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Abstract 

Knowledge discovery in databases, or data mining, 
is an important issue in the development of data- and 
knowledge-base systems. An attribute-oriented induction 
method has been developed for knowledge discovery in 
databases. The method integrates a machine learning 
paradigm, especially learning-from-examples techniques, 
with set-oriented database operations and extracts gen- 
eralized data from actual data in databases. An 
attribute-oriented concept tree ascension technique is 
applied in generalization, which substantially reduces the 
computational complex@ of database learning 
processes. Different kinas of knowledge rules, including 
characteristic rules, discrimination rules, quantitative 
rules, and data evolution regularities can be discovered 
efficiently using the attribute-oriented approach. In addi- 
tion to learning in relational databases, the approach can 
be applied to knowledge discovery in nested relational 
and deductive databases. Learning can also be per- 
formed with databases containing noisy data and excep- 
tional cases using database statistics. Furthermore, the 
rules discovered can be used to query database 
knowledge, answer cooperative queries and facilitate 
semantic query optimization. Based upon these princi- 
ples, a prototyped database learning system, DBLEARN, 
has been constructed for experimentation. 

1. Introduction 

Knowledge discovery is the nontrivial extraction of 
implicit, previously unknown, and potentially useful 
information from data [7]. The growth in the size and 
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number of existing databases far exceeds human abilities 
to analyze such data, thus creating both a need and an 
opportunity for extracting knowledge from databases. 
Recently, data mining has been ranked as one of the most 
promising research topics for the 1990s by both database 
and machine learning researchers [7,20]. 

In our previous studies [l, 101, an attribute-oriented 
induction method has been developed for knowledge 
discovery in relational databases. The method integrates 
a machine learning paradigm, especially learning-from- 
examples techniques, with database operations and 
extracts generalized data from actual data in databases. 
A key to our approach is the attribute-oriented concept 
tree ascension for generalization which applies well- 
developed set-oriented database operations and substan- 
tially reduces the computational complexity of the data- 
base learning processes. 

In this paper, the attribute-oriented approach is 
developed further for learning different kinds of 
knowledge rules, including characteristic rules, discrimi- 
nation rules, quantitative rules, and data evolution regu- 
larities. Moreover, in addition to learning from relational 
databases, this approach is extended to knowledge 
discovery in other kinds of databases, such as nested rela- 
tional and deductive databases. Learning can also be per- 
formed with databases containing noisy data and excep 
tional cases using database statistics. Furthermore, the 
rules discovered can be used for querying database 
knowledge, cooperative query answering and semantic 
query optimization. 

The paper is organized as follows. Primitives for 
knowledge discovery in databases are introduced in Sec- 
tion 2. The principles of attribute-oriented induction are 
presented in Section 3. The discovery of different kinds 
of knowledge rules in relational systems is considered in 
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Section 4. Extension of the method to extended- 
relational databases is discussed in Section 5. A com- 
parison of our approach with other learning algorithms is 
contained in Section 6. The application of discovered 
rules to enhance system performance is discussed in Sec- 
tion 7, and we summarize our investigation in Section 8. 

2. Primitives for Knowledge Discovery in Databases 

Three primitives should be provided for the 
specification of a learning task: task-relevant data, back- 
ground knowledge, and the expected representations of 
learning results. For illustrative purposes, we tirst exam- 
ine relational databases, however, the results are general- 
ized to other kinds of databases in later discussions. 

2.1. Data relevant to the discovery process 

A database usually stores a large amount of data, of 
which only a portion may be relevant to a specific leam- 
ing task. For example, to characterize the features of 
graduate students in science, only the data relevant to 
graduales in science are appropriate in the learning pro- 
cess. Relevant data may extend over several relations. A 
query can be used to collect task-relevant data from the 
database. 

Task-relevant data can be viewed as examples for 
learning processes. Undoubtedly, learning-from- 
examples [9,14] should be an important strategy for 
knowledge discovery in databases. Most learning-from- 
examples algorithms partition the set of examples into 
positive and negative sets and perform generalization 
using the positive data and specialization using the nega- 
tive ones [14]. Unfortunately, a relational database does 
not explicitly store negative data, and thus no explicitly 
specified negative examples can be used for specializa- 
tion. Therefore, a database induction process relies 
mainly on generalization, which should be performed 
cautiously to avoid over-generalization. 

Many kinds of rules, such as characteristic rules, 
discrimination rules, data evolution regularities, etC. can 
be discovered by induction processes. A characteristic 
rule is an assertion which characterizes a concept 
satisfied by all or a majority number of the examples in 
the class undergoing learning (called the target class). 
For example, the symptoms of a specific diiease can be 
summarized by a characteristic rule. A discrimination 
rule is an assertion which discriminates a concept of the 
class being learned (the target class) from other classes 
(called contrasting classes). For example, to distinguish 
one disease from others, a discrimination rule should 
summarize the symptoms that discriminate this disease 
from others. Furthermore, data evolution regularity 
represents the characteristics of the changed data if it is a 
characteristic rule, or the features which discriminate the 

current data instances from the previous ones if it is a 
discrimination rule. If quantitative measurement is asso- 
ciated with a learned rule, the rule is called a quantita- 
tive rule. 

In learning a characteristic rule, relevant data are 
collected into one class, the target class, for generaliza- 
tion. In learning a discrimination rule, it is necessary to 
collect data into two classes, the target class and the con- 
trasting class(es). The data in the contrasting class(es) 
imply that such data cannot be used to distinguish the tar- 
get class from the contrasting ones, that is, they are used 
to exclude the properties shared by both classes. 

2.2. Background knowledge 

Concept hierarchies represent necessary back- 
ground knowledge which controls the generalization pro- 
cess. Different levels of concepts are often organized 
into a taxonomy of concepts. The concept taxonomy can 
be partially ordered according to a general-to-specific 
ordering. The most general concept is the null descrip- 
tion (described by a reserved word “ANY’), and the most 
specific concepts correspond to the specific values of 
attributes in the database [l I]. Using a concept hierar- 
chy, the rules learned can be represented in terms of gen- 
eralized concepts and stated in a simple and explicit 
form, which is desirable to most users. 

