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ABSTRACT 
Multiversion two-phase locking (MV2PL) has been incorporated 
in some commercial transaction processing systems to support 
the serializable execution of queries. A drawback to this algo- 
rithm is the potentially high cost that it adds to maintain and 
access prior versions of data In this paper, we present a new 
multiversion locking algorithm, multiversion query locking 
(MVQL), that reduces the cost of versioning by accepting 
weaker forms of consistency for queries than MV2PL. 
Nevertheless, queries are guaranteed to see transaction- 
consistent data. We present results from a detailed performance 
study that show that, under a wide range of conditions, MVQL 
provides higher throughput to queries and update transactions 
with a lower storage cost than MV2PL. In the worst case, the 
performance of MVQL approaches that of MV2PL. 

1. INTRODUCTION 
Due to the adoption of relational database technology and the 

increasing ability of database systems to efficiently execute ad- 
hoc queries, query processing is becoming an increasingly 
impatant function of transaction processing systems. Con- 
currency control techniques for on-line query processing, how- 
ever, are still lacking. The concurrency control algorithm found 
in most commercial database systems, two-phase locking (2PL) 
[Eswa76], does not efficiently support on-line query processing. 
This is because 2PL causes queries to lock large regions of data 
for long periods of time, thus causing update transactions to 
suffer long delays. 

A solution that avoids the data contention problem of 2PL is 
to extend it with versioning. Under multiversion two-phase 
locking (MV2PL) [DuBo82, Chan82, Chan85], prior versions of 
data are retained to allow queries to run against past 
transaction-consistent database states. The presence of versions 
allows queries to serialize before all concurrent update transac- 
tions, and thus queries and update transactions do not conflict. 
Commercial systems that employ MV2PL as an option include 
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Prime’s DBMS [DuBo82], DEC’s Rdb/VMS product [Ragh91], 
and Interbase. A drawback to MV2PL is the storage cost that it 
imposes, as well as the additional costs for accessing prior ver- 
sions and for copying objects before they are updated (if in- 
place updates are employed). 

Towards the goal of making versioning more affordable, this 
paper introduces a new multiversion two-phase locking algo- 
rithm, multiversion query locking (MVQL), that supports 
weaker forms of consistency for queries than that provided by 
MV2PL. We review these forms of consistency in Section 2, but 
we wish to emphasize here that they still guarantee that queries 
see transaction-consistent data. This is in contrast to approaches 
that avoid versioning altogether, instead allowing queries to see 
transaction-inconsistent data. For example, under cursor- 
stability locking, queries may release locks before acquiring new 
ones (violating the two-phase rule), and under GO processing 
[Pira90], queries do not obtain any locks at all (except latches to 
guarantee page consistency). In the terminology of [Gray79], 
the former provides degree 2 consistency, and the latter, degree 
1. Another example is the class of epsilon-serializability algo- 
rithms, which accept inconsistent schedules as long as they are 
within some number of inversions from a serializable schedule 
[wu92]. 

Because MVQL provides weaker consistency than MV2PL, 
it can allow queries to read more recent versions of objects. Per- 
formance savings are gained because it is typically less efficient 
for queries to read older versions of objects rather than younger 
(or current) ones. Depending on the particular storage organiza- 
tion employed, this may be true for any of the following reasons: 

(1) If the current versions of objects are clustered together, 
accessing an older version of an object will degrade 
sequential scan performance that would otherwise be 
available using prefetch. 

(2) If the versions of an object are chained in reverse chro- 
nological order (as in [Chan82]), accessing an older ver- 
sion will require additional I/O operations. 

(3) Using older versions to consmrct a query’s view will 
require that additional prior versions be retained for the 
query (thus delaying their garbage collection and 
increasing storage cost). 

The remainder of this paper is organized as follows: Section 
2 reviews the various forms of consistency that are provided by 
MV2PL and MVQL. Section 3 describes the existing MV2PL 
algorithm and then presents the new MVQL algorithm as a gen- 
eralization of MV2PL. Section 4 describes the simulation model 
used to study the performance of MVQL. Section 5 presents the 
results of experiments that compare MVQL to MV2PL in terms 
of update transaction performance, query performance, and 
storage cost. Lastly, Section 6 presents our conclusions. 
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each query sees a transaction-consistent database (i.e., single query cycles are prohibited if they cannot be bro- 
it serializes with all update transactions that it sees) ken by removing a single read-write edge between update 

transactions; update transaction cycles are prohibited 

Table 2.1: Forms of Consistency 

2. FORMS OF QUERY CONSISTENCY 
In the introduction, we argued that performance advantages 

may be gamed by relaxing the level of consistency provided to 
queries. In this section, we review four forms of consistency 
which all guarantee that queries see a transaction-consistent 
database: strict consistency, strong consistency [Garc82], weak 
consistency [Garc82], and update consistency. In the next sec- 
tion, we review the MV2PL algorithm, which provides only 
strict consistency, and we then present the MVQL algorithm as a 
generalization of MV2PL that can provide any of these levels of 
consistency. 

An underlying requirement that we impose is that the execu- 
tion of update transactions alone must be serializable; this is 
guaranteed in MV2PL and MVQL by having update transactions 
run using dynamic 2PL. This prohibits serialization graph 
cycles that contain only update transactions (update transaction 
cycles).’ Throughout the paper we assume that update transac- 
tions read all objects before writing them. We now give 
definitions for the various forms of consistency of interest here, 
proceeding in decreasing order of strictness. Table 2.1 summar- 
izes the consistency forms that are being defined. 

A query is said to see strict consistency if it is serializable 
with respect to all transactions, and it observes a serial order of 
update transactions which agrees with the order in which they 
committed. This form of consistency is characterized by an acy- 
clic serialization graph where the order of update transactions is 
consistent with their commit order. Having the update transac- 
tions observe 2PL guarantees that, in the subgraph consisting of 
only the actions of update transactions (and not those of 
queries), the partial order of update transactions will agree with 
their commit order. The addition of query read actions further 
constrains the partial order so that it may no longer agree with 
the commit order; strict consistency algorithms prevent such a 
disagreement by assigning appropriate versions to query read 
steps. 

‘A serialization graph consists of nodes, which represent transac- 
tions, and edges, which represent constraints on equivalent serial order- 
ings. A path fli,..., Tj) in the graph means that transaction T; must 
come before transaction Tj in any equivalent serial order. A directed 
edge of the form (T,, T,) is placed in the graph if either T, attempts to 
read or replace a version written by T1, Tz attempts to create a version 
of an object that will replace one read by T t , or T t reads a version that 
was already replaced by Tz. 

The schedule and corresponding serialization graph in Figure 
2.1 provide an example of strict consistency. The schedule 
shows the operations of four update transactions and three 
queries, with time progressing from left to right. We assume 
that the last operation of each transaction in the schedule also 
marks its commit point. To identify each operation in the 
schedule, we label it with a lower case letter; these letters are 
then used to label each edge in the serialization graph with the 
operations that generated the edge. For example, the edge 
between Q 1 and Ur was generated because Q r read X, (step b) 
and U, wroteXr (step g). Jn the serialization graph, we observe 
that the partial order of update transactions induced by the seri- 
alization graph is indeed consistent with their actual commit 
order (e.g., CT, < U, and U, < U,). The cost of providing strict 
consistency is the cost of accessing the prior versions of the data 
items W, X, Y, and Z (instead of the current versions) and the 
cost of retaining these versions until all of the queries complete. 

