
Locking and Latching in a
Memory-Resident Database System

Vibby Gottemukkala
Georgia Institute of Technology

Atlanta, GA 30332
vibby@cc.gatech.edu

Abstract

As part of the Starburst extensible database project
developed at the IBM Almaden Research Center, we
designed and implemented a memory-resident stor-
age component that co-exists with Star-burst’s disk-
oriented storage component. The two storage compo-
nents share the same common services, such as query
optimization, transaction management, etc. However,
the memory-resident storage component is faster than
the disk-oriented storage component and hence needs
faster run-time services. This paper examines two run-
time services, the lock manager and the latch mecha-
nism, and investigates possible cost-cutting measures.
We propose the use of of a single latch for protecting
a table, all of its indexes, and all of its related lock in-
formation, in order to reduce storage component latch
costs. VVe then show that although a table-level latch
is a large granule latch, it does not significantly re-
strict concurrency. VVe also examine traditional lock
manager design and suggest a different design that is
appropriate for memory-resident storage components.
The new design exploits direct addressing of lock data
and dynamic, multi-granularity locks. Performance
measurements of the new lock manager show that it
outperforms the regular Starburst lock manager, which
is of a traditional lock manager design, by as much as
60%.

Permission to copy without fee all or part of this material is
grantedprovided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

Tobin J. Lehman
IBM Almaden Research Center

San Jose, CA 95120-6099
toby@almaden.ibm.com

keywords: Memory-resident database, lock man-
ager, latch, Starburst.

1 Introduction

The performance of relational database manage-
ment system (DBMS) implementations has often been
a problem for non-traditional database applications
wishing to use the attractive features of the relational
model. Applications such as language-based editors
[Horwitz 851, program development environments [Lin-
ton 841, and performance monitoring tools [Snodgrass
841 could benefit from using the relational model, yet
they require better performance than that typically as-
sociated with disk-oriented database systems. Thus,
application designers are often frustrated in choosing
between database systems that offer either function or
performance, but never both.

The advent of object-oriented database systems,
such as Object Store [Lamb 911, has further clouded
the issue of which type of database system to use. Ob-
ject Store uses a memory-based storage component
and, as a result, is able to perform database opera-
tions at memory speeds. Furthermore, the virtues of
object-oriented programming have already contributed
to many success stories [Michaels 91, Lamb 911. How-
ever, those applications that need support for rela-
tional operations, as well as high-performance, have
not yet had their needs met.

One solution to the non-traditional database appli-
cation designer’s dilemma would be a database system
that offers the performance of a memory-based storage
component with the function of a relational database
system. At the IBM Almaden Research Center, we
are building such a system. As the base relational
database system, we are using Starburst, an extensible
database system prototype [Haas 89, Haas 901. One
of the goals of Starburst is to support experimenta-
tion with storage components through the use of its
extensible Data Management Extension Architecture

533

(DMEA) [L’ m d say 871. DMEA provides database im-
plementors with a simple interface for creating new
storage methods and attachments. In Starburst terms,
storage methods manage tables and their associated
records, while attachments manage data structures re-
lated to tables, such as indexes. We will use the term
storage component to designate a storage method and
its associated attachments.

The two Starburst storage components of interest
in this paper are the traditional disk-oriented storage
component, known as the Vanilla Relation Manager
(VRM), and the high-performance memory-resident
storage component, known as the Main Memory Man-
ager (MMM) [Lehman 921. MMM is intended to be the
storage component one would use when storing data
for which fast response-time is crucial, while for less
critical data, or for data that does not fit in memory,
VRM would be used.

For MMM to achieve its full performance potential,
it has to not only be stream-lined itself, but it needs
to interact only with other software components that
have also been optimized for performance. In Star-
burst, a set of common services is provided for stor-
age components. This set of common services com-
prises such software components as a memory stor-
age manager, an event queue manager, a default log-
ging and recovery manager, a latch mechanism, and
a default lock manager. A storage component such
as MMM can use the standard software component
provided by the common service, or it can use an al-
ternative, more specialized software component, if one
exists. Thus, we examined each software component
in the set of Starburst common services to determine
where improvement was possible. Since we are con-
cerned only with high-performance software compo-
nents that would work with the MMM storage compo-
nent, we explored the possibility of letting these soft-
ware components exploit the unique features of MMM
in order to increase performance. Under this criterion,
we determined that there was room for improvement
in the use of the latch mechanism, the design of the
lock manager, and the design of the recovery manager.

Much work has already been done in the area of ef-
ficient logging and recovery mechanisms for memory-
resident database systems [Dewitt 84, Eich 87, Hag-
mann 86, Kumar 91, Lehman 87, Salem 86, Salem 901.
Less work has been done in the area of synchroniza-
tion: latching and locking. Therefore, in this paper,
we focus on efficient use of the latch mechanism and
lock manager in the context of the MMM storage com-
ponent .

The remainder of this paper is organized as follows:
Section 2 presents a minimal-cost latching scheme
along with an analysis that shows that such a scheme

provides sufficient concurrency. Section 3 briefly de-
scribes the design of both the regular Starburst lock
manager and the MMM lock manager, and then Sec-
tion 4 compares the performance of the two lock man-
agers. Finally, Section 5 presents our conclusions.

2 Reducing Latch Cost

One of the common services we have identified as po-
tentially reducing the performance of the MMM stor-
age component is the latch mechanism. A latch, or
short-term lock, is a low level primitive that provides
a cheap serialization mechanism with shared and ex-
clusive lock modes, but no deadlock detection [Gray
781. In Starburst, latches are used to, among other
things, gain exclusive or shared access to buffer pool
pages. Each time the VRM storage component needs
access to a page, it contacts the buffer pool which then
latches the page in the buffer pool in a shared or ex-
clusive mode.