( biology, chemistry, computing, . . . . physics ) c science 
( literahue , music, . . ..painting ) c art 
( science, art ) C ANY (major) 
{ freshman. sophomore, junior, senior ] c undergraduate 
( M.S.. M.A., Ph.D. ) c graduate 
( undergraduate, graduate ) c ANY (status) 
( Bumaby, . . . . Vancouver, Victoria ) c British Colombia 
( wprY, -.-, Edmonton, Lethbridge } c Alberta 
{ Hamilton, Toronto, . . . . Waterloo ) c Ontario 
( Bombay, . . . . New Delhi j c India 
( Beijing, Nanjing, . . . . Shanghai ) c China 
( China, India, Germany, . . . . Switzerland ] c foreign 
[ Alberta, British Columbia, . . . . Ontario ) c Canada 
( foreign, Canada ) c ANY (place) 
{ 0.0-1.99) Cpoor 
( 2.0 - 2.99 ] c average 
( 3.0 - 3.49 ) c good 
( 35 - 4.0 ] c excellent 
( poor, average, good excellent ) c ANY (grade) 

Figure 1. A concept hierarchy table of the database 

Example 1. The concept hierarchy table of a typical 
university database is shown in Fig. 1, where A c B indi- 
cates that B is a generalization of A. A concept tree 
represents a taxonomy of concepts of the values in an 
attribute domain. A concept tree for stutz~~ is shown in 
Fig. 2. Cl 
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Figure 2. A concept tree for status. 

Concept hierarchies can be provided by knowledge 
engineers or domain experts. This is reasonable for even 
large databases since a concept tree registers only the dis- 
tinct discrete attribute values or ranges of numerical 
values for an attribute which are, in general, not very 
large and can be input by domain experts. Moreover, 
many conceptual hierarchies are actually stored in the 
database implicitly. For example, the information that 
“Vancouver is a city of British Columbia, which, in turn, 
is a province of Canada”, is usually stored in the database 
if there are “city”, “province” and “country” attributes. 
Such hierarchical relationships can be made explicit at 
the schema level by indicating “city c province c coun- 
try”. Then, the taxonomy of all the cities stored in the 
database can be retrieved and used in the learning pro- 
cess. 

Some concept hierarchies can be discovered 
automatically or semi-automatically. Numerical atui- 
butes can be organized as discrete hierarchical concepts, 
and the hierarchies can be constructed automatically 
based on database statistics. For example, for an attribute 
“GPA”, an examination of the attribute value distribution 
in the database may disclose that GPA falls between 0 to 
4, and most GPA’s for graduates are clustered between 3 
and 4. One may classify 0 to 1.99 into one class, and 2 to 
2.99 into another but give finer classifications for those 
between 3 and 4. Even for attributes with discrete values, 
statistical techniques can be used under certain cir- 
cumstances [6]. For example, if the birth-place of most 
students are clustered in Canada and scattered in many 
different countries, the highest level concepts of the attri- 
bute can be categorized into “Canada” and “foreign”. 
Similarly, an available concept hierarchy can be modified 
based on database statistics. Moreover, the concept 
hierarchy of an attribute can also be discovered or refined 
based on its relationship with other attributes [6]. 

Different concept hierarchies can be constructed on 
the same attribute based on different viewpoints or 
preferences. For example, the birthplace could be organ- 
ized according to administative regions such as pro- 
vinces, countries, etc., geographic regions such as east- 
coast, west-coast, etc., or the sizes of the city, such as, 
metropolis, small-city, town, countryside, etc. Usually, a 

commonly referenced concept hierarchy is associated 
with an attribute as the default one. Other hierarchies can 
be chosen explicitly by preferred users in the learning 
process. 

23. Representation of learning results 

From a logical point of view, each tuple in a rela- 
tion is a logic formula in conjunctive normal form, and a 
data relation is characterized by a large set of disjunc- 
tions of such conjunctive forms. Thus, both the data for 
learning and the rules discovered can be represented in 
either relational form or Iirst-order predicate calculus. 

A relation which represents intermediate (or final) 
learning results is called an intermediate (or afinal) gen- 
eralized relation. In a generalized relation, some or all 
of its attribute values are generalized data, that is, nonleaf 
nodes in the concept hierarchies. Some leaming-from- 
examples algorithms require the final learned rule to be in 
conjunctive normal form [14]. This requirement is usu- 
ally unreasonable for large databases since the general- 
ized data often contain different cases. However, a rule 
containing a large number of disjuncts indicates that it is 
in a complex form and further generalization should be 
performed. Therefore, the final generalized relation 
should be represented by either one tuple (a conjunctive 
rule) or a small number (usually 2 to 8) of tuples 
corresponding to a disjunctive rule with a small number 
of disjuncts. A system may allow a user to specify the 
preferred generalization threshold, a maximum number 
of disjuncts of the resulting formula. For example, if the 
threshold value is set to three, the final generalized rule 
will consist of at most three disjuncts. 

The complexity of the rule can be controlled by the 
generalization threshold. A moderately large threshold 
may lead to a relatively complex rule with many dis- 
juncts and the results may not be fully generalized. A 
small threshold value leads to a simple rule with few dis- 
juncts. However, small threshold values may result in an 
overly generalized rule and some valuable information 
may get lost, A better method is to adjust the threshold 
values within a reasonable range interactively and to 
select the best generalized rules by domain experts and/or 
USerS. 

Exceptional data often occur in a large relation. It 
is important to consider exceptional cases when learning 
in databases. Statistical information helps learning- 
from-examples to handle exceptions and/or noisy data 
[3,15]. A special attribute, vote, can be added to each 
generalized relation to register the number of tuples in 
the original relation which are generalized to the current 
tuple in the generalized relation. The attribute vote car- 
ries database statistics and supports the pruning of scat- 
tered data and the generalization of the concepts which 
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take a majority of votes. The final generalized rule will 
be the rule which represents the characteristics of a 
major@ number of facts in the database (called an 
approximate rule) or indicates quantitative measurement 
of each conjunct or disjunct in the rule (called a quantita- 
tive rule). 

2.4. A database learning language 

Given a number of examples, generalization can be 
performed in many different directions [5]. Uncon- 
strained learning may result in a very large set of learned 
rules. Moreover, different rules can be extracted from the 
same set of data using different background knowledge 
(concept hierarchies). In order to constrain a generaliza- 
tion process and extract interesting rules from databases, 
learning should be directed by specific learning requests 
and background knowledge. 

A database learning request should consist of (i) a 
database query which extracts the relevant set of data, (ii) 
the kind of rules to be learned, (iii) the specification of 
the target class, and possibly, the contrasting classes 
depending on the rules to be learned, (iv) the preferred 
concept hierarchies, and (v) the preferred form to express 
learning results. Notice that (iv) and (v) are optional 
since default concept hierarchies and a default generali- 
zation threshold can be used if no preference is specified 
explicitly. 