We illustrate the remaining forms of consistency by incre- 
mentally modifying the example in Figure 2.1 by substituting 
current versions for prior ones in one or more query read opera- 
tions. This will have the effect of reversing the direction of cer- 
tain edges in the serialization graph. To highlight these changes, 
we place an asterisk next to each such reversed edge. As the 
constraints on consistency are relaxed, we will see that queries 
are allowed to access more recent data. 

The next form of consistency relaxes strict consistency by 
eliminating the requirement that the serial order of update tran- 
sactions be consistent with their commit order. A query is said 
to see strong consistency [Garc82] if it is serializable with 
respect to all transactions.2 This form of consistency is charac- 
terized by an acyclic serialization graph, and is provided by 
algorithms that guarantee multiversion serializability [Bem83, 
Papa84, Hadz85]. Since the previous restriction on the commit 
ordering of update transactions is relaxed here, strong con- 
sistency may produce apparent anomalies in query results if 
users are somehow cognizant of the commit order of update 
transactions. The schedule and corresponding serialization 
graph in Figure 2.2 provide an example of strong consistency. 
The schedule differs from the one in the strict consistency 

‘This definition of strong consistency is slightly different than the 
one presented in [Garc82]. In their definition, a strong consistency query 
is required to serialize only with the update transactions and other strong 
consistency queries. 
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Figure 2.1: A Schedule and Serialization Graph Illustrating Strict Consistency for Queries 
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Figure 2.2: A Schedule and Serialization Graph Illustrating Strong Consistency for Queries 

example in that Q, reads Zt instead of Zo. This reduces the 
cost of executing Q,, and it potentially allows Za to be 
garbage-collected before Qr completes (i.e., because Q, will 
never need it). As a result of this change, Q, serializes after V3, 
but before iI1 and V2; this is despite the fact that VI and V2 
actually committed before V,. Q r is allowed to see this order 
since neither VI nor V2 execute any conflicting operations with 
U,, and no other query has seen an order that is contradictory. 

The next form of consistency relaxes strong consistency by 
allowing each query to serialize individually with the set of 
update transactions. A query is said to see weak consistency if it 
is serializable with respect to update transactions, but possibly 
not with respect to other queries. This form of consistency, 
which was dust introduced in [Garc82] for use in replicated data- 
bases, still ensures that queries see transaction-consistent data. 
However, it permits cycles in the serialization graph that contain 
multiple queries plus one or more update transactions (multipfe- 

query cycles). Cycles involving a single query and one or more 
update transactions (single-query cycles), and cycles involving 
only update transactions (update truwzcfion cycles), are both 
still prohibited. The queries in a multiple-query cycle see mutu- 
ally inconsistent orderings of the update transactions in the cycle 
(i.e., one query will perceive a different serial ordering of update 
transactions than another query); the relative order of two update 
transactions may be transposed if they have not issued any 
conflicting operations. The schedule and corresponding seriali- 
zation graph in Figure 2.3 illustrate this form of consistency. 
The schedule differs from that of Figure 2.2 in that Q, reads Yr 
rather than Yo, thus reducing Q2’s cost and potentially allowing 
Y. to be garbage-collected earlier than it would have been under 
stTong consistency. This execution introduces a multiple-query 
cycle involving Q,, Q,, VI, V2, and V3. This cycle indicates 
that Qr has seen the serial ordering (Us, Qr, V,, V,), while Q, 
has seen the ordering (VI, V,, Q2, V,). Thus, V, and V, (as 
well as V, and V,) are ordered differently in the two queries’ 
observed schedules. 
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Figure 2.3: A Schedule and Serialization Graph Illustrating Weak Consistency for Queries 
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Figure 2.4: A Schedule and Serialization Graph Illustrating Update Consistency for Queries 

The last form of consistency considered here relaxes weak 
consistency by also allowing certain single-query cycles. The 
effect of this relaxation will be described shortly. A query is 
said to see update comistency if it serializes with the set of 
update transactions that produced values that are seen (either 
directiy or indirectly) by the query. Even though an update con- 
sistency query may not serialize with the complete set of update 
transactions, it is guaranteed to see a transaction-consistent data- 
base state. Recall that a transaction-consistent database is 
assumed to satisfy a set of static integrity constraints, and each . 
update transactron 1s assumed to take the database from one 
transaction-consistent state to another (possibly through one or 
more inconsistent intermediate states) [Gray76]. In order to 
observe a transaction-consistent database, a query must not see 
the partial effects of any update transactions; for each update 
transaction, it must see either all of its effects or none of its 
effects. 

Update consistency permits multiple-query cycles in the seri- 
alization graph, as well as permitting single-query cycles if they 
can be broken by removing a read-write edge between two 
update transactions. An edge (T,, Ta) is a read-write edge if it 
was formed due to a read operation by T, followed by a 
conflicting write operation by Ta. Of course, it is important to 
remember that, as for all forms of consistency here, the full seri- 
alization graph is not permitted to contain update transaction 
cycles. In [Bobe92b], we prove that a query has seen update 
consistency if i) the serialization graph contains no update tran- 
saction cycles, and ii) each single-query cycle involving the 
query can be broken by removing a read-write edge between 
update transactions. 

The schedule and corresponding serialization graph in Figure 
2.4 illustrate update consistency. A single-query cycle is intro- 
duced between U,, U4, and Qj because Q3 now reads W, 
rather than Wo. This cycle is allowed under update consistency 
(but not under higher forms of consistency) because it does not 
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persist when the read-write edge from U3 to U4 is removed. In 
the execution, Q3 sees all of the effects of U,, but none of the 
effects of U3. The query nevertheless sees a transaction- 
consistent database since the output of U3 has no bearing on the 
the execution of (I,. 

While update consistency guarantees that queries see a 
mansaction-consistent database state, it allows them to see a state 
that might not be logically consistent with the current state of 
the database. For example, in Figure 2.4, Q3 sees a state of the 
database that would have existed if U, had never executed (or if 
it had aborted). Because of the read-write conflict between U3 
and U4, it is not possible to assume that U3 was executed logi- 
cally after U,; U3 might have an entirely different effect if it 
were executed after U,. For example, suppose that U, is a ran- 
saction that adds a passenger (Mr. Smith) to a flight manifest 
(Z), and U4 is a transaction that registers the fight’s departure in 
the relevant flight record (W). Furthermore, assume that a tran- 
saction will not add a passenger to a flight manifest if the flight 
has been registered as departed (checking this requirement is the 
source of the read-write conflict). In this scenario, it will appear 
to query Q3 that the flight has departed and that there is no Mr. 
Smith registered as a passenger (which is indeed a potential 
transaction-consistent database state). Also, the fact that the 
flight has departed would seem to imply that Mr. Smith could 
not later be added to the passenger list; however, later queries 
will reveal that Mr. Smith was indeed a passenger on the flight. 
Despite the presence of this type of anomaly, update consistency 
may be useful in situations where degree 1 or 2 consistency is 
insufficient (e.g., checking integrity constraints). 

