operation
(find) is used to provide a combination of tuple-at-
at-time access and associative retrieval. As with Ada
packages, a relation definitions has two pieces: a spec-
ification and a body. The body is expected to provide
implementations for the interface operations defined in
the specification. See [SutSO] for details.

Referring back to Figure 1, we can now examine
the client architecture. The client shown there reflects
the various layers required by an APPL/A program
to communicate with the server. The top level appli-
cation is defined in terms of a collection of APPL/A
relation specifications. These specifications are imple-
mented by relation body code. These bodies use the
APPL/A generic relation interface, which is in turn
implemented by a generic body. This generic body is
defined using the Briton client interface library.

On the server side, an APPL/A relation is defined
by a corresponding E class providing methods match-
ing the APPL/A operations of find, insert, update,

4The reason is that the APPL/A transaction model is more
general than can be supported by any currently available system,
research or commercial.

delete, and whose is a set of tuples. The dotted ar-
row in Figure 1 from the APPL/A generic interface to
the E-code represents this correspondence. The Tri-
ton reference manual [HeiSO] may be consulted for the
details.

7.2 APPL/A Trigger Support

Triton has augmented the E capabilities with a sim-
ple form of trigger. As might be expected, a trigger is
a piece of code that is invoked whenever some event
occurs’. In Triton, the events that can invoke triggers
are (1) method or function invocation and (2) method
or function completion. There are important restric-
tions on trigger attachment.

l Only methods or functions invoked via the eval-
uate-method or evaluate-function interface calls
can cause triggering. Thus, an internal call from
one function to another will not cause triggering.

l Instance specific triggers are not provided. If a
trigger is associated with a method, then every
invocation of that method for all instances will
invoke the attached trigger.

8 Some Lessons from the Tri-
ton Experience

Constructing Triton has been an enlightening experi-
ence. It has done much to clarify the actual require-
ments for object managers when they are expected to
support a process-centered environment. The follow-
ing sections elaborates on some of the lessons that we
learned from the Triton effort and provides additional
rationale for the architectural choices outlined in pre-
vious sections.

8.1 Using A Persistent Programming
Language

We seriously underestimated the amount of effort that
it would take to use a persistent programming lan-
guage system as the basis for Triton. In retrospect,
this may not be surprising since such systems were
never designed to operate in a client-server environ-
ment. But in defense of this activity, it is impor-
tant to note that in recent years in the database
community (and in the commercial word as well),

5A state-based approach, as in AP5 [Coh88], is also possible
in which the trigger is invoked when some defined system state
is reached. Triton does not support this style of trigger.

590

many new research efforts have assumed a persis-
tent programming language as their basic architec-
ture [RC87, TW91, D+91, LLOWSl]. The assumption
implicit in this approach is that all the programs that
access stored data will be written in whatever persis-
tent programming language has been chosen. Even in
the cases [D+91, TW91] where multiple languages are,
in theory, supported, there is no obvious provision for
sharing data between those language.

In any case, this language-specific approach turns
out to be completely incorrect for an environment such
as Arcadia. Multiple languages sharing data is the
norm, not the exception. As we have seen with Triton,
converting a language specific system to a more general
system has a number of painful consequences:

1. One is almost compelled to use the persistent pro-
gramming language as the basis for the common
data model for the system. But, the problem is
that the type system of this language may be
much more complicated than is necessary. Ad-
ditionally, some of the features of the language
(such as generics) have complicated implementa-
tions that are difficult to model in the catalog.

2. Overgeneralizing somewhat, it is typical for lan-
guage specific systems to assume a relatively
static type schema. It is often assumed that
all the schema information is compiled into pro
grams. Converting to a dynamically defined
schema appears to require some form of dynamic
loading of compiled code. This in turn requires
significant support from the compilers, loaders,
and even possibly the operating system. Port-
ing Triton out of a narrow range of Berkeley Unix
class of systems, for example, would be a daunting
task.

8.2 Separate Client and Server Ad-
dress Spaces

In our experience, it is a serious mistake to assume
that one can load any component of the object man-
agement system in the same address space as client
code. Especially if the client code is written in a lan-
guage different from the language used for the object
manager. Run-time systems often make assumptions
about their control over such things as signals, mem-
ory allocation, and file descriptors. Our sad conclusion
is that mixing run-time language support systems in
the same address space will fail more often than no?.
Perhaps in some distant future, there will be standards

61n fact, contention can appear even with our minimal RPC
support in the client. This happened with Ada and caused se-

rious problems.

for run-time systems, but until then, code mixing is
fraught with peril.