A database learning system, DBLEARN, has been 
proposed in our study [l]. The language of DBLEARN 
can be viewed as an extension to the relational language 
SQL for knowledge discovery in databases. Because of 
limited space, we present one short illustrative example 
of a learning request specified to DBLEARN. 

Example 2. Our objective is to learn a discrimination 
rule which distinguishes Ph.D. students from M.S. stu- 
dents in science based upon the level of courses in sci- 
ence in which they assist. The learning involves both Stu- 
dent and Course relations. The request is specified to 
DBLEARN as follows. 

in relation Student S, Course C 
learn discrimination rule for SStatus = “Ph.D.” 
in contrast to ssrarus = “MS.” 
where SMajor = “science” and C.Dept = “science” 

and C.TA = SName 
in relevance to CLevel 

Notice that a database query is embedded in the 
learning request, and “science” is a piece of generalized 
data which can be found in the concept hierarchy table. 
The preferred conceptual hierarchy can be specified by 
“using hierarchy hierarchy-name”; and the preferred 
generalization threshold can be specified by “using 
threshold: threshold-value”. Since neither of them is 

specified explictly in this learning request, default hierar- 
chies and thresholds are used Cl 

3. Principles for Attribute-Oriented Induction in 
Relational Databases 

3.1. Basic strategies for attribute-oriented induction 

A set of seven basic strategies are defined for per- 
forming atnibute-oriented induction in relational data- 
bases, which are illustrated using Example 3. 
Example 3. Let Table 1 be the relation student in a 
university database. 

NUIle StatUS 

Anderson M.A. 

Bach jUi0r 

carltcm junior 

Fraser M.S. 

Major Birth-Place GPA ’ 

histDly Vancouver 3.5 
math Calgary 3.7 

liberal an.5 Edmmtm 2.6 
physics Ottawa 3.9 

I Gupta I Ph.D. 1 math 1 Bombay 1 3.3 1 

Han SOphDmae chemistry Richmond 2.7 

Jackson senior -v=h Victoria 3.5 
LiU PhD. biology shanghai 3.4 

Table 1. A relation Student in a university database. 

Suppose that the learning task is to learn charac- 
teristic rules for graduate students relevant to the attri- 
butes Name, Major, Birth-Place and GPA, using the 
default conceptual hierarchy presented in Fig. 1 and the 
default threshold value of 3. The learning task is 
represented in DBLEARN as follows. 

in relation Student 
learn characteristic rule for Stafus = “graduate” 
in relevance to Name, Major, Birth-Place, GPA 

NUIUZ 

AndersoD 
Fraser 

Major 1 Birth-Place 1 GPA ) vote 

histoly 1 VaDcDuver 1 35 ( 1 
phvsics 1 Ottawa 1 3.9 1 1 .~ 

Gupa 

LiU 

. . . 
Md 

WallI? 

r, 

math Banbay 3.3 1 
biology Shanghai 3.4 1 

. . . . . . 
... computing vi*ria 3.8 ‘;’ 1 

statistics Nanfig 3.2 1 

Table 2. The initial data relation for induction. 

For this learning request, preprocessing is per- 
formed by 6rst selecting graduate students. Since “gra- 
duate” is a nonleaf node in the concept hierarchy on 
Status, the hierarchy table should be consulted to extract 
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the set of the corresponding primitive data stored in the 
relation, which is (MS., MA., Ph.D.). Then the data 
about graduates can be retrieved and projected on 
relevant attributes Name, Major, Birth-Place, and CPA, 
which results in an initial data relation on which induc- 
tion can be performed. Table 2 reflects the result of this 
preprocessing and a special attribute vote is attached to 
each tuple with its initial value set to 1. Such a prepro- 
cessed data relation is called an initial relation. 

Attribute-oriented induction is performed on the 
initial relation. 

Strategy 1. (Generalization on the smallest decompos- 
able components) Generalization should be perjkmed 
on the smallest decomposable components (or attributes) 
of a data relation. 

Rationale. Generalization is a process of learning from 
positive examples. Generalization on the smallest 
decomposable components rather than on composite 
attributes ensures that the smallest possible chance is 
considered in the generalization, which enforces the least 
commitment principle (commitment to minimally gen- 
eralized concepts) and avoids over-generalization. Cl 

We examine the task-relevant attributes in 
sequence. There is no higher level concept specified on 
the first attribute Name. Thus, the attribute should be 
removed in generalization, which implies that general 
properties of a graduate student cannot be characterized 
by the attribute Name. This notion is based on Strategy 2. 

Strategy 2. (Attribute removal) Ifthere is a large set of 
distinct values for an attribute but there is no higher level 
concept provided for the attribute, the attribute should be 
removed in the generalization process. 

Rationale. This strategy corresponds to the generaliza- 
tion rule, dropping conditions, in learning-from-examples 
(141. Since an attribute-value pair represents a conjunct 
in the logical form of a tuple, removal of a conjunct elim- 
inates a constraint and thus generalizes the rule. If there 
is a large set of distinct values in an attribute but there is 
no higher level concept provided for it, the values cannot 
be generalized using higher level concepts, thus the athi- 
bute should be removed. 0 

The three remaining attributes Major, Birthplace 
and CPA can be generalized by substituting for subordi- 
nate concepts by their corresponding superordinate con- 
cepts. For example, “physics” can be substituted for by 
“science” and “Vancouver” by “B.C.“. Such substitutions 
are performed attribute by attribute, based on Strategy 3. 

Strategy 3. (Concept tree ascension) If there exists a 
higher level concept in the concept tree for an attribute 
value of a tuple, the substitution of the value by its higher 
level concept generalizes the &de. Minimal 

generalization should be enforced by ascending the tree 
one level at a time. 

Rationale. This strategy corresponds to the generaliza- 
tion rule, climbing generalization trees, in learning- 
from-examples [14]. The substitution of an attribute 
value by its higher level concept makes the tuple cover 
more cases than the original one and thus generalizes the 
tuple. Ascending the concept tree one Ieve at a time 
ensures that the generalization shall follow the least com- 
mitment principle and thus reduces chances of over- 
generalization. Cl 

As a result of concept tree ascension, different 
tuples may generalize to an identical tuple where two 
tuples are identical if they have the same corresponding 
attribute values without considering the special attribute 
vote. To incorporate quantitative information in the 
learning process, vote should be accumulated in the gen- 
eralized relation when merging identical tuples. 

