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Abstract 
Communication behaviour represents the dynamic evolution 
and the cooperation of a group of objects in accomplishing 
a task. It is an important feature in object-oriented systems. 
This paper introduces an activity model for the declarative 
specification of such communication behaviour, including 
the temporal ordering of message exchanges within the 
object communications, and the behavioural relationships 
between activity executions. We develop two formal 
mechanisms: activity specialization and activity aggregation 
for abstract implementation of object communication in 
order to allow expressing complex behaviour in terms of 
simpler behaviour. Activities are seen as patterns of object 
communications, which explicitly capture the behavioural 
dependencies among cooperating objects, and proved to be 
an effective aid for implementing communication 
behaviour. We use first-order temporal logic for 
specification of communication constraints, and argue that 
the activity model as such provides an adequate 
computational framework for object communications, and 
strikes a better balance between the object communication 
paradigm and the object classification paradigm. 

1 Introduction 

The dynamic aspects of object-oriented systems have long 
been a central issue for modeling objects in the context of 
object-oriented programming (OOP) [cf.24], and more 
recently in the context of object-oriented databases(OODB) 
[cf.2,31]. The use of pre- and post-conditions for method 
specification, and the use of a trigger mechanism for the 
implementation of object interactions are commonly 
adopted for specifying behaviour. 

In our view, the behaviour of objects can be classified 
into at least two categories. The first category is called local 
behaviour or intra-object behaviour. In performing local 
behaviour, only the components of objects and their 
attributive properties are affected, including those of 
subtypes. The second category may be called behavioural 
composition or inter-object behaviour, describing 
collections of independent objects cooperating to 
accomplish a task. It identifies a typical kind of 
communication behaviour, including the dynamic 
interactions between independent objects and the 

communication constraints on those interactions. Recent 
literature [3,11,331 recognizes the importance of modeling 
communication behaviour in object-oriented systems. 

Considering communication behaviour, several issues 
are of interest 

(1)Up to now, explicit specification and abstraction of 
communication behaviour are not well supported in most 
existing object-oriented models. Relationships are 
considered as attributive properties of objects and described 
via reference fields within the type definitions. It becomes 
then difficult to model the behaviour of relationships 
properly, in particular the dynamic constraints on the 
interactions between objects of independent types. This 
makes the communication behaviour difficult to understand, 
maintain, and debug. Any inconsistency between the static 
specification and dynamic specification of the problem 
domain, in general, will only be detected at the 
implementation stage. Furthermore, patterns of object 
communications within behavioural compositions are often 
repeated throughout a system with different participating 
objects. These patterns have limited reusability, because the 
semantics of grouping similar objects into classes and the 
semantics of capturing similar communication behaviours 
in terms of communication patterns are intertwined anyway. 
Thus, it becomes useful to provide some modeling 
construct for the declarative specification of patterns of 
object communications in object-oriented databases. 

(2)Abstraction mechanisms, especially behavioural 
specialization and behavioural aggregation, are useful for 
defining new patterns of communication behaviour in terms 
of existing ones, and for supporting behaviour evolution of 
cooperating objects. 

(3)In specifying object communication, it is necessary 
to define the temporal exchange ordering of the messages 
described within each type, the behavioural constraints and 
the temporal relationships between different communication 
behaviours, as well as the execution sequence of message 
exchanges among cooperating objects. Explicit specification 
of temporal knowledge of behaviour is actually 
indispensable for modeling object dynamics in non- 
proce4-lural terms. 

The objective of this paper is to introduce an activity 
model as a declarative specification formalism for modeling 
communication behaviour in object-oriented database design 
environment. The main contributions of our activity model 
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are the following. First, we generalize the concept of 
activities to describe communication behaviour between 
independent objects, and between different activities. The 
term “activity” is introduced as a semantically meaningful 
construct for explicit specification of communication 
behaviour, and for exploring the dynamic interactions 
between cooperating objects and the coordination of several 
activities in accomplishing a task. Second, we use the 
language of first-order temporal logic (FOTL) as the 
underlying formalism to capture the behavioural 
dependencies between cooperating objects. Thirdly, we 
formally develop two essential mechanisms - activity 
specialization and activity aggregation for abstract 
implementation of communication behaviours. The former 
allows us to model more specialized activities in terms of 
the existing activity specifications. The latter allows us to 
compose complex activities out of simpler activities. We 
shall show how activities enable us to create behavioural 
abstractions and to reuse the existing patterns of 
communications for defining new activities in order to avoid 
duplicate specifications, implementations and maintenance. 
Note that the notion of activity itself, of course, is not 
completely new [cf.7,12]. 

2 Background (Related Research) 

Explicit specification and abstraction of communication 
behaviour seem not to have been addressed in a systematic 
and formal manner in the literature, although the research on 
dynamic data modeling, temporal databases, object 
migration, and the contract model, has made contributions 
to this subject in one way or the other. For instance, the 
transaction model [cf.23 developed by using the Active and 
Passive Component Modeling (ACM/KM) methodology 
[cf.41 addresses the importance of modeling transactions 
prior to the completion of the static schema design. Process 
modeling, such as the event model [cf.9, 291 and the 
proposal in [22], suggests to structure process events 
hierarchically by communication links along which 
information is transmitted. Also, research on using 
adaptations of Petri nets 1261 to model sequence of events, 
such as the scripting approach introduced by Borgida, 
Mylopoulos and Schmidt [6], uses extended Petri nets 
(scripts) to enforce dynamic integrity constraints and to 
define user interactions. The importance of specifying 
activity and behaviour in data modeling has also been 
emphasized in [133. Recently Hall and Gupta [lo] propose 
to model dynamic object migration from one subclass to 
another through transition modeling. Rappel and Schrefl 
[ 121 integrate the structure and behaviour representation by 
using object/behaviour diagrams, in order to model the life 
cycle of objects by stepwise refinement of their behaviour. 
There are also ongoing research in modeling the behavioural 
coordination of objects, such as the responsibility-driven 

approach proposed by Wirfs-Brock and Wilkerson[33] and 
the contract model introduced by Helm, Holland, and 
Gangopadhyay in [l 11. 