This dictum also applies to loading behavioral meth-
ods into the client address space. It has been pro-
posed [MaiSl] that the server should keep either in-
terpretive versions of method bodies, or per-language
versions of compiled method bodies that can be loaded
into the client as needed. The use of interpretive mod-
els should work, although it might require the con-
struction of an interpreter written in each supported
language, which may bring back all of the issues of
run-time contention. We are sceptical about the use
of any form of compiled code in a client. This requires
the inclusion of dynamic loading mechanisms into each
client, and we believe that run-time contention will
cause this to fail.

The alternative used in Triton keeps the object man-
ager code plus the method body code in a separate ad-
dress space. We recognize some of the costs involved in
this approach; there are significant performance hits in
transporting method inputs to the server and retriev-
ing the outputs. This may in some cases be offset by
the more efficient execution of the methods since they
are closer to the data.

8.3 Common Data Model

Triton achieves multi-language interoperability by us-
ing a common data model. Client data is converted to
the common model and stored in the server. On re-
trieval, the data in common format is converted back
to the client model. In spite of our problems in using
the rather ugly E/C++ type model, we were pleas-
antly surprised at how well this approach worked in
practice. We hypothesize that the client-server archi-
tecture was the “cause.” That is, inherently when a
client sends data to the server, it must convert the
data to a standard linear form in order to ship it over
a thin-wire connection to the server. Adding a lit-
tle additional complexity to convert to and from the
common data model is not a large burden. Given a
shared memory model of client-server communication,
the cost of conversion might seem more onerous.

8.4 Support for Relations

The software products managed by processes often
take the form of a collection of objects with a vari-
ety of graphs superimposed over those objects. It is
important to realize that the set of all graphs may
not be known a-priori7. For example, the nodes of
an abstract syntax tree may need to be annotated

‘There is an obvious correspondence to the Schema evolution
problem.

591

with additional information for purposes of analysis.
As new analysis techniques are defined, new annota-
tions may be needed. Relations, defined over node-
types, but independent of (i.e., not known to) the node
type have proven to be extremely useful in represent-
ing such annotations, a fact that others have recog-
nized [Rum87]*.

Our concern for relations has often been dismissed
out-of-hand by proponents of pure object-oriented lan-
guages. The claim is usually made that the user can
just define relations using the object-oriented type sys-
tem, and technically that view is correct. The issue is
more one of notation than power. Languages such as
APPL/A rely heavily on relations as a major structur-
ing element in their type system. Languages such as E
make defining and using relations inconvenient at best
because they require the programmer to build up even
elementary support elements such as selection, index-
ing, and cursors that are needed to support a relational
interface. In order to aid APPL/A based process sup-
port, the Triton interface was substantially augmented
to provide such support elements for the definition and
manipulation of relations.

8.5 Support for Triggers and Event
Management

Experiences in defining processes makes it clear that
some equivalent of triggers is required as a means for
responding to unanticipated events (e.g., an emergency
change to a software requirement) and as a means for
unobtrusive monitoring of process activities (e.g., to
measure the productivity of a programmer).

The trigger system in Triton may be considered a
failure. As described in section 7.2, the trigger capa-
bilities in Triton had too many limitations to meet the
original requirement to support APPL/A triggers. It
required trigger code to be rewritten from APPL/A
to E and, more importantly, there was no mecha-
nism for triggers to communicate back to clients asyn-
chronously.

As the Arcadia environment has evolved, a more
important problem has surfaced: it is not clear that
triggers even represent the correct abstraction. Most
environments are moving to use a more general no
tion of “event” a.5 a replacement for triggers. Control
integration via events (as in Field [ReiSO] and HP-
SoftBench [Hew89]) is rapidly becoming the norm.

It is important to note that event systems are dis-
tinct from the database notions of triggers and rules.

80ne could use other structures, such as functions, 88 long
as independent definition was maintained. Functions, however,
would not be as useful in bidirectional query.

In an event system, there is an event server (or dis-
patcher) to which programs send messages represent-
ing postings of events. Other programs may regis-
ter with the dispatcher to receive events that match
some specified pattern. As events arrive the dispatcher
forwards them to registered programs as appropriate.
The key feature here is that the dispatcher has very lit-
tle knowledge about the senders and receivers of events
or about the semantics of the events themselves. This
results in a very flexible system in which new kinds
of events may be posted dynamically and senders and
receivers of events may come and go quickly. It is also
important to note that the event dispatcher system is
independent of any-database in the system.

