
Integrity Maintenance in an Object-Oriented Database

H. V. Jagadish
Xiaolei Qian

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT
We present an approach for integrating inter-object constraint
maintenance seamlessly into an object-oriented database
system. We develop a constraint compilation scheme that
accepts declarative global specification of constraints,
including relational integrity, referential integrity, and
uniqueness requirements, and generates an efficient
representation that permits localized processing. We
demonstrate the feasibility of our approach by designing a
constraint pre-processor for O*, the programming language
interface to the Ode object-oriented database.

1. INTRODUCTION

By its very definition, a database must serve as a faithful
and incorruptible repository of data. Applications that consult
the database expect a “warranty” that the database is
supplying the correct values. As such, it is not surprising that
much attention has been paid to the maintenance of integrity in
relational databases. Object-oriented databases are rapidly
gaining popularity, and show a promise of supplanting
relational databases [15]. It is therefore imperative that we
explore the maintenance of integrity in object-oriented
databases.

By virtue of object orientation, some integrity constraints
are represented naturally and maintained “for free” in an
object-oriented database, in that they are directly captured by
the type system and the object class hierarchy. Typical
examples of this sort are the constraints that every employee
is a person and that every child of a person is a
person. Other forms of integrity constraints apply to a single
object, and clearly belong as part of an object class
specification. An example of such a constraint for a person
object is that years-of-schooling be at least 5 less than
age. See [II] for a discussion of how such intra-object
constraints can be integrated into an object-oriented database
programming language.

Permission to copy wiOzoutfee all orpori of this material ir grantedprovided
that the copia are not made or divwibuted for direct commercial advantage.
the VLDB copyright notice and the title of the publication and its dote
appear. and notice ic given that copying is by permission of the Very Large
Dato Base Endowment. To copy othenviw. or to republish, requirec o fee
andlor special permission from the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada, 1992

However, by taking the object-centered position, it also
becomes unnatural and difficult to represent and maintain many
inter-object constraints, which apply across objects. For
example, we may have a constraint that the age of a person
must be at least 12 greater than the age of any child of
person. This constraint compares the age attributes of two
objects: a person and the person’s child. (Actually, it compares
pairwise the age attribute of a person with each of the
person’s children). When an integrity constraint enforces some
relationship across object boundaries in this fashion, it is no
longer clear how or where to record such a constraint in an
object-oriented system. For instance, even though the
constraint above was stated in terms of the age of a person with
respect to that of the children, there is a complementary
constraint on the age of a person with respect to that of the
parents. This conflict, between supporting shared access for
many applications and facilitating efficient representation and
localized processing for a specific application, often results in
the redundant representation of different views of the same
knowledge in object-oriented databases [26].

In Section 4, we develop a constraint compilation approach
to resolve this conflict. We show how inter-object constraints
can be stated declaratively once and then integrated with the
rest of the object-oriented system by a compiler.

A major motivation for the work described in this paper is
that given the flexibility and power of object-oriented systems,
it should be possible to capture within the system integrity
constraints that traditionally, in a relational system, have not
been part of the database itself. At the same time, a key issue
in the maintenance of integrity wnstraints is a careful
circumscription of the set of constraints to be verified after
each update. The recommended approach in an object-oriented
database [l l] is to associate constraints with classes, and upon
the update of an object to check each constraint associated with
its class and none others. The constraint compilation approach
we develop here generates efficient representations and
localized consistency maintenance, by appropriately
transforming a specified declarative constraint and associating
it with exactly the relevant set of class definitions, where each
of a small number of relevant constructs can efficiently be
checked (procedurally). Our methodology encourages reuse,
since after schema modification the constraints need only be
recompiled - there is no need to respecify them.

A few special cases of inter-object consnaints are of
particular importance. One is refutional integrity, or the
maintenance of “inverse” pointers. In an object-oriented
database, a binary relationship between two objects is not
represented as a single tuple in a relation, but rather as a

469

reference, at each of the two objects, to the other object
involved in the relationship. If a change is made in one
reference (in one object), a corresponding update is usually
required in the other reference to maintain integrity. For
example, when a man and a woman marry, they record a
reference to each other in their respective wife and husband
fields. Observe that two separate updates are required: one in
the man object and one in the woman object. Similarly, if they
decide to divorce at some later date, an update is once again
required in both objects: an update only in one would violate
relational integrity. Relational integrity is discussed in depth in
Section 5.

The second special case of inter-object constraints is
referential integrity. This issue has been studied extensively in
the context of relational databases and has recently been
incorporated in some commercial products. In object-oriented
terms, we wish to ensure that a reference to an object in the
database is always valid. Referential integrity is studied in Sec.
6.