Strategy 4. (Vote propagation) The value of the vote of 
a tuple should be carried to its generalized tlcple and the 
votes should be accumulated when merging identical 
tuples in generalization. 

Rationale. Based on the definition of vote, the vote of 
each generalized tuple must register the number of the 
tuples in the initial data relation generalized to the 
current one. Therefore, to keep the correct :otes 
registered, the vote of each tuple should be carried in the 
generalization process, and such votes should be accumu- 
lated when merging identical tuples. •I 

By removing one attribute and generalizing the 
three remaining ones, the relation depicted in Table 2 is 
generalized to a new relation as illustrated in Table 3. 

Table 3. A generalized relation 

To judge whether an attribute needs to be further 
generalized, we have 

Strategy 5. (Threshold control on each attribute) If 
the number of distinct values of an attribute in the target 
class is larger than the generalization threshold value, 
further generalization on this attn’bute should be per- 
formed. 

Rationale. The generalization threshold controls and 
represents the maximum number of tuples of the target 
class in the final generalized relation. If one attribute 
contains more distinct values than the threshold, the 
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number of distinct tuples in the generalized relation must 
be greater than the threshold value. Thus the values in 
the attribute should be further generalized. 0 

After attribute-oriented ascension of concept trees 
and the merging of identical tuples, the total number of 
tuples in a generalized relation may remain greater than 
the specified threshold. In this case, further generaliza- 
tion is required. Strategy 6 has been devised for this gen- 
eralization. 

Strategy 6. (Threshold control on generalized rela- 
tions) If the number of tuples of a generalized relation in 
the target class is larger than the generalization thres- 
hold value, further generalization on the relation should 
be peflonned. 

Rationale. Based upon the definition of the generaliza- 
tion threshold, further generalization should be per- 
formed if the number of tuples in a generliazed relation is 
larger than the threshold value. By further generalization 
on selected attribute(s) and merging of identical tuples, 
the size of the generalized relation will be reduced. Gen- 
eralization should continue until the number of remaining 
tuples is no greater than the threshold value. Cl 

At this stage, there are usually alternative choices 
for selecting a candidate attribute for further generaliza- 
tion. Criteria, such as the preference of a larger reduction 
ratio on the number of tuples or the number of distinct 
attribute values, the simplicity of the final learned rules, 
etc., can be used for selection. Interesting rules can often 
be discovered by following different paths leading to 
several generalized relations for examination, com- 
parison and selection. Following different paths 
corresponds to the way in which different people may 
learn differently from the same set of examples. The 
generalized relations can be examined by users or experts 
interactively to filter out trivial rules and preserve 
interesting ones [233. 

Table 3 represents a generalized relation consisting 
of five tuples. Further generalization is needed to reduce 
the number of tuples. Since the attribute “Birth-Place” 
contains four distinct values, generalization should be 
performed on it by ascending one level in the concept 
tree, which results in the relation shown in Table 4. 

yJ%gpsJ 

Table 4. Further generahzation of the relation. 

The final generalized relation consists of only a 
small number of tuples, and this generalized relation can 
be transformed into a simple logical formula. Based 
upon the principles of logic and databases [8,221, we 

have evolved Strategy 7. 

Strategy 7. (Rule transformation) A tuple in a jmal 
generalized relation is tranrfonned to conjunctive normal 
form, and multiple tuples are transformed to disjunctive 
normal form. 

Notice that simplification can be performed on 
Table 4 by unioning the first two tuples if set representa- 
tion of an attribute is allowed. The relation so obtained is 
shown in Table 5. 
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Table 5. Simplification of the generalized relation. 

Suppose art and science cover all of the Major 
areas. Then (art, science ) can be generalized to ANY and 
be removed from the representation. Therefore, the final 
generalized relation is equivalent to rule (I), that is, a 
graduate is either (with 7S% probability) a Canadian 
with an excellent GPA or (with 25% probability) a 
foreign student, majoring in sciences with a good GPA. 
Notice that since a characteristic rule characterizes all of 
the data in the target class, its then-part represents the 
necessary condition of the class. 

(1) V(x) graduate(x) + ( Birth-Place(x) E Canadn /\ 
GPA(x) E excellent ) [7S%] V ( Major(x) E science A 

Birth-Place(x) E foreign A GPA(x) E good ) [25%]. 

Rule (I) is a quantitative rule. It can also be 
expressed in the qualitative form by dropping the quanti- 
tative measurement. Moreover, the learning result may 
also be expressed as an approximate rule by dropping the 
conditions or conclusions with negligible probabilities. 

3.2. Basic attribute-oriented induction algorithm 

The basic idea of attribute-oriented induction is 
summarized in the following algorithm. 

Algorithm 1. Basic attribute-oriented induction in rela- 
tional databases. 

Input: (i) A relational database, (ii) the learning task, (iii) 
the (optional) preferred concept hierarchies, and (iv) 
the (optional) preferred form to express learning 
results (e.g., generalization threshold). 

Output. A characteristic rule learned from the database. 

Method. Basic attribute-oriented induction consists of 
the following four steps: 

Step 1. Collect the task-relevant data, 

Step 2. Perform basic attribute-oriented induction, 
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Step 3. Simplify the generalized relation, and 

Step 4. Transform thejnal relation into a logical rule. 

Notice that Step 2 is performed as follows. 

begin [bask attribute-oriented induction) 

for each attribute Ai (1 I i < n , where n = # of atui- 
butes) in the generalized relation GR do 

while # of distinct-values - - in Ai > threshold do ( 
if no higher level concept % the concept hierarchy 

table for Ai 
then remove Ai 
else substitute for the values of the Ai’s by its 

corresponding minimal generalized concept; 
merge identical tuples ) 

while # of tuples in CR > threshold do { - - 
selectively generalize attributes; 
merge identical tuples ) 

end. Cl 

Theorem 1. Algorithm 1 learns correctly characteristic 
rules from relational databases. 

Proof. 

