
Multiversion Query Locking

Paul M. Bober
Michael J. Carey

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT
Multiversion two-phase locking (MV2PL) has been incorporated
in some commercial transaction processing systems to support
the serializable execution of queries. A drawback to this algo-
rithm is the potentially high cost that it adds to maintain and
access prior versions of data In this paper, we present a new
multiversion locking algorithm, multiversion query locking
(MVQL), that reduces the cost of versioning by accepting
weaker forms of consistency for queries than MV2PL.
Nevertheless, queries are guaranteed to see transaction-
consistent data. We present results from a detailed performance
study that show that, under a wide range of conditions, MVQL
provides higher throughput to queries and update transactions
with a lower storage cost than MV2PL. In the worst case, the
performance of MVQL approaches that of MV2PL.

1. INTRODUCTION
Due to the adoption of relational database technology and the

increasing ability of database systems to efficiently execute ad-
hoc queries, query processing is becoming an increasingly
impatant function of transaction processing systems. Con-
currency control techniques for on-line query processing, how-
ever, are still lacking. The concurrency control algorithm found
in most commercial database systems, two-phase locking (2PL)
[Eswa76], does not efficiently support on-line query processing.
This is because 2PL causes queries to lock large regions of data
for long periods of time, thus causing update transactions to
suffer long delays.

A solution that avoids the data contention problem of 2PL is
to extend it with versioning. Under multiversion two-phase
locking (MV2PL) [DuBo82, Chan82, Chan85], prior versions of
data are retained to allow queries to run against past
transaction-consistent database states. The presence of versions
allows queries to serialize before all concurrent update transac-
tions, and thus queries and update transactions do not conflict.
Commercial systems that employ MV2PL as an option include

This research was partially supported by an IBM Research Initiation
Grant and by the National Science Foundation under grant IRI-8657323.

Permission to copy without fee all or part of thir material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, tk VLDB copyright notice and tk title of tk publica-
lion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowmenf. To copy otherwire, or to
republirh, requires a fee andlor special permission from the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada, 1992

Prime’s DBMS [DuBo82], DEC’s Rdb/VMS product [Ragh91],
and Interbase. A drawback to MV2PL is the storage cost that it
imposes, as well as the additional costs for accessing prior ver-
sions and for copying objects before they are updated (if in-
place updates are employed).

Towards the goal of making versioning more affordable, this
paper introduces a new multiversion two-phase locking algo-
rithm, multiversion query locking (MVQL), that supports
weaker forms of consistency for queries than that provided by
MV2PL. We review these forms of consistency in Section 2, but
we wish to emphasize here that they still guarantee that queries
see transaction-consistent data. This is in contrast to approaches
that avoid versioning altogether, instead allowing queries to see
transaction-inconsistent data. For example, under cursor-
stability locking, queries may release locks before acquiring new
ones (violating the two-phase rule), and under GO processing
[Pira90], queries do not obtain any locks at all (except latches to
guarantee page consistency). In the terminology of [Gray79],
the former provides degree 2 consistency, and the latter, degree
1. Another example is the class of epsilon-serializability algo-
rithms, which accept inconsistent schedules as long as they are
within some number of inversions from a serializable schedule
[wu92].

Because MVQL provides weaker consistency than MV2PL,
it can allow queries to read more recent versions of objects. Per-
formance savings are gained because it is typically less efficient
for queries to read older versions of objects rather than younger
(or current) ones. Depending on the particular storage organiza-
tion employed, this may be true for any of the following reasons:

(1) If the current versions of objects are clustered together,
accessing an older version of an object will degrade
sequential scan performance that would otherwise be
available using prefetch.

(2) If the versions of an object are chained in reverse chro-
nological order (as in [Chan82]), accessing an older ver-
sion will require additional I/O operations.

(3) Using older versions to consmrct a query’s view will
require that additional prior versions be retained for the
query (thus delaying their garbage collection and
increasing storage cost).

The remainder of this paper is organized as follows: Section
2 reviews the various forms of consistency that are provided by
MV2PL and MVQL. Section 3 describes the existing MV2PL
algorithm and then presents the new MVQL algorithm as a gen-
eralization of MV2PL. Section 4 describes the simulation model
used to study the performance of MVQL. Section 5 presents the
results of experiments that compare MVQL to MV2PL in terms
of update transaction performance, query performance, and
storage cost. Lastly, Section 6 presents our conclusions.

497

NlLVLt?
strict
consistency
srrong

Forms of Consistency
Descrrptron Serralrzatlon Graph Constrarnts
each query sees a serial order of update transactions update transaction (partial) order is consistent with their
that is consistent with their commit order commit order; cycles are prohibited
each query sees a common serial order of update tran- cycles are prohibited

consistency

weak
consistency

sactions (not necessarily consistent with their commit
order)
each individual query sees a serial order of update single query cycles are prohibited;
transactions (not necessarily the same as other con- update transaction cycles are prohibited

update
consistency

current queries)
each query sees a transaction-consistent database (i.e., single query cycles are prohibited if they cannot be bro-
it serializes with all update transactions that it sees) ken by removing a single read-write edge between update

transactions; update transaction cycles are prohibited

Table 2.1: Forms of Consistency

2. FORMS OF QUERY CONSISTENCY
In the introduction, we argued that performance advantages

may be gamed by relaxing the level of consistency provided to
queries. In this section, we review four forms of consistency
which all guarantee that queries see a transaction-consistent
database: strict consistency, strong consistency [Garc82], weak
consistency [Garc82], and update consistency. In the next sec-
tion, we review the MV2PL algorithm, which provides only
strict consistency, and we then present the MVQL algorithm as a
generalization of MV2PL that can provide any of these levels of
consistency.

An underlying requirement that we impose is that the execu-
tion of update transactions alone must be serializable; this is
guaranteed in MV2PL and MVQL by having update transactions
run using dynamic 2PL. This prohibits serialization graph
cycles that contain only update transactions (update transaction
cycles).’ Throughout the paper we assume that update transac-
tions read all objects before writing them. We now give
definitions for the various forms of consistency of interest here,
proceeding in decreasing order of strictness. Table 2.1 summar-
izes the consistency forms that are being defined.

A query is said to see strict consistency if it is serializable
with respect to all transactions, and it observes a serial order of
update transactions which agrees with the order in which they
committed. This form of consistency is characterized by an acy-
clic serialization graph where the order of update transactions is
consistent with their commit order. Having the update transac-
tions observe 2PL guarantees that, in the subgraph consisting of
only the actions of update transactions (and not those of
queries), the partial order of update transactions will agree with
their commit order. The addition of query read actions further
constrains the partial order so that it may no longer agree with
the commit order; strict consistency algorithms prevent such a
disagreement by assigning appropriate versions to query read
steps.

‘A serialization graph consists of nodes, which represent transac-
tions, and edges, which represent constraints on equivalent serial order-
ings. A path fli,..., Tj) in the graph means that transaction T; must
come before transaction Tj in any equivalent serial order. A directed
edge of the form (T,, T,) is placed in the graph if either T, attempts to
read or replace a version written by T1, Tz attempts to create a version
of an object that will replace one read by T t , or T t reads a version that
was already replaced by Tz.

The schedule and corresponding serialization graph in Figure
2.1 provide an example of strict consistency. The schedule
shows the operations of four update transactions and three
queries, with time progressing from left to right. We assume
that the last operation of each transaction in the schedule also
marks its commit point. To identify each operation in the
schedule, we label it with a lower case letter; these letters are
then used to label each edge in the serialization graph with the
operations that generated the edge. For example, the edge
between Q 1 and Ur was generated because Q r read X, (step b)
and U, wroteXr (step g). Jn the serialization graph, we observe
that the partial order of update transactions induced by the seri-
alization graph is indeed consistent with their actual commit
order (e.g., CT, < U, and U, < U,). The cost of providing strict
consistency is the cost of accessing the prior versions of the data
items W, X, Y, and Z (instead of the current versions) and the
cost of retaining these versions until all of the queries complete.