A third special case of inter-object constraints is
uniqueness. Often some attribute is required to have a unique
value for every object (in a class). Such uniqueness constraints
are considered in Sec. 7.

We begin in Section 2 with a quick review of O++, the
primary programming language interface to Ode, describing in
particular its constraint facilities. We introduce a language in
Section 3, CIAO+t, which is a small extension of O-H,
suitable for declaratively expressing integrity constraints.
Additional CIAO++ constructs are discussed in Sections 5-7.
In Section 8, we discuss how the ideas of Sections 3-7 can be
integrated with the Ode object-oriented database and the 0++
language [11.

Related Work

A constraint maintenance facility has to answer two types
of questions. Given a constraint, (1) when is the constraint
violated? (2) how to fix the problem when there is a constraint
violation?

To answer the tirst question, a constraint compilation
approach is taken in [7,12,13,19,22]. State transitions are
abstracted into sets of inserted and deleted tuples. Assuming
that the consaaint is true before a state transition, the objective
is to derive an equivalent condition to be checked after the state
transition.

When state transitions are specified as transaction
programs, constraint maintenance takes the form of verifying
that a transaction preserves the truth of a constraint. Various
programming logics have been used, such as Hoare Logic [101,
Dynamic Logic [4], and Boyer-Moore Logic [23].

Constraints expressed in logical formulas are often very
expensive to check. Finite differencing techniques have been
used in [3,16,20] to transform complex constraint checking to
simple data manipulation. A more general constraint
reformulation approach is taken in [21], which simplifies
constraint formulas using knowledge about database semantics
and organization.

To answer the second question, input from database
designers is often needed to decide what to do when a
constraint is violated. Query modification [U] represents an
early attempt to handle this problem, where a state transition is
aborted if the constraint is not properly maintained. This
approach has evolved into various constraint monitoring
schemes that either require database designers to specify
maintenance actions as part of the constraint [S], or query
database designers interactively to acquire such actions
15.6.181. In [24], transaction compilation rather than
transaction execution is aborted if a potential constraint
violation is detected.

Some special cases of integrity maintenance in an object-
oriented database are discussed in [2.17]. However, our work
represents the first comprehensive approach that combines
isolated constraint maintenance techniques, in particular
constraint compilation, finite differencing, auxiliary data
structures, and monitoring, into an integrated constraint
maintenance facility for object-oriented databases. Constraint
maintenance in object-oriented databases differ from that in
relational databases in three critical aspects, which makes the
techniques developed for relational databases not directly
applicable to object-oriented paradigm.

Firstly, control in object-oriented databases is localized
rather than centralized - there is no centralized place where
constraints can be stated, reasoned abous and maintained.
Instead, every object is responsible to maintain the constraints
attached to it with respect to changes to its attributes. Our
constraint compiler is capable of compiling every global
constraint into severa local constraints attached to different
objects, such that, by maintaining the local constraints instead,
the global constraint is guaranteed to be valid, and redundant
maintenance effort is minimized.

Secondly, the object-oriented model is much richer than the
relational model in terms of data modeling constructs. Every
modeling construct supports the maintenance of some implicit
constraints. By transforming explicit constraints stated by users
into implicit constraints embedded in the object-oriented
hierarchy, constraint maintenance is more efficient. Our
constraint compiler is capable of compiling explicit constraints
into auxiliary structures such as new object classes, new
atuibutes. and new object references, such that non-local
access is minimized.

Thirdly, the object-oriented model supports the attachment
of monitors to individual objects. Our constraint compiler
utilizes this feature, together with finite differencing
techniques, to compile global corrective actions into local
triggers in 0~ that efficiently maintain the global constraints.

The approach suggested here is to reduce inter-object
constraints into sets of equivalent local constraints, and is
exactly the opposite of the approach suggested in [2].

2. OBJECTS IN 0++: A BRIEF REVIEW

The O++ object faciliv is based on the C++ object facility
and is called the class. Volatile objects are allocated in volatile
memory and are the same as those created in ordinary
programs. Persistent objects are allocated in persistent

470

memory and they continue to exist after the program creating
them has terminated. Each persistent object is identified by a
unique identifier, called the object identity [14]. The object
identity is referred to as a pointer to a persistent object. For
example, here is a specification of the classes Dept. Emp, and
Mgr:

class Dept {
int budget;

public:
char dname[20];
persistent Mgr *head();

//reference to dept. head object
persistent Emp *emps[[MAX-EMPS]];

//double brackets denote unordered set
I:

class Emp i
int salary :

public:
Name name;
char sex;
int Sal0 const {return salary;)
persistent Dept *dept;
Emp(Name n, char s, int salfig,

persistent Dept *d);
void update-salarycint new-salary);

constraint:
sex == ' F' I I sex == 'M' ;
(Sal0 >= 10000 II Sal0 == 0):

update-salary(O) ;
);

class Mqr: public Emp {
Mgr(Name n, char s, int salfig,

persistent Dept *d);
);