In Step 1, the relevant set of data in the database is 
collected for induction. The then-part in the first while- 
loop of Step 2 incorporates Strategy 1 (attribute remo- 
val), and the else-part utilizes Strategy 3 (concept tree 
ascension). The condition for the first while-loop is 
based on Strategy 5 and that for the second one on Stra- 
tegy 6 (threshold control). Strategy 2 is used in Step 2 to 
ensure that generalization is performed on the minimal 
decomposable components. Each generalization state- 
ment in both while-loops applies the least-commitment 
principle based on those strategies. Finally, Steps 3 and 4 
apply logic transformations based on the correspondence 
between relational tuples and logical formulas. Thus the 
obtained rule should be the desired result which summar- 
izes the characteristics of the target class. Cl 

The basic attribute-oriented induction algorithm 
extracts a characteristic rule from an initial relation. 
Since the generalized rule covers all of the positive 
examples in the database, it forms the necessary condi- 
tion of the learning concept, that is, the rule is in the form 
of 

learning-class(x) + condition(x), 

where condition(x) is a formula containing x . However, 
since data in other classes are not taken into considera- 
tion in the learning process, there could be data in other 
classes which also meet the specified condition. Thus, 
condition(x) is necessary but may not be sufficient for x to 
be in the learning class. 

4. Learning Other Knowledge Rules by Attribute- 
Oriented Induction 

The attribute-oriented induction method can also 
be applied to learning other knowledge rules, such as 
discrimination rules, data evolution regularities, etc. 

4.1. Learning discrimination rules 

Since a discrimination rule distinguishes the con- 
cepts of the target class from those of contrasting classes, 
the generalized condition in the target class that overlaps 
the condition in contrasting classes should be detected 
and removed from the description of discrimination rules. 
Thus, a discrimination rule can be extracted by generaliz- 
ing the data in both the target class and the contrasting 
class synchronously and excluding properties that overlap 
in both classes in the final generalized rule. 

To implement this notion, the basic atuibute- 
oriented algorithm can be modified correspondingly for 
discovery of discrimination rules. We illustrate the pro- 
cess with Example 4. 

Example 4. SUppOSe a discrimination rule is to be 
extracted to distinguish graduate students from undergra- 
duates in the relation Szudeti (Table 1). Clearly, both the 
target class graduate and the contrasting class undergra- 
duate are relevant to the learning process, and the data 
should be partitioned into two portions: graduate in con- 
trast to undergraduate. Generalization can be performed 
synchronously in both classes by attribute removal and 
concept tree ascension. Suppose the relation is general- 
ized to Table 6. 

Class 

gmiuate 

undergrad. 

Major Birth-Place GPA 
an B.C. excellent 

science OtltaliO excellent 
SCiCXlCe B.C. exceknt 
science India lvd 
science China iFd 
science Alberta eXCdht 

art Alberta average 
SCiellCe B.C. average 
SCieIlCe B.C. excellent 

art B.C. average 
art OtlUIiO excellent 

Table 6. A generalized relation 

As shown in Table 6, different classes may share 
tuples. The tuples shared by different classes are called 
overlapping tuples. Obviously, the third tuple of the 
class graduate and the fourth tuple of the class under- 
grad. are overlapping tuples, which indicates that a B.C. 
born student, majoring in science with excellent GPA, 
may or may not be a graduate student In order to get an 
effective discrimination rule, care must be taken to han- 
dle the overlapping tuples. We utilize Strategy 8. 

Strategy 8. (Handling overlapping tuples) If there are 
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overlapping tuples in both the target and contrasting 
classes, these tuples should be marked and be excluded 
from thefrnal discrimination rule. 

Rationale. Since the overlapping tuples represent the 
same assertions in both the target class and the constrast- 
ing class, the concept described by the overlapping tuples 
cannot be used to distinguish the target class from the 
contrasting class. By detecting and marking overlapping 
tuples, we have the choice of including only those asser- 
tions which have a discriminating property in the rule, 
which ensures the correctness of the learned discrimina- 
tion rule. 0 

After marking the third tuple in the class of gradu- 
ate and the fourth tuple in the class of undergrad., the tar- 
get class contains four unmarked tuples as shown in 
Table 6, which implies that the resulting rule will contain 
four disjuncts. Suppose the threshold value is 3, further 
generalization is performed on attribute “Birth-Place”, 
which results in the relation shown in Table 7. 

class Major Birth-Place GPA VOLS mark 

an Canada excellent 35 * 
graduate science Canada exce.llmr 40 * 

science foreign good 25 
sciencx. Canada excdmr 50 * 

undergrad. an.3 Canada average 70 
SCiellCC Canada average 60 

an Canada excdht 20 * 

Table 7. A generalized relation 

Notice that overlapping marks should be inherited 
in their generalized tuples because their generalized con- 
cepts still overlap with that in the contrasting class. 
Moreover, since generalization may produce new over- 
lapping tuples, an overIapping check should be per- 
formed at each ascension of the concept tree. The gen- 
eralization process repeats until the number of unmarked 
tuples in the target class is below the specified threshold 
value. 

Since Table 7 has one unmarked tuple and two 
marked tuples in the target class, the qualitative discrimi- 
nation rule should contain only the unmarked tuple, as 
shown in rule (2~). 
(2~ ) V(x) graduate(x) t 

Major(x) E science A Birth-Place(x) E foreign I\ CPA(x) E 

good. 

Rule (2~ ) is a qualitative rule which excludes over- 
lapping disjuncts. In many cases, however, it is informa- 
tive to derive a quantitative rule from the final general- 
ized relation, which associates with each disjunct a quan- 
titative measurement (called d-weight) to indicate its 
discriminating ability. 

Definition. Let q be a generalized concept (tuple) and Cj 
be the target class. The d-weight for q (referring to the 

target class) is the ratio of the number of original tuples 
in the target class covered by q to the total number of 
tuples in both the target class and the contrasting classes 
covered by q . Formally, the d-weight of the concept q in 
class cj is defined as below. 

d-weight = vote.s(q E C;)I~$~ voter (q E Ci), 

where K stands for the total number of the target and con- 
trasting classes, and Cj is in {C I, . . . . C, } . 

The range for d-weight is in the interval [O - I]. A 
high d-weight indicates that the concept is primarily 
derived from the target class Cj, and a low d-weight 
implies that the concept is primarily derived from the 
contrasting class(es). 

The d-weight for the first tuple in the target class is 
35435 + 20) = 63.64%, and that for the second and the 
third tuples are 44.44% and 100%. Notice that the d- 
weight for any unmarked tuple is 100%. The quantitative 
discrimination rule for graduates can be expressed as 
(26 1. 
(2 b ) V (x) graduate(x) t 

(Major(x) E science /\ Birth-Place(x) E foreign /\ GPA(x) E 
good) llo@w iJ 

(Major(x) B art I\ Birth-Place(x) E Canada /\ GPA(x) E 
excellent) /63.44%] V 

(Major(x) E science /\ Birth-Place(x) E Canada /\ GPA(x) 
E excellenl ) [44.4470]. 