We illustrate the remaining forms of consistency by incre-
mentally modifying the example in Figure 2.1 by substituting
current versions for prior ones in one or more query read opera-
tions. This will have the effect of reversing the direction of cer-
tain edges in the serialization graph. To highlight these changes,
we place an asterisk next to each such reversed edge. As the
constraints on consistency are relaxed, we will see that queries
are allowed to access more recent data.

The next form of consistency relaxes strict consistency by
eliminating the requirement that the serial order of update tran-
sactions be consistent with their commit order. A query is said
to see strong consistency [Garc82] if it is serializable with
respect to all transactions.2 This form of consistency is charac-
terized by an acyclic serialization graph, and is provided by
algorithms that guarantee multiversion serializability [Bem83,
Papa84, Hadz85]. Since the previous restriction on the commit
ordering of update transactions is relaxed here, strong con-
sistency may produce apparent anomalies in query results if
users are somehow cognizant of the commit order of update
transactions. The schedule and corresponding serialization
graph in Figure 2.2 provide an example of strong consistency.
The schedule differs from the one in the strict consistency

‘This definition of strong consistency is slightly different than the
one presented in [Garc82]. In their definition, a strong consistency query
is required to serialize only with the update transactions and other strong
consistency queries.

498

a b c
II 4

421 Wo)
Q2 Wo)
Q3 Wo)

W’o)

Figure 2.1: A Schedule and Serialization Graph Illustrating Strict Consistency for Queries

(* Denotes Change from
Preceding Example >

a b c d e f h i j k 1 m n o p q r
VI R(Xo) WY,) &I 1
v2 WdWo)W’,)
u3 NW,) R(Zo)WG)

_ 2
NW,) WW,)

Wo 1 WY,) W,)
Wo) NY,)

Wo) RWo)

Figure 2.2: A Schedule and Serialization Graph Illustrating Strong Consistency for Queries

example in that Q, reads Zt instead of Zo. This reduces the
cost of executing Q,, and it potentially allows Za to be
garbage-collected before Qr completes (i.e., because Q, will
never need it). As a result of this change, Q, serializes after V3,
but before iI1 and V2; this is despite the fact that VI and V2
actually committed before V,. Q r is allowed to see this order
since neither VI nor V2 execute any conflicting operations with
U,, and no other query has seen an order that is contradictory.

The next form of consistency relaxes strong consistency by
allowing each query to serialize individually with the set of
update transactions. A query is said to see weak consistency if it
is serializable with respect to update transactions, but possibly
not with respect to other queries. This form of consistency,
which was dust introduced in [Garc82] for use in replicated data-
bases, still ensures that queries see transaction-consistent data.
However, it permits cycles in the serialization graph that contain
multiple queries plus one or more update transactions (multipfe-

query cycles). Cycles involving a single query and one or more
update transactions (single-query cycles), and cycles involving
only update transactions (update truwzcfion cycles), are both
still prohibited. The queries in a multiple-query cycle see mutu-
ally inconsistent orderings of the update transactions in the cycle
(i.e., one query will perceive a different serial ordering of update
transactions than another query); the relative order of two update
transactions may be transposed if they have not issued any
conflicting operations. The schedule and corresponding seriali-
zation graph in Figure 2.3 illustrate this form of consistency.
The schedule differs from that of Figure 2.2 in that Q, reads Yr
rather than Yo, thus reducing Q2’s cost and potentially allowing
Y. to be garbage-collected earlier than it would have been under
stTong consistency. This execution introduces a multiple-query
cycle involving Q,, Q,, VI, V2, and V3. This cycle indicates
that Qr has seen the serial ordering (Us, Qr, V,, V,), while Q,
has seen the ordering (VI, V,, Q2, V,). Thus, V, and V, (as
well as V, and V,) are ordered differently in the two queries’
observed schedules.

499

(* Denotes Change from
Preceding Example >

a b c d e f h i j k 1 m n o p q r’
Ul R(Xo) W’o) W&d
u2 WX,)W’o)W’,)

u3 NW,) Wo)W(Z,)

. 2

NW,) WV’,)

NXo) W’o) WI)

Q2 RGo) NY,)

Q3 Wo) NW,)

Figure 2.3: A Schedule and Serialization Graph Illustrating Weak Consistency for Queries

(* Denotes Change from
Preceding Example >

1 IabcdefghiiklmnouarI
1

Ul WXo) W’oP(Xd

u2 R(X,)W’o)W’,)

. us NW,) Wo)W(Z,)

_ 2

NW,) WV’,)

NXo) NY,) W, 1

Q2 Wo) WY,)
0, R(Z,) R(W,)

Figure 2.4: A Schedule and Serialization Graph Illustrating Update Consistency for Queries

The last form of consistency considered here relaxes weak
consistency by also allowing certain single-query cycles. The
effect of this relaxation will be described shortly. A query is
said to see update comistency if it serializes with the set of
update transactions that produced values that are seen (either
directiy or indirectly) by the query. Even though an update con-
sistency query may not serialize with the complete set of update
transactions, it is guaranteed to see a transaction-consistent data-
base state. Recall that a transaction-consistent database is
assumed to satisfy a set of static integrity constraints, and each .
update transactron 1s assumed to take the database from one
transaction-consistent state to another (possibly through one or
more inconsistent intermediate states) [Gray76]. In order to
observe a transaction-consistent database, a query must not see
the partial effects of any update transactions; for each update
transaction, it must see either all of its effects or none of its
effects.

Update consistency permits multiple-query cycles in the seri-
alization graph, as well as permitting single-query cycles if they
can be broken by removing a read-write edge between two
update transactions. An edge (T,, Ta) is a read-write edge if it
was formed due to a read operation by T, followed by a
conflicting write operation by Ta. Of course, it is important to
remember that, as for all forms of consistency here, the full seri-
alization graph is not permitted to contain update transaction
cycles. In [Bobe92b], we prove that a query has seen update
consistency if i) the serialization graph contains no update tran-
saction cycles, and ii) each single-query cycle involving the
query can be broken by removing a read-write edge between
update transactions.

The schedule and corresponding serialization graph in Figure
2.4 illustrate update consistency. A single-query cycle is intro-
duced between U,, U4, and Qj because Q3 now reads W,
rather than Wo. This cycle is allowed under update consistency
(but not under higher forms of consistency) because it does not

500

persist when the read-write edge from U3 to U4 is removed. In
the execution, Q3 sees all of the effects of U,, but none of the
effects of U3. The query nevertheless sees a transaction-
consistent database since the output of U3 has no bearing on the
the execution of (I,.

While update consistency guarantees that queries see a
mansaction-consistent database state, it allows them to see a state
that might not be logically consistent with the current state of
the database. For example, in Figure 2.4, Q3 sees a state of the
database that would have existed if U, had never executed (or if
it had aborted). Because of the read-write conflict between U3
and U4, it is not possible to assume that U3 was executed logi-
cally after U,; U3 might have an entirely different effect if it
were executed after U,. For example, suppose that U, is a ran-
saction that adds a passenger (Mr. Smith) to a flight manifest
(Z), and U4 is a transaction that registers the fight’s departure in
the relevant flight record (W). Furthermore, assume that a tran-
saction will not add a passenger to a flight manifest if the flight
has been registered as departed (checking this requirement is the
source of the read-write conflict). In this scenario, it will appear
to query Q3 that the flight has departed and that there is no Mr.
Smith registered as a passenger (which is indeed a potential
transaction-consistent database state). Also, the fact that the
flight has departed would seem to imply that Mr. Smith could
not later be added to the passenger list; however, later queries
will reveal that Mr. Smith was indeed a passenger on the flight.
Despite the presence of this type of anomaly, update consistency
may be useful in situations where degree 1 or 2 consistency is
insufficient (e.g., checking integrity constraints).

To the best of our knowledge, almost all previously proposed
multiversion concurrency control algorithms provide only strict
consistency for queries. The only exception that we are aware
of is distributed MV2PL. where weak consistency arises among
queries at different sites due to inconsistent global state informa-
tion [Chan85]. In contrast, MVQL deliberately introduces
weaker forms of consistency among queries by allowing them to
read newer versions of data for performance reasons. In the next
section, we describe the MVQL algorithm and show how it can

be used to provide queries with either update, weak, strong, or
strict consistency (as desired by a given application).