O-H provides facilities for associating constraints with an
object. These are specified as part of a class definition, and are
treated as members of the class. The specified constraint
conditions are checked every time an instance of that class is
updated (through a public member function), a new instance is
created, or an old instance is removed. If the condition is
found to have been violated, the constraint “fires”, executing
the action part associated with it, if any. After the action part is
executed, the constraint is checked again. If it is still not
satisfied, then the transaction attempting the update causing the
constraint violation is aborted, and all its updates undone. The
order in which constraint conditions are checked and actions
executed is implementation dependent, but repeatable.

The syntax for specifying constraints in Ott is:

constraint:
constmint~condition 1 [: action,] ;
constraint-condition, [: action,] ;
. _ .

For instance, there are two constraints in the defmition of class
Emp. The first specifies that the sex field, which we know is
of type char, should have a value exactly one of F and M. The
second constraint also has an action part, and specifies that the
salary of an employee should be recorded as zero, if it does not
meet the minimum requirement of 1CKKKl. Observe that the
constraint condition is satisfied once the salary has been
recorded as zero.

The constraint facility provided in O-+-t is intra-object in
that when an object is updated only the constraints associated
with is through its class definition, are checked. This
restriction has been placed for reasons of efficiency, as well as
in accordance with the spirit of localized processing of object-
oriented programming. It is not practical to check every
constraint with every object, every time that any update is
made in the system. Note that there is no restriction on
referencing (or even modifying) other objects in the condition
or action part of a constraint.

Constraints can be hard or sofi. Hard constraints are
checked as soon as the object is updated, and must be satisfied
immediately. Soft constraint checking is deferred until the end
of the transaction causing the update. Inter-object constraints
almost always must be soft since the constraint may be violated
after one object has been updated, but before the other has. In
this paper, we shall assume that all constraints are soft - some
of these may later be hardened, as an optimization.

Transactions in Ott have the form

trans {

)

Transactions are aborted using the tabort statement. The
macro old (X) can be used within a transaction, to return the
value of X at the beginning of the transaction, where X is any
persistent object. Similarly, the macro changed (X) returns
TRUE if X has been modified from old (X) within the course
of the current transaction, and returns FALSE otherwiss.

3. LANGUAGE DESIGN

C++ is a procedural language. Ott, being based on C++,
is also a procedural language, except for the introduction of a
set facility, and declarative intra-object constraints and triggers.
However, 0++ does not provide a declarative mechanism, for
instance, to express a constraint of the form: “there exists p in
set S such that e(p)“, for some logic expression e. An explicit
temporary variable is required that “collects” the evaluation of
the expression for each element of the set. An Ott routine to
evaluate this condition may be:

1
cond = FALSE ;
for (p in S) (

COR" = cond I I e(p) ;
I
returr! cond ;

)

We believe that there is a value in having a cleaner and
more declarative expression of constraints, both in terms of a
user understanding code that has been written, and in terms of a
compilation process that has to recognize particular constructs
to be able to apply the transformation procedure or any of the
optimizations discussed below. To this end, we define a
language CIAO-+-t (short for “Constraints In An 0~
program”). CIAO++ is a (minor) extension of O-t+, just as
0++ is an extension of C+t. In fats CIAO++ programs
“look” exactly like O++ programs, except that more powerful
and declarative constraint specification facilities are available

471

to the user. A simple “compiler” accepts CIAO++ code and
emits Ott code. See Sec. 8 for an overview of this compiler.
In this and the next three sections, we describe CIAO-H
constructs as we go along.

The primary new functionality required is the ability to
identify the two types of quantifiers. We do this by means of
the keywords foreach and thereis, standing for universal
and existential quantification respectively. All Ctt logic
expressions are also 0-H and CIAO++ logic expressions. A
simple BNF for CIAO++ logic expressions is as follows:

CIAO++-log-exp := C++-log-exp 1
foreach variable in set (CIAO++-log-q) 1
therei s variable in set (CIAO++~log~eq)

It is easy to see that the set of logic expressions that can be
defined using CIAO+t is exactly the set of range-restricted
prenex formulasi. A couple of examples are given below, with
regard to the classes Emp, Dept, and Mgr defined in the
previous section.

foreach d in Dept (thereis e in d->emps[[j:
(e->sal() > d->head->salO/Z))

In words, the constraint above (we shall call it constraint A)
says that in each department there is at least one employee
whose salary is more than half the department head’s salary.
We now specify another constraint, called constraint B, to the
effect that there is at least one department in which each
employee’s salary is more than one half the manager’s salary.
This is written:

thereis d in Dept (foreach e in d->emps[[]]
(e->sal() > d->head->sal() /2))