In our view, the constructs provided by the 
conventional transaction modeling formalism seems not 
quite suitable for high-level conceptualization of the 
communication behaviour, since in conventional transaction 
modeling, the behaviour of relationship objects can not be 
properly modeled, the knowledge of object evolution seems 
not fully exploited, and employed further for providing 
inference capabilities based on object history. To 
circumvent these problems, the temporal semantics of the 
universe of discourse should be explicitly addressed in the 
behaviour modeling, such as the sequence in which events 
or activities are happening, and the temporal ordering of 
message exchanges. The process model and the script model 
emphasize the state transition modeling, but provide no 
appropriate support for dynamic migration of entity objects 
from class to class, and no facilities for declarative 
specification of communication behaviours, such as the 
cooperation relationships among different presses, and the 
sequence of message exchanges between cooperating 
objects. The contract model and the responsibility-driven 
approach provide interesting ideas for modeling the mutual 
obligations of cooperating objects in accomplishing a task, 
but no formal semantics seem to be developed yet for 
abstract specification of communication behaviour. 

3 The Activity Model 

Given the universe of discourse (UoD), the activity model 
of the UoD consists of a nonempty set of activity patterns, 
describing the communication behaviours of cooperating 
objects in the UoD. The term “activity” will be introduced 
as a modeling construct for defining patterns of object 
communication. For brevity, in the current presentation we 
only focus on activity specification. A detailed formalism 
for object specification and classification may refer to 
[17,18]. 

3.1 First-order Temporal Logic 

First-order temporal logic (FOTL) is a well-known 
extension of many-sorted first-order logic by adding modal 
operators for temporal inference. FOTL has been 
extensively used in the specification [cf.14], verification 
[cf.20], and synthesis [cf.211 of concurrent systems (e.g., 
concurrency and communicating processes). During the last 
decade, FOTL has also been introduced in the areas of 
information system design [cf. 13,281, and specification and 
monitoring of database integrity constraints [cf. 15,16,271. 
The logical system we use in this paper is linear and 
discrete with respect to the model of time [l]. 
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The FOTL language consists of a countable set of 
FOTL terms and formulas; each is built up in the usual way 
by using predicates and function symbols, variables, 
standard quantifiers and connectives, plus the modal 
operators Ci (“always in the future”), 0 (“sometime in the 
future”), 0 (“next”), Until (“until”), Prcecdcs 
(“precedes”). If @ and ware formulas, then 

O$ means ,,$ is true in the next state”; 
O$ means “4 is always true from now on”; 
O@ means ,,# is true at some future time”; 
@I Um&w means “$I is true until I+V is hue”; and 
$J !&Z.&S weans “4 is true precedes y is true”. 

As an example, suppose we want to express the statement 
“if a property y holds for all individuals, then there must 
exist an individual in the next time point for which property 
Cp holds” in FOTL. The result could be: (Vx)O~(x) a 
O@y)$(y). The formula (Vlx)O~&x) 3 00$(x) is an 
another example. It means that for any individual x, if w(x) 
is true, then there sh&ld be a time point in the future such 
that @J(X) is true in the next state. For a detailed syntax of 
the FOTL see [19]. 

3.2 Activity Pattern 

An activity pattern describes the communication protocol of 
a group of cooperating objects in accomplishing a task. We 
identify the following information necessary for 
specification of an activity pattern: 
- The type name of each participating object in an activity 
(so called an agent of activity). 
- The set of messages used by each agent when participating 
in an activity 
- The logic of how objects play roles of being agents in an 
activity (so called communication constraints of the 
activity). For instance, which messages specified in the 
type/class schema are permissible for object participation in 
an activity, how the message exchanges are carried out, and 
what kind of mutual obligations the participating objects 
should follow. 
- The pre- and post-conditions of an activity execution. For 
instance, what sorts of relationships between agents of an 
activity must hold, and how activities are invoked and what 
effect an activity might cause. 
- The composition of a complex activity in terms of 
simpler activities and the behavioural characteristics of an 
activity, such as the relationships with other activities, and 
the execution sequence of its constituent activities. 

In the sequel, we refer to the rules specifying 
relationships between the messages associated with each 
agent as local constraints. The rules on the message 
exchanges between two or more agents, and on the 
execution sequence of (constituent) activities, as well as on 

the object-flow control between these activities are called 
global constraints. The preconditions of an activity ensure 
that each agent (participating object) has references 
(structural relationships) to the other agents and that the 
initial conditions are set up. The postconditions define what 
has to be satisfied after a successful activity execution. 
Failure of an activity execution will be reported by a system- 
supplied activity manager. The language for expressing 
constraints and preconditions is similar to FOTL. We 
describe each message in the form of message predicate rnsg- 
name(sender, receiver, list-of-parameters). When a message 
is succeeded, the predicate is evaluated to be true. Otherwise 
it is false. 