A latch operation typically involves far fewer in-
structions than a lock operation, as a latch’s data
structures are statically allocated and directly address-
able. In fact, in R* [Williams 821, a distributed rela-
tional database system prototype developed at IBM
research, a latch and unlatch operation used about 20
CISC (IBM 370) instructions,i which was roughly an
order of magnitude less than a lock and unlock oper-
ation [Yost 92, Gray 89, Lehman 891. Thus, given a
latch’s relatively short pathlength, one might dismiss
the concern of latches imposing a significant overhead
in the overall storage component pathlength.

2.1 Design Alternatives

One could imagine different MMM designs depend-
ing on latch cost. If latch cost were indeed insignifi-
cant, as some numbers indicate, one might consider a
design of the MMM storage component that mimicked
the VRM design, i.e. where individual latches con-
trol a table’s memory pages (referred to in MMM as
purtitions2), the nodes in a (T Tree [Lehman 861) in-
dex, and the lock manager data structures. The many
fine-grained latches would ensure that sharing was not
limited. If, on the other hand, latch cost turned out to
be more substantial, one might consider an alternative
MMM design where all latches were removed, except
one: the table latch. In this design, latches would not
appear in t.he partitions that comprise an MMM ta-
ble, they would not appear in any table control struc-

lComplex Instruction Set Computer (CISC) instructions
may correspond to several Reduced Instruction Set Computer
(RISC) instructions.

21n MMM, a table is stored in a variable-length segment. A
segment is composed of a number of fixed size par2ilions.

534

tures. e.g. table statistics, they would not appear in
the nodes of any MMM index, and they would not
appear in the data structures of the MMM lock man-
ager. Such a design is feasible in a memory-resident
database environment, as the lack of disk I/O reduces
the chances of a transaction being pre-empted while
holding the large-grained table latch.

To compare the alternative designs, we performed
a number of experiments on Star-burst, measuring the
amount of time spent in individual components, such
as VRM, MMM, the lock component and the latch
component.3 Table 1 shows the latch overhead, ex-
pressed as a percentage of the overall storage compo-
nent cost, for the VRM storage component, and for
two design configurations of the MMM storage com-
ponent: table-only latches, and node/partition/lock
latches. Various scan operations were performed on a
10,000 tuple table, using a 16-field! 208byte tuple, as
defined by the Wisconsin Benchmark database [Bit-
ton 831. In Table 1: STC is the total storage compo-
nent, time, including the latch overhead. The VRM ta-
ble scan and the MMM table/index scans using table-
latches were measured. The MMM table/index scans
(using node/partition/lock latches) were computed us-
ing the measured table latch times.

As a reference point for latch costs in MMM, we
measured latch overhead in a VRM table scan. To
our surprise. and contrary to the idea that latches are
cheap, latch overhead was significant even in the VRM
table scan case - 19% of the overall VRM pathlength
was due to latching. Further examination reveals some
of the reasons: First, each call to VRM results in at
least three latches being set (two to fix a page in the
buffer pool, one to release it). In a 10,000 tuple table,
this alone is 30,000 latch calls. Second, although some
database systems such as R* might seem to have inex-
pensive latch operations, it is not guaranteed that all
systems will have cheap latch calls. As we mentioned
earlier. an R* latch/unlatch operation used about 20
IBM 370 instructions. However, R* was able to exploit
the powerful IBM 370 compare and swap instruction,
which greatly simplified the latch implementation.

Some machines, such as our test machine - an IBM
Rise System 6000 Model 530 running AIX 3.1, do not
have an equivalent compare-and-swap instruction. In
fact. our test machine doesn’t even have a test and
set instruction. For synchronization, we were forced
to use an SVC (a kernel supervisor) call to perform
the compare and swap function. On our Rise System
6000, we measured the Starburst latch/unlatch oper-
ation using a hardware clock that has a resolution of
256 nanoseconds. When the latch operation was called

3Section 4 gives scane more detail on how the tests were con-
ducted and what hardware was used.

repeatedly, suggesting that the instructions and data
for the latch operation were in the processor cache, the
latch/unlatch operation took about 7.3 microseconds.
For more random, isolated latch calls, the operation
took as much as 18 microseconds. Estimating the per-
formance of our Model 530 at 10 MIPS, we calculate
that the latch/unlatch pair uses about 73 RISC in-
structions.

In the case of the MMM table scan (Table 1); there
is little difference between table latching and partition
latching. In this particular example, the table-latch
case sets a latch per MMM storage component call
(10,000 latch calls). The partition-latch case sets a
latch per lock (one table lock), a latch per partition
(60 partitions in this table), and a latch per MMM
call (lO,OOO), f or a total of 10,061 latch calls. The
disparity between the two latching paradigms is more
apparent when we examine the index case. MMM in-
dexes contain only pointers to table data [Lehman 86,
Lehman 921, so table data must be latched whenever
an index is used. Thus, if our MMM design used indi-
vidual latches in each table partition, each index node,
and each lock data structure, an index scan of the en-
tire table would require at least three latches per call:
an index node latch, a table partition latch, and a lock
data structure latch, plus a latch call for each new in-
dex node encountered (240 index nodes), for a total
of (((3 x 10,000) + 240) = 30,240 latch calls). This
would result in a latch overhead of 37% of the ??MM
storage component cost. In contrast, the tablL-latch
case incurs one latch call per MMM invocation, which
is at most a 15% overhead.

When only two tuples are fetched from an index,
the differences in the two latch organizations become
more apparent. The table-latch design requires only
three latches, one for each call to MMM (the third call
returns end-of-scan)! whereas the other latch design
requires a latch call for each index node touched during
the search (8), pl us a partition latch for every reference
to the table (16), pl us a partition and index node latch
for three scan calls (6), plus two latch calls for the
tuple locks for a total of 30 latch calls. In this case
the table-latch is overhead is 6% of the MMM cost,
whereas the other method imposes a 41% overhead. A
similar argument applies to the insert case.