In Ode, constraints have action parts associated with them,
to be executed if the constraint condition is violated. It is
sometimes convenient to refer to the quantified variable(s) in
the action part as well. We permit this in CIAO+t, with
respect to universally quantified variables. The action part is
executed for each instantiation of the universally quantified
variable for which the constraint condition is violated. Thus,
we could fix a violation of constraint A, for instance, by
lowering the salary of the department head. We would write
this:

foreach d in Dept (thereis e in d->emps:[]]
(e->sal() > d->head->sal() /2) 1:

lower salary (d->head) ; -

A central principle of CIAO-H is that inter-object
constraints can be associated with any of the objects that
participate in the constraints, or even specified separately in a
distinguished constraint specification file. The equivalent Ott
program will have this constraint divided into an equivalent set
of intra-object constraints, one constraint being associated with
each relevant class definition.

In Ott, constraints, like other members of a class, are
permitted to reference private members of the specific
object they are associated with. In CIAO++, an inter-object
constraint, even if physically incorporated into a class
definition, is not a member of the class, and is not permitted to
reference private or protected members. Its association with
the class is merely a notational convenience.

In addition to the general declarative inter-object constraint
construct, CIAO++ also offers convenient short-hand facilities
for describing relational integrity, referential integrity, and
uniqueness. A description of these facilities is deferred until
Sections 5, 6, and 7 respectively. First, we develop a theory of
inter-object constraint maintenance.

4. CONSTRAINT COMPILATION

Inter-object constraints are expressed in CIAO++ as
described in the previous section. Our task is to implement
each inter-object constraint as an equivalent set of (intra-object)
constraints to be associated with the appropriate class
definitions, that need be checked only when an object of that
class is updated, created, or deleted. Clearly, it is sufficient,
though unnecessarily profligate, to associate each such inter-
object constraint with every class definition. On the other
hand, it may not be sufficient to associate an inter-object
constraint only with the classes mentioned explicitly in its
quantification, because an object mentioned in the constraint
may refer to objects in other classes, and changes to the
referenced objects could violate the constraint.

In the first subsection below we develop a transformation
technique that correctly associates an inter-object consuaint
with the appropriate classes. The following subsections present
useful optimizations.

4.1 Identifying Object References

We distinguish two kinds of object references in an inter-
object constraint: those appearing explicitly in the constraint
expression, and those appearing implicitly in user-defined
functions that are called within the constraint expression. A
reference expression has the form e.a, where e is an expression
that evaluates to an object, and a is an attribute name. A
reference expression e.a is primitive if e itself is not a reference
expression.

4.1.1 Explicit References

The first stage, in correctly associating an inter-object
constraint with the appropriate classes, is to identify all the
classes mentioned in explicit object references. To do this, we
transform an inter-object constraint into a logically equivalent
one such that all objects referenced explicitly in the constraint
expression are “brought to attention” in the quantification.
The transformation is defined as follows.

Let (Q...)’ denote a sequence of zero or more
quantifications. Every inter-object constraint has the form
(QoI~~,) ... (Qo,eS,)e(o,. o,), where Q is either V
or !I, n > 0, e is a (quantifier-free) boolean expression, oi, . ,o,
are all the variables occurring in e. and Si , . . . , S, are set-
valued expressions. For each constraint of this form, we first
transform it into

472

(The symbol I‘-+” stands for logical implication, and is
equivalent to writing 7P VR).

Then the following transformation step is applied
repeatedly until no more application is possible. Suppose the
consuaint has the form
(Qol~.Sl) ---(Qo,ES,)(Q-.-)*(P+R) for some m<n.
and there is a non-primitive reference expression (e. u i).a a in
R such that e.ui is primitive. The result of a single
transformation step with respect to e.a, is
(Qol~Sl) ... (Qo,~S,)(tlo~s)(Q...)*[e.u~/o]
(PAo=e.u,+R[e.u,/o]). whereSistheclassofe.u,,ois a
fresh variable not occurring anywhere in the constraint before
the transformation step, and (Q .*.)‘[e.u,lo],R[e.u,lo]
denote the expressions obtained from (Q . . .)‘*R respectively
where all sub-expressions of the form e.u, are replaced by
object reference o.

Lemma 1:

The transformation process applied to inter-object constraint
(Qol~s,) -.+ (Qo,eS,)e(ol,.. ..o,> produces a
constraint that evaluates to true iff the original constraint does.