To the best of our knowledge, almost all previously proposed 
multiversion concurrency control algorithms provide only strict 
consistency for queries. The only exception that we are aware 
of is distributed MV2PL. where weak consistency arises among 
queries at different sites due to inconsistent global state informa- 
tion [Chan85]. In contrast, MVQL deliberately introduces 
weaker forms of consistency among queries by allowing them to 
read newer versions of data for performance reasons. In the next 
section, we describe the MVQL algorithm and show how it can 

be used to provide queries with either update, weak, strong, or 
strict consistency (as desired by a given application). 

3. MULTIVERSION ALGORITHMS 
In this section, we describe the MV2PL algorithm which is 

currently used in several commercial DBMSs. We then present 
our new algorithm, MVQL, as a generalization of MV2PL. 
Both MV2PL and MVQL use two-phase locking for serializing 
update transactions. MV2PL provides only strict consistency 
for queries, while MVQL relaxes this by permitting a choice 
between update, weak, strong, and strict consistency. In the last 
case, MVQL is equivalent to MV2PL. 

3.1. Multiversion Two-Phase Locking (MV2PL) 
In MV2PL [D&082, Chan82], a transaction is classified at 

startup time as being either a query transaction (read-only) or an 
update transaction. When an update transaction reads or writes 
an object (e.g., a page or a tuple), it locks the object, as in tradi- 
tional 2PL, and then accesses the most recent version. Update 
transactions must block when conflicts occur. When an object is 
written, a new version is created and stamped with the identifier 
of its creator. When an update transaction completes, it is 
assigned a commit timestamp from the incremented value of a 
commit timestamp counter. 

When a query begins, it is assigned a startup timestamp that 
is equal to the current value of the commit timestamp counter. 
When the query wishes to read an object, it simply reads the 
most recent version of the object written by a transaction that 
was assigned a commit timestamp less than or equal to the 
query’s startup timestamp3. A table is maintained to map tran- 
saction identifiers (which are stamped on object versions) to 
commit timestamps. Thus, the query will be serialized after all 
uansactions that committed prior to its startup, but before all 
transactions that are active during any portion of its lifetime-as 
though it ran instantaneously as of its starting time. As a result, 
queries never have to set or wait for locks in MV2PL. MV2PL 
provides strict consistency because all queries see a serialization 
order of update transactions that is consistent with their commit 
(timestamp) order. 

3.2. Multiversion Query Locking (MVQL) 
The startup timestamp assigned to a query in MV2PL is used 

to define the transaction-consistent state that it sees. More 
specifically, it serves to concisely divide the set of update tran- 
sactions into two subsets, the set of update transactions which 
come before the query in the serial order, and the set of update 
tIans.actions which come after the query; we will refer to these 
sets of update transactions as the query’s BEFORE set and 
AFTER set, respectively. The query sees the correct state by 
always reading the most recent version of an object written by a 
transaction that belongs in its BEFORE set (i.e., by one whose 
commit timestamp is less than or equal to the query’s startup 
timestamp). 

Under weaker forms of consistency, each query defmes its 
own interpretation of the serial order. As a result, a single- 
valued timestamp is insufficient to represent the AFTER and 
BEFORE sets of a query in MVQL. Rather, one of the two sets 
must be represented explicitly. (It is not necessary to represent 
both explicitly since they are complements of each other.) We 
will discuss the details of set representation shortly. 

As discussed in the introduction, the goal of adopting weaker 
forms of consistency is to allow queries to read more recent 
data, thus reducing the cost of versioning. MVQL will therefore 
place an update transaction in a query’s AFTER set only when 
necessary to prevent a violation of the desired form of con- 
sistency. A query always begins with an empty ARER set. For 
purposes of explanation, we present the rules for placing update 
transactions in the AFTER sets of queries for each form of ccn- 
sistency in the order: strict, update, weak, and strong. Recall 
that Table 2.1 summarizes these forms of consistency. In the 
next subsection we describe how these rules may be efficiently 
implemented. 

3.2.1. Varying Consistency Levels 
For strict consistency, which is the most restrictive form, all 

update transactions running during any portion of a query’s life- 
time are placed into the query’s AFTER set. This makes the 
algorithm identical to MV2PL. 

%e garbage collection mechanism must guarantee that this version 
is available to the query. Thus, a prior version can only be garbage- 
collected if there are no active queries running with a startup timestamp 
greater than rhe commit timestamp of the version’s creator and less than 
the commit timestamp of the transaction which overwrote this version. 
In Section 3.2.4, we discuss two algorithms for garbage collection. 
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For update consistency, which is the least restrictive form, an 
update transaction U is placed into the AFTER set of a query Q 
under any of the following conditions (which comprise Rules 1 
through 3): 

(1) U attempts to write lock an object that has been already 
read by Q. 

(2) Q attempts to read an object that is currently write 
locked by Il.4 

(3) U reads an object version (always the current one) that 
was written by another update transaction U’, and U’ is 
currently a member of Q’s AFTER set. 

Recall that update consistency guarantees that queries do not see 
the intermediate effects of an update transaction; the query sees 
either all or none of its effects. Rules 1 and 2 guarantee that a 
query will not see the partial effects of an update transaction 
directly, and Rule 3 guarantees that it will not see them 
indirectly. It should be noted that Rule 3 is sufficient to recog- 
nize indirect partial effects passed through any number of update 
transactions. This is true for two reasons. First, the algorithm 
always recognizes that an update transaction should come after a 
query in the serial order while the update transaction is still 
uncommitted; thus, if a committed update transaction is at some 
pint not in a query’s AFTER set, it never will be. Second, an 
update transaction reads only committed data. Thus, when an 
update transaction reads a version, it lmows immediately for 
each active query whether the version’s creator came before or 
after the query. 

For weak consistency, which is the next more restrictive 
form, the following rule is added to the update consistency rules 
(Rules 1 through 3): 

(4) An update transaction U is placed into the AFTER set of 
a query Q if U overwrites an object version (always the 
current one) that was read by another update transaction 
U’, and U’ is currently a member of Q’s AFI’ER set. 

This rule is necessary to recognize read-write dependencies 
between update transactions, and along with the first three rules 
it prevents single query cycles in the serialization graph. The 
additional consistency comes at the expense of making query 
AFTER sets larger (thus requiring that queries read older data). 

For strong consistency, which is even more restrictive, the 
following rule is added to the weak consistency rules (Rules 1 
through 4): 

(5) A query is considered to have read an object (for the pur- 
poses of Rules 1 and 2) if either it has read the object 
explicitly, or if some younger query has read the object 
explicitly. 

In other words, a read by one query is treated as though it were 
made by all older queries as well; in the next subsection, we 
describe how this may be done efficiently. With the addition of 
this rule, multiple query cycles are eliminated since the AFTER 
set of an older query will always subsume the AFTER sets of all 
younger queries. This prevents a path in the serialization graph 
from a younger query to an older query; any multiple query 
cycle would have to contain such a path. The avoidance of 

4Altematively, it is possible instead to block Q behind U. This may 
make the implementation easier, and will probably not have a significant 
performance impact if update transactions are short On the other hand, 
doing so could cause significant delays for queries if update transactions 
are long. 

multiple query cycles means that all queries will see a consistent 
serial ordering of update transactions; however, this additional 
consistency comes at the expense of making query AFTER sets 
still larger (thus requiring that queries read even older data). 