2.2 What About Eikduced Concurrency?

It appears that the use of table latches over index
node, partition and lock latches can significantly im-
prove the performance of MMM, but will the use of
coarse-grained table latches reduce concurrency? If
one latch controls all access to a table, including lock
information, then both read and write operations on

535

Description STC Latch
Latch

Latch call percentage
time overhead count of STC time

VRM Full Table Scan, using (buffer) page latches 1293 ms 248 ms 34,028 19%

MMM Full Table Scan (node/index/lock latches) 450 ms 73 ms 10,061 16%
MMM Full Table Scan (table latches) 450 ms 73 ms 10,000 16%

MMM Full Index Scan (node/index/lock latches) 598 ms 221 ms 30,240 37%
MMM Full Index Scan (table latches) 450 ms 73 ms 10,000 16%

MMM Index Scan: Fetch 2 tuples 0.536 ms 0.219 ms 30 41%
(node/index/lock latches)
MMM Index Scan: Fetch 2 tuples (table latches) 0.329 ms 0.022 ms 3 6%

MMM table and Index Insert: (node/index/lock 0.552 ms 0.182 ms 25 33%
latches)
MMM table and Index Insert: (table latches) I 0.377 ms I 0.0073 ms I 1 2%

Table 1: Latch costs in MMM and VRM.

the table must use an exclusive table latch. One dan-
ger of using an exclusive table latch is that a process
could acquire the latch and then get pre-empted, thus
making the table inaccessible to any other process un-
til the latch-holding process awakens and releases the
table latch. This is similar to the convoy phenomenon
[Blasgen 791. 0 ne way to avoid this problem would
be to suspend process pre-emption for the duration of
the table latch.4Thus, in a uni-processor system, any
table-latch contention problems could be avoided. Of
course, for fairness reasons, we would bound the latch
hold time and periodically force MMM to “come up
for air” and give up the table latch. Also, as table
latches must not be held by a transaction while it is
waiting on a lock, the MMM lock manager must re-
lease the transaction’s table latch before suspending
the transaction.

Although the table-latch case is easily argued for
a uni-processor system, what about a multi-processor
(MP) environment where transactions running on
other processors could potentially be made to wait
while one process “hogged” the latch of a frequently
accessed table? It is necessary to determine the
amount of concurrency, or processor overlap, that is
possible using table-level latches. For this purpose we
projected processor usage for a multi-processor using
uni-processor execution times obtained by measuring

4By modifying the AIX Version 3 kernel, we would have the
ability to use a fast SVC service that would make a process
temporarily exempt from pre-emption by other processes of the
same, or lower, priority. Such a call would add approximately 20
instructions to the pathlength of the latch operation. However,
we might be able to reclaim some of this pathlength to switching
from Starburst’s general multi-node latch to a more efficient,
single (X) mode latch.

the performance of queries run on the MMM storage
component.

Table 2 shows the performance measurements of
some queries run on Starburst using the MMM storage
component. We chose a representative set, including
long transactions (an index scan that touched every
tuple) and short transactions (an insert or fetch). For
simplicity, we grouped inserts, deletes and fetches to-
gether and gave them a common cost.5 For the pur-
poses of these tests, a single transaction performed a
single operation, such as a table scan, or an insert. A
more realistic transaction, one that performs a set of
these operations, would be a combination of these low
level operations.

The execution times presented in Table 2 represent
query execution time only; other costs such as pars-
ing, query optimization, and query compilation, have
been excluded from this measurement. Furthermore,
the scan-type transactions do not include the time to
do anything with the tuple once it has been retrieved,
such as printing; tuples returned up to Star-burst’s Ap-
plication Programming Interface were discarded.

For the following discussion, we’ll use these terms:

Xi = the arrival rate of type i transactions

CX;~ = the proportion of the time transaction i is
holding table latch j.

Si = the total CPU time, or service time, of trans-
action i.

5As logging has not yet been implemented for MMM, these
figures do not include the cost of writing log records for update
transactions.

536

Trans Service Latch hold Latch hold Transaction description
Type time (set) time (set) percentage

Ti Si Si * Cyij ’ - &lj
Tl 0.864 0.450 52% Table Scan, count 100%
T2 0.794 0.383 48% Table Scan. return 10%
T3 1.006 0.586
T4 0.445 0.107
T5 0.007 0.0003

58% Index Scan,’ count 100%
24% Index Scan, return 10%

4% Fetch. Insert or delete
I I t I I

Table 2: Results of benchmarks run on Star-burst.

Given the query execution time and the percentage
of that time spent holding the table latch, we can com-
pute the maximum number of transactions that can be
active in the database system. The fundamental limit
of resources in the system implies that no table latch
(j) can be held for more than one second for each sec-
ond of real time. The total demand for table latch (j)
by transactions of type (i) is XioijSi 5 1, and for all
transaction types, xi XioijSi < 1. Thus, we can use
the formula

to compute Xi, the maximum number of (simple)
transactions per second that we could process with
an unlimited number of processors, for a given mix of
transaction types (Ti). In this analysis, it is assumed
that all limiting effects (such as multiprogramming
level limitations or contention for other resources) have
been removed.

ine various transaction mixes using a specific database
and observe both the processor overlap and the rate
at which transactions are processed. Our example
database is made up of 100 tables, each 10,000 tu-
ples in size. Each tuple contains 16 fields and is 208
bytes long, as described by the Wisconsin Benchmark
Database [Bitton 831. To mimic a realistic distribu-
tion of database references, we use the 80-20/80-20
rule. That is, 80% of the references go to 20% of the
tables (warm tables). Furthermore, 80% of the ref-
erences to warm tables go to 20% of the tables (hot
tables). Thus, for a 100 table database:

64% of the database references go to 4 tables (hot).
16% of the database references go to 16 tables (warm).
20% of the database references go to 80 tables (cool).
The four hot tables are the bottleneck, so we can use

the transaction mix and a single hot table to determine
the maximum value of X. Then, given X for a single
hot table, we can derive the relative values of all the
Xi for each transaction type.