RuIe (2b ) implies that if a foreign student majors in 
sciences with a good GPA, (@he is certainly a graduate; 
if a Canadian student majors in art with excellent GPA, 
the probability for him (her) to be a graduue is 63.64%; 
and if a Canadian student majors in science with excel- 
lent GPA, the probability for him (her) to be a graduate is 
44.44%. 

A qualitative discrimination rule provides a 
sufficient condition but not a necessary one for an object 
(or a tuple) to be in the target class. Although those 
tuples which meet the condition are in the target class, 
those in the target class may not necessarily satisfy the 
condition since the rule may not cover all of the positive 
examples of the target class in the database. Thus, the 
rule should be presented in the form of 

learning-class(x) t condition(x). 

A quantitative discrimination rule presents the 
quantitative measurement of the properties in the target 
class versus that in the contrasting classes. A 100% d- 
weight indicates that the generalized tuple is in the target 
class only. Otherwise, the d-weight shows the possibli- 
ties for a generalized tuple to be in the target class. 
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4.2. Learning data evolution regularities 

Data evolution regularity reflects the trend of 
changes in a database over time. Discovery of regulari- 
ties in an evolving database is important for many appli- 
cations. To simplify our discussion, we assume that the 
database schema remains stable in data evolution. A 
database instance, DB,, is the database state, i.e., all of 
the data in the database, at time 1. At least two different 
database instances, DB,, and DB,, where tl # I,, are 

required for such knowledge discovery. Our discussion 
can be generalized to multiple (> 2) database instances. 

Data evolution regularities can be classified into 
characteristic rules and discrimination rules. The former 
rules summarize characteristics of the changed data; 
while the latter distinguish general charteraristics of the 
relevant data in the current database from those in a pre- 
vious database instance. We show that attribute-oriented 
induction can be used in the generalization process. 

Example 5. Let the learning request be to find the 
characteristics of those graduate students whose GPA 
increases at least 05 in the last six months. 

The knowledge discovery process can be parti- 
tioned into two phases: (1) collecting task-relevant data, 
and (2) performing attribute-oriented induction on the 
relevant data. The tirst phase is performed by finding all 
of the graduate students whose GPA increases at least 0.5 
in the last six months based upon the current database 
instance and the instance six months ago. Since graduate 
is a nonprimitive concept, data retrieval should be per- 
formed by consulting the concept hierarchy table as well. 
The second phase is carried out in the same manner as the 
previously studied attribute-oriented induction for leam- 
ing characteristic rules. 

Suppose that another learning request is to distin- 
guish the characteristics of the undergraduate students 
enrolled in July 1990 from those enrolled in July 1992. 

The knowledge discovery process can still be parti- 
tioned into two phases: (1) collecting the task-relevant 
data and grouping them into two classes, the target class 
and the contrasting class, and (2) performing attribute- 
oriented induction synchronously on the two classes. The 
first phase is performed by finding all of the undergradu- 
ate students enrolled in July 1990 and those enrolled in 
July 1992 and grouping them into two classes respec- 
tively. The second phase is the same as the previously 
studied attribute-oriented induction for learning discrimi- 
nation rules. Cl 

Such a process can also be used to study the gen- 
eraI characteristics of the newly inserted or newly deleted 
data sets in a database. In general, data evolution regu- 
larities can be extracted by collecting the learning task- 

relevant data (usually, the evolving portion) in different 
database instances and performing attribute-oriented 
induction on the corresponding task-relevant data sets. 

5. Towards Knowledge Discovery in Extended- 
Relational Databases 

The relational data model has been extended in 
many ways to meet the requirements of new database 
applications [201. Nested-relational and deductive data- 
bases are two influential extended-relational systems. 
Interestingly, attribute-oriented induction can be easily 
extended to knowledge discovery in these systems. 

The nested relational model allows nonatomic, 
relational-valued domains. Thus, a hierarchy of nested 
relations is formed 1181. The attribute-oriented induction 
can be performed easily on the atomic domains in the 
same way as in relational systems. The induction can be 
performed on the non-atomic domains in two different 
ways: (1) unnesting the nested relations, which 
transforms nested relations intoflat relations to which the 
previously described method can be applied, or (2) per- 
forming induction directly on the nested relations by 
treating the nonatomic domains as set-valued domains. 

Example 6. Let the student relation in the university 
database contain one more attribute hobby, which regis- 
ters a set of hobbies for each student. We study the leam- 
ing request discover the relationship between GPA and 
hobby for graduate students in computing science. 

Although generalization can be performed by first 
flattening the (nested) relation, Student, into a nonnested 
relation and then performing attribut-oriented induction, 
it is more efficient and elegant to perform induction 
directly on the attribute hobby by treating the domain as a 
set-valued domain. For example, without flattening the 
relation, the set { bactninton, violin] can be generalized to 
a new set (sports, music). A benefit of direct induction 
on set-valued attribute is that, unlike unnesting, it does 
not flatten an original tuple into several tuples. Vote 
accumulation can be handled directly when merging 
identical tuples in the concept tree ascension since one 
generalized tuple corresponds to one original tuple in the 
generalized relation. Cl 

Deductive database systems can be viewed as 
another extension to relational systems by introducing 
deduction power to relational databases. By incorporat- 
ing deduction rules and integrity constraints in the gen- 
eralization process, attribute-oriented induction can be 
performed on deductive databases as well. There are two 
cases to be considered for knowledge extraction in 
deductive databases: (1) discovery of knowledge rules on 
the relations defined by deduction rules, and (2) 
discovery of new knowledge rules from the existing 
rules. 
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In the lint case, deduction can be performed by 
executing a deductive query which retrieves task-relevant 
data from databases. Then induction can be performed 
on the deduced data set. 

Example 7. Let a deductive database be constructed 
from the relational database university, with award cu11- 
didate defined by a set of deduction rules ((3~ 1, (3b)). 

(3~ ) awwd~candid& (X) t 
status(X) = graduate, gpa (X) 2 3.75. 

(3b) award-candidate(X) t 
status (X) = undergraduate, gpa (X) 2 3.5. 