3. MULTIVERSION ALGORITHMS
In this section, we describe the MV2PL algorithm which is

currently used in several commercial DBMSs. We then present
our new algorithm, MVQL, as a generalization of MV2PL.
Both MV2PL and MVQL use two-phase locking for serializing
update transactions. MV2PL provides only strict consistency
for queries, while MVQL relaxes this by permitting a choice
between update, weak, strong, and strict consistency. In the last
case, MVQL is equivalent to MV2PL.

3.1. Multiversion Two-Phase Locking (MV2PL)
In MV2PL [D&082, Chan82], a transaction is classified at

startup time as being either a query transaction (read-only) or an
update transaction. When an update transaction reads or writes
an object (e.g., a page or a tuple), it locks the object, as in tradi-
tional 2PL, and then accesses the most recent version. Update
transactions must block when conflicts occur. When an object is
written, a new version is created and stamped with the identifier
of its creator. When an update transaction completes, it is
assigned a commit timestamp from the incremented value of a
commit timestamp counter.

When a query begins, it is assigned a startup timestamp that
is equal to the current value of the commit timestamp counter.
When the query wishes to read an object, it simply reads the
most recent version of the object written by a transaction that
was assigned a commit timestamp less than or equal to the
query’s startup timestamp3. A table is maintained to map tran-
saction identifiers (which are stamped on object versions) to
commit timestamps. Thus, the query will be serialized after all
uansactions that committed prior to its startup, but before all
transactions that are active during any portion of its lifetime-as
though it ran instantaneously as of its starting time. As a result,
queries never have to set or wait for locks in MV2PL. MV2PL
provides strict consistency because all queries see a serialization
order of update transactions that is consistent with their commit
(timestamp) order.

3.2. Multiversion Query Locking (MVQL)
The startup timestamp assigned to a query in MV2PL is used

to define the transaction-consistent state that it sees. More
specifically, it serves to concisely divide the set of update tran-
sactions into two subsets, the set of update transactions which
come before the query in the serial order, and the set of update
tIans.actions which come after the query; we will refer to these
sets of update transactions as the query’s BEFORE set and
AFTER set, respectively. The query sees the correct state by
always reading the most recent version of an object written by a
transaction that belongs in its BEFORE set (i.e., by one whose
commit timestamp is less than or equal to the query’s startup
timestamp).

Under weaker forms of consistency, each query defmes its
own interpretation of the serial order. As a result, a single-
valued timestamp is insufficient to represent the AFTER and
BEFORE sets of a query in MVQL. Rather, one of the two sets
must be represented explicitly. (It is not necessary to represent
both explicitly since they are complements of each other.) We
will discuss the details of set representation shortly.

As discussed in the introduction, the goal of adopting weaker
forms of consistency is to allow queries to read more recent
data, thus reducing the cost of versioning. MVQL will therefore
place an update transaction in a query’s AFTER set only when
necessary to prevent a violation of the desired form of con-
sistency. A query always begins with an empty ARER set. For
purposes of explanation, we present the rules for placing update
transactions in the AFTER sets of queries for each form of ccn-
sistency in the order: strict, update, weak, and strong. Recall
that Table 2.1 summarizes these forms of consistency. In the
next subsection we describe how these rules may be efficiently
implemented.

3.2.1. Varying Consistency Levels
For strict consistency, which is the most restrictive form, all

update transactions running during any portion of a query’s life-
time are placed into the query’s AFTER set. This makes the
algorithm identical to MV2PL.

%e garbage collection mechanism must guarantee that this version
is available to the query. Thus, a prior version can only be garbage-
collected if there are no active queries running with a startup timestamp
greater than rhe commit timestamp of the version’s creator and less than
the commit timestamp of the transaction which overwrote this version.
In Section 3.2.4, we discuss two algorithms for garbage collection.

501

For update consistency, which is the least restrictive form, an
update transaction U is placed into the AFTER set of a query Q
under any of the following conditions (which comprise Rules 1
through 3):

(1) U attempts to write lock an object that has been already
read by Q.

(2) Q attempts to read an object that is currently write
locked by Il.4

(3) U reads an object version (always the current one) that
was written by another update transaction U’, and U’ is
currently a member of Q’s AFTER set.

Recall that update consistency guarantees that queries do not see
the intermediate effects of an update transaction; the query sees
either all or none of its effects. Rules 1 and 2 guarantee that a
query will not see the partial effects of an update transaction
directly, and Rule 3 guarantees that it will not see them
indirectly. It should be noted that Rule 3 is sufficient to recog-
nize indirect partial effects passed through any number of update
transactions. This is true for two reasons. First, the algorithm
always recognizes that an update transaction should come after a
query in the serial order while the update transaction is still
uncommitted; thus, if a committed update transaction is at some
pint not in a query’s AFTER set, it never will be. Second, an
update transaction reads only committed data. Thus, when an
update transaction reads a version, it lmows immediately for
each active query whether the version’s creator came before or
after the query.

For weak consistency, which is the next more restrictive
form, the following rule is added to the update consistency rules
(Rules 1 through 3):

(4) An update transaction U is placed into the AFTER set of
a query Q if U overwrites an object version (always the
current one) that was read by another update transaction
U’, and U’ is currently a member of Q’s AFI’ER set.

This rule is necessary to recognize read-write dependencies
between update transactions, and along with the first three rules
it prevents single query cycles in the serialization graph. The
additional consistency comes at the expense of making query
AFTER sets larger (thus requiring that queries read older data).

For strong consistency, which is even more restrictive, the
following rule is added to the weak consistency rules (Rules 1
through 4):

(5) A query is considered to have read an object (for the pur-
poses of Rules 1 and 2) if either it has read the object
explicitly, or if some younger query has read the object
explicitly.

In other words, a read by one query is treated as though it were
made by all older queries as well; in the next subsection, we
describe how this may be done efficiently. With the addition of
this rule, multiple query cycles are eliminated since the AFTER
set of an older query will always subsume the AFTER sets of all
younger queries. This prevents a path in the serialization graph
from a younger query to an older query; any multiple query
cycle would have to contain such a path. The avoidance of

4Altematively, it is possible instead to block Q behind U. This may
make the implementation easier, and will probably not have a significant
performance impact if update transactions are short On the other hand,
doing so could cause significant delays for queries if update transactions
are long.

multiple query cycles means that all queries will see a consistent
serial ordering of update transactions; however, this additional
consistency comes at the expense of making query AFTER sets
still larger (thus requiring that queries read even older data).

3.2.2. Implementing the AFTER Set Insertion Rules
Determining when an update transaction should be inserted

into the AFTER set of a query under strict consistency is
straightforward: When a query enters the system, all currently
executing update transactions are placed into its AFTER set. All
subsequently arriving update transactions are also placed into
this set. Determinin g when the rules apply under the other
forms of consistency is less straightforward, however. In order
to determine when Rule 1 applies, we need a mechanism for
determining whether or not an active query has read an object
that an update transaction now wishes to write lock. This can be
handled by adding a new, non-conflicting lock mode to the 2PL
lock manager called a read-only lock. A query must obtain a
read-only lock on each object that it reads; note that it obtains
locks on objects, not on object versions. As with traditional
locks, a query releases all of its read-only locks when it finishes.
When granting a write lock on an object to an update transac-
tion, the lock manager will respond with a list of the object’s
current read-only lock holders. The applicability of Rule 2 can
be easily detected when a query obtains a read-only lock; the
lock manager will respond to a read-only lock request by retum-
ing the identifier of the current write lock holder (if there is one).
Furthermore, the applicability of Rule 3 may be easily checked
by an update transaction since each version is stamped with the
identifier of its creator. Specifically, when an update transac-
tion reads an object, it can check to see if the creator of the
current version is a member of the AFTER set of any active
queries.

Rule 4, added for weak consistency, may be enforced by
requiring that each query inherit the read locks of all committing
update transactions in its AFTER set (converting them to read-
only locks in the process). This lock inheritance will cause a
subsequent update transaction to be inserted into me query’s
AFTER set if it later issues a write operation that conflicts with a
read operation by an update transaction already in the set. Rule
5, the rule added for strong consistency, may be enforced when
a query requests a read-only lock on an object by automatically
acquiring the lock for all older active queries as well.