Then, given Xi, Little’s Law [Kleinrock 751

N = xX&
i

gives us the number of transactions that can be run in
parallel, which equates to the processors that can be
kept. busy simultaneously. We refer to this quantity as
the amount of processor overlap.

For example, suppose we have only one transaction
type T, and one relation R. A type T transaction runs
for one second and holds the table latch on relation R
for 10% of the time. Then, for an unlimited number of
processors, the arrival rate is X * .lO * 1s < 1, or X <

1 1. or X < 10/s, or 10 transactions per second.
Then. given X, the processor overlap, or number of
transactions that can operate simultaneously, is N =
X * T. Substituting terms (X = 10 /s) and (T = 1s)
gives us (N = lo), 10 transactions being processed
in parallel.

Table 3 shows the total number of (simple) Transac-
tions Per Second (TPS) that could be processed by an
unlimited number of processors, and then the actual
number of processors that could be kept busy. It also
shows the breakdown of TPS over the hot (64%), warm
(16%)) and cool (20%) tables. The first “# processors
busy” column in Table 3 gives a slightly unrealistic es-
timation of processor overlap, as it does not include
any application time, nor does it include any time to
process the data returned by the database system. The
second “# processors busy” column in Table 3 gives a
more realistic estimate, as we doubled the transaction
time to allow for application and tuple processing. Re-
call that the TPS numbers presented here are for rela-
tive comparison only, as the transactions used here do
not represent real-world transactions. To get real TPS
numbers, we would have to evaluate transactions that
performed multiple steps involving some combination
of scans, inserts, updates, and deletes.

So, given the transaction service times and trans- We ran three sets of mixes: first, a completely uni-
action latch hold times from table 2, we can exam- form distribution of all the transaction types from Ta-

537

Arrival Rate Mix Hot Warm Cool Total # procs busy # procs busy
Tl T2 T3 T4 T5 TPS TPS TPS TPS (no appl code) (with appl code)

20 20 20 20 20 13.1 3.3 4.1 20.4 12.7 25.4

60 10 10 10 10 10.6 2.6 3.3 16.5 12.3 24.6
10 60 10 10 10 11.6 2.9 3.6 18.1 12.8 25.6
10 10 60 10 10 9.0 2.2 2.8 14.0 11.4 22.8
10 10 10 60 10 19.4 4.9 6.0 30.3 16.2 32.4
10 10 10 10 60 28.1 6.5 8.1 40.8 12.9 25.8

100 0 0 0 0 8.9 2.2 2.8 13.9 12.0 24.0
0 0 0 100 0 37.4 9.3 11.6 58.3 26.0 52.0
0 0 0 0 100 13,333 3,333 4,133 20,799 145 290

Table 3: Processor overlap and TPS.

ble 2; second, a somewhat skewed mix where 60%
of the transaction mix consisted of one transaction
type and the remaining transaction types each received
10%; finally, a skewed mix where some of the transac-
tion types accounted for 100% of the mix.

The numbers in Table 3 show that, for a variety of
transaction types and a variety of transaction mixes,
a reasonable amount of processor overlap is possible
using coarse-grained table latches. Thus, we conclude
that the use of table latches does not significantly re-
duce concurrency.

3 Reducing Lock Cost

Besides the latch mechanism, another run-time ser-
vice that could potentially reduce the performance of
the MMM storage component is the lock manager.
Compared to the large body of work in the lock-
ing family of concurrency control methods (for exam-
ple, [Agrawal 85: Bernstein 81, Carey 83, Carey 84,
Eswaran 76]), there is little or no published work in
the area of changing the locking mechanism itself. The
System R lock manager described in [Gray 781 appears
to be the basic design choice of most database systems,
including Star-burst.

Even though the regular Starburst lock manager
keeps all of its data in memory, there are features in
MMM that a lock manager could exploit to improve
performance. Exploiting the extensibility feature of
Starburst, we implemented a second lock manager, one
that was tailor-made for the MMM storage compo-
nent. We briefly describe the two lock managers to
contrast their designs before we compare their relative
performance in Section 4. Readers interested in more
det.ails of the MMM lock manager or related work in
the area of reducing lock cost should consult [Gotte-
mukkala 921.

3.1 The Starburst Lock Manager

The control structure of the “regular” Starburst lock
manager (SB LM) is shown in Figure 1. The SB
LM uses a fixed-size hash table to speed lookups to
Lock Control Blocks (LCB’s), which contain informa-
tion about locks, such as the name of the lock, the
group mode of the lock, and a queue of Lock Re-
quest Blocks (LRB’s). Each requestor of a lock is
assigned an LRB, which contains information about
the requestor, such as the requested lock mode, the
held lock mode, the status of the lock (held, waiting),
and other transaction information. The SB LM main-
tains a pre-allocated free pool of LCB’s per hash table
slot and a pre-allocated free-pool of LRB’s per trans-
action, which allow it to set only a single latch per lock
operation.