Suppose that the learning request is to find general 
characteristics of award candidates in the computing sci- 
ence department. In a manner similar to the previously 
described process, the knowledge discovery process can 
be partitioned into two phases: (1) collecting the task- 
relevant data, and (2) performing attribute-oriented 
induction. The first phase is performed by finding all of 
the award candidates in the computing science depart- 
ment This corresponds to a dedutive query which can be 
processed using deductive database technology [8,22]. 
The second phase is to extract knowledge from those can- 
didates, which is the same as attribute-oriented induction 
for learning characteristic rules. Cl 

When deduction rules involve recursion, the deduc- 
tion process itself could be rather complex [22]. How- 
ever, the knowledge discovery process is still carried out 
by performing 6rst deduction then induction. Notice that 
deduction may involve consulting concept hierarchies if 
a deduction rule is defined using higher-level concepts. 

As to the second case, discovering new rules from 
the existing ones, an existing rule could be an induced 
rule or a partially induced one. If such a rule represents a 
generalization of all of the relevant extensional data 
further induction can be performed directly on the rule 
itself. If such a rule, together with some extensional data, 
determine all of the relevant information in the deductive 
database, knowledge discovery should be performed on 
such hybrid data by first performing induction on the 
extensional data to generalize the data to the same level 
of the concepts as that in the existing rule, and the pro- 
vided rules are treated as part of the intermediately gen- 
eralized relation and are merged with the generalized 
relation. The merged relation can then be further gen- 
eralized by attribute-oriented induction. 

6. A Comparison with Other Learning Algorithms 

Attribute-oriented induction provides a simple and 
efficient way to learn different kinds of knowledge rules 
in relational and extended relational databases. As a 
newly emerging field, there have been only a few 
database-oriented knowledge discovery systems reported 

[7,12], most of which are based on the previously 
developed learning algorithms. The major difference of 
our approach from others is attribute-oriented vs. tuple- 
oriented induction. It is essential to compare these two 
approaches. 

Both tuple-oriented and attribute-oriented induc- 
tion take attribute removal and concept tree ascension as 
their major generalization techniques. However, the 
former technique performs generalization tuple by tuple, 
while the latter, attribute by attribute. The two 
approaches involves significantly different search spaces. 
Among many learning-from-examples algorithms, we use 
the candidate elimination algorithm [16] as an example 
to demonstrate such a difference. 

In the candidate elimination algorithm, the set of 
all of the concepts which are consistent with training 
examples is called the version space of the training 
examples. The learning process is the search in the ver- 
sion space to induce a generalized concept which is 
satisfied by all of the positive examples and none of the 
negative examples. 

gradrrate lkience 

graduate IbnathhfS. Ascience PhD. Ascience graduate Aphysics 

lxxxl 
MS. Amath PhD.lLMlh MS.l\physics PhD.bhysics 

(a) The entire version space. 
praduiate science 

PhD. math physics 

(b) The factored version spaces. 
Figure 3. Entire vs. factored version spaces. 

Since generalization in an attribute-oriented 
approach is performed on individual attributes, the con- 
cept hierarchy of each attribute can be treated as a fac- 
tored version space. Factoring the version space may 
significantly improve the computational efficiency. Sup- 
pose there are p nodes in each concept tree and there are 
k concept trees (attributes) in the relation, the total size 
of k factorized version spaces is p x k. However, the 
size of the unfactorized version space for the same con- 
cept tree should be pk [21]. This can be verified from 
Fig. 3. Suppose the concept hierarchy is specified as: 
(math, physics) c science, and (MS., PhD.) c gradu- 
ute. The corresponding entire version space and factored 
version space are Fig. 3 (a) and Fig. 3 (b), respectively. 
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The entire version space contains 3’= 9 nodes, but the 
factored version spaces contain only 3 x 2 = 6 nodes. 

Similar arguments hold for other tuple-oriented 
learning algorithms. Although different algorithms may 
adopt different search strategies, the tuple-oriented 
approach examines the training examples one at a time to 
induce generalized concepts. In order to discover the 
most specific concept that is satisfied%y all of the train- 
ing examples, the algorithm must search every node in 
the search space which represents the possible concepts 
derived from the generalization on this training example. 
Since different attributes of a tuple may be generalized to 
different levels, the number of nodes to be searched for a 
training example may involve a huge number of possible 
combinations. 

On the other hand, an attribute-oriented algorithm 
performs generalization on each attribute uniformly for 
all the tuples in the data relation at the early generaliza- 
tion stages. It essentially considers only the factored ver- 
sion space. An algorithm which explores different possi- 
ble combinations for a large number of tuples during such 
a generalization process will not be productive since such 
combinations will be merged in further generalizations. 
Different possible combinations should be explored only 
when the relation has been generalized to a relatively 
small intermediate generalized relation, which 
corresponds to Stmtegy 6 in the basic attribute-oriented 
induction. Notice that only one rule formation technique 
is provided in our basic algorithm. However, the rela- 
tively small intermediate generalized relation obtained 
by attribute-oriented induction can be treated as a spring- 
board on which different knowledge extarction tech- 
niques can be explored to form new rules. 

Another obvious advantage of our approach over 
many other learning algorithms is our integration of the 
learning process with database operations. Relational 
systems store a large amount of information in a struc- 
tured and organized manner and are implemented by 
well-developed storage and accessing techniques [203. In 
contrast to most existing learning algorithms which do 
not take full advantages of these database facilities 
[5,12,15], our approach primarily adopts relational 
operations, such as selection, join, projection (extracting 
relevant data and removing attributes), tuple substitution 
(ascending concept trees), and intersection (discovering 
common tuples among classes). Since relational opera- 
tions are set-oriented and have been implemented 
efficiently in many existing systems, our approach is not 
only efficient but easily exported to many relational sys- 
tems. 

Our approach has absorbed many advanced 
features of recently developed learning algorithms 
[3,13]. As shown in our study, attribute-oriented 

induction can learn disjuctive rules and handle excep- 
tional cases elegantly by incorporating statistical tech- 
niques in the learning process. Moreover, when a new 
tuple is inserted into a database relation, rather than res- 
tarting the learning process from the beginning, it is 
preferable to amend and fortify what was learned from 
the previous data Our algorithms can be easily extended 
to faciliate such incremental learning 1151. Let the gen- 
eralized relation be stored in the database. When a new 
tuple is inserted into a database, the concepts of the new 
tuple are tirst generalized to the level of the concepts in 
the generalized relation. Then the generalized tuple can 
be naturally merged into the generalized relation. 