3.2.2. Implementing the AFTER Set Insertion Rules 
Determining when an update transaction should be inserted 

into the AFTER set of a query under strict consistency is 
straightforward: When a query enters the system, all currently 
executing update transactions are placed into its AFTER set. All 
subsequently arriving update transactions are also placed into 
this set. Determinin g when the rules apply under the other 
forms of consistency is less straightforward, however. In order 
to determine when Rule 1 applies, we need a mechanism for 
determining whether or not an active query has read an object 
that an update transaction now wishes to write lock. This can be 
handled by adding a new, non-conflicting lock mode to the 2PL 
lock manager called a read-only lock. A query must obtain a 
read-only lock on each object that it reads; note that it obtains 
locks on objects, not on object versions. As with traditional 
locks, a query releases all of its read-only locks when it finishes. 
When granting a write lock on an object to an update transac- 
tion, the lock manager will respond with a list of the object’s 
current read-only lock holders. The applicability of Rule 2 can 
be easily detected when a query obtains a read-only lock; the 
lock manager will respond to a read-only lock request by retum- 
ing the identifier of the current write lock holder (if there is one). 
Furthermore, the applicability of Rule 3 may be easily checked 
by an update transaction since each version is stamped with the 
identifier of its creator. Specifically, when an update transac- 
tion reads an object, it can check to see if the creator of the 
current version is a member of the AFTER set of any active 
queries. 

Rule 4, added for weak consistency, may be enforced by 
requiring that each query inherit the read locks of all committing 
update transactions in its AFTER set (converting them to read- 
only locks in the process). This lock inheritance will cause a 
subsequent update transaction to be inserted into me query’s 
AFTER set if it later issues a write operation that conflicts with a 
read operation by an update transaction already in the set. Rule 
5, the rule added for strong consistency, may be enforced when 
a query requests a read-only lock on an object by automatically 
acquiring the lock for all older active queries as well. 

3.2.3. Implementation of AFTER Sets 
AFlYER sets must be stored in a space-efficient manner, as in 

the worst case there may be an entry in a query’s AFTER set for 
each update transaction that runs during its lifetime. In addition, 
the implementation of AFTER sets must support efficient 
access, as insertions and lookups occur quite frequently. For 
example, when an update transaction reads an object, as just 
described, the update transaction must check to see if me current 
version’s creator is a member of the AFIER set of any currently 
executing query. 

The scheme that we propose for representing each query’s 
AFTER set is a bitmap indexed by the sequence numbers (tran- 
saction identifiers) that are assigned to update transactions when 
they enter the system. Operations on an AFTER set will then 
require only the testing or setting of bits in this bitmap. Since a 
query’s AFTER set contains only update transactions which ran 
sometime during its lifetime, the first entry of a query’s bitmap 
is assigned an index that is equal to the sequence number of the 
oldest update transaction running when the query entered the 
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system. Furthermore, the bitmap may have a fixed size, as it is 
possible to assume that any update transaction whose sequence 
number falls beyond the end of the bitmap is automatically a 
member of the query’s AFTER set. This assumption will not 
affect the correctness of the algorithm, merely its ability to 
exploit lesser forms of consistency. As an extreme, a bitmap of 
size zero, represented only by the sequence number of the last 
update transaction to commit prior to the start of the query, 
would cause the reduced consistency variations of MVQL to 
degenerate to strict consistency (i.e., to MV2PL). 

3.2.4. Garbage Collection 
We discuss two alternative approaches for removing 

unnecessary versions in MVQL (and MV2PL as well). A ver- 
sion is unnecessary if, for every active query, there is a more 
recent committed version of the object that was created by an 
update transaction that is not in the query’s AFTER set. The 
lirst alternative is a sequential garbage collection scheme, as 
proposed in [Chan82], where prior versions are stored in a 
sequential log-like version pool; before an object is updated, it is 
appended to the version pool. In this approach, there are three 
pointers that mark regions in the version pool. Last marks the 
tail of the version pool (i.e., the most recent version), update- 
fvst marks the version that was appended least recently by an 
uncommitted update transaction, and reader-fist marks the head 
of the version pool. When a query enters the system, it records 
the current value of update-fist. When it exits the system, if it 
is the oldest query, it sets reader-first to the position it previ- 
ously marked. The drawback of this approach is that is possible 
for a long-runnin g query to hold up the garbage-collection of a 
potentially large number of prior versions, leading to a high 
storage overhead [Bobe92a]. 

As an alternative to the sequential scheme, a sifting garbage 
collection scheme can be used in conjunction with a heap-based 
organization for storing prior versions. In this approach, when a 
update transaction completes, it assigns each prior version that it 
replaced to the youngest query that requires the version. When 
this query completes, it must sequence through its list of 
assigned versions and reassign them to the next-youngest query 
that requires the version.’ If there is no such query, then the ver- 
sion may be garbage-collected. Compared to the query’s overall 
path length, sequencing through a assigned list of versions is 
relatively inexpensive. 

3.3. Further MVQL Refinements 
In [Bobe92b], we present several refinements to the basic 

MVQL algorithm. First, we describe a distributed version of 
MVQL that can be used in a shared-nothing parallel DBMS. 
The distributed algorithm maintains local AFTER set copies by 
piggybacking insertions on top of the messages exchanged to 
atomically commit distributed update transactions. We also 
present a method of reducing storage cost by allowing queries to 
declare when they will no longer need certain objects. Lastly, 
we discuss a way of providing more control over consistency 
through the use of query consistency groups. 

‘Determining if a query requires a version may Lx done by simply 
checking its AFTER set; this adds only a small amount to the path length 
of update transactions since, as described above, AFTER set operations 
are inexpensive. Furthemrore, maintaining a query’s list of assigned ver- 
sions is also inexpensive since the entries are small and the list may be 
spooled to secondary storage if necessary. 

4. THE SIMULATION MODEL 
In this section, we describe the model that we used to com- 

pare the performance of MV2PL and MVQL. The model cap- 
tures the details of page-level versioning implementations of 
each of these algorithms. In order to explain the model, we will 
break it down into two major components, the application model 
and the system model. Each of these has several subcomponents 
that will be described in this section. The model was imple- 
mented in the DeNet simulation language [Livn89]. 

4.1. The Application Model 
The first component of the application model is the database, 

which is modeled as a collection of files. Each file, in turn, is 
modeled as a collection of records. One clustered and one 
unclustered index exist on each file. We assume that each index 
has IndexFarwu~ keys per index page and (for simplicity) that 
there is a one-to-one relationship between key values and 
records. Each file has F&Size records, and each record occu- 
pies RecSize bytes. The overall database is physically organized 
as a series of <tile, clustered index, unclustered index> triples 
that are laid out on the disk in cylinder order. Prior versions of 
pages are stored in a version pool following all of the primary 
data. We discuss the version pool organization in more detail in 
the next subsection. The parameters for this portion of the 
overall model are summarized in Table 4.1. 

The second component of the application model, the source 
module, is responsible for modeling the external workload of the 
DBMS. Table 4.2 summarizes the key parameters of the work- 
load model. The system is modeled as a closed queueing system 
with the transaction workload originating from a fixed set of ter- 
minals. Each terminal submits only one job at a time and is 
dedicated to either the update transaction class or the read-only 
query transaction class. Query transactions execute relational 
select (range-query) operations, while updare transaction, exe- 
cute select-update operations. In each case, selections can be 
performed via sequential scans, clustered index scans, or non- 
clustered index scans. 