To set a lock on a named object, the Starburst lock
manager does the following: It computes a hash value
for the name of the object to be locked, and then sets
a latch on the hash class (or hash slot) corresponding
to the hash value. If an LCB for the object is not
present, it initializes a pre-allocated LCB for the new
lock and attaches it to the hash class chain. If an
LRB for the lock requestor is not present, it initializes
a pre-allocated LRB, and marks the process status as
“running” if there is no conflict with other locks, or
marks the process status as “blocked” and suspends
the process.

The SB LM supports hierarchical locking with two
locking granularity levels: table and tuple. When lock-
ing a tuple, an intention lock must first be placed on
the table, to synchronize with any other table-level op-
erations that could be active on the same table. Hence,
setting a tuple lock results in two lock calls to set the
table-level intention lock and the actual tuple lock.

538

Lock
Hash Table

.

Hash Slot Latch

Next Lock -

Free LCB Pool

Lock Control Block (LCB)

Hash Slot

Lock Request Block (LRB)

Figure 1: Control structure of the Starburst lock manager.

3.2 The MMM Lock Manager

Figure 2 shows the basic data structures used by
MMM and the MMM lock manager. MMM manages
tables in variable-length segments, which are collec-
tions of fixed-length partitions that contain records
[Lehman 921. Each segment has a segment control
block, which contains control information, and lock in-
formation. As we mentioned in Section 2, a single table
latch protects the table and all of its related structures,
such as index and lock information. Thus, once MMM
has acquired the table latch to reference table data, it
has also implicitly latched all of the table’s lock data
as well.

The MMM Lock Manager (MMM LM) exploits two
features of the MMM storage component:

MMM Table data is fixed in memory, so MMM
LM lock data is attached directly to table and
record data, thus eliminating the need for a hash-
table lookup operation to locate lock data.

MMM Table control data is also fixed in memory,
allowing MMM LM to maintain a “locking gran-
ularity level” flag for each table, which is used
to eliminate the need for locks at multiple lev-
els while maintaining the semantics of hierarchical
locking.

The MMM Lock Manager uses two locking granu-
larities: “table” and “tuple.” A locking granularity
level flag, kept in the table’s control information, des-
ignates the current locking granule size. The MMM

LM changes the locking granularity level flag for each
table dynamically, depending on the level of sharing
required for that table. Locking at the table level is
cheaper than locking at the tuple level, so it is the
preferred method when fine granularity sharing is not
needed. When one or more transactions are blocked
while trying to access a table that is locked with an-
other transaction’s table lock, the table lock is de-
escalated into a collection of tuple locks; the higher
cost for tuple-level locking is then paid, but the level
of sharing is increased. To allow for the possibility of
table lock de-escalation, tuple locks that would have
been set are “remembered,” so that they may be con-
verted into real tuple locks if the need arises. When
fine granularity locks are no longer needed, tuple-level
locks are escalated into table-level locks. Certain op-
erations that require the use of an entire table can
force lock escalation to the table level and disable lock
de-escalation until they have completed.

Each transaction that sets a lock on a table gets a
Table Lock Control Block (LCB) which tracks the ag-
gregate mode of the transaction’s locks on that table.
The Table LCB also maintains the list of remembered
locks that a transaction acquires while a table lock is in
effect. A transaction’s remembered lock that is com-
patible with the aggregate lock modes of all the other
running transactions with LCB’s on a table is referred
to as a granted lock. On the other hand, a transac-
tion’s remembered lock that is not compatible with
the aggregate lock modes of the table’s other LCB’s,
and thus causes the transaction to block, is referred to

539

n. n..--:-- T__-_--. __

- [-1 Con&l Block)

MMM Database MMM Table

IDBHeadJ~-j
Seoment

B: Blocked TransactIon
Table Lock Control Blocks

(One Per Transactlon)

Segment
Table

4J T h Partltlons

LKG$7
Granted
Locks Awaited

Locks

d Record Slot :-. -.: -:...

ELI
Array i : :

: : Tuple Lock Control Blocks
MMM Partition Structure MMM

Remrd
(One per transactlon)

Partition
Table

Figure 2: Structure of the MMM Lock Manager.

as an awaited lock. 4.1 The Results

4 Performance Experiments

In this section we compare the performance of the
MMM Lock Manager (MMM LM) with that of the
Starburst Lock Manager (SB LM). The hardware used
for our experiments was a model 530 IBM Rise System
6000 workstation with a 25 MHz processor and a 64
Kbyte I&D cache. The peak integer performance of a
model 530 Rise System 6000 is nominally 25 MIPS, but
in practice we have estimated that 10 MIPS is closer
to the mark for database workloads because of poor
instruction and data locality, which causes processor
cache misses. Our machine was configured with 128
megabytes of memory, which was more than enough to
keep all data cached in memory during test runs. Fur-
thermore, to ensure that we were getting real memory-
resident performance numbers, we added special sanity
checks to Starburst to verify that no I/O occurred in
any of the test runs. All our tests were run under AIX
Version 3.1.

As we were interested in the most common case
where there was no lock contention, we measured lock
cost by setting non-conflicting read locks. The exe-
cution times in Table 4 are presented in four groups.
The first group shows the execution times of the lock,
unlock, and combined (lock/unlock) operations per-
formed by the regular Starburst lock manager (SB
LM). The second group shows the execution times of
the lock, unlock and combined operations performed
by the MMM lock manager (MMM LM) for setting
“remembered” locks. A remembered lock is set instead
of a real tuple lock when the lock granularity level of
a table is at the table level. The third group shows
execution times of the same operations performed by
the MMM lock manager for setting real tuple locks,
as would be the case when the table granularity flag
is at the tuple level. The last group shows the cost of
de-escalating a table lock (essentially, a remembered
lock) into a real tuple lock.