Proof:

We prove by induction on the chain of transformation steps.
The base case is obvious. Let the constraint before and after the
n” transformation step respectively be:

(Qol~s,) . . . (Qo,E S,)(Q . . .)‘(P+R) (1)
(Qol~s,) ... (Qo,~Sm)(~o~WQ ... 1’

[e.ullo](PAo=e.ul-tR[e.a,lo]) (2)

and P does not contain any reference expression occurring in R.
By the induction hypothesis, (1) evaluates true iff the original
constraint does. Notice that e.ui must be non-null (else we
cannot evaluate e.ul.uz). That is, (30ES)(o=e.ul) is true.
Hence (1) is equivalent to

(Qol~s,) .. . (Q~,ES,)((~OES)(O=~.~,)+
(Q *-.)‘V-+R))

which in turn is equivalent to

(Qol~s,) .. . (Qo,E.S,,,)(VoES)(o=e.ul+
(Q . . .)‘(P+R)[e.ul/o])

Since e does not contain reference to any variables quantified
in (Q . . .)*, and P cannot contain reference expression e.u,,
the above formula is equivalent to (2). 0

This transformation captures all explicit object references
by identifying each with an (additional) universal quantifier.
There are no non-primitive reference expressions in the new
constraint expression, and only non-primitive reference
expressions could possibly denote object dereference.

We call the form of a constraint obtained after the above
transformation process, its canonical represent&m. The
canonical representation of a constraint must be associated with
every object class that is quantified in it either universally or
existentially.

4.1.2 Implicit References

Next, we need to identify aIl the implicit object references
in user-defined functions called (directly or indirectly) in the
constraint expression. We cannot expect the same
transformation method to work here for several reasons. First,
we cannot always expand function calls by inline code due to
the existence of recursive functions. Second, reference
expressions in user-defined functions might involve local
variables, which are meaningless outside the function context.

Instead in the case of implicit object references we simply
associate the constraint with the class of each of them.
Assuming that no user-defined predicate functions are
compiled separately, this step captures all implicit object
references, provided it is applied recursively through all
function definitions encountered. Any separately compiled (or
library) functions must advertise what classes they refer to, and
we associate the constraint with each of these classes. The
above discussion leads to the following theorem.

Theorem 1

To guarantee the validity of a consuaint, it is sufficient to
associate its canonical representation with every class that
either is quantified over in the canonical representation, or is
the class of an implicit non-primitive reference expression.

For example, the two constraints shown in section 3.2 are
transformed as follows. The canonical representation of
constraint A is:

foreach d in Dept (foreach m in Mgr
(thereis e in d->emps[[]]

(! Cm == d->head) / 1 e->sal() > m->sal()/i)))

and of constraint B is:

thereis d in Dept (foreach m in Mgr
(foreach e in d->emps[[]]

(!(m == d->head) II e->salO > m->sal()/2)))

Both constraints must be attached to all three classes, Dept,
Emp, and Mgr.

While the canonical m-presentations of these constraints are
useful in correctly identifying the classes with which the
constraint must be associated, more efficient representations of
the constraints are clearly possible. In fact, no human
programmer, having identified the classes with which to
associate these constraints, would proceed to specify them in
the baroque form of the canonical representation. In the next
several sub-sections, we present optimizations that may be
applied to the canonical representation of a constraint afrer if
hus &en instuntiuted in u class definition. The attempt is to
obtain (constraint specification) code from the constraint
compiler that is of quality comparable to what a human
programmer could have produced, were the human to
determine all the classes a constraint should be associated with
and write each instantiation of the constraint by hand.

4.2 The One-Copy Property

It is possible that there is more than one range variable
quantified over the same class after the transformations of the
previous step. In that case, only one copy of the constraint
need be associated with the class definition. There is no value

473

in repeating the same constraint multiple times. We’ll refer to
this as the one-copy property.

Note that the onecopy property arises from the fact that a
constraint in its canonical representation is perfectly symmetric
with respect to all the quantified variables that participate in it,
in the sense that the two or more constraints being associated
with an object class due to two different quantified variables or
implicit reference expressions are logically equivalent (in fact
they are identical). If some transformation, such as most of the
optimizations presented below, loses this symmetry, then the
one-copy property no longer holds.

43 Optimization via Specialization

Inter-object constraints are in general very expensive to
maintain, and the more quantifier nestings there are in a
constraint, the more expensive it is to check its validity. For
the class of inter-object constraints of the form (VOE S)e(o),
the constraint can be specialized with respect to the object to
which it is attached. Speci&cally. the constraint associated with
class S could be: e[olthis], where this refers to the current
object (that is being changed). (Recall that the notation a/b is
meant to denote the replacement of a by 6). Thus the cost of
maintaining the constraint is reduced by 1 S 1 times because the
universal quantification over S is removed2. This simplification
is wrrect because the constraint is checked for validity
whenever some object of S is changed. Assuming that the
database is valid before the change, other objects in S, which
have remained the same, do not have to be checked against this
change. This leads us to the following theorem:

Theorem 2

With respect to changes in an object o’ of class S, if the
database is valid before the state transition, then the original
constraint (VocS)e(o) is valid iff the simplified constraint
e[o/o’] is valid, after the state transition.