For each transaction type (query or update), an execution 
plan is provided in the form of a set of parameters. The parame- 
ters include an access method and a mean selectivity for each 
tie (AccessMeth,h,,pl, and SeIectivity,,,Vfl,. respectively). The 

Parameter / Meaning 
NumFlfes I Number of files m database 
NumKeysfl, Number of keys per index page for file 
FikSizefl, Number of records in file 
RecSizefl, Size of records in file 

Table 4.1: The Application Model Parameters 

Parameter 1 Meaning 

class Number of temunals (class 1s query 

Access method used by class for file 
Mean selectivity for class for file 
Distribution of actual selectivities 
Fraction of selected tuples to update 

Table 4.2: The Workload Model Parameters 
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actual selectivity for a given run is chosen from a distribution, 
SelectivityDistr,,,. For update transactions, UpdateFracjic 
specifies the fraction of selected records to actually update. It is 
assumed that indexed attributes are not updated by the update 
transactions. This assumption was made so that we could use 
single-version indexes in this study, leaving further exploration 
of indexing for future work. 

We chose this workload model in order to capture situations 
where there are a relatively large number of updates per query 
and where queries do a significant amount of work. This work- 
load model, despite its simplicity, places sufficient demands on 
the version management system to highlight the important per- 
formance issues and tradeoffs. 

4.2. The System Model 
The system model encapsulates the behavior of the various 

DBMS and operating system components that control the logical 
and physical resources of the DBMS. The relevant modules are 
described in the remainder of this subsection. They include the 
operator manager module, the concurrency control module, the 
buffer manager module, the CPU module, and the disk manager 
module. Table 4.3 summarizes the key parameters of the system 
model. 

The operator manager encapsulates the operations necessary 
to execute the transaction types in the workload (i.e., select and 
select with update). As was previously described, the access 
methods supported are sequential, clustered index, and non- 
clustered index scans. The CPU costs of the operators are 
modeled by charging SelectCPU instructions to extract a single 
record from a disk page and CompareCPU instructions to com- 
pare two index keys. In addition, StartupCPU and Termina- 
teCPU instructions are charged to start and terminate an opera- 
tor, respectively. 

The concurrency control manager encapsulates the opera- 
tions of the MVQL and MVZPL algorithms. It consists of two 
subcomponents: the lock manager and the version manager. The 

Parameter 
NumBuffers 
CPURa;e 
NumDisks 
DiskSeekFactor 
DiskLatency 
DiskSettle 
DiskTrader 
DiskPageSize 
DiskTrackYize 
Prefetchhbm 
CacheSize 
SelectCPU 
CompareCPU 
StartupCPU 

TerminateCPU 
CccPU 
Bufr=PU 
IO CPU - 

Meaning 
Number of page frames m the buffer pool 
Instruction ;ate of CPU 
Number of disks 
Factor relating seek time to seek distance 
Maximum rotational delay 
Disk settle time 
Disk transfer rate 
Disk block size 
Disk track size 
Number of pages to prefetch 
Size of disk prefetch cache 
Cost to select a tuple 
Cost to compare index keys 
Cost to start a select or select-update 
operator 
Cost to terminate an operator 
Cost for a lock manager request 
Cost for a buffer ~001 hash table lookup 
Cost to initiate an I/O operation 

Table 43: The System Model Parameters 

CPU costs of concurrency control are modeled by charging 
LockCPU instructions for each lock request. This includes both 
the traditional 2PL read and write locks as well as the read-only 
locks introduced by MVQL. Both locking and versioning are 
both supported at the page level. We chose page-level version- 
ing to simplify the implementation of the simulator and to 
reduce the length of simulation runs. The basic MVZPL and 
MVQL algorithms are compatible with record-level versioning; 
schemes for record-level versioning are discussed in [Bobe92a, 
Moha92]. 

The version manager divides the database into two segments: 
the main segment, containing the current versions of pages, and 
the version pool, containing prior page versions. This organiza- 
tion is similar to the one described in [Chan82], except that we 
arrange the version pool as a heap of disk tracks rather than as a 
circular (log-like) buffer. This change alleviates the problems of 
sequential garbage collection discussed in Section 3.2.4 while 
still providing good write performance (as write operations to 
the version pool are done a track at a time).6 Access to prior ver- 
sions is provided through a memory-resident index that maps a 
current page number and the AFTER set of a query to the loca- 
tion of the appropriate prior version of a page. The memory- 
resident index is another departure from the scheme in 
[Chan82], where prior versions of a page were located by chain- 
ing back from the current version. We chose the directory 
approach in order to present the performance differences of the 
algorithms relatively conservatively. With reverse chaining, the 
MVQL algorithm would appear even more attractive than 
MVZPL, as queries tend to access younger versions under 
MVQL than MVZPL. 

The buffer manager module encapsulates the details of an 
LRU buffer manager. The number of page frames in the buffer 
pool is specified as NumBuffers, and the frames are shared 
among the main segment, version pool, and index pages. Ver- 
sion pool pages that are inserted into the buffer manager by the 
version manager are not assigned physical disk addresses until 
they are written out to disk; this is done to eliminate fragmenta- 
tion problems on tracks due to versions that can be garbage- 
collected while still in the buffer pool. When a dirty version 
pool page reaches the end of the LRU chain, a track’s worth of 
dirty version pool pages are written to a free track on disk. The 
CPU cost of searching for a requested page in the buffer pool 
hash table is modeled by charging BujCPU instructions. If the 
page is not resident, an additional BufCPU instructions is 
charged to insert the page in the table; IO CPU instructions are 

- then charged to initiate an I/O operation. 

The CPU module encapsulates the behavior of an FCFS CPU 
scheduler, granting transactions the use of the CPU until they 
request a new page from the buffer manager. The disk manager 
module is designed to model the behavior of a disk controller 
and driver. The controller schedules disk requests according to 
the elevator algorithm [Teor72]. The total service time is com- 
puted as the sum of the seek time, latency, settle time, and 
transfer time. The seek time of a disk request is computed by 
multiplying the parameter DiskSeekFactor by the square root of 
the number of tracks to seek [Bitt88]. The actual rotational 
latency is chosen uniformly over the range from 0 to 

% should be noted that the decision to use a heap-based version pool 
rather than a circular buffer is orthogonal to the basic MVQL and 
MV2PL algorithms; we could have chosen to use the circular buffer or- 
ganization instead. 
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DiskLatency. Settle time is a constant and is given by the 
parameter DiskSettle. The last component of the disk service 
time, transfer time, is computed from the given transfer rate, 
DiskTransfer. We assume that the disk controller has a prefetch 
option that may be selected on a per-request basis to optimize 
sequential access performance. In addition to reading the 
requested page, the prefetch mechanism will load the next Pre- 
fetchhhm pages into a FIFO cache contained within the disk 
controller; subsequent requests for these pages will then not 
require physical I/O operations. The controller contains room 
for a total of CacheSize prefetched pages. 

5. EXPERIMENTS AND RESULTS 
In this section, we present the results of three experiments 

that compare the performance of MV2PL and MVQL. As a 
yardstick for comparison, we also include the results of GO pro- 
cessing; recall that GO processing allows queries to run without 
setting locks at all. The primary performance medics employed 
in this study are query throughput, update transaction 
throughput, and storage cost for maintaining older versions of 
pages. Additional metrics are used in the analysis of the experi- 
mental results. 