A real-time hardware clock on the Rise System 6000
with a resolution of 256 nanoseconds was used to mea-
sure query execution time during test runs. We instru-
mented Starburst with assembly-routine macros that
made use of the Rise System 6000’s hardware clock
facility to time key code segments in Starburst. Thus,
we were able to not only obtain the overall execution
time of a query, but we were also able to obtain an ac-
curate breakdown of where the time was being spent
in the query’s execution.

The execution times presented in Table 4 represent
the minimum execution times for both SB LM and
MMM LM. Since the SB LM is a “traditional” lock
manager which stores lock data in a chained-bucket
hash table, its performance is sensitive to the num-
ber of locks set. Starburst memory constraints pre-
vented us from creating a lock hash table larger than
1,000 slots, so lock numbers greater than 500 caused
SB LM’s performance to decrease.6 The best perfor-

6By using a dynamic hashing algorithm, such as linear hash-
ing [Litwin SO] or modified linear hashing [Lehman 861, we could

540

mance was obtained from SB LM when setting and
releasing 100 locks, 25 microseconds and 12 microsec-
onds. respectively.

For a sanity check, we compare the performance of
the Starburst lock manager with two other tuned lock
managers: the R* lock manager and the GAMMA
database machine lock manager. We estimate the
37 microseconds for the SB LM lock/unlock call at
370 RISC instructions, and compare that with the
150 IBM 370 (CISC) instructions that were used by
a lock/unlock call in R* [Gray 891, and the 235
DEC VAX (CISC) instructions that were used by a
lock/unlock call in the GAMMA database machine
[DeWitt 90, Gh an e arizadeh 891. It is difficult to d h
compare RISC and CISC instructions at this level and
draw any conclusions, but we can make some observa-
tions. The 150 instructions used by R* actually con-
tained 5 occurrences of the compare and swap instruc-
tion, which correspond roughly to 20 or 25 RISC level
instructions. Furthermore, it is not uncommon to es-
timate one CISC instruction at 1.5 to 2 RISC instruc-
tions. From these statements, and our own knowledge
of the SB LM, we feel that the SB LM is a reasonable
implementation of a lock manager.

As expected, the MMM lock manager tuple lock cost
is less than that for the Starburst lock manager, as the
direct access to the Lock Control Block (LCB) avoids
the cost of the hash-table lookup step. Additionally,
because of the direct access, MMM LM is not affected
by the number of locks set on a table. Overall tu-
ple locking cost for the MMM lock manager is derived
from a combination of the two lock granularity modes:
table and tuple. When there is no contention for the
table, all of the locks set are table-level, and the tu-
ple locks are remembered. In this mode, the unlock
cost reflects processing the table-level LCB (checking
for waiting transactions, etc.) and then throwing away
(recycling) the remembered tuple-lock data structures.
Thus the cost of unlock for remembered tuple locks is
relatively small (5 ps), as no checking is needed. When
there is contention for the table, some of the locks set
are real tuple-level locks, although, recall that only one
lock is set per tuple, as table-level intention locks are
not needed. The tuple-unlock cost of the MMM lock
manager and the Starburst lock manager are similar,
as they perform similar functions. Both lock managers
traverse the LCB chains, set a latch on each LCB, and
check for waiting transactions. In fact, the MMM LM
is slightly slower when unlocking a tuple because of
the extra checking done t,o test for possible lock gran-
ularity escalation.

Not shown in Table 4 is the time used by the MMM

eliminate this problem for any number of locks.

lock manager to set a fixed table lock, which is 10
microseconds for lock and 10 microseconds for unlock
(20 combined). The first lock call in a table, for either
a remembered or real tuple lock, also incurs the cost
of setting the initial table lock. Hence the first tuple
lock (and subsequent unlock) operation costs approxi-
mately 31 (20 + 11) and 44 (20 + 24) microseconds, for
remembered and tuple locks respectively.7 Thus, using
regular locking and intention locks, the Starburst lock
manager would require 74 microseconds to lock and
unlock the first tuple, whereas the MMM lock man-
ager would require either 31 or 44 microseconds. Sub-
sequent tuple-lock calls to the Starburst lock manager
would still cost 74 microseconds, whereas subsequent
calls to MMM LM would cost 11 or 24 microseconds,
for remembered or real tuple locks, respectively. If
we were to move the intention lock checking logic into
the Starburst storage components that use the regular
Starburst lock manager, then we would be able reduce
the lock cost somewhat, although the amount is diffi-
cult to quantify. Notice also that a table-scan opera-
tion does not have the problem of repeatedly resetting
the table-level intention lock, as the logic of the table-
scan code is such that the intention lock is set exactly
once. However, repeated probes with an index, or any
modifying operation, such as insert, delete, or update,
do repeatedly set table-level intention locks in Star-
burst.

Finally, we computed the cost of de-escalating re-
membered locks into tuple locks. At first glance, the
cost of de-escalation might appear t.o be the cost of
setting a regular tuple-lock for each remembered lock,
spending 24 + 11 = 35 microseconds total per tuple
lock. Fortunately this is not the case. Consider the
following:

All running transactions have remembered locks
that have a compatible lock mode.

All remembered locks of blocked transactions have
compatible lock modes, with the exception of the
last one (the request which caused the transaction
to block).

So the process of conversion of remembered locks to
“real” locks involves:

1. Converting all remembered locks of running trans-
actions into real locks.

2. Converting all non-blocking (granted) remem-
bered locks of blocked transactions into real locks.

7The first lock call is actually a bit less than this, as both
operations are done in a single lock call - however it’s easier to
explain it this way.