For example, constraint A, when attached to the Dept class, is
specialized into the fommla (Al):

foreach m in Mgr (thereis e in emps[[l I
(!(m == head) i I e->sal(l > m->salO/2))

As stated above, only the outermost universal quantifier
may be removed by means of this optimization. However, we
know that universal quantifiers commute. So the general rule is
to take the copy of the constraint associated with some class
and to see if, by commuting quantifters, it can be written in a
form with the universal quantifier over this class being
outermost. If so, this quantifier can be eliminated, as discussed
above.

Once a universal quantifier is eliminated using this
optimization, the constraint is no longer symmetric, and
therefore the one-copy property no longer holds. To see why,
let the wnstraint
~iio,~s,~~ao~~~~~~~,o~~, and S,=S,. The wnstrain~
to be associated with S, and S2 (they happen to be the same)
are: (tlo2ESz)e(this,02) and (VoicSi)e(o,,this)
respectively, which are not equivalent in general. Given an
inter-object constrain4 if S,,S, are all the classes
mentioned in the quantification that are equal to S and are not
nested in any existential quantification, then the cost ratio
between checking the one unsimplified constraint and checking

I! ISil
the m simplified constraints would be + , which is

ISI
izl,! I sj I

equivalent to -_ The decision on whether to use the
m

simplified version depends on whether this wst ratio is greater
than one, given that size information about object classes is
available. Typically, one expects IS] >> m, and it is
worthwhile to use the simplified version.

4.4 Optimization via Variable Binding

The transformation procedure applied to capture all the
classes with which a constraint is to be associated introduces
universal quantifiers, as we saw above. Once the transformed
constraint has been associated with appropriate classes, it is
often possible to “undo” some of the transformation
individually for each instantiation of the constraint in a class.
By this means, the extra universal quantification can often be
eliminated altogether. To be more specific, if a constraint
associated with some particular class has the form
(Q, ...)*(VOES)(Q~ ...)‘(o=eAP+R) and o=e does
not contain any variables quantified in (Q2 . . .)‘. then it can
be transformed into the equivalent form
(Q, . ..)‘(Q2 . ..)‘(P+R)[o/e]. The correctness of this
optimization is guaranteed by Lemma 1.

For instance, constraint A, when associated with class
Dept. can be simplified further after the optimization via
specialization shown in formula A2, and written as follows:

thereis e in emps[[]]
(e->sal() > bead->sal()/2)

Constraint B, when associated with class Dept, can be
simplified to:

thereis d in Dept (foreach e in d->emps[[l!
(e->salO > d->head->sal()/2))

For instance, the same constraint A, when attached to the Mgr
class, is specialized into the formula below by commuting the
universal quantifiers on classes Dept and Mgr (A2):

foreach d in Dept (thereis e in d->emps[[ll
(! (this == d->head) I / e->sai() > sa10/2))

2. Wewe ISIrodmotcthecardinaliryofasdS

This simplified form is exactly the same as the original
specification, so it may appear that all our work thus far has
been superfluous. Note, however, that this simplification is not
possible in the case of consnaint A associated with class Mgr.
The transformation technique permitted us to identify these
classes, and to associate the correct constraint with all of them.

4.5 Optimization via Redundant Data

For another class of inter-object constraints of the form
(306 S)e(o). the efficiency of maintaining its validity may be
improved by maintaining redundant data. We create a variable

474

S’ whose type is set(S), and an object O’E S is a member of S’
if and only if e(o’) is true. We can replace the original
consuaint by two constraints: (Eloe S)(OE S’) and
(Uo~S)(oeS’oe(o)). The action part of the latter is such
that o is inserted into (deleted from) S’ whenever e(o) becomes
true (false). Given that S’ is initialized appropriately, the
action part correctly maintains the validity of the second
constraint. We thus have the following theorem:

Theorem 3

The original constraint (30ES)e(o) is true iff the two
constraints (30~ S’) and (tto~ S)(oe S’oe(o)) are both true
for some YES.

Any class to be associated with the original constraint is
instead associated with the second constraint above. S is
associated in addition with the first conswaint above. Other
optimizations can be applied to these constraints. In particular,
the optimization of Section 4.3 is often applicable to the the
second constraint associated with S.