Definition 3.1 (activity pattern) 
An activity pattern c1 is described by an eight-tuple 

(N, Al, !E=I!&% TUT, A@$ SIC, TTE, TOX$ 
is the name of the activity pattern. 
is a set of agents representing the objects 
participating in an activity of pattern a. Each 
agent is specified by a triple CT, Msg(a,T), 
LIC(a,T)> where T identifies the type name, 
Msg(a,T) is the set of message predicates 
which are used for supporting the role of this 
type being an agent in the activity, and 
LZC(a,T) is the set of rules (local constraints) 
on the exchange ordering of these messages. 
is a set of input and output parameters in an 
activity of pattern a, which may be 
component names or attributive property 
names of the participating agents. 
is a set of (super) activity names, in terms of 
which this activity is defined. 
contains a set of (constituent) activity names, 
of which this activity is composed. 
specifies the set of rules (global constraints) 
expressing the relationships between the 
activity and.its agent objects, and between the 
constituent activities. 
is the set of preconditions and triggering 
conditions that initiate or hold at the start of 
the activity. 
is the set of postconditions that hold after a 
successful completion of the activity 
execution. 0 

Example: Consider as an application the communication 
between Airplane object and Control-tower object in 
accomplishing an activity TAKE-OFF. The activity pattern 
TAKE-OFF is specified in Fig3-1, which contains two 
agents of types Airplane and Control-tower respectively. 
The message predicates associated with each agent in the 
TAKE-OFF activity specification are well defined in the 
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activity TAKE-OFF 
agents ct: ControlJower, 

pl: Airplane; 
in : ctr-statur;@l); 
out: ctr-stanAsip[); 
Control-tower support 

(messages: 
request-take-oflseIf,ct,y), permission-take-off(ct,self,y), 
taken-off(seIf,cf,y); 

/* “self’ here refers to an activity of pattern TAKE-OFF. / 
local constraints: 
LCll: (Vy)Orequest-take-ofl(seIf,ct.y) =9 OOpermission-take-ofl(cr,self,y), 
LC12: (Vy)permission-take-off(ct,self,y) Tree45 taken-off(self,ct.y) 

1; 
Airplane support 

(messages: 
corn-take-oJr(selfpI), change-ctr-status(seJf,pl,v), 
take-off-position(self,pl), safe-check-ready@l,self); 

local constraints: 
LC21: CIcom-take-off(self.pr) j OOchange-ctr-status(self,pl,v), 
LC22: safe-check-ready@l,selj) Ttw& take-off-position(self,pl), 
LC23: take-off-position(self,pl) %w&r corn-take-off(self,pl) 

1; 
global constraints: 
GCl: (Vy)(y==pZ a request-take-ofict,self,y) ~ntif safe-check-ready(y,seZ@), 
GC2I~ - (Vy)(y==pf + permission-take-off(ct,self.y) ~BW&.S take-off-position(seJf,y)), 
GC3: Ocom-take-off(self,pI) 3 OOtaken-off(seZf,ct,pZ), 
GC4: Otaken-off(self,ct,pl) 3 OOchange-ctr-status(se~,pl.‘journey”); 
precondition: 
PREI: (Vx)(3!y)Airplane(x)/\Control_tower~)~has-take-off-ref(x.y), 

PRE2: Qx)(x==pl ~safe-check-ready@l,self)~ctr-status(x)=”take-off’; 
postcondition: 
POSTI: (Vx)(x==pl hchange-ctr-status(self,pl,‘journey”) * ctr-status(x)=‘~ourney”; 

end activity. 
Fig3-1 An example of activity specification 

type/class schema of this agent. Note that the set of 
messages defined in the type/class schema of Airplane 
objects includes not only the messages used for Airplane 
objects in participation of activity TAKE-OFF, but also the 
messages used for their participation in the other 
activities, such as JOURNEY-CONTROL, LANDING, 
EMERGENCY-LANDING, etc. Constraints associated 
with the TAKE-OFF activity concern the interactions 
between the activity itself and each of its agents, and the 
behavioural dependencies among these interactions. 

Note that the local constraints associated with the 
agent ct (of type Control-tower) merely define the exchange 
ordering of all the messages, which support the 
Control-tower object being an agent in activity 

TAKE-OFF. Similar to the local constraints associated 
with the agent pl. The exchange relationships between the 
messages of agent ct and the messages of agent pl are 
specified by the global constraints in activity TAKE-OFF. 
The precondition part identifies the legal situation for 
Control-tower objects and Airplane objects to participate in 
the activity. It states that at any time point, given an 
airplane object x, there must be one and only one 
control-tower object y (denoted as 3!y) such that x has a 
(structural) reference to y and the function ctr-status(x) 
returns value “rake-off’. We provide a complete BNF syntax 
of the activity schema in 1191. q 

The introduction of activities as the coordinator for 
communication between objects has a number of 
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Let CC(a) be the set of rhe ccnnmunication constraints of 
activiry.pattem a, and CC& @) be the minimal set of the 
communication constraints of a. 

={LCll, LC12,LCX. LC22, LCD, GCl, GC2, GC3, GC4) 

cc&mKE~om 

=(LCll, LC23. GCl, GQ GC3. GC4). 

GC3 AGC~ aLC21, 

GC2 hLC23 h m =J LC12, 
1 

1 GCl hLCl1 A GC2=LC22 
I 

Fig3-2 Deleting the duplicated wmmunication ccmmints LC12. 
Lc21, LC22 from the aaivity specification in Fig3-1 

advantages. It allows explicit specification of 
communication behaviour in one place, instead of having 
them hidden inside several type/class definitions or implicit 
in certain sequences of method calls. Also, it helps a 
designer to identify the standard communication protocols, 
independently from the implementation, by encouraging 
him to focus on the mutual obligations of the 
communication agents. As a result, reusability of the 
communication behaviour is increased. 

3.3 Communication Path 

In the activity model, we refer to the sequence of message 
exchanges implied in an activity pattern cx as the 
communication path of a. Consider activity pattern 
TAKE-OFF in Fig3-1, the communication path implied in 
TAKE-OFF activity may easily be derived from the overall 
specification of the local and global constraints identified in 
Fig3-1. The deduction is based on the temporal inference 
rules [cf.l], and proceeds in two steps. Firstly, by 
eliminating duplicate constraint specification formulas, we 
get six FOTL formulas (i.e., LCll, LC23, GCl, GC2, 
GC3, GC4). They together form a minimal set of 
communication constraints that must hold as the invariants 
of activity TAKE-OFF. The conjunction of these six 
FOTL formulas is logically equivalent to the conjunction of 
all the (local and global) constraints specified in Fig3-1, 
because the others can easily be derived from these six 
formulas (Fig3-2). Secondly, based on this minimal set of 
constraint specifications, the message exchange sequence 
implied in the specification of activity TAKE-OFF can be 
generated simply by properly ordering all the messages 
involved in activity TAKE-OFF (Fig3-3). 