To ensure the statistical validity of our results, we verified 
that the 90% confidence intervals for response times (computed 
using batch means [Sarg76]) were sufficiently tight. The size of 
these confidence intervals were within approximately 1% of the 
mean for update transaction response time and within approxi- 
mately 5% of the mean for query response time in almost all 
cases. Throughout the paper we discuss only performance 
differences that were found to be statistically significant. 

Table 5.1 lists the settings for the system model and the 
application model parameters. The system has a CPU that exe- 
cutes 12 million instructions per second and a single disk with a 
page size of 8K bytes and a track size of 5 pages. The disk con- 
troller can prefetch up to 4 pages following a requested page;7 
the controller contains a 256K byte cache for storing prefetched 
pages. This model was patterned after the Fujitsu M2266 disk 
drive [Fuji90], which is as an example of a current generation 

NumDisks 
DiskSeekFactor 
DishLatency 

DiskSettle 
DiskTrMsfer 
DiskPagdize 
DiskTrackYize 
CacheSize 
PrefetchWum 
NumBuffers 

Setting 11 Parameter 
12 MIPS II NumFiles 
1 IndexFanoutfle 
0.617 n-is FileSizefl, 
O-16.67 ms RecSizefl, 
(uniform) 
2.0 ms SelectCPU 
3.07 hlB/sec CompareCPU 
8K StartupCPU 
5 pages TerminnteCPU 
32 pages LockCPU 
5 B@PU 
600pages _ IO CPU 

Table 5.1: System and Application Model Settings 

‘The prefetch option is used for main segment read requests by the 
sequential and clustered index scan access methods. To prevent disk 
bandwidth from being wasted as a query shifts from a sequential access 
pattern in the main segment to a random pattern in the version pool, a 
query stops requesting the prefetch option once it observes a disk cache 
hit ratio of less than 60% from its prefetch requests. 

disk drive. With this configuration, typical disk access times 
were on the order of 15 milliseconds and the system was I/O- 
bound for all of our experiments. 

The database is composed of 4 files, each containing 25,000 
Wisconsin benchmark-sized records. Each record contains 208 
bytes of data and 19 bytes of overhead for a total of 227 bytes 
(as is the case in the Gamma system [DeWi90]). With this 
record size, 36 records fit on a page. Each file contains both a 
clustered and an unclustered B+ tree index, each with a node 
fanout of 450. The CPU costs of executing transactions in the 
workload include various instruction charges that are detailed in 
Table 5.1 

The parameter settings for the workload model were varied 
from experiment to experiment. These settings are listed in 
Table 5.2, and are described with each experiment. 

5.1. Experiment 1: Effect of Query Selectivity 
In this experimem we study the effect of query selectivity on 

each of the alternative concurrency control algorithms. A tran- 
saction workload is initiated from a set of 12 update transaction 
terminals and 1 query terminal; the terminals do not involve an 
external think time delay.’ Update transactions use the non- 
clustered indexes to select and then update 2 randomly selected 
records in the database, while queries use clustered indexes to 
scan a randomly selected region of each of the 4 files in the data- 
base. The query selectivity is kept constant within the same 
simulation run (across both files and queries), but is varied from 
10% to 90% between runs. We vary the query selectivity over a 
wide range to show how versioning influences system perfor- 
mance as queries increase in size; size is a key factor here 
because as the queries become larger, the version management 
system must maintain uansaction-consistent states of the data- 
base that are increasingly different than the current state. As an 
alternative, we could have achieved a similar effect by varying 
the database update rate (e.g., by changing the number of update 
transaction terminals). 

Figures 5.1 through 5.4 show query throughput, fraction of 
query accesses to current versions, average storage cost, and 
update transaction throughput for each of the algorithms over a 
range of query selectivites. Note that for a single-query work- 
load, weak and strong consistency are identical. Also, since 
update transactions modify each record that they read, weak 
consistency and update consistency are the same here as well. 
This explains why there is only a single curve in the graphs for 
MVQL in this experiment. We start by considering query 
throughput. In Figure 5.1, we see that the highest query 
throughput is observed with GO processing, while the lowest is 
observed with MV2PL. An exception to this occurs below 
approximately 20% query selectivity, where a slightly higher 
query throughput is achieved with MVQL than with GO pro- 
cessing.g At lower query selectivities, MVQL’s query 
throughput is close to that of GO processing, and at higher selec- 
tivities it approaches that of MV2PL. The reasons for the differ- 
ences in query throughput between the algorithms are illustrated 
by the graph in Figure 5.2, which shows the fraction of query 

this captures the average behavior of a system with a !arger number 
of terminals that do involve an external think ume delay. By abstracting 
the model in this way, we were able to reduce the varknce in the statis- 
tics and obtain tight confidence intervals without excessive simulation 
lengths. 
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- _ 
MPL”pdaIe 
Selectivify+,,,,pk 
SelectDistr,,, 
SelectDistr,,+,, 
UpdateFrac 
Selectivity,,,,,fle 
AccessMethodQ,, 
AccessMethodu+,, 

Parameter 1 Experiment 1 ! Experiment 2 / Experiment 3 
mLouc, I lquery I 1 query I 1 to 5 quenes 

12 updaters 12 updaters 12 updaters 
2 records 1 to 32 records 2 records 
constant constartt uniform over 2/3 to 4/3 of mean 
constant constant corlstant 
100% 25% 100% 
10% to 90% 25% 40% 
clustered index clustered index clustered index 
unclustered index unclustered index unclustered index 

Table 5.2: Workload Model Parameter Settings 
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Figure 5.1: Query Throughput Figure 5.2: Current Version Access Figure 5.3: Average Storage Cost 
(MPLquV = 1, MPL,*, = 12, Update Transaction Size = 2) 

accesses that go to the current version of a page. Recall that 
when queries access the current versions of pages, sequential 
access is preserved, thus the prefetch option may be used to read 
five pages from the disk with a single arm movement and rota- 
tional delay. GO processing achieves the highest query 
throughput since only current versions of pages are accessed. At 
the opposite side of the spectrum, MV2PL achieves the lowest 
query throughput since, to maintain strict consistency, queries 
access the fewest current page versions. As queries become 
larger with both MVQL and MVZPL, the fraction of accesses to 
current page versions drops since queries see a state of the data- 
base that becomes increasingly older than the current state. This 
happens more quickly with MV2PL than with MVQL since 
MVQL does not place all update transactions that arrive during a 
query’s execution into its AFTER set (i.e., some of these tran- 
sactions serialize before the query). The rate at which con- 
current update transactions are placed into a query’s AFTER set 
starts out low and then increases steadily as the query ages and 
acquires more read-only locks; the reason for this can be seen by 

reviewing Rules 1 through 3 in Section 3.2.1. Specifically, in 
this experiment (but not shown in the graphs displayed), an 
average of about 10% of all update transactions that ran during 
the lifetime of a 10% select query were placed into its AFTER 
set in MVQL. This percentage increased to just over 40% at a 
query selectivity of 30%, to about 80% at a selectivity of 60%, 
and to nearly 90% at a selectivity of 90%. This explains why, as 
the query selectivity is increased in Figure 5.1, the query 
throughput of MVQL approaches that of MV2PL. 