3.2.3. Implementation of AFTER Sets
AFlYER sets must be stored in a space-efficient manner, as in

the worst case there may be an entry in a query’s AFTER set for
each update transaction that runs during its lifetime. In addition,
the implementation of AFTER sets must support efficient
access, as insertions and lookups occur quite frequently. For
example, when an update transaction reads an object, as just
described, the update transaction must check to see if me current
version’s creator is a member of the AFIER set of any currently
executing query.

The scheme that we propose for representing each query’s
AFTER set is a bitmap indexed by the sequence numbers (tran-
saction identifiers) that are assigned to update transactions when
they enter the system. Operations on an AFTER set will then
require only the testing or setting of bits in this bitmap. Since a
query’s AFTER set contains only update transactions which ran
sometime during its lifetime, the first entry of a query’s bitmap
is assigned an index that is equal to the sequence number of the
oldest update transaction running when the query entered the

502

system. Furthermore, the bitmap may have a fixed size, as it is
possible to assume that any update transaction whose sequence
number falls beyond the end of the bitmap is automatically a
member of the query’s AFTER set. This assumption will not
affect the correctness of the algorithm, merely its ability to
exploit lesser forms of consistency. As an extreme, a bitmap of
size zero, represented only by the sequence number of the last
update transaction to commit prior to the start of the query,
would cause the reduced consistency variations of MVQL to
degenerate to strict consistency (i.e., to MV2PL).

3.2.4. Garbage Collection
We discuss two alternative approaches for removing

unnecessary versions in MVQL (and MV2PL as well). A ver-
sion is unnecessary if, for every active query, there is a more
recent committed version of the object that was created by an
update transaction that is not in the query’s AFTER set. The
lirst alternative is a sequential garbage collection scheme, as
proposed in [Chan82], where prior versions are stored in a
sequential log-like version pool; before an object is updated, it is
appended to the version pool. In this approach, there are three
pointers that mark regions in the version pool. Last marks the
tail of the version pool (i.e., the most recent version), update-
fvst marks the version that was appended least recently by an
uncommitted update transaction, and reader-fist marks the head
of the version pool. When a query enters the system, it records
the current value of update-fist. When it exits the system, if it
is the oldest query, it sets reader-first to the position it previ-
ously marked. The drawback of this approach is that is possible
for a long-runnin g query to hold up the garbage-collection of a
potentially large number of prior versions, leading to a high
storage overhead [Bobe92a].

As an alternative to the sequential scheme, a sifting garbage
collection scheme can be used in conjunction with a heap-based
organization for storing prior versions. In this approach, when a
update transaction completes, it assigns each prior version that it
replaced to the youngest query that requires the version. When
this query completes, it must sequence through its list of
assigned versions and reassign them to the next-youngest query
that requires the version.’ If there is no such query, then the ver-
sion may be garbage-collected. Compared to the query’s overall
path length, sequencing through a assigned list of versions is
relatively inexpensive.

3.3. Further MVQL Refinements
In [Bobe92b], we present several refinements to the basic

MVQL algorithm. First, we describe a distributed version of
MVQL that can be used in a shared-nothing parallel DBMS.
The distributed algorithm maintains local AFTER set copies by
piggybacking insertions on top of the messages exchanged to
atomically commit distributed update transactions. We also
present a method of reducing storage cost by allowing queries to
declare when they will no longer need certain objects. Lastly,
we discuss a way of providing more control over consistency
through the use of query consistency groups.

‘Determining if a query requires a version may Lx done by simply
checking its AFTER set; this adds only a small amount to the path length
of update transactions since, as described above, AFTER set operations
are inexpensive. Furthemrore, maintaining a query’s list of assigned ver-
sions is also inexpensive since the entries are small and the list may be
spooled to secondary storage if necessary.

4. THE SIMULATION MODEL
In this section, we describe the model that we used to com-

pare the performance of MV2PL and MVQL. The model cap-
tures the details of page-level versioning implementations of
each of these algorithms. In order to explain the model, we will
break it down into two major components, the application model
and the system model. Each of these has several subcomponents
that will be described in this section. The model was imple-
mented in the DeNet simulation language [Livn89].

4.1. The Application Model
The first component of the application model is the database,

which is modeled as a collection of files. Each file, in turn, is
modeled as a collection of records. One clustered and one
unclustered index exist on each file. We assume that each index
has IndexFarwu~ keys per index page and (for simplicity) that
there is a one-to-one relationship between key values and
records. Each file has F&Size records, and each record occu-
pies RecSize bytes. The overall database is physically organized
as a series of <tile, clustered index, unclustered index> triples
that are laid out on the disk in cylinder order. Prior versions of
pages are stored in a version pool following all of the primary
data. We discuss the version pool organization in more detail in
the next subsection. The parameters for this portion of the
overall model are summarized in Table 4.1.

The second component of the application model, the source
module, is responsible for modeling the external workload of the
DBMS. Table 4.2 summarizes the key parameters of the work-
load model. The system is modeled as a closed queueing system
with the transaction workload originating from a fixed set of ter-
minals. Each terminal submits only one job at a time and is
dedicated to either the update transaction class or the read-only
query transaction class. Query transactions execute relational
select (range-query) operations, while updare transaction, exe-
cute select-update operations. In each case, selections can be
performed via sequential scans, clustered index scans, or non-
clustered index scans.

For each transaction type (query or update), an execution
plan is provided in the form of a set of parameters. The parame-
ters include an access method and a mean selectivity for each
tie (AccessMeth,h,,pl, and SeIectivity,,,Vfl,. respectively). The

Parameter / Meaning
NumFlfes I Number of files m database
NumKeysfl, Number of keys per index page for file
FikSizefl, Number of records in file
RecSizefl, Size of records in file

Table 4.1: The Application Model Parameters

Parameter 1 Meaning

class Number of temunals (class 1s query

Access method used by class for file
Mean selectivity for class for file
Distribution of actual selectivities
Fraction of selected tuples to update

Table 4.2: The Workload Model Parameters

503

actual selectivity for a given run is chosen from a distribution,
SelectivityDistr,,,. For update transactions, UpdateFracjic
specifies the fraction of selected records to actually update. It is
assumed that indexed attributes are not updated by the update
transactions. This assumption was made so that we could use
single-version indexes in this study, leaving further exploration
of indexing for future work.

We chose this workload model in order to capture situations
where there are a relatively large number of updates per query
and where queries do a significant amount of work. This work-
load model, despite its simplicity, places sufficient demands on
the version management system to highlight the important per-
formance issues and tradeoffs.

4.2. The System Model
The system model encapsulates the behavior of the various

DBMS and operating system components that control the logical
and physical resources of the DBMS. The relevant modules are
described in the remainder of this subsection. They include the
operator manager module, the concurrency control module, the
buffer manager module, the CPU module, and the disk manager
module. Table 4.3 summarizes the key parameters of the system
model.

The operator manager encapsulates the operations necessary
to execute the transaction types in the workload (i.e., select and
select with update). As was previously described, the access
methods supported are sequential, clustered index, and non-
clustered index scans. The CPU costs of the operators are
modeled by charging SelectCPU instructions to extract a single
record from a disk page and CompareCPU instructions to com-
pare two index keys. In addition, StartupCPU and Termina-
teCPU instructions are charged to start and terminate an opera-
tor, respectively.