Trigger systems, as represented in most databases,
often assume that only a fixed set of actions (e.g., ob-
ject insertions and modifications) can generate events.
More importantly, it is assumed that the action
to be taken on event occurrence is known to the
database system. With the possible exception of
HIPAC [MD89), database systems appear ill-prepared
to export their events to an external event dispatcher
or to receive externally generated events.

8.6 Performance

The performance of Triton leaves much to be desired.
And it is almost certainly true that better applica-
tion of techniques already known in the database com-
munity could significantly increase the performance
of Triton. If the strict client-server split is main-
tained, then there are some limits on the performance.
On a Sun3, using Q and UDP, performing an evalu-
ate-function on a function with an empty body and
with no input or output takes about 20 milliseconds
for a round trip. The primary costs are for RPC over-
head and for catalog reference overhead. Use of shared
memory, faster networks, and better protocols could
help reduce the RPC cost. Reducing the catalog ref-
erence cost is also possible.

9 Alternatives

At the time that Triton was first conceived, there were
only a limited set of acceptable choices on which to
base the effort. Right from the beginning, commercial
systems were excluded from consideration both for li-
censing reasons as well as lack of access to source code.
This left only research vehicles to consider. This set
was very small: apparently only Exodus and Postgres.
We were intrigued by Postgres, but we had concerns
that simulating an object-oriented database over rela-
tions (even the extended relations of Postgres) could
have some performance problems. In fact, the issue

592

was moot because Postgres did not become available
until well after the Triton project was underway. This
left the Exodus system [CDG+SO] from Wisconsin as
our choice. In retrospect, this turned out to be a good
choice because Exodus was quite robust and support
was reasonable (given the inevitable limits associated
with any research effort).

At the current time, there are a number of systems
that, with more or less work, could serve as replace-
ments for Triton. 02 [D+91] and the Texas Instru-
ments OODB [TW91] are similar to Exodus in that
they support one or more persistent programming lan-
guages. Presumably, with some work, these systems
could be used in Triton in place of Exodus by using
one of their languages as a common model and adapt-
ing the dynamic loader to work with that language.

Postgres [RS87, SR86, SK911 is now available, and if
we had the resources, it would be interesting to rehost
Triton onto Postgres. It obviously supports relations
well, it has a catalog, and it has a form of trigger. The
simulation cost question is still open. Additionally, we
are unsure how well Postgres can deal with various
kinds of heterogeneity.

We originally rejected commercial systems, and in
revisiting the alternatives, the problems of license and
source code still remain. But we can now see that most
of the commercial object-oriented systems support the
persistent programming language model, which makes
them no better than Exodus for our purposes.

PCTE+ [GMT861 is a often considered by the
software community to be the first choice as object
manager for an environment. Simplifying somewhat,
PCTE+ can be viewed as an augmented file system in
which files can have contents and attributes, as well as
links to other files. A link is a unidirectional pointer
and two of them can combine to form a binary relation.
PCTE+ also has a notion of trigger. Both Ada and C
interfaces are provided for PCTE+, but interestingly,
there does not seem to be any support for heteroge-
neous access to data across the two languages. Finally,
PCTE+ is very coarse grained; it supports objects of
the size of files and very small objects could suffer large
penalties in space and speed of access.

Gemstone [BOS91], although commercial, seem
much more promising as an alternative to Triton.
Gemstone is derived from Smalltalk [GR83] and its
interpretive nature would seem to make it possible to
augment the system with the exact event mechanisms
required. Interpretation also allows for dynamic load-
ing. It is not clear if Gemstone has support for full het-
erogeneous access. Also, getting the effect of generic
relations might be a little difficult since Smalltalk does
not appear to support that kind of polymorphism.

As a by-product of our examinations of various sys-

terns, we are beginning to define some “challenge prob-
lems” that can help us determine the utility of a system
for our purposes. At the moment, we can articulate
several such challenge problems.

1. For an arbitrary imperative language, show how
one would write a schema browser/editor for the
given database system.

2. For two arbitrary imperative language, show how
one would write a program that creates a schema
and data using one language, and then reads and
prints (in some reasonable format) that same data
using the other language.

3. Given two client programs, show how one can de-
fine a trigger after the two clients have begun,
and then show how both clients can be made to
activate that trigger.