We now consider storage cost. Storage cost is also depen- 
dent on query selectivity, as the multiversion algorithms must 
keep transaction-consistent states of the database that with time 
become increasingly different than the current state. This can be 
seen by the graph in Figure 5.3, which shows the average 
storage costs observed for MV2PL and MVQL during each 
simulation run; note that the curves show storage cost relative to 
the total database size. Recall that a query always accesses the 
most recent version of a page that was written by a uansaction 
not belonging to its AFTER set. Thus, with a query MPL of 1, 

%is exception is caused by the garbage-collection of page versions in the buffer pool. With versioning, an update transaction must copy a page in 
the buffer pool before updating it. This may require cleaning the buffer frame at the end of the LRU chain. If the prior version is garbage-collected 
when the update transaction commits, the update transaction will contribute this clean buffer to the next transaction that requests one. Some fraction of 
the time. a query will be the recipient of a page cleaned by an update transaction in this manner. Thus, when garbage collection in the buffer pool is 
frequent, a small amount of work will be shifted from the queries to the update transactions. As we will see shortly, garbage collection in the buffer 
pool is common with MVQL at low query selectivities. 
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the version pool must contain the prior version of the first update 
to each page by a transaction in the currently executing query’s 
AFTER set, and multiple updates to the same page during the 
lifetime of a query do not increase the storage cost. This 
explains why the slopes of both the MV2PL and MVQL curves 
decrease as query selectivity is increased. If the query runs long 
enough, each page in the database will have been updated by 
some transaction in its AFTER set; when this occurs, the version 
pool will contain an entire copy of the database. Notice that 
MVQL has a considerably lower storage cost than MV2PL. 
This is because the version pool grows at a slower rate with 
MVQL, and, as was discussed previously, queries complete fas- 
ter under MVQL than MV2PL. In order to see why the version 
pool grows at a slower rate with MVQL than MV2PL. recall that 
to maintain strict consistency, MV2PL places all update transac- 
tions that run during a query’s lifetime into its AFTER set, while 
MVQL does not. 

Finally, we turn our attention to the update transaction 
throughput shown in Figure 5.4. The differences between the 
algorithms here were caused by the number of updates to the 
version pool. GO processing does not maintain a version pool, 
so it provides the highest update transaction throughput. Both of 
the remaining curves vary along with query selectivity. The 
drop in MVQL’s update transaction throughput between 10% 
and 40% selectivity can be explained by the increase in the rate 
at which concurrent update transactions are placed in the 
AFTER set of the active query as it ages. Initially, when the 
query is young, MVQL places the majority of update transac- 
tions that arrive in the system before the query in the serial 
order. As noted previously, an average of only about 10% of 
update transactions that ran during a 10% selection query’s life- 
time were serialized after it. When an update transaction that 
serializes before all active queries commits, the prior versions of 
its updates can be garbage-collected. Since update transactions 
were short in this experiment, such prior versions were almost 
always garbage-collected while still in the buffer pool (and thus 
were never written to the version pool on disk). Garbage collec- 

tion of versions in the buffer pool increases the availability of 
clean buffers, thus helping to increase update transaction 
throughput relative to MV2PL at low query selectivities. 

* MVQL (UPDATE) 
t- MVQL (WEAK & STRONG) 
+ Mv2PL (STRlcr) 

0.0 a"""ls""20 - --ja" 
Update Transaction Size 

Figure 5.6: Average Storage Cost 
(SelectivityQ,,, = 25%) 

(MPL,,, = 1, kfPLdlC = 12) 

When a query becomes older, the rate at which concurrent 
update transactions can be serialized before the query drops. 
Again, as we noted previously, slightly over 40% of the update 
transactions that ran during the lifetime of a 25% select query 
were serialized after the query. This resulted in an increased 
rate of updates to the version pool, and explains MVQL’s drop 
in update transaction throughput. MV2PL had no such drop in 
its update transaction throughput since all update transactions 
that run during the lifetime of a query serialize after it. In fact, 
update transaction throughput rose as selectiviv was increased. 
This rise, and the rise in the MVQL throughput after 40% selec- 
tivity, results from pages being updated multiple times during 
the lifetime of the currently active query; at most one version of 
each page must be written to the version pool for this query. As 
the query selectivity is increased, the MV2PL and MVQL 
update transaction throughputs both approach that of GO pro- 
cessing. The reason is that the cost of incrementally writing a 
copy of the database to the version pool for each query is amor- 
tized over increasingly longer query executions. 

This experiment has shown the clear advantages of the 
MVQL algorithm over MV2PL in terms of query throughput, 
storage cost, and tc a lesser degree, update transaction 
throughput. The performance benefits are largest for smaller 
sized queries, and they decrease as the query size is increased. 

5.2. Experiment 2: Effect of Update Transaction Size 
In this experiment, we look at the effect of update transaction 

size on the algorithms. Update transaction size affects the 
MVQL algorithm the most, as additional each lock request by an 
update transaction increases the chance that it will be placed in 
the AFTER set of an active query. This may be seen by review- 
ing the rules in Section 3.2.1. To study the effect of update tran- 
saction size, we vary the number of record select operations by 
each update transaction from 1 to 32. Update transactions use 
non-clustered indexes to select 1 to 32 records (varied across 
simulation runs), updating an average of 25% of the records 
selected. Queries, on the other hand, use clustered indexes to 
scan 25% of each of the four files. Since we again consider a 
single query workload, weak consistency is identical to strong 
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consistency; weak consistency and update consistency are not 
identical in this experiment, though, since update transactions 
modify only a fraction of the records that they read. 

We begin by considering query throughput, shown in Figure 
5.5. The first thing that we wish to point out is that there is only 
a small difference between the two MVQL curves (update con- 
sistency vs. weak and strong consistency); this was found to be 
true across the entire range of possible UpdateFrac values. This 
indicates that lock inheritance, introduced due to Rule 4 in Sec- 
tion 3.2.1, has little impact on the size of query AFTER sets. In 
other words, the rate at which a query receives new read-only 
locks through inheritance is much lower than the rate at which it 
requests them explicitly. For simplicity of explanation, we will 
not distinguish between the MVQL curves for the remainder of 
this experiment. 

Moving to a comparison of MVQL with MV2PL and GO 
processing, we notice that the query throughput for both GO 
processing and MV2PL rises as the update transaction size is 
increased. This rise is caused by a decrease in the system 
resource demands by update transactions due to increased lock 
waiting; recall that the probability of lock conflict is propor- 
tional to the square of the transaction size [Gray81, Tay85]. 
Due to space limitations, we do not show the update transaction 
throughput here. On the other hand, MVQL query throughput 
drops initially, and then rises. The rise is also caused by reduced 
resource competition from the update transactions. The initial 
drop (as the update transaction read size is varied from 1 to 16) 
is due to an increase in query AFTER set sizes. The AFTER set 
size increases because each additional lock request by the update 
transactions increases the chance that the transaction will be 
placed in the AFTER set of the query. As we explained in the 
discussion of the previous experiment, increasing the AFTER 
set size reduces the number of current version accesses. 
Specifically, for an update transaction size of 1, an average of 
only 4% of the update transactions that ran during the lifetime of 
a query were placed into its AFTER set (not shown in the graphs 
displayed). With an update transaction size of 8, however, this 
percentage rose to 40%. and at a size of 32, it rose to over 80%. 
This caused the percentage of accesses to current versions to 
drop from nearly 100% to 90% for MVQL. Note that for 
MV2PL, this percentage stayed relatively constant at around 
85%. As for query size in the previous experimenr increasing 
the update transaction size causes the query throughput of 
MVQL to become closer to that of MV2PL. 