For example, constraint B can be simplified by the
introduction of a class Set of-Dept. and an object,
const B Dept. instance of this class. Each object of this --
new class represents a set of (references to) departments3.
With class Dept we associate the constraints:

thereis d in Dept (d in const-B-dept) ;
foreach e in emps[[]]

! (e->sal() > head->sal()/2) :
const B dept += this ; --

! (foreach e in emps[[]]
! (e->sal() 1 head->sal()/2)) :

const B depr -= this ; --

Constraint B associated with other classes, must also be
transformed for this to work. For instance, with class Emp, we
must write (recall that the d in the action part refers to the
specific departments for which the given constTaint condition is
violated):

foreach d in Dept (foceach e in d->emps[[]]
! (e->sal() > d->head->sal()/2)):

const B dept += d ;
foreach d-in Dept ! (foreach e in d->emps[[]]

! (e->sal() z d->head->sal()/2))) :
const B dept -= d ; --

With the original constraint, there is no integrity
maintenance overhead to create objects in the existentially
quantified class that we try to remove, but it costs 1 S 1 to delete
an object in S. With this optimization, the overhead when an
object is created in S would be the same as the cost of
evaluating e to check if it is also in S’, while deleting an object
in S takes constant time to check if set S’ is non-empty. Let 1 P 1
be the cost of evaluating the (quantified) logic formula to
determine membership in set S’. Usually IP I>> 1 since
evaluating the condition may involve iterating over other sets.
Let ISI, IS’lbethesizesofthesetsSandS’. Clearly, Is’IsIsI

3. Opator += has @,c semantics “add IO su if not already an element”. and
operator -= has the semantics “if an element of the set, mn~ve”.

. The total cost without the optimization for x insertions and y
deletions is y * 1 S 1 * 1 P I. The total cost with the optimization is
x*IPl+y*IS’I. s 0. statistically, this optimization is of value
when x*I~l+y*l~‘l<y*I~I*l~l. TCS is certainly the case
when ~*IP~+~*Is~=c~*IsI*IPI. Since lpl>>l, the atmve
inequality holds when x c y* 1 S 1 . The cost of maintaining the
constTaint with respect to changes in other classes is not
affected. Therefore, this optimization is likely to be of value
unless the expected number of insertions is greater than the
expected number of deletions by a large factor.

5. RELATIONAL INTEGRITY

5.1 Basics

Consider a binary relationship that is known at schema
definition time. In a relational database, it would be stored as a
table with two columns, each column holding a foreign key
representing one of the participants in the relationship. In an
object-oriented database, this relationship (assuming it is
known at schema definition time) is stored as a directional
reference (or set of references) from either participant in the
relationship to the other.

When such a relationship is to be updated, multiple updates
have to be performed, one for each participant in the
relationship, giving rise to the possibility that the relation is
recorded differently at the different logical locations.
Relational integrity in an object-oriented database is the proper
maintenance of relationships recorded at multiple logical
locations, ensuring that the recording is consistent.

For example consider a “husband-wife*’ relationship. In a
relational database, this would be stored in a table with each
couple stored as a tuple, with the husband key (name or other
identifier) in one column, and the wife key in the other column.
In an object-oriented database, corresponding to this tuple, the
husband object would have the wife’s id recorded in the wife
attribute, and the wife object would have the husband’s id
recorded in the husband attribute. Relational integrity ensures
that if A records B as his wife, then B records A as her husband
and vice versa.

There is no way to express an n-ary relationship directly in
an object-oriented model. There is also no need, since any n-
ary relationship can be expressed as a set of n binary
relationships, one between each participant in the original
relationship and a special “relationship” object. As such, we
shall focus on binary relationships.

Whenever, for some objects a and 6, and some directional
relationship R, we say a R b. we also imply that b R-’ a
holds. R-’ is called the inverse of R. For example if R is the
relationship “manager of ‘, then R-’ is the relationship
“managed by”. We know that if a is the manager of b, then b
is managed by a, and vice versa. Observe that R = (R-l)-‘.
In the example class definitions we have been using, this
relation is between the attribute dept in class Mgr and the
attribute head in class Dept.

5.2 CIAO++ Constructs

We provide a facility for declaring the inverse of an
attribute in O+t as follows:

475

typeattr inverse inv-attr :

Thus. wherever an attribute is being declared in the defmition
of some class C, its inverse can also be specified. For such an
inverse specification to be meaningful, the ‘ype must be of the
form “class-name *“. The attribute itself may be an
individual value, a set, or an array. The class class-name must
have an attribute named inv-attr. inv-attr may be an individual
value, a set, or an array, but in all cases its type must be a
reference to the current class. The declaration above is
understood to mean that C.atrr and class-namehv-attr are
inverses of each other. That is, each attribute is a directional
representation of the same relation, (pointing to the other
object), with the two attributes expressing the relation in
different directions4.