The concurrency control manager encapsulates the opera-
tions of the MVQL and MVZPL algorithms. It consists of two
subcomponents: the lock manager and the version manager. The

Parameter
NumBuffers
CPURa;e
NumDisks
DiskSeekFactor
DiskLatency
DiskSettle
DiskTrader
DiskPageSize
DiskTrackYize
Prefetchhbm
CacheSize
SelectCPU
CompareCPU
StartupCPU

TerminateCPU
CccPU
Bufr=PU
IO CPU -

Meaning
Number of page frames m the buffer pool
Instruction ;ate of CPU
Number of disks
Factor relating seek time to seek distance
Maximum rotational delay
Disk settle time
Disk transfer rate
Disk block size
Disk track size
Number of pages to prefetch
Size of disk prefetch cache
Cost to select a tuple
Cost to compare index keys
Cost to start a select or select-update
operator
Cost to terminate an operator
Cost for a lock manager request
Cost for a buffer ~001 hash table lookup
Cost to initiate an I/O operation

Table 43: The System Model Parameters

CPU costs of concurrency control are modeled by charging
LockCPU instructions for each lock request. This includes both
the traditional 2PL read and write locks as well as the read-only
locks introduced by MVQL. Both locking and versioning are
both supported at the page level. We chose page-level version-
ing to simplify the implementation of the simulator and to
reduce the length of simulation runs. The basic MVZPL and
MVQL algorithms are compatible with record-level versioning;
schemes for record-level versioning are discussed in [Bobe92a,
Moha92].

The version manager divides the database into two segments:
the main segment, containing the current versions of pages, and
the version pool, containing prior page versions. This organiza-
tion is similar to the one described in [Chan82], except that we
arrange the version pool as a heap of disk tracks rather than as a
circular (log-like) buffer. This change alleviates the problems of
sequential garbage collection discussed in Section 3.2.4 while
still providing good write performance (as write operations to
the version pool are done a track at a time).6 Access to prior ver-
sions is provided through a memory-resident index that maps a
current page number and the AFTER set of a query to the loca-
tion of the appropriate prior version of a page. The memory-
resident index is another departure from the scheme in
[Chan82], where prior versions of a page were located by chain-
ing back from the current version. We chose the directory
approach in order to present the performance differences of the
algorithms relatively conservatively. With reverse chaining, the
MVQL algorithm would appear even more attractive than
MVZPL, as queries tend to access younger versions under
MVQL than MVZPL.

The buffer manager module encapsulates the details of an
LRU buffer manager. The number of page frames in the buffer
pool is specified as NumBuffers, and the frames are shared
among the main segment, version pool, and index pages. Ver-
sion pool pages that are inserted into the buffer manager by the
version manager are not assigned physical disk addresses until
they are written out to disk; this is done to eliminate fragmenta-
tion problems on tracks due to versions that can be garbage-
collected while still in the buffer pool. When a dirty version
pool page reaches the end of the LRU chain, a track’s worth of
dirty version pool pages are written to a free track on disk. The
CPU cost of searching for a requested page in the buffer pool
hash table is modeled by charging BujCPU instructions. If the
page is not resident, an additional BufCPU instructions is
charged to insert the page in the table; IO CPU instructions are

- then charged to initiate an I/O operation.

The CPU module encapsulates the behavior of an FCFS CPU
scheduler, granting transactions the use of the CPU until they
request a new page from the buffer manager. The disk manager
module is designed to model the behavior of a disk controller
and driver. The controller schedules disk requests according to
the elevator algorithm [Teor72]. The total service time is com-
puted as the sum of the seek time, latency, settle time, and
transfer time. The seek time of a disk request is computed by
multiplying the parameter DiskSeekFactor by the square root of
the number of tracks to seek [Bitt88]. The actual rotational
latency is chosen uniformly over the range from 0 to

% should be noted that the decision to use a heap-based version pool
rather than a circular buffer is orthogonal to the basic MVQL and
MV2PL algorithms; we could have chosen to use the circular buffer or-
ganization instead.

504

DiskLatency. Settle time is a constant and is given by the
parameter DiskSettle. The last component of the disk service
time, transfer time, is computed from the given transfer rate,
DiskTransfer. We assume that the disk controller has a prefetch
option that may be selected on a per-request basis to optimize
sequential access performance. In addition to reading the
requested page, the prefetch mechanism will load the next Pre-
fetchhhm pages into a FIFO cache contained within the disk
controller; subsequent requests for these pages will then not
require physical I/O operations. The controller contains room
for a total of CacheSize prefetched pages.

5. EXPERIMENTS AND RESULTS
In this section, we present the results of three experiments

that compare the performance of MV2PL and MVQL. As a
yardstick for comparison, we also include the results of GO pro-
cessing; recall that GO processing allows queries to run without
setting locks at all. The primary performance medics employed
in this study are query throughput, update transaction
throughput, and storage cost for maintaining older versions of
pages. Additional metrics are used in the analysis of the experi-
mental results.

To ensure the statistical validity of our results, we verified
that the 90% confidence intervals for response times (computed
using batch means [Sarg76]) were sufficiently tight. The size of
these confidence intervals were within approximately 1% of the
mean for update transaction response time and within approxi-
mately 5% of the mean for query response time in almost all
cases. Throughout the paper we discuss only performance
differences that were found to be statistically significant.

Table 5.1 lists the settings for the system model and the
application model parameters. The system has a CPU that exe-
cutes 12 million instructions per second and a single disk with a
page size of 8K bytes and a track size of 5 pages. The disk con-
troller can prefetch up to 4 pages following a requested page;7
the controller contains a 256K byte cache for storing prefetched
pages. This model was patterned after the Fujitsu M2266 disk
drive [Fuji90], which is as an example of a current generation

NumDisks
DiskSeekFactor
DishLatency

DiskSettle
DiskTrMsfer
DiskPagdize
DiskTrackYize
CacheSize
PrefetchWum
NumBuffers

Setting 11 Parameter
12 MIPS II NumFiles
1 IndexFanoutfle
0.617 n-is FileSizefl,
O-16.67 ms RecSizefl,
(uniform)
2.0 ms SelectCPU
3.07 hlB/sec CompareCPU
8K StartupCPU
5 pages TerminnteCPU
32 pages LockCPU
5 B@PU
600pages _ IO CPU

Table 5.1: System and Application Model Settings

‘The prefetch option is used for main segment read requests by the
sequential and clustered index scan access methods. To prevent disk
bandwidth from being wasted as a query shifts from a sequential access
pattern in the main segment to a random pattern in the version pool, a
query stops requesting the prefetch option once it observes a disk cache
hit ratio of less than 60% from its prefetch requests.

disk drive. With this configuration, typical disk access times
were on the order of 15 milliseconds and the system was I/O-
bound for all of our experiments.

The database is composed of 4 files, each containing 25,000
Wisconsin benchmark-sized records. Each record contains 208
bytes of data and 19 bytes of overhead for a total of 227 bytes
(as is the case in the Gamma system [DeWi90]). With this
record size, 36 records fit on a page. Each file contains both a
clustered and an unclustered B+ tree index, each with a node
fanout of 450. The CPU costs of executing transactions in the
workload include various instruction charges that are detailed in
Table 5.1

The parameter settings for the workload model were varied
from experiment to experiment. These settings are listed in
Table 5.2, and are described with each experiment.

5.1. Experiment 1: Effect of Query Selectivity
In this experimem we study the effect of query selectivity on

each of the alternative concurrency control algorithms. A tran-
saction workload is initiated from a set of 12 update transaction
terminals and 1 query terminal; the terminals do not involve an
external think time delay.’ Update transactions use the non-
clustered indexes to select and then update 2 randomly selected
records in the database, while queries use clustered indexes to
scan a randomly selected region of each of the 4 files in the data-
base. The query selectivity is kept constant within the same
simulation run (across both files and queries), but is varied from
10% to 90% between runs. We vary the query selectivity over a
wide range to show how versioning influences system perfor-
mance as queries increase in size; size is a key factor here
because as the queries become larger, the version management
system must maintain uansaction-consistent states of the data-
base that are increasingly different than the current state. As an
alternative, we could have achieved a similar effect by varying
the database update rate (e.g., by changing the number of update
transaction terminals).