Note that the concept of communication path 
(sequence of messages) is to some extent similar to (but not 
the same as) the concept of “trace” (sequence of events) 
introduced in Oblog [cf.29]. The requirements for safety (the 
conditions permiting envent occuring), attribute valuation 
(the effect of events upon object attributes), and liveness 

(4) td-e-off-positbn() 
(5) com-tabofl) 

lA3@3l& 

0 activity icon 

0 agent object icon 

- mesaRe-sendinp, path 

l activity/3&ent link 

F&3-3 The cormnunicstion graph witbin TAKE-OFF activity. 

(the conditions for triggering events)[cf.30] in Oblog are 
also captured in the building blocks (constructs) of the 
activity model. For instance, we may specify safety 
requirement in the precondition, valuation in the 
postcondition, and liveness in the local and global 
constraints of activity specification. However, unlike the 
event model used in Oblog, our activity model allows to 
specify communication behaviour among multiple agents, 
including various communication constraints, at one place, 
rather than spreading them across over all the relevant object 
types. One obvious advantage is that we could model the 
mutual obligation and the interaction dependencies of the 
cooperating objects explicitly. Thus object communication 
behaviour can be fully captured and understood in a truly 
declarative way (i.e., at a higher level of conceptualization). 

Definition 3.2 (communication graph) 
Let CG=<?/, E> be a graph with ?/as the set of nodes and E 
as the set of edges. CS; is said to be a communication graph 
of an activity pattern a, if and only if 21 consists of two 
kinds of nodes: communication modules and 
communication agents, and E consists of two kinds of 
edges: the message-sending paths between activity of pattern 
a and its agents, and the activity-agent links indicating the 
agent objects of a given activity. 0 

The communication graph of a TAKE-OFF activity is 
shown in Fig3-3. 

Remarks: At this high level of specification, we are not 
concerned with the detailed methods of these messages. 
These details will be filled in during further design 
refinement or left until the implementation stage. Although 
activities are described separately from the type definitions 
of their agents, the activity implementation must finally be 
mapped to the methods defined in the type/class definitions 
of these agents. Besides, in an activity specification, for 
each agent object, its relationships with other cooperating 
agent objects are required to be specified in the type 
definition of this agent, in order to support its role of being 
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ctr-status(a) 
(own T 

t 

TAKE-OFF(a) 

An example of state tramitim within an activity Flg3-5 An example of activity Specialization 

agent in the activity. We also describe the state transition 
caused by an activity through the state transition graph 
associated with the activity pattern. This subject is 
somewhat beyond the focus of this paper. An example is 
shown in Fig3-4. It identifies that a success of any 
TAKE-OFF activity may cause a state transition of its 
agent Airplane object. 

Given an activity pattern a, we refer to all individual 
activities of pattern a as activity instances of pattern a. For 
presentation convenience, in the sequel we may simply use 
“activity” to refer to activity pattern if no ambiguity results. 
An object may participate in several activities 
simultaneously. Also agents of an activity may be objects 
of the same type, of course. 

3.4 Activity Specialization 

Activity specialization is a behavioural abstraction 
mechanism, which allows us to define a more specialized 
pattern of communication behaviour in terms of existing 
patterns, for instance, by restricting behaviour to one or 
more specialized agent types instead, or through the addition 
of communication constraints, Behavioural specialization of 
relationships as such is quite common in object-oriented 
modeling practice. 

Definition 3.3 (activity specialization) 
Let 
Agents(a) be the set of agent type names in activity 

pattern cl, 
Msg(T, a) be the set of messages supporting the role of 

type T being an agent of a, 
GZC(a) denote the conjunction of all the global 

constraints specified in activity pattern a, 
LZC(T,a) denote the conjunction of all the local 

constraints associated with the agent of type 
T in activity pattern a, 

PRE(a) be a set of pre-conditions that initiate an 
activity of pattern a, and 

POST(a) be a set of post-conditions that hold after a 
successful execution of activity of pattern a. 

eztivity icon 

agent objcd icon 

dvily-agent lii 

An activity pattern a is said to be a behavioural 
specialization of activity pattern p, if and only if (iff) the 
following conditions are verified. 

(i) V/SE Agents(P), 3TEAgenrs(a) such that 
T=S v (subtype-of(T,S) Qfsg(T,a)zMsg(S,P)) 
A LIC(T,a)~LZC(S,P)). 

(ii) GIG(a) 3 GZC(p). 
(iii) Vpe PRE(P), 3p’~ PRE(a) such that p=p’, or 

p is overridden by p’. 
(iv) VqE POST(p), Yq’E POST(a) such that q=q’ , or 

q is overridden by q’. 

We call a a specialized activity pattern and p a generic or 
super-activity pattern. Cl 

Remarks: The predicate “subtype-of(T,S)” holds iff type T 
is a subtype of type S. Condition (i) states that if activity 
panem a is a behavioural specialization of activity pattern 
p, then for any type (say S) in Agents(P), there is a 
corresponding type T in Agents(a) such that either T and S 
are same, or T is a subtype of S. In the later case, all 
messages, which are used for supporting type S being an 
agent in super-activity pattern /3, are included in the message 
set for supporting type T being the corresponding agent in 
its specialized activity pattern a. Besides, the conjunction 
of all local constraints associated with agent type T in the 
specialized activity pattern a implies the conjunction of all 
local constraints associated with agent type S in the super- 
activity pattern p. Semantics of condition (ii), (iii), and (iv) 
are obvious. 