541

I Oneration I Cost (microseconds) I

SB LM Lock
SB LM Unlock
SB LM Combined

MMM LM (seg + Remembered) Lock

I

25 ps
12 us
37 ;s

6 PS
1 MMM LM (see + Remembered) Unlock 1 5 us I

\ ” ,

MMM LM (seg + Remembered) Combined

MMM LM (tuple) Lock
MMM LM (tuple) Unlock
MMM LM (tuple) Combined

MMM LM De-escalate Op

ll’ps

9 PS
15 ,Lls
24 ps

2.3 ps

Table 4: Execution times of a Read Lock/Unlock call for Starburst and MMM

3. Converting all blocking (awaited) remembered
locks of blocked transactions into real locks. This
is almost equivalent to a tuple lock call. However,
the number of these will be low - equal to the
number of blocked transactions.

Since all non-blocking (granted) remembered locks
have compatible lock modes, steps 1 and 2 only involve
adding the lcbs to the tuple lock chains; no compat-
ibility checks are needed. Also, no new tuple LCBs
need to be allocated because they have already been
allocated as remembered locks (remembered and real
tuple locks use the same data structure).

In fact, we found that the cost of remembering a lock
and then de-escalating it later appears to be slightly
less than the cost of setting the tuple lock in the first
place. We’ve seen this effect before in our benchmark
experiments. When an operation is repeatedly done
in “batch” mode, it runs faster - probably due to a
better hit ratio in the processor instruction and data
cache.

4.2 The Bottom Line

Consider the transaction execution numbers pre-
sented earlier in Table 2. The latch-hold times rep-
resent the amount of time spent in the MMM storage
component. If we compute the number of locks set by
these transactions and then multiply that by the lock
cost, we’ll be able to compare the total time spent
locking with the total time spent in the MMM storage
component. The interesting cases are ones in which
locking cost plays a major role, such as index scan or
update transactions. To keep the numbers consistent,
the MMM storage component and transaction times
in Table 5 do not include any lock manager time. The
lock times measured during the runs to generate Ta-
ble 2 were subtracted from the MMM and transaction

times.
Table 5 shows the bottom line. For the three

lock costs (SB LM lock/unlock, MMM LM real tuple
lock/unlock, and MMM LM remembered lock/unlock)
we display the cost of the lock call in milliseconds,
and we also display the lock overhead as a per-
centage of the total MMM time used for locking

(lock time
MMM time + lock time). The benefits vary depend-

ing on transaction type, the specific lock mode needed
by the MMM LM (remembered or real tuple lock),
and the amount of unnecessary intention-mode lock-
ing performed by SB LM. However, except for the
case of table scans where locking cost is not signifi-
cant, the MMM lock manager can reduce SB LM lock-
ing cost by 30% to 60%, as a result of using more
efficient data structures and setting cheaper coarse-
grained locks when fine-grained sharing is not needed.
These savings equate to a 15% to 30% reduction in
MMM time and a 5% to 20% reduction in overall trans-
action time. Additional savings can be produced by
MMM LM in those cases where SB LM is called to set
redundant table-level intention locks.

5 Conclusion

We have described our attempts to reduce the lock
and latch costs in the Starburst MMM storage compo-
nent. We have shown that the use of table-level latches
in MMM provides provides up to a 35% improvement
in storage component performance, while not signifi-
cantly reducing concurrency.

As an example of Starburst extensibility, the MMM
lock manager exists in Starburst side-by-side with the
regular Star-burst lock manager. It supports the stan-
dard Starburst lock manager interface, and it commu-
nicates with the global deadlock detector that inter-
faces to all lock managers (currently, there are only

542

Trans Transaction MMM Number of SB LM 1 MMMLM 1 MMMLM 1
Type time time Locks set cost hi cost lo cost

Tl 864 ms 450 ms 1 0.074 ms (.02%) ,024 ms (.Ol%) .Oll ms (0%)
T2 794 ms 383 ms 1 0.074 ms (.02%) .024 ms (.Ol%) .Oll ms (0%)
T3 910 ms 496 ms 10,000 370 ms (42%) 240 ms (33%) 107 ms (17%)
T4 433 ms 85 ms 1,000 37 ms (30%) 24 ms (22%) 11 ms (11%)
T5 7 ms 0.3 ms 1 0.074 ms (20%) 0.044 ms (12%) 0.031 ms (9%)

Table 5: Comparing lock costs with MMM storage component costs.

two). We described the design and implementation
of the MMM lock manager. By attaching Lock Con-
trol Blocks directly to the data and using dynamic
multi-granularity locking, we can achieve locking costs
that are up to 60% less than that of the Star-burst lock
manager. This lock cost reduction translates into an
MMM storage component performance improvement
of up to 30%! and an overal transaction response-time
improvement of up to 20%.

We have shown that common services, such as the
latch mechanism and the lock manager, are important
to the performance of a database system storage com-
ponent, and to the database system overall. In the case
of the Starburst MMM storage component, reducing
lock and latch costs has improved MMM performance
by up to 65%, which corresponds to an improved trans-
action response time of up to 30%.

6 Acknowledgments

Thanks to Bill Cody, Robert Morris, Eugene
Shekita, Kurt Shoens, Jim Stamos, Joel Richardson,
Laura Haas, and the VLDB referees for their assistance
with this paper.

7 References

[Agrawal 851 R. Agrawal, M. Carey, and M. Livny,
“Models for Studying Concurrency Control Per-
formance: Alternatives and Implications,” Proc.
ACM SIGMOD Conf., May 1985.

[Bernstein 811 P. Bernstein and N. Goodman,
“Concurrency Control in Distributed Database
Systems,” ACM Computing Surveys 13, 2, June
1981.

[Bitton 831 D. Bitton, D. Dewitt, and C. Tur-
byfill, “Benchmarking Simple Database Opera-
tions,” Proc. 9th VLDB Conf., November 1983.

[Blasgen 791 M. Blasgen, J. Gray, M. Mitoma, and
T. Price, “The Convoy Phenomenon,” Operating
Systems Review 13, 2 April 1979.