Figures 5.1 through 5.4 show query throughput, fraction of
query accesses to current versions, average storage cost, and
update transaction throughput for each of the algorithms over a
range of query selectivites. Note that for a single-query work-
load, weak and strong consistency are identical. Also, since
update transactions modify each record that they read, weak
consistency and update consistency are the same here as well.
This explains why there is only a single curve in the graphs for
MVQL in this experiment. We start by considering query
throughput. In Figure 5.1, we see that the highest query
throughput is observed with GO processing, while the lowest is
observed with MV2PL. An exception to this occurs below
approximately 20% query selectivity, where a slightly higher
query throughput is achieved with MVQL than with GO pro-
cessing.g At lower query selectivities, MVQL’s query
throughput is close to that of GO processing, and at higher selec-
tivities it approaches that of MV2PL. The reasons for the differ-
ences in query throughput between the algorithms are illustrated
by the graph in Figure 5.2, which shows the fraction of query

this captures the average behavior of a system with a !arger number
of terminals that do involve an external think ume delay. By abstracting
the model in this way, we were able to reduce the varknce in the statis-
tics and obtain tight confidence intervals without excessive simulation
lengths.

505

- _
MPL”pdaIe
Selectivify+,,,,pk
SelectDistr,,,
SelectDistr,,+,,
UpdateFrac
Selectivity,,,,,fle
AccessMethodQ,,
AccessMethodu+,,

Parameter 1 Experiment 1 ! Experiment 2 / Experiment 3
mLouc, I lquery I 1 query I 1 to 5 quenes

12 updaters 12 updaters 12 updaters
2 records 1 to 32 records 2 records
constant constartt uniform over 2/3 to 4/3 of mean
constant constant corlstant
100% 25% 100%
10% to 90% 25% 40%
clustered index clustered index clustered index
unclustered index unclustered index unclustered index

Table 5.2: Workload Model Parameter Settings

*MVQL (UPDATE, WEAK, STRONG) -5
+MV2PL (STFXT) E

o.oz- J
z
St!
2
u
2
c w
z

0.01s
z

5
k
%
5 .-
t;
I
tT.s

0.006 zb 4b 60 80
Query Selectivity

*MVQL (UPDATE, WEAK, STRONG)
+MV2PL (STRICT)

Average Query Selectivity

Figure 5.1: Query Throughput Figure 5.2: Current Version Access Figure 5.3: Average Storage Cost
(MPLquV = 1, MPL,*, = 12, Update Transaction Size = 2)

accesses that go to the current version of a page. Recall that
when queries access the current versions of pages, sequential
access is preserved, thus the prefetch option may be used to read
five pages from the disk with a single arm movement and rota-
tional delay. GO processing achieves the highest query
throughput since only current versions of pages are accessed. At
the opposite side of the spectrum, MV2PL achieves the lowest
query throughput since, to maintain strict consistency, queries
access the fewest current page versions. As queries become
larger with both MVQL and MVZPL, the fraction of accesses to
current page versions drops since queries see a state of the data-
base that becomes increasingly older than the current state. This
happens more quickly with MV2PL than with MVQL since
MVQL does not place all update transactions that arrive during a
query’s execution into its AFTER set (i.e., some of these tran-
sactions serialize before the query). The rate at which con-
current update transactions are placed into a query’s AFTER set
starts out low and then increases steadily as the query ages and
acquires more read-only locks; the reason for this can be seen by

reviewing Rules 1 through 3 in Section 3.2.1. Specifically, in
this experiment (but not shown in the graphs displayed), an
average of about 10% of all update transactions that ran during
the lifetime of a 10% select query were placed into its AFTER
set in MVQL. This percentage increased to just over 40% at a
query selectivity of 30%, to about 80% at a selectivity of 60%,
and to nearly 90% at a selectivity of 90%. This explains why, as
the query selectivity is increased in Figure 5.1, the query
throughput of MVQL approaches that of MV2PL.

We now consider storage cost. Storage cost is also depen-
dent on query selectivity, as the multiversion algorithms must
keep transaction-consistent states of the database that with time
become increasingly different than the current state. This can be
seen by the graph in Figure 5.3, which shows the average
storage costs observed for MV2PL and MVQL during each
simulation run; note that the curves show storage cost relative to
the total database size. Recall that a query always accesses the
most recent version of a page that was written by a uansaction
not belonging to its AFTER set. Thus, with a query MPL of 1,

%is exception is caused by the garbage-collection of page versions in the buffer pool. With versioning, an update transaction must copy a page in
the buffer pool before updating it. This may require cleaning the buffer frame at the end of the LRU chain. If the prior version is garbage-collected
when the update transaction commits, the update transaction will contribute this clean buffer to the next transaction that requests one. Some fraction of
the time. a query will be the recipient of a page cleaned by an update transaction in this manner. Thus, when garbage collection in the buffer pool is
frequent, a small amount of work will be shifted from the queries to the update transactions. As we will see shortly, garbage collection in the buffer
pool is common with MVQL at low query selectivities.

506

-cc
! 1: I-“i-;‘i ::.+

a
z v1
j lo- E O.OlO-

2 c +GO
2

.e aI
&

+MVQL (UPDATE)
E-
Q *MVQL (WEAK & STRONG)
z 5- -0 *GO 0.005- +MKsx wR1m

;>" th4VQL (UPDATE, WEAK, STRONG)
+ Mv2PL (sTRIcr)

20 4-o 60 I30
Average Query Selectivity

0.000~ io 20 377
Update Transaction Size

Figure 5.4: Update Transaction Throughput Figure 5.5 Query Throughput
(Update Transaction Size = 2) (SelecfivityQyeV = 25%)
(MPL,,, = 1) MPL”@, = 12) (MPL,,, = 1, MPL&&& = 12)

the version pool must contain the prior version of the first update
to each page by a transaction in the currently executing query’s
AFTER set, and multiple updates to the same page during the
lifetime of a query do not increase the storage cost. This
explains why the slopes of both the MV2PL and MVQL curves
decrease as query selectivity is increased. If the query runs long
enough, each page in the database will have been updated by
some transaction in its AFTER set; when this occurs, the version
pool will contain an entire copy of the database. Notice that
MVQL has a considerably lower storage cost than MV2PL.
This is because the version pool grows at a slower rate with
MVQL, and, as was discussed previously, queries complete fas-
ter under MVQL than MV2PL. In order to see why the version
pool grows at a slower rate with MVQL than MV2PL. recall that
to maintain strict consistency, MV2PL places all update transac-
tions that run during a query’s lifetime into its AFTER set, while
MVQL does not.

Finally, we turn our attention to the update transaction
throughput shown in Figure 5.4. The differences between the
algorithms here were caused by the number of updates to the
version pool. GO processing does not maintain a version pool,
so it provides the highest update transaction throughput. Both of
the remaining curves vary along with query selectivity. The
drop in MVQL’s update transaction throughput between 10%
and 40% selectivity can be explained by the increase in the rate
at which concurrent update transactions are placed in the
AFTER set of the active query as it ages. Initially, when the
query is young, MVQL places the majority of update transac-
tions that arrive in the system before the query in the serial
order. As noted previously, an average of only about 10% of
update transactions that ran during a 10% selection query’s life-
time were serialized after it. When an update transaction that
serializes before all active queries commits, the prior versions of
its updates can be garbage-collected. Since update transactions
were short in this experiment, such prior versions were almost
always garbage-collected while still in the buffer pool (and thus
were never written to the version pool on disk). Garbage collec-

tion of versions in the buffer pool increases the availability of
clean buffers, thus helping to increase update transaction
throughput relative to MV2PL at low query selectivities.

* MVQL (UPDATE)
t- MVQL (WEAK & STRONG)
+ Mv2PL (STRlcr)

0.0 a"""ls""20 - --ja"
Update Transaction Size

Figure 5.6: Average Storage Cost
(SelectivityQ,,, = 25%)

(MPL,,, = 1, kfPLdlC = 12)

When a query becomes older, the rate at which concurrent
update transactions can be serialized before the query drops.
Again, as we noted previously, slightly over 40% of the update
transactions that ran during the lifetime of a 25% select query
were serialized after the query. This resulted in an increased
rate of updates to the version pool, and explains MVQL’s drop
in update transaction throughput. MV2PL had no such drop in
its update transaction throughput since all update transactions
that run during the lifetime of a query serialize after it. In fact,
update transaction throughput rose as selectiviv was increased.
This rise, and the rise in the MVQL throughput after 40% selec-
tivity, results from pages being updated multiple times during
the lifetime of the currently active query; at most one version of
each page must be written to the version pool for this query. As
the query selectivity is increased, the MV2PL and MVQL
update transaction throughputs both approach that of GO pro-
cessing. The reason is that the cost of incrementally writing a
copy of the database to the version pool for each query is amor-
tized over increasingly longer query executions.