4. Show what is involved in defining APPL/A rela-
tions to utilize the given database system.

5. Show how the given database system can export
events to a Field-style broadcast message server,
and define the set of events which can be gener-
ated. For extra credit, show how the database can
effectively receive and use such external events.

The point of these problems is, of course, to see what is
involved in multi-language access and sharing, trigger
management, and relation support.

10 Status and Future of Triton

At the moment, a version of Triton with limited trans-
action features is running on Sun 3 and Spare machines
running Sun OS 4.1.1 or later. We are investigating
the possibility of a Mach port.

Triton is used within Arcadia to support our current
process programs, such as REBUS [SZH+Sl]. It has
been exported to some external groups such as the
STARS project.

Triton is undergoing a number of relatively short
term enhancements:

l The next version of Exodus provides transaction
management facilities and we are currently re-
hosting Triton to use these features.

l We are working to replace Triton triggers with
more general event mechanisms.

. We are exploring alternative, and simpler, com-
mon data models to replace E.

l We are exploring performance enhancements.

593

11 Summary

Triton is one of the first attempts to provide com-
prehensive object management support for process-
centered environments. It provides a behavioral
object-oriented type model capable of supporting pro-
cess programming languages. Briton also provides ex-
plicit support for heterogeneous interoperability in the
form of multi-language access as well as shared data
using a common type model. Implementing Briton has
increased our understanding of the requirements for
such object managers and we are now in a better posi-
tion to inform the database community about those re-
quirements. New object managers that address those
requirements would then be appropriate candidates for
inclusion in a process-centered environment.

Acknowledgments

I wish to thank the members of the Arcadia Consor-
tium, and especially Lee Osterweil, for their insights.
Mark Maybee, Hadar Ziv, Harry Yessayan, and Jose
Duarte were especially helpful in testing out Triton
and providing useful suggestions. I also wish to ac-
knowIedge the help of the Exodus project in providing
a very useful system.

References

[BOS91] Paul Butterworth, Allen Otis, and Jacob
Stein. The Gemstone Object Database
Management System. Communications of
the ACM, 34(10):64-77, October 1991.

[CDF+86] Michael J. Carey, David J. Dewitt,
Daniel Frank, Goetz Graefe, Joel E.
Richardson, Eugene J. Shekita, and
M. Muralikrishna. The Architecture of
the EXODUS Extensible DBMS: a Pre-
liminary Report. Technical Report Com-
puter Sciences Technical Report #644,
University of Wisconsin, Madison, Com-
puter Sciences Department, May 1986.

I(1G+90] Michael Carey, Dave Dewitt, Goetz
Graefe, Doug Haight, Joel Richardson,
David Schuh, E. Shekita, and S. Vanden-
berg. The EXODUS Extensible DBMS
Project: an Overview. In Stan Zdonik
and David Maier, editors, Readings in
Object-Oriented Databases. Morgan Kauf-
mann, San Mateo, CA, 1990.

[Coh88] Don Cohen. AP5 Manual. Univ. of South-
ern California, Information Sciences Insti-
tute, March 1988.

[D+91] 0. Deux et al. The 02 System. Commu-
nications of the ACM, 34(10):34-48, Oc-
tober 1991.

[GMT861 Ferdinand0 Gallo, Regis Minot, and Ian
Thomas. The Object Management Sys-
tem of PCTE as a Software Engineering
Database Management System. In Proc.
Second ACM SIGSOFT/SIGPLAN Soft-
ware Engineenng Symposium on Practi-
cal Software Development Environments,
pages 12 - 15, 1986.

[GR83] Adele Goldberg and David Robson.
Smalltalk-80: The Language and its Im-
plementation. Addison-Wesley, 1983.

[HeiSO] Dennis Heimbigner. Triton Reference
Manual. Technical Report CU-CS-483-
90, University of Colorado, Department
of Computer Science, Boulder, Colorado
80309, August 1990.

[Hew891 Hewlett-Packard. HP Encapsulator: In-
tegrating Applications into the HP Soft-
Bench Platform, 1989. HP Part No.
B1626-90000.

[Kad92] R. Kadia. Programming Heterogeneous
Transactions for SDE’s. In Proceedings of
the Darpa Software Software Technology
Conference, pages 287-302, April 1992.

[Lis92] Barbara Liskov. Preliminary Design of
the Thor Object-Oriented Database Sys-
tem. In Proceedings of the Darpa Software
Software Technology Conference, pages
50-62, April 1992.