[Carey 831 M. Carey, “An Abstract Model of
Database Concurrency Control Algorithms,”
Proc. ACM SIGMOD Conf., May 1983.

[Carey 841 M. Carey and M. Stonebraker, “The Per-
formance of Concurrency Control Algorithms for
Database Managernent Systems,” Proc. 1 Uth
VLDB Conf., August 1984.

[Dewitt 901 D. Dewitt et al., “The Gamma
Dat,abase Machine Project,” IEEE TKDE 2, 1,
March 1990.

[Dewitt 841 D.J. Dewitt et al, “Implementation
Techniques for Main Memory Database Systems,”
Proc. ACM SIGMOD Conf., June 1984.

[Eich 871 M. Eich, “A Cl assification and Comparison
of Main Memory Database Recovery Techniques,”
Proc. of the 3rd Int. Conf. on Data Engineering,
February 1987, pp 332-339.

[Eswaran 761 K. Eswaran, J. Gray, R. Lorie, and I.
Traiger, “The Notions of Consistency and Pred-
icate Locks in a Database System,” CACM Vol
19, No 11 , November 1976.

[Ghandeharizadeh 891 S. Ghandeharizadeh, im-
plementor of the GAMMA database machine
lock manager, Personal communication, February
1989.

[Gottemukkala 921 V. Gottemukkala, T. Lehman,
“The Design and Performance Evaluation of a
Lock Manager for a Memory-Resident Database
System,” submitted for publication, Feb 1992.

[Gray 781 J. Gray, “Notes on Database Operat-
ing Systems,” Operating Systems, An Advanced
Course, vol. 60, Springer-Verlag, New York, 1978.

[Gray 891 J. Gray, Implementor of the R* lock man-
ager, Personal communication, February 1989.

[Haas 891 L. Haas et al., “Extensible Query Process-
ing in Starburst,” Proc. ACM SIGMOD Conf.,
June 1989.

[Haas 901 L. Haas et al., “Starburst Mid-Flight: As
the Dust Clears,” IEEE TKDE 2, 1, March 1990.

543

[Hagmann 861 R. Hagmann, “A Crash Recovery
Scheme for a Memory-Resident Database Sys-
tem,” IEEE Trans. on Computers C-35, 9,
September 1986.

[Horwitz 851 S. Horwitz and T. Teitelbaum, “Rela-
tions and Attributes: A Symbiotic Basis for Edit-
ing Environments,” Proc. ACM SIGPLAN Conf.
on Lang. Issues in, Prog. Env., June 1985.

[Kleinrock 751 L. Kleinrock, Queuing Systems Vol I:
Theory, Wiley, 1975.

[Kumar 911 V. Kumar and A. Berger, “Performance
Measurement of Some Main Memory Database
Recovery Algorithms,” Proc. of the ‘7th Int. Conf.
on Data Engineering, April 1991.

[Lamb 91] C. Lamb, G. Landis, J. Orenstein, Dan
Weinreb, “The ObjectStore Database System,”
CACM Vol 34, No 10, October 1991.

[Lehman 861 T. Lehman and M. Carey, “A Study
of Index Structures for Main Memory Database
Management Systems,” Proc. 12th Conf. Very
Large Data Bases, August 1986.

[Lehman 871 T. Lehman and M. Carey, “A Recov-
ery Algorithm for a High-Performance Memory-
Resident Database System,” Proc. ACM SIG-
MOD Conf., May 1987.

[Lehman 891 T. Lehman and M. Carey, “A Con-
currency Control Algorithm for Memory-Resident
Database System,” Foundations of Data Organi-
zation and Algorzthms, FODO 1989.

[Lehman 921 T. Lehman, E. Shekita, and L.F. Cabr-
era, An Evaluation of the Starburst Memory-
Resident Storage Component, Submitted for pub-
lication, Feb 1992.

[Lindsay 891 B. Lindsay, R* implementor, personal
communication, Feb 89.

[Lindsay 871 B. Lindsay, J. McPherson, and H. Pira-
hesh, “A Data Management Extension Architec-
ture,” Proc. ACM SIGMOD Conf., June 1987.

[Linton 841 M. Linton, “Implementing Relational
Views of Programs,” Proc. A CM SIGSOFT-
SIGPLAN Symp. on Practical Software Devel-
opment Environments, April 1984.

[Litwin 801 W. Litwin, “Linear Hashing: A New
Tool for File and Table Addressing,” Proc. 6th
Conf. Very Large Data Bases, October 1980.

[Michaels 911 J. Michaels, “Managing Money with
Objects,” Wall Street Computer Review, Vol 9,
No. 3, December 1991.

[Salem 901 K. Salem and H. Garcia-Molina, “Sys-
tem M: A Transaction Processing Testbed for
Memory-Resident Data,” IEEE TKDE 2, 1,
March 1990.

[Salem 861 K. Salem and H. Garcia-Molina, Crash
Recovery Mechanisms for Main Storage Database
Systems, Tech. Rep. No. CS-TR-0340-86, CS
Dept., Princeton Univ., April 1986.

[Snodgrass 841 R. Snodgrass, “Monitoring in a Soft-
ware Development Environment: A Relational
Approach,” Proc. ACM SIGSOFT-SIGPLAN
Symp. on Practical Soft. Dev. Enu., April 1984.

[Williams 82] R. Williams et al, “R*: An Overview
of the Architecture,” Proc. of the Int. Conf. on
Database Systems, Jerusalem, Israel, June 1982.
Published in Improving Database Usability and
Responsiveness, P. Scheuermann, ed. Academic
Press, N.Y.

[Yost 92] R. Yost, Implementor of the R* latch
mechanism, personal communication! February
1992.

544