By means of activity specialization, in defining activity 
a onIy the messages that are new and the constraints that 
need to be overridden are specified. All the other messages 
and constraints can be directly “inherited” from the super- 
activity p. We call this characteristic “activity specialization 
inheritance” in contrast with the concept of subclass 
inheritance in the object classification paradigm. The 
keyword “add support” is used in the activity model for 
specifying the new messages required in a specialized 
activity pattern. 



activity DEPARTURE 
agents ct: Control-tower, 

pl: Passenger-plane; 
in : err-statluipl); 
out: ctr-status@l); 
Behavioural specialization-of TAKE-OFF 

where Airplane = Passenger-plane; 
Control-tower add support ( ); 
Passenger-plane add support 
(messages: 

passengers-enter(seJf,pl); 
/* “self’ in this example refers to an activity of pattern DEPARTURE. / 

local constraints: 
take-off-position(selJp1) Trec&s passengers-enter(self,pl), 
passengers-enter(self,pl) S?ccekr corn-take-off(self,pl) 

1; 
global constraints: 
GC5: (Vy)(y==pI + passengers-enter(self,pf,p) w&permission-take-oflct,seKy)); 
precondition: 
PREl: (Vx)(3!y)Passengerqlane(x)AControl_towerOl)Ahas-take-off-ref(x,y); 

end activity. 
Fig3-6 An example of activity specialization 

Example: Consider activity DEPARTURE, which has 
Control-tower and Passenger-plane objects as agents. 
Passenger-plane is a subtype of Airplane. We may define 
the activity pattern DEPARTURE by behavioural 
specialization (refinement) of activity TAKE-OFF. Fig3-6 
shows the definition of activity DEPARTURE. 

Recall the activity specification of TAKE-OFF in 
Fig3-1, the activity DEPARTURE specified in Fig3-6 
refines the activity TAKE-OFF in a number of ways. In 
activity DEPARTURE, the type of agent pl is replaced by 
Passenger-plane, and the additional message passengers- 
enter0 is required. Besides, the method definition of ruke-off- 
position() overrides that in activity TAKE-OFF. Although 
a call to the message take-off-position0 still leads to a call 
to corn-rake-off0 as described in TAKE-OFF, the message 
passengers-enter& which is specific to the agent of type 
Passengerglane, will be called in between. Finally, more 
constraints may be involved in activity DEPARTURE than 
in TAKE-OFF. Note that the conjunction of all constraints 
required in activity DEPARTURE, however, implies the 
conjunction of all the constraints specified in activity 
TAKE-OFF. Furthermore, the precondition PREl specified 
in activity pattern TAKE-OFF is (partially) overridden in 
activity definition of DEPARTURE. But the agent of type 
Control-tower and the postconditions are not refined further 
in activity DEPARTURE. 0 

In contrast to the usual notions of specialization via 
subtyping or subclassification, the specialization of 
activities involves communication constraints on multiple 
agents, which may need to be refined. 

Proposition 3.1 
Let the predicate act-specialization(@) holds if and only if 
activity pattern a is a behavioural specialization of actvity 
pattern /3. Then 
(Al) act-specialization(csB)r\act_specializati 

3 act-specialization(a,fi. 
(A2) act-speciahzation( a,P)r\act~specialization@,~) 

3 a=& 
Proof 
In terms of the activity specialization definition (recall 
Definition 3.3), and the transitive and antisymmetric 
characters of set inclusion and logical implication, as well 
as the partial ordering property of subtyping [lS], we may 
immediately prove (Al) and (42). 0 

3.5 Activity Aggregation 

Intuitively, activities with the same or similar set of agents 
may “work together” in a more complex activity. The 
communication behaviour in such a complex activity with 
n agents may be described in terms of the communication 
behaviours related with some subsets of its agents and the 
relationships between these simpler communications. The 
task AIR~TRAFFIC~CONTROL, for instance, can be 
described as a complex activity, which consists of several 
constituent activities, such as TAKE-OFF, LANDING, 
JOURNEY-CONTROL, EMERGENCY-LANDING (see 
Fig3-7). Each of them has taken object of type Airplane 
and object of type Control-tower as their agents. 
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Constraints on the behavioural composition in the 
activity AIR~TRAFFIC~CONTROL include the constraints 
specified in each of its constituent activities, as well as the 
constraints on the relationships between these constituent 
activities (such as the sequence of message exchanges and 
the object-flow control between these activity executions). 
The sample specification of TAKE-OFF activity is given 
in Fig3-1. The formal specification of the others are 
omitted here due to the space limitation, and may refer to 
[193. To avoid duplicate activity specification, we introduce 
activity aggregation mechanism to realize the aggregation 
abstraction of communication behaviour. 

Fig3-7 An c.xa.mple of activity aggregation ’ 

Definition 3.4 (activity aggregation) 
Let 
Agents(a) be the set of agents in activity pattern a, 
Msg(T,a) be the set of messages supporting the role of 

type T being an agent of a, 
LIC(T,a) denote the logical conjunction of all the 

local constraints associated with the agent of 
type Tin activity pattern a, 

GZC( a) denote the logical conjunction of all the 
global constraints in activity pattern a, 

PRE(a) represent a set of pre-conditions that initiate 
an activity of pattern a, and 

POST(a) be a set of post-conditions that hold after a 
successful execution of activity of pattern a. 

An activity pattern a is said to have a behavioural 
aggregation relationship with activity pattern p, if and only 
if (iff) the following conditions are verified. 
(i) VSE Agents(P), ATE Agents(a) such that 

S=T v( constituent-type-of(S,Z’) 
A(VitE Msg(T,a)&E Msg(S,P) 
(Oil 2 Oi,)hLZC(T,a)~LIC(S,~)). 