[LLOWSl] Charles Lamb, Gordon Landis, Jack
Orenstein, and Dan Weinreb. The Ob-
jectstore Database System. Communica-
tions of the ACM, 34(10):50-63, October
1991.

[MaiSl] David Maier. Re: Looking for definition
of OODB (an OODB manifesto). Mes-
sage to comp.object news group, 28 Au-
gust 1991.

[MD891 Dennis R. McCarthy and Umeshwar
Dayal. The Architecture of An Active
Data Base Management System. In Proc.
of the ACM SIGMOD International Conf.

594

[MS891

[O&87]

[RC87]

[ReiSO]

[RS87]

[Rum871

[SH090]

[SK911

[SR86]

on the Management of Data, pages 215 -
224, 1989.

Mark Maybee and Stephen D. Sykes. Q:
Towards a multi-lingual interprocess com-
munications model. Arcadia Document
UCI-89-06, I srtment of Information
and Comp-. LE dcience, University of Cal-
ifornia, Irvin , Irvine, February 1989.

Leon J. Osterweil. Software Processes are
Software Too. In Proc. Ninth Interna-
tional Conference on Software Engineer-
ing, 1987. Monterey, CA, March 30 -
April 2, 1987.

Joel E. Richardson and Michael J. Carey.
Programming Constructs for Database
System Implementation in EXODUS. In
Proc. ACM SIGMOD Conf., pages 208-
219, 1987.

Steven P. Reiss. Connecting Tools Us-
ing Message Passing in the Field Environ-
ment. IEEE Software, pages 57-67, July
1990.

Lawrence A. Rowe and Michael R. Stone-
braker. The POSTGRES Data Model.
In Proc. of the Thirteenth International
Conf. on Very Large Data Bases, pages
83 - 96, 1987.

James Rumbaugh. Relations as Seman-
tic Constructs in an Object-Oriented lan-
guage. In OOPSLA ‘87, pages 466481,
Orlando, Florida, December 1987.

Stanley M. Sutton, Jr., Dennis Heim-
bigner, and Leon J. Osterweil. Lan-
guage Constructs for Managing Change in
Process-Centered Environments. In Proc.
of the Fourth ACM SIGSOFT Symposium
on Practical Software Development Envi-
ronments, pages 206-217, 1990. Irvine,
California.

Michael Stonebraker and Greg Kem-
nitz. The POSTGRES Next Generation
Database Management System. Commu-
nications of the ACM, 34(10):78-92, Oc-
tober 1991.

Michael Stonebraker and Lawrence A.
Rowe. The Design of POSTGRES. In
Proc. of the ACM SIGMOD International
Conf. on the Management of Data, pages
340 - 355, 1986.

[SutSO] Stanley M. Sutton, Jr. APPL/A: A
Prototype Language for Software-Process
Programming. PhD thesis, University of
Colorado, August 1990.

[SZH+Sl] S. M. Sutton Jr., H. Ziv, D. Heimbigner,
M. Maybee, L. J. Osterweil, X. Song, and
H. E. Yessayan. Programming a Soft-
ware Requirements Specification Process.
In Proceedings of the First International
Conference on the Software Process, Re-
dondo Beach, CA, October 1991.

[TBC+88] Richard N. Taylor, Frank C. Belz, Lori A.
Clarke, Leon J. Osterweil, Richard W.
Selby, Jack C. Wileden, Alexander Wolf,
and Michael Young. Foundations for the
Arcadia Environment Architecture. In
Proc. A CM SIGSOFT/SIGPLA N Soft-
ware Engineekg Symposium on Practi-
cal Software Development Environments,
pages 1 - 13. ACM, November 1988.

[TW91] Craig Thompson and David Wells. Re-
port on DARPA open OODB work-
shop I: Preliminary architecture work-
shop. Technical report, Information Tech-
nologies Laboratory, Computer Science
Center, Texas Instruments Incorporated,
May 1991.

[Uni83] United States Department of Defense.
Reference Manual for the Ada Program-
ming Language, 1983. ANSI/MIL-STD-
1815A-1983.

[WWFT88] Jack C. Wileden, Alexander L. Wolf,
Charles D. Fisher, and Peri L. Tarr.
PGraphite: An Experiment in Persis-
tent Typed Object Management. Arca-
dia Document UM-88-05, Software Devel-
opment Laboratory, Computer and Infor-
mation Science Department, University of
Massachusetts, Amherst, Massachusetts,
1988.

595