This experiment has shown the clear advantages of the
MVQL algorithm over MV2PL in terms of query throughput,
storage cost, and tc a lesser degree, update transaction
throughput. The performance benefits are largest for smaller
sized queries, and they decrease as the query size is increased.

5.2. Experiment 2: Effect of Update Transaction Size
In this experiment, we look at the effect of update transaction

size on the algorithms. Update transaction size affects the
MVQL algorithm the most, as additional each lock request by an
update transaction increases the chance that it will be placed in
the AFTER set of an active query. This may be seen by review-
ing the rules in Section 3.2.1. To study the effect of update tran-
saction size, we vary the number of record select operations by
each update transaction from 1 to 32. Update transactions use
non-clustered indexes to select 1 to 32 records (varied across
simulation runs), updating an average of 25% of the records
selected. Queries, on the other hand, use clustered indexes to
scan 25% of each of the four files. Since we again consider a
single query workload, weak consistency is identical to strong

507

consistency; weak consistency and update consistency are not
identical in this experiment, though, since update transactions
modify only a fraction of the records that they read.

We begin by considering query throughput, shown in Figure
5.5. The first thing that we wish to point out is that there is only
a small difference between the two MVQL curves (update con-
sistency vs. weak and strong consistency); this was found to be
true across the entire range of possible UpdateFrac values. This
indicates that lock inheritance, introduced due to Rule 4 in Sec-
tion 3.2.1, has little impact on the size of query AFTER sets. In
other words, the rate at which a query receives new read-only
locks through inheritance is much lower than the rate at which it
requests them explicitly. For simplicity of explanation, we will
not distinguish between the MVQL curves for the remainder of
this experiment.

Moving to a comparison of MVQL with MV2PL and GO
processing, we notice that the query throughput for both GO
processing and MV2PL rises as the update transaction size is
increased. This rise is caused by a decrease in the system
resource demands by update transactions due to increased lock
waiting; recall that the probability of lock conflict is propor-
tional to the square of the transaction size [Gray81, Tay85].
Due to space limitations, we do not show the update transaction
throughput here. On the other hand, MVQL query throughput
drops initially, and then rises. The rise is also caused by reduced
resource competition from the update transactions. The initial
drop (as the update transaction read size is varied from 1 to 16)
is due to an increase in query AFTER set sizes. The AFTER set
size increases because each additional lock request by the update
transactions increases the chance that the transaction will be
placed in the AFTER set of the query. As we explained in the
discussion of the previous experiment, increasing the AFTER
set size reduces the number of current version accesses.
Specifically, for an update transaction size of 1, an average of
only 4% of the update transactions that ran during the lifetime of
a query were placed into its AFTER set (not shown in the graphs
displayed). With an update transaction size of 8, however, this
percentage rose to 40%. and at a size of 32, it rose to over 80%.
This caused the percentage of accesses to current versions to
drop from nearly 100% to 90% for MVQL. Note that for
MV2PL, this percentage stayed relatively constant at around
85%. As for query size in the previous experimenr increasing
the update transaction size causes the query throughput of
MVQL to become closer to that of MV2PL.

We now turn our attention to storage cost. Figure 5.6 shows
the average storage cost observed for both MV2PL and MVQL
during each simulation run. The difference between update con-
sistency and weak (or strong) consistency for MVQL is again
rather smalI so we do not distinguish between them. In the
graph, we see that the storage cost of MV2PL drops from about
30% to 17% of the database size. This corresponds to the drop
in update transaction throughput that is caused by increased lock
contention as the update transaction size is increased. In con-
trasc we see in Figure 5.6 that MVQL’s storage cost starts out
extremely low, rising until an average update transaction size of
approximately 20 is reached, and then it decreases again. The
initial rise is caused by the increase in the average query AFTER
set size; the storage cost starts out low because of the small
query AFTER set size with small update transactions. Recall
that the connection between the AFTER set size and storage cost
is that prior page versions need to be retained only for updates
made by transactions in an active query’s AFTER set. The
AFTER set size also influences storage cost indirectly by
influencing the query response time; as discussed in the previous

experiment., increasing the AFTER set size degrades the sequen-
tiality of query access, and thus increases query response tune
(and consequently storage cost). The drop in MVQL storage
cost as the average update transaction size increases past 20 is
due to the lock contention discussed already.

Due to space limitations, we do not show the update transac-
tion throughput for this experiment, but we summarize the
results here. MVQL achieved an update transaction throughput
that ranged between 98% and 92% of that achieved by GO Pro-
cessing (as the update transaction size was increased along the
range from 1 to 32). In the range of update transaction sizes
from 1 to 8, MV2PL had a slightly lower update transaction
throughput than MVQL; the largest difference amounted to
approximately 8% of MVQL’s update transaction throughput at
asizeof 1.

In the first experiment we saw that the performance of
MVQL in terms of query throughput, storage cost, and update
transaction throughput is close to that of GO processing when
queries are small, and it approaches MV2PL as queries become
larger. In this experiment we have seen a similar result occur
when update transaction size is increased instead. The connec-
tion between these results lies in the AFTER set sizes of queries.
Increasing either the query size or the update transaction size
decreases the opportunities for serializing update transactions
before concurrently executing queries. In addition, we have
seen that the additional I/O and storage costs for providing weak
consistency over update consistency are quite small.

5.3. Experiment 3: Effect of Query MPL
In this experiment, we vary the query multiprogramming

level from 1 to 5 queries in order to study its impact on the rela-
tive performance of the weak and suong consistency variations
of MVQL. Update transactions use non-clustered indexes to
select and then update 2 records, while queries use the clustered
indexes to scan an average of 40% of each of the four files.
Since we again consider a workload where update transactions
write each record that they read, update consistency is identical
to weak consistency here. In order to stagger the start and com-
mit times of queries from different terminals, we vary the actual
selectivity across queries uniformly between 2/3 and 4/3 of the
average selectivity.

In Figure 5.7, we see that the query throughput for all algo-
rithms rises as the number of query terminals is increased, while
in Figure 5.8, there is a corresponding decline in update transac-
tion throughput. The rise in query throughput is linear in the
number of query terminals, and not in their fraction of the
overall number of terminals. This result is due to the system
shifting its effort from update transaction processing to query
processing, which increases the fraction of clean pages in the
buffer pool and reduces the buffer cleaning work that must be
done by queries.

In Figure 5.7, we also see that the query throughput of strong
MVQL diverges from that of weak (and update) MVQL as the
number of query terminals is increased. The separation is
caused by the additional rule for strong consistency (Rule 5 of
Section 3.2.1) that causes a query’s AFTER set to subsume the
AFTER sets of all younger queries. The separation is not as
large under this workload as one might expect, however. The
reason is that the AFTER sets of older queries are already likely
to subsume those of younger queries due to the enforcement of
Rules 1 through 4; relatively few AFTER set insertions will
occur as a result of Rule 5 alone, especially at low MPLs. This

508

0.03- +GO
*MVQL (UPDATE &WEAK)
SC MVQL (STROKG)
-+MWPL (STRICT)

2.0- aGO
*MVQL (UPDATE 81 WEAK)
xMVQL (STRONG)
+MV2PL (STRICT)

2
t

0.02-

&
s

r/; 5
ki

E k
re

c
‘i:

mMVQL (UPDATE & WEAK) D

8
*MVQL (STRONG) E
+MWPL (STRICT) ?

-2

Query MPL Query MPL Query MPL

Figure 5.7: Query Throughput Figure 5.8: Update Transaction Throughput Figure 5.9: Average Storage Cost
ASP-&-&,, = 12, SelectivityQ,,, = 40%, Update Transaction Size = 2)

reasoning also explains why the storage cost of strong MVQL,
shown in Figure 5.9, diverges only very slightly from that of
weak (and update) MVQL as the number of query terminals is
increased.