(ii) GZC(a) * GZC(p). 
(iii) PRE(a) zPRE(jl). 
(iv) POSTa)z POST@). 
We call a an aggregate activitypattern and p a constituent 
activiry pattern. q 

Remarks: 
In this definition, the predicate constituent-type-of(S,T) 
holds iff type T has an aggregation reference[ 181 to type S. 
Condition (i) states that if activity pattern a is a 
behavioural aggregation of activity pattern p, then for any 
type (say S) in Agent@), there is a corresponding tw T in 
Agents(a) such that either T and S are same, or S is a 
constituent type of T. In the later case, for any message 
(say il) in the message set Msg(T,a), if the message it is 
sent out, then there should be a time point in the future 
such that, a message (say is) in the message set Msg(S,P) 
will be invoked in the next state. Besides, the conjunction 
of all local constraints associated with agent type T in the 
aggregate activity pattern a implies the conjunction of all 
local constraints associated with agent type S in its 
constituent activity pattern fl. Condition (ii) means that the 
conjunction of all global constraints in the aggregate 
activity pattern a implies the conjunction of all global 
constraints in its constituent activity pattern p. Condition 
(iii) actually imposes that the initiation (preconditions) of 
an aggregate activity includes (but not necessarily equal to) 
the union of the initiations of its constituent activities. 
Similarly, Condition (iv) requires that the effect 
(postconditions) of an aggregate activity includes the union 
of the effects of its constituent activities. 

In terms of activity aggregation, in defining an 
aggregate activity a, only the messages and constraints that 
are new to the activity a, and that are not defined in the 
constituent activities of a need to be explicitly specified. 
The rest are simply “inherited” from the constituent 
activities of a. We call this characteristic “activity 
aggregation inheritance”. 

Note that a complex activity a may have some agents 
that are not participants in any of its constituent activities 
(say PJ,...~~). Also, for any agent of type T in a given 
constituent activity pi (i=I ,...n), extra messages may be 
required for supporting its role of being also an agent in the 
aggregate activity a. We use the keyword “add” in the 
message specification of each agent, in order to identify 
such special agents as well as the new messages required by 
the aggregate activity a (see Fig3-8). Besides, the set of 
global constraints in activity a, i.e., GK(a), may include 
both the global constraints in each constituent activity fi; 
(i=l ,...n) and the newly added global constraints in the 
activity pattern a. 

Example: A sample specification of the complex activity 
AIR-TRAFFIC-CONTROL is given in Fig3-8. In 
specifying activity AIR-TRAFFIC-CONTROL, we only 
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activity AIR-TRAFFIC-CONTROL 
agents cf: Control-tower, 

pl: Passenger-plane; 
Behavioural aggregation-of 

TAKE_OFF, JOURNEY-CONTROL, 
LANDING, EMERGENCYJANDlNG; 

Control-tower add support 
(messages 

start-take-off(self,ct). start-journey(self,ct), 
start-landing(self,ct), start-emergency-landing(self,ct), 
. . . ; /* “serf’ in this example refers to an activity of pattern AIR-TRAFFIC-CONTROL. / 

local constraints 
start-take-off(self,ct) Trccsr(cs start-journey(self,ct), 
start-journey(self,ct) lfcc4rccS start-emergency-landing(self,ct), 
start-journey(self,ct) ~cceclcr start-landing(self,ct), 

. ..). 
Airplane add support ( ); 

global constraints: 
add 

GCl: (Vx) 0 start-take-oflself,x) * 00(3a)@y)TAKE-OFF(a),~equest-take-ofla~,y), 

GC2: (Vx)(Va) a TAKE-OFF(a)AAgent-of-role(x.ct,a)Ataken-ofla,x) 

3 OOstart-journey(selfJ), 

GC3: @‘x)(Va) Cl JOURNEY_CONTROL(a)~Agent_of_role(x,ct,a)~re~~st-e~rge~y-landing(a~) 

j OOstart-emergency-landing(self~), 

GC4: vx)va) 0 JOU~EY_CO~ROL(a)AAgent_of_role(x,ct,a)A~nish-journey(a~) 

+ OOstart-Ianding(seIf,x). 

GC5: vx) IJ Agent_of-role(x,ct,se~f)hstart-emergency-~anding(se~~) 

==s 00(3a)EMERGENCY_LANDING(a)~Agent_of_role(x,ct,a)~permit-e~rge~y-landing(x,a) 

GC6: vx) ~((~a)JO~~EY_CO~RO~a)~Agent_of_role(x,pZ,a)~o~-o~f~Z(x,a) 

* Oo(3b)(3y)EMERGENCY_LANDING(b)AAgent_of_role~,ct,b)Apermit-emergency-landing~,b~), 

GC7: (Vx) 0((3a)TAKE~OFF(a)~Agent~of~role(x,pl,a)) 
+ Oo(3b)((LANDING(b)vEMERGENCY_LANDING(b))rrAgent_of_role(x,pZ,b)), 

GC8: (\Jx) ~((3a)LAND~G(a)~Agent_of_role(x,pZ,a)) 

* 00(~3b)(EMERGENCY_LANDING(b)AAgent_of_role(x,pZ,b))), 
. . . . . . 