We now turn our attention to storage cost. Figure 5.6 shows 
the average storage cost observed for both MV2PL and MVQL 
during each simulation run. The difference between update con- 
sistency and weak (or strong) consistency for MVQL is again 
rather smalI so we do not distinguish between them. In the 
graph, we see that the storage cost of MV2PL drops from about 
30% to 17% of the database size. This corresponds to the drop 
in update transaction throughput that is caused by increased lock 
contention as the update transaction size is increased. In con- 
trasc we see in Figure 5.6 that MVQL’s storage cost starts out 
extremely low, rising until an average update transaction size of 
approximately 20 is reached, and then it decreases again. The 
initial rise is caused by the increase in the average query AFTER 
set size; the storage cost starts out low because of the small 
query AFTER set size with small update transactions. Recall 
that the connection between the AFTER set size and storage cost 
is that prior page versions need to be retained only for updates 
made by transactions in an active query’s AFTER set. The 
AFTER set size also influences storage cost indirectly by 
influencing the query response time; as discussed in the previous 

experiment., increasing the AFTER set size degrades the sequen- 
tiality of query access, and thus increases query response tune 
(and consequently storage cost). The drop in MVQL storage 
cost as the average update transaction size increases past 20 is 
due to the lock contention discussed already. 

Due to space limitations, we do not show the update transac- 
tion throughput for this experiment, but we summarize the 
results here. MVQL achieved an update transaction throughput 
that ranged between 98% and 92% of that achieved by GO Pro- 
cessing (as the update transaction size was increased along the 
range from 1 to 32). In the range of update transaction sizes 
from 1 to 8, MV2PL had a slightly lower update transaction 
throughput than MVQL; the largest difference amounted to 
approximately 8% of MVQL’s update transaction throughput at 
asizeof 1. 

In the first experiment we saw that the performance of 
MVQL in terms of query throughput, storage cost, and update 
transaction throughput is close to that of GO processing when 
queries are small, and it approaches MV2PL as queries become 
larger. In this experiment we have seen a similar result occur 
when update transaction size is increased instead. The connec- 
tion between these results lies in the AFTER set sizes of queries. 
Increasing either the query size or the update transaction size 
decreases the opportunities for serializing update transactions 
before concurrently executing queries. In addition, we have 
seen that the additional I/O and storage costs for providing weak 
consistency over update consistency are quite small. 

5.3. Experiment 3: Effect of Query MPL 
In this experiment, we vary the query multiprogramming 

level from 1 to 5 queries in order to study its impact on the rela- 
tive performance of the weak and suong consistency variations 
of MVQL. Update transactions use non-clustered indexes to 
select and then update 2 records, while queries use the clustered 
indexes to scan an average of 40% of each of the four files. 
Since we again consider a workload where update transactions 
write each record that they read, update consistency is identical 
to weak consistency here. In order to stagger the start and com- 
mit times of queries from different terminals, we vary the actual 
selectivity across queries uniformly between 2/3 and 4/3 of the 
average selectivity. 

In Figure 5.7, we see that the query throughput for all algo- 
rithms rises as the number of query terminals is increased, while 
in Figure 5.8, there is a corresponding decline in update transac- 
tion throughput. The rise in query throughput is linear in the 
number of query terminals, and not in their fraction of the 
overall number of terminals. This result is due to the system 
shifting its effort from update transaction processing to query 
processing, which increases the fraction of clean pages in the 
buffer pool and reduces the buffer cleaning work that must be 
done by queries. 

In Figure 5.7, we also see that the query throughput of strong 
MVQL diverges from that of weak (and update) MVQL as the 
number of query terminals is increased. The separation is 
caused by the additional rule for strong consistency (Rule 5 of 
Section 3.2.1) that causes a query’s AFTER set to subsume the 
AFTER sets of all younger queries. The separation is not as 
large under this workload as one might expect, however. The 
reason is that the AFTER sets of older queries are already likely 
to subsume those of younger queries due to the enforcement of 
Rules 1 through 4; relatively few AFTER set insertions will 
occur as a result of Rule 5 alone, especially at low MPLs. This 
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reasoning also explains why the storage cost of strong MVQL, 
shown in Figure 5.9, diverges only very slightly from that of 
weak (and update) MVQL as the number of query terminals is 
increased. 

In this experiment, we have seen that the cost of providing 
strong consistency is not considerably higher than that of pro- 
viding weak consistency. As we argued, enforcing Rule 5 is not 
as detrimental to performance as one might initially expect. 

5.4. Discussion 
In this section, we have presented the results of a preliminary 

performance analysis of the MVQL algorithm. We investigated 
a workload combining small transactions, each performing 
record-select/update operations, with large queries executing 
clustered index scans. We did not consider queries with random 
lile accesses (i.e., through an unclustered index) since we were 
interested in higher selectivity scans. To avoid re-reading pages, 
medium and large selectivity scans on an unclustered index attri- 
bute can be executed by first obtaining a list of the IDS of match- 
ing records from the index, sorting the list according to disk 
address, and then sequentially scanning the data using the 
record-ID list [MohBO]. Our results indicate that MVQL 
should also provide a lower cost alternative to MV2PL for this 
sort of workloads. Finally, the benefits of MVQL should be 
even more significant when versions are located by reverse 
chaining rather than through a memory-resident directory (as we 
assumed in this study). 

In order to make simulations with large queries feasible, we 
used a relatively small database in our experiments; however the 
update intensity to individual pages was quite high. We feel that 
the results should scale to a larger database with a proportionally 
lower update intensity, as the number of updates that fall in the 
path of a query will remain the same. 

6. CONCLUSIONS 
In this paper, we have presented a new multiversion locking 

algorithm that has a lower versioning cost than the MV2PL 
algorithm that several commercial systems use. Our new algo- 
rithm, MVQL, reduces the cost of versioning by providing 
weaker forms of consistency for queries than that provided by 

MV2PL. To introduce the new algorithm, we reviewed four 
forms of consistency which all guarantee that queries see 
transaction-consistent data: update consistency (the least resuic- 
tive form), weak consistency, strong consistency, and strict con- 
sistency (the most restrictive form). We showed that the 
increasingly restrictive consistency forms require that queries 
read older versions of data, and we argued that this will increase 
the cost of executing queries. We then we presented the MVQL 
algorithm as a generalization of MV2PL. MV2PL provides only 
strict consistency, while MVQL can provide either update, 
weak, strong, or strict consistency; in the case of the latter, it is 
equivalent to MV2PL. 

We also conducted a detailed simulation study of the algo- 
rithms, and we analyzed the results of this preliminary study. 
The results show that MVQL can provide performance that is 
close to that of GO processing at small to medium query selec- 
tivities or update transaction sizes; it provides performance 
closer to that of MV2PL as the query selectivity and update tran- 
saction size are increased. In the future, we plan to extend our 
preliminary analysis of MVQL to a more comprehensive set of 
workloads and version management schemes. In particular, we 
did not look at workloads with skewed access patterns, nor did 
we consider a reverse-chaining version management scheme, 
though we fully expect MVQL to perform at least as well under 
such conditions. 
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