In this experiment, we have seen that the cost of providing
strong consistency is not considerably higher than that of pro-
viding weak consistency. As we argued, enforcing Rule 5 is not
as detrimental to performance as one might initially expect.

5.4. Discussion
In this section, we have presented the results of a preliminary

performance analysis of the MVQL algorithm. We investigated
a workload combining small transactions, each performing
record-select/update operations, with large queries executing
clustered index scans. We did not consider queries with random
lile accesses (i.e., through an unclustered index) since we were
interested in higher selectivity scans. To avoid re-reading pages,
medium and large selectivity scans on an unclustered index attri-
bute can be executed by first obtaining a list of the IDS of match-
ing records from the index, sorting the list according to disk
address, and then sequentially scanning the data using the
record-ID list [MohBO]. Our results indicate that MVQL
should also provide a lower cost alternative to MV2PL for this
sort of workloads. Finally, the benefits of MVQL should be
even more significant when versions are located by reverse
chaining rather than through a memory-resident directory (as we
assumed in this study).

In order to make simulations with large queries feasible, we
used a relatively small database in our experiments; however the
update intensity to individual pages was quite high. We feel that
the results should scale to a larger database with a proportionally
lower update intensity, as the number of updates that fall in the
path of a query will remain the same.

6. CONCLUSIONS
In this paper, we have presented a new multiversion locking

algorithm that has a lower versioning cost than the MV2PL
algorithm that several commercial systems use. Our new algo-
rithm, MVQL, reduces the cost of versioning by providing
weaker forms of consistency for queries than that provided by

MV2PL. To introduce the new algorithm, we reviewed four
forms of consistency which all guarantee that queries see
transaction-consistent data: update consistency (the least resuic-
tive form), weak consistency, strong consistency, and strict con-
sistency (the most restrictive form). We showed that the
increasingly restrictive consistency forms require that queries
read older versions of data, and we argued that this will increase
the cost of executing queries. We then we presented the MVQL
algorithm as a generalization of MV2PL. MV2PL provides only
strict consistency, while MVQL can provide either update,
weak, strong, or strict consistency; in the case of the latter, it is
equivalent to MV2PL.

We also conducted a detailed simulation study of the algo-
rithms, and we analyzed the results of this preliminary study.
The results show that MVQL can provide performance that is
close to that of GO processing at small to medium query selec-
tivities or update transaction sizes; it provides performance
closer to that of MV2PL as the query selectivity and update tran-
saction size are increased. In the future, we plan to extend our
preliminary analysis of MVQL to a more comprehensive set of
workloads and version management schemes. In particular, we
did not look at workloads with skewed access patterns, nor did
we consider a reverse-chaining version management scheme,
though we fully expect MVQL to perform at least as well under
such conditions.

ACKNOWLEDGEMENTS
The authors would like to thank one of the anonymous

VLDB-92 referees whose expert and careful review of the paper
revealed two errors in the original MVQL algorithm and presen-
tation. We would also like to thank V. Srinivasan making help-
ful comments on a draft of this paper.

REFERENCES

[Bern831 Bernstein, P. and N. Goodman, “Multiversion Con-
currency Control: Theory and Algorithms,” ACM
Trans. on Database Sys., 8(4), December 1983.

[Bern871 Bernstein, P., V. Hadzilacos, and N. Goodman, Con-
currency Cotirol and Recovery in Database

@obe92a]

Bobe92b]

[Chan82]

[Chan85]

[DeWi90]

[DeWi92]

[DuBo82]

[Eswa76]

[Fuji901

[Garc82]

[Gray761

[Gray811

[Hadz85]

[Livn89]

[MohBO]

[Moha92]

Systems, Addison-Wesley Publishing Co., 1987.

Bober, P. and M. Carey, “On Mixing Queries and
Transactions via Multiversion Locking,” Proc. of the
1992 IEEE Data Engineering Conf.., 1992.

Bober, P. and M. Casey, Multiversion Query Lock-
ing, Comp. Sci. TR 1085a, Univ. of Wisconsin -
Madiion, June 1992.

Ghan, A., S. Fox, W. Lii, A. Nori, and Ries, D.,
‘The Implementation of an Integrated Concurrency
Control and Recovery Scheme,” Proc. 1982 ACM
SIGMOD Conf. 1982.

Ghan, A., and R. Gray, “Implementing Distributed
Read-Only Transactions,” IEEE Trans. on Software
Eng., SE-11(2), Feb 1985.

Dewitt, D., et al., ‘The Gamma Database Machine
Project,” IEEE Trans. on Knowledge and Data Eng.,
2(l), March 1990.

Dewitt D., and J. Gray, “Parallel Database Systems:
The Future of High Performance Database Process-
ing,” Communications of the ACM, 35(6), June
1992.

DuBourdieu. D., “Implementation of Distributed
Transactions,” Proc. 6th Berkeley Workshop on Dis-
tributed Data Management and Computer Networks,
1982.

Eswaran, K., J. Gray, R. Lorie, I. Traiger, ‘The
Notions of Consistency and Predicate Locks in a
Database System,” CACM 19(1 l), 1976.

M2266SIH Intelligent Disk Drive Technical Hand-
book, publication FS810125-01 rev. B, Fujitsu
America, Inc., Aug. 1990.

Garcia-Molina, H. and G. Wiederhold, “Read-Only
Transactions in a Distributed Database,” ACM Tran-
sactions on Database Systems, 7(2), June 1982.

Gray, J., R. Lorie, F. Putzolu, and I. Traiger,
“Granularity of Locks and Degrees of Consistency
in a Shared Data Base,” in Modeling in Data Base
Systems, North Holland Publishing (1976).

Gray, J., P. Homan, H. Korth, and Obermarck, R., A
Strawman Analysis of the Probability of Waiting and
Deadlock in a Database System Research Report
RJ3066, IBM San Jose, Feb. 1981.

Hadzilacos, T. and C. Papadimitriou, “Algorithmic
Aspects of Multiversion Concurrency Control,”
Proceedings of the Fourth ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems,,
1985

Livny, M., DeNet User’s Guide, Version 1.5, Com-
puter Sciences Dept., Univ. of Wisconsin-Madison,
1989.

Mohan, C., et al. “Single Table Access Using Multi-
ple Indexes: Optimization, Execution, and Con-
currency Control Techniques,” Proc. InternatioMl
Conference on Extending Database Technology,
1990.

Mohan, C., H. Pirahesh, and R. Lorie, “Efficient and
Flexible Methods for Transient Versioning of
Records to Avoid Locking by Read-Only Transac-
tions,” Proc. 1992 ACM SIGMOD Conf, 1992.

[Papa841

[Papa861

[PirBO]

U&$911

[S.w761

TTayW

[Teor72]

[WuW

Papadimitriou, C. and P. Kanellakis, “On Con-
currency Control by Multiple Versions,” ACM
Trans. on Database Systems, 9(l), March 1984.

Papadimitriou, C. The Theory of Database Con-
currency Control, Computer Science Press, Rock-
ville Maryland, 1986.

Pirahesh, H., et al, “Parallelism in Relational Data-
base Systems: Architectural Issues and Design
Approaches,” IEEE 2nd International Symposium on
Databases in Parallel and Distributed Systems,
Dublin Ireland, July 1990.

Raghavan, A., and Rengarajan, T.K., “Database
Availability for Transaction Processing,” Digital
Technical Journal 3(l), Winter 1991.

Sargent, R., “Statistical Analysis of Simulation Cut-
put Data,” Proc. 4th Annual Symposium on the
Simulation of Computer Systems, 1976.

Tay, Y., N. Goodman, and R. Suri, “Locking Perfor-
mance in Centralized Databases,” ACM Trans. on
Database Sys., 10(4), December 1985.

Teorey, T., and T. Pinkerton, “A Comparative
Analysis of Disk Scheduling Policies,” Comm. of the
ACM, (15)3, March 1972.

Wu, K.-L., P.S. Yu, and Pu, C., “Divergence Control
for Epsilon Serializability,” Proc. of the 1992 IEEE
Data Engineering Conf., 1992.

510