end activity. 
Fig3-8 An example of activity aggregation 

need to define the messages and the constraints that are not 
described in any of its constituent activities. These 
additional constraints will identify the object-flow control in 
a sequence of activity executions and the temporal ordering 
of message exchanges among the involved activities. 
Consider the global constraints in Fig3-8, GCl and GC2 
specify the conditions which must hold between the 
messages in activity AIR-TRAFFIC-CONTROL and the 
messages in activity TAKE-OFF. GC3 and GC4 identify 
the conditions which must hold between the messages in 
JOURNEY~CONTROL activity and the messages in 
activity AIR-TRAFFIC-CONTROL. GC5 states the 

conditions which must hold between messages in 
EMERGENCY-LANDING activity and messages in 
AIR-TRAFFIC-CONTROL activity. GC6 states some 
dynamic relationship between activities JOURNEY- 
CONTROL and EMERGENCY-LANDING. GC7 andGC8 
specify the execution sequence which must apply to 
activities TAKE-OFF, EMERGENCY-LANDING or 
LANDING for the same flow of participating objects. It 
means that once an airplane object participates in activity 
TAKE-OFF, then at some time in the future, it must also 
participate in either activity LANDING or activity 
EMERGENCY-LANDING, but the LANDING activity and 
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activity Passenger-plane-Traffic-Control 
agents ct: Control-tower, 

pl: Passenger-plane; 
Behavioural specialization-of AIR-TRAFFIC-CONTROL 

where Airplane = Passengerglane, 
TAKE-OFF = DEPARTURE, 
LANDING = ARFUVAL, 
. . . 

add constituent activity MIDWAY-STOP; 
. . . . . . 

end activity. 
Fig3-9 An example of combining activity specialization with activity aggregation 
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the EMERGENCY-LANDING activity can never happen at 
the same time to the same object. Cl 

Proposition 3.2 
Let the predicate act-aggregation( a$) hold if and only if 
activity pattern a has an activity aggregation relationship 
with activity pattern p. Then 
(A3) act-aggregation(@)r\act-aggregation@,j) 

* act-aggregation(cs3. 
(A4) act-aggregation(a,P)r\act-aggregation@,@ 

=3 a=p. 
Proof 
The proof follows immediately from Definition 3.4, the 
laws of set inclusion and logical implication, and rhe 
acyclicity [ 181 of the aggregation type hierarchy. 0 

So far we have defined two abstraction mechanisms for 
activity composition. They are activity specialization and 
activity aggregation. In fact, these two mechanisms may be 
combined within the activity model. The complete 
specification syntax of activity aggregation and activity 
specialization can be found in [ 191. 

Example: Fig3-9 provides an illustration. It defines 
Passenger-plane-Traffic-Control activity, which is a 
behavioural specialization of the aggregate activity 
AIR~TRAFFIC~CONTROL. 

Passengerglane-Traffic-Control activity (PTC for 
short) refines AIR-TRAFFIC-CONTROL activity (ATC 
for short) in a number of ways. First, the type of the agent 
Passenger-plane in PTC is a subtype of the corresponding 
agent type Airplane in ATC. Second, the constituent 
activities DEPARTURE and ARRIVAL in PTC are 
specialized activity patterns of TAKE-OFF and LANDING 
in ATC respectively. Thirdly, activity PTC has more 
constituent activity patterns than ATC, e.g., 
MIDWAY-STOP which is not included in activity pattern 
ATC. To specify the newly added constituent activity 
patterns such as MIDWAY-STOP, we introduce the 

keyword “add constituent activity” in the definition of 
activity specialization (see Fig3-9). •I 

We argue that by combining activity aggregation with 
activity specialization, a powerful mechanism for abstract 
implementation of communication behaviour in object- 
oriented databases results. As a consequence, the 
specification and implementation code of communication 
behaviour can be drastically simplified. Thus database 
programs, especially those for implementing object 
communication behaviour, may substantially be better 
understood and reused. 

4 Activities V.S. Entity Objects 

Activities and entity objects have a number of 
characteristics in common. For example, in order to 
distinctly identify a particular activity, we need to assign 
each activity with a unique activity identifier (we may use, 
e.g., the pattern name of an activity and the object identities 
of its agents as the signature of this particular activity). 
Also like entity objects, activities may have relationships 
with each other, and be composed of other activities. 
Finally, the behavioural relationships between activities are 
also realized through message exchanges between activities 
and their participating objects. 

However, activities differ conceptually from entity 
objects in a number of ways. Activities are dynamic 
“objects” which come into existence and disappear according 
to a set of transition rules, whereas entities, relatively 
speaking, are static object types, of which instances are 
created and deleted according to application specifications. 
Activities are introduced to explicitly specify the dynamic 
structure of objects and the behaviour of relationships 
between independent objects, and to model complex 
communication behaviour in terms of simpler behaviours. 
Whereas in the class/type definition, only the static 
structure and the behavioural interaction between objects of 
the same type or between objects of dependent types are 
explicitly identified. The behavioural interactions between 



m Sequentialization (symbol: t-) 

A sequence of activities means that these activities must execute in the 
a, b, c are to be executed one after the other in the order a before b and % 

iven order. Suppose activities 
before C. This can be 

expressed by “a k b k c *'. 

m Selection (symbol: [. _.. ,]) 
A selection from a set of activities permits only one to activate. We may use “[a, b, c]" rn denote that 
the execution of activities a, b, and c are going to be selectively synchronized. 

w Repetition (symbol: * or+) 

It allows specification of synchronization to be repeated. dc means that activity c1 can be repeated zero 
or more times, and c1+ m- that activiv cz can be repeated one or more times. 

w Concurrency (symbol: II) 

It allows the specification of concurrent synchronization. For instance, “( P II b ) /- C" denotes that 
activities a and b can be executed concurrently before activity c is invoked. 

Fig.53 Four fundamental synchronization schemes 

independent objects are either hidden inside several initiated and triggered. 
type/class definitions or implicit in certain sequences of 
method calls. Besides, constraints associated to a particular 
activity make it possible to describe the dynamic interaction 
and the sequence of message exchanges between objects of 
independent types and between activities. While constraints 
associated with an object type can at most specify the static 
or simpler relationships with the objects of other types, and 
the temporal order of the messages associated with the 
objects of the same type. Finally, an activity can access the 
participating objects only through messages (thus 
properties) which are used by these objects for supporting 
their roles of being agents in the activity. To manipulate 
other properties of the objects, some other activities and 
methods must be invoked for sending appropriate messages 
to them. A complex object may participate in multiple 
activities; this may result in a large number of methods in 
its public (type) interface. The activity specification actually 
factors this large interface into meaningfully related subsets. 
This is also a principal reason for stating that the construct 
“activity” is a valid abstraction mechanism for modeling 
object communication dynamics. 