In our previous discussion, we assume that every 
concept hierarchy is organized as a balanced tree, and the 
primitive concepts in the database reside at the leaves of 
the tree. Hence generalization can be performed syn- 
chronously on each attribute, which generalizes the attri- 
bute values at the same lower level to the ones at the 
same higher level. By minor modification to the basic 
algorithm, induction can also be performed successfully 
on unbalanced concept trees and on data residing at dif- 
ferent levels of concept trees. In such cases, rather than 
simply performing generalization on every branch of the 
tree, we check whether a generalized concept may cover 
other concepts of the same attribute. If the generalized 
concept covers a concept several levels down the concept 
tree, the covered concept is then replaced by the general- 
ized concept, that is, ascending the tree several levels at 
once. By doing so, concepts at different levels can be 
handled correctly and efficiently. 

As another variation, our method can also handle 
the concepts organized as lattices. If concepts are organ- 
ized as a lattice, some single concept may be generalized 
to more than one concept. These generalized concepts 
are put into intermediate generalized relations upon 
which further generalizations are performed as discussed. 
As a consequence, the size of intermediate generalized 
relations may increase at some stage in the generalization 
process because of the effect of a lattice. However, since 
the generalization is controlled by a generalization thres- 
hold, the intermediate generalized relation wilI eventu- 
ally shrink in subsequent generalizations. 

Furthermore, data sampling and parallelism can be 
explored in knowledge discovery. Attribute-oriented 
induction can be performed by sampling a subset of data 
from a huge set of relevant data or by first performing 
induction in parallel on several partitions of the relevant 
data set and then merging the generalized results. 

7. Application of Discovered Rules 

Knowledge discovery in databases initiates a new 
frontier for querying database knowledge, cooperative 
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query answering and semantic query optimization. Lots 
can be explored using me&data (such as concept hierar- 
chies) and discovered knowledge. We present a few 
ideas for this below. 

Database knowledge represents the semantic infor- 
mation associated with databases, which includes deduc- 
tion rules, integrity constraints, concept hierarchies about 
data and general data characteristics [17]. Cooperative 
query answering consists of analyzing the intent of query 
and providing generalized, neighborhood or associated 
information relevant to the query [4]. Semantic query 
optimization applies database semantics, integrity con- 
straints and knowledge rules to optimize queries for 
efficient processing 121. 

Previous studies on querying database knowledge 
and intelligent query answering [17,19] were focused on 
rules and integrity constraints in relational or deductive 
databases. With the availability of knowledge discovery 
tools, it is straightforward to query generaI data charac- 
teristics and utilize induced rules and concept hierarchies. 
Such queries can be answered by retrieving discovered 
rules (if such pieces of information are available) or 
triggering a discovery process. Moreover, some queries 
can be rewritten based on the analysis of the concept 
hierarchies and/or answered cooperatively using general- 
ized rules. 

Example 8. To describe the characteristics of the gradu- 
ate students in cs (computing science) who were born in 
Canada with excellent academic performance, the query 
can be formulated using a syntax similar to the 
knowledge queries in [ 171 as follows. 

describe Stwfmf 
where Status = “graduate” and Major = “cd and 

Birth-Place = “CanaaW’ and GPA = “excellent” 

Notice that “graduate”, “Canada” and “excellent” 
are not stored as primitive data in the Student relation. 
However, using the concept hierarchy table, the query 
can be reformulated by substituting for “graduate” by 
“(M.S., MA. PhD)“, etc. Then the rewritten query can 
be answered by directly retrieving the discovered rule, if 
it is stored or performing induction on the relevant data 
set q 

It is often useful to store some intermediate gen- 
eralized relations (based upon the frequency of the 
encountered queries) to facilitate querying database 
knowledge. When a knowledge query is submitted to the 
system, selection and further generalization can be per- 
formed on such an intermediate generalized relation 
instead of on primitive dam in the database. 

Moreover, semantic query optimization can be per- 
formed on queries using database semantics, concept 
hierarchies and the discovered knowledge rules. 

Example 9. Let the knowledge rules discovered in our 
previous examples be stored in the database, and consider 
the query: fvld all the foreign students (born outside of 
Canada) majoring in science with GPA between 3.2 to 
3.4. 

select Name 
from St- 
where Major = “science” and Birth-Place != “canada” 

and GPA >= 3.2 and GPA c= 3.4 

According to rule (2u), all of the foreign students 
majoring in science with a good GPA must be graduate 
students. Since the condition of rule (2a) covers what is 
inquired, the search should be performed on graduate 
students only, that is, the condition, Status = “graduate”, 
can be appended to the query. Therefore, the query can 
be optimized if the data is grouped or partitioned accord- 
ing to the status of the students. III 

8. Conclusions 

We investigated an attribute-oriented approach for 
knowledge discovery in databases. Our approach applies 
an attribute-oriented concept tree ascension technique in 
generalization which integrates the machine learning 
methodology with set-oriented database operations and 
extracts generalized data from actual data in databases. 
Our method substantially reduces the computational 
complexity of the database learning processes. Different 
knowledge rules, including characteristic rules, discrimi- 
nation rules, quantitative rules, and data evolution regu- 
larities can be discovered efficiently using the attribute- 
oriented approach. In addition to learning in relational 
databases, the approach can be applied to larowledge 
discovery in nexted-relational and deductive databases. 
The discovered rules can be used in intelligent query 
answering and semantic query optimization. 

Based upon the attribute-oriented induction tech- 
nique, a prototyped experimental database learning sys- 
tem, DBLEARN, has been constructed. The system is 
implemented in C with the assistance of UNIX software 
packages LEX and YACC (for compiling the DBLBARN 
language interface) and operates in conjunction with 
either the Oracle or SyBase DBMS software. A database 
learning language for DBLEARN is specified in an 
extended BNP grammar. The system, DBLEARN, takes 
a learning request as input, applies the knowledge 
discovery algorithm(s) developed in this paper on the 
data stored in the database, with the assistance of the con- 
ceptual hierarchy information stored in the conceptual 
hierarchy base. Knowledge rules extracted from the 
database are the output of the learning system. Our prim- 
itive experimentation on medium sized data sets demon- 
strates the effectiveness and efficiency of our methods in 
knoweldge discovery in relational databases. 
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Attribute-oriented induction represents a promising 
direction to follow in the development of efficient learn- 
ing algorithms for knowledge discovery in databases. 
There are many issues which should be studied further. 
The automatic discovery of concept hierarchies in data- 
bases, the construction of interactive learning systems, 
the developement of efficient induction algorithms for 
object-oriented databases, and the integration of 
attribute-oriented induction with other learning para- 
digms are interesting topics for future research. 
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