5 Activity Model V.S. Event Model 

In the last decade many researchers have studied event 
modeling and process modeling for specification of object 
dynamics. In this section we briefly discuss the similarities 
and the subtle differences between the activity model and the 
event model. 

The similarities of the activity model and the event 
model are the following. 
(i) They both use the pre- and post-condition to specify 

the triggering and initiation of object behaviours; 
(ii) They both differ from the process model in the way 

that the process model has more interest on the 
operational aspect of each action and the sequence of 
actions but much less attention on how a process is 

(iii) Like processes, both of them supports the fundamental 
synchronization schemes (see Fig5-3). 

As the messages used in an activity may be synchronized 
sequentially or concurrently, these synchronization schemes 
can also be used to express the synchronization structure of 
message exchanges. 

Example: 
(l)Given two agents ct, pl, the synchronization structure of 
activity executions implied in Fig3-8 can be described by 

TAKE-OFF k JOURNEY 
k [ LANDING, EMERGENCY-LANDING 1. 

(2) Suppose we add messages change-speed(selfpr), change- 
direction(seif,pl), and change-altitude(self,pl) into the 
message set Msg(TAKE-OFF, Airplane) in Fig3-1. They 
will be triggered after a TAKE-OFF activity have received 
message corn-take-oflseg,y) from Airplane object and sent 
out message taken-off(self,ct,pl) to Control-tower object. 
The synchronization structure of message exchanges implied 
in TAKE-OFF activity is described as follows: 

s@e-check-ready&self) k request-take-oflct,self,)+ 
k permission-take-oflct,self,y) 
/- take-off-position(self,y) k corn-take-0fflself.y) 
k (taken-off(self,ct,pl) II change-direction(seKpl)* 

II change-speed(seZf,pl)* II change-aZtitude(se~pl)*) 
k change-ctr-status(se~pl,‘~ourney’~. 

However, the activity model conceptually differs from the 
event model. The activity model focuses more on the 
object communications and the relationships between 
sequence of communications, but emphasizes less on the 
result and outcome of a process and on what actions are 
triggered to react messages. Whereas the event model 

491 



concerns more with the outcome of a process and the 
actions undertaken within the process, but emphasizes less 
on how objects communicate with each other during a 
process and the relationships between series of actions, 
hereby usually lacking the “time dimension” inside an 
event. As a result, the mutual obligation and interaction 
dependencies implied in the communication and 
coordination of multiple agents are missing too. 

6 Conclusion 

We have presented an activity model for the abstraction, 
aggregation, and specialization of communication 
behaviours. Unlike most of the conventional object-oriented 
models, it advocates the explicit specification of 
communication behaviours in one place, instead of having 
them hidden inside several type/class definitions or implicit 
in certain sequences of method calls. We argue that this 
approach may result in substantial benefits, including 
declarative specification of communication behaviour at a 
high level of conceptualization, enabling of temporal 
inference, more effective integration of high level dynamic 
modeling with structural modeling, and a conceptual level 
support for lower level database transaction design, and 
consequently a higher degree of reusability and extensibility 
of the object-oriented design. 

Through the support of abstraction mechanisms for 
classification and composition of activities, the existing 
activity patterns can be combined to define complex activity 
patterns, and the generic activity patterns can be reused by 
different object types through activity specialization. 
Activity patterns can also be reused together with their 
agent types. Besides, using the activity model for 
specification of communication behaviour, allows to reduce 
the number of subtypes or subclasses, and to minimize the 
need for adding subtypes/subclasses and for object migration 
from subclass to subclass. 

Our main contribution in this paper is the formal 
introduction of behavioural abstraction mechanisms: 
activity aggregation and activity specialization for modeling 
object communication behaviour. Thus in defining 
aggregate or specialized activity, only new behavioural 
characteristics need to be specified, the others can all be 
“reused” or “inherited” from the existing activity 
specifications. It is also possible to override some 
behaviour characteristics such as replacing agent types by 
their subtypes, enforcing stronger constraints on initiating 
an activity, the ordering of message exchange, and the 
execution sequence of activities. The concept of activity 
aggregation and in particular its combination with activity 
specialization, to our knowledge, have so far not been 
reported in the literature. 

Another contribution of the framework presented 
herein is an attempt to integrate the database object 

classification structure with the communication structure. 
Due to the space limitation, the demonstration of how such 
an integration would enhance the reusability of database 
programs, and how it contribute to an object-oriented 
design environment is omitted in the current presentation, 
and may refer to [19]. Clearly, classes enable component- 
level and framework-level reuse, and the activity model 
enables communication-based reuse. We quite agree with the 
statement made by Wegner in [32] that “providing cz 
computationalframeworkfor classification is comparable in 
its practical importance and research interest to providing a 
computational framework for communication”. 

The work on the present activity model in the areas of 
formal theory, design methodology and tool support 
continues. Studies on the formal theory includes the 
theoretical foundation of the activity model, the consistency 
checking of the activity schema with the type/class 
definitions, and the expressive power of the activity schema 
as a knowledge representation language in the domain of 
modeling object dynamics. We are also interested in 
developing a transformation engine that maps the declarative 
activity specification into the procedural specification of 
database transactions or stored procedures. The issues of 
monitoring activity constraints or invariants and the 
temporal pattern of communication processes, such as 
homogeneous activity, majoritative activity, occasional 
activity, and holistic activity, merit attention. 
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