Thus far, our attention has been focussed solely on the
condition part of an inter-object constraint The action part has
not been paid much attention, and has been specified just as in
0+-t. Here, for the iirst time, we would like to have a
convenient shorthand notation for different action possibilities.
We handle these by introducing the keywords ripple and
abort, meaning respectively that the action is to fix the
reverse pointer and that the action is to abort the h-ansaction.

A declaration of inverse is required in the definition of only
one of the two attributes involved in the inverse relationship.
That is., if A declares B as its inverse, B need not declare an
inverse, but if it does, that is line too, as long as the inverse it
declares is A and not anything else. By default, the action part
of one applies to the other as well. However, it is permissible
to have two different action policies for the two directions. See
discussion in section 5.3.

A few sample inverse declarations are given below:

class Dept {
. . .
Mgr* head0 inverse dept abort ;
Emp* emps[[5011 inverse dept ripple ;
. . .

class Emp {
. . .
Dept* dept inverse emps[[]] abort :
Emp* mentees[[lO]] inverse mentors ripple ;
Emp* mentors[[2]] ;
Emp* officemates[[411

inverse officemates[[]] abort ;
. . f

The first inverse declaration above relates a manager and
the department he or she heads. Notice that head () is a
computed attribute. The second inverse declaration relates
employees to the department they work in. This is a many-one
relation. The third inverse declaration (the first one in Emp)) is

4. Our facility for declaring inverses is similar to the inverse-member
facility in ObjectStore [17]. The diffezrnce is that OUT facility is not a special
ad hoc comuuction. but rather syntactic sugar on top of the @mral inter-
object ccnstraint facility.

the complement of the previous declaration. Only one of these
is required. However, the actions specified are different in the
two directions. If a Dept object modiies its set of
ews[[ll. then a corresponding modification is
automatically made to the dept attribute of each employee
affected, as part of constraint maintenance. On the other hand,
an Emp object is not permitted to change its dept attribute
unilaterally: an attempt to do so will cause the transaction to
abort.

The next inverse declaration is with regard to a many-many
relationship between mentors and mentees. Observe that the
inverse was declared only with one of the two attributes
involved - mentees. There is no need to declare an inverse
with mentors as well. Finally, we declare officemates
to be an inverse of itself; that is, if a records b as an oflicemate
then b must record u as an officemate as well.’

5.3 Maintaining Relational Integrity

Inverse declaration in CIAO+t is a request to maintain
relational integrity. In general, each relational integrity
constraint is expressible as a pair of constraints in the canonical
form of the previous section, with both consm%rns in the pair
quantified identically. Consequently, the quantifier-free logic
expressions can be combined to form a single conjunctive
expression. For instance, the second relational integrity
constraint in the example above is expressed by the pair of
constraints:

foreach e in Emp (foreach d in Dept
((d != e->dept) II (e in d->emps[[]]))

foreach e in Emp (foreach d in Dept
(!(e in d->emps[[lll I! (d == e->dept)i)

These can be combined and written:

foreach e in Emp (foreach d in Dept
((Cd != e->dept) II (e in d->emps[[]])) &&

(!(e in d->emps[[]]l II (d == e->dept))))

or equivalently,

foreach e in Emp (foreach d in Dept
((Cd != e->dept) && !(e in d->emps[[ll)) II

((d == e->deptl &6 (e in d->emps[[ll)l))

Once the relational integrity constraint is placed in this form,
all the optimizations discussed in the preceding section can be
applied.

If the action associated with a relational integrity constraint
is to abort the offending transaction, then no special action part
need be written in Ott. However, if the action associated is
ripple, then an action specifying this ripple must be written.
This action is different in the two classes involved. The

5. R&ti~~~al iagtity dw not CZISU~C m&tivity. Thw., if a records b and c
as offmnaus. then au we ensure is that b and c each record a as an
officcmate. However, b and c need not record each 0th~~ as offimnares. If
we wished to enforce such a transitive constraint WC would have to wire. an
additional explicit inter-object constraint:
foreach p in officemates[[l I

(foreach r in p.officemates[[ll
(r in officemates[[ll)) ;

476

example above becomes, when associated with class Emp:

!changed(dept) :
if (old(dept) != NULL)

old(dept)->emps[[]] -= this ;
if (dept != NULL)

dept->emps[[]] t= this ;

Each time an object of class Emp has its dept attribute
modiied, the object is removed from the set of employees in
the old department and ad&d to the set of employees in the
new department. The macro changed returns TRUE
whenever the value of its argument has changed in the course
of the current transaction. The macro old returns the value of
its argument at the beginning of the current transaction.

A similar constraint is required with the class Dept. Since
each of these constraints independently specify the action to be
taken when the inverse relationship is modified at one end, no
additional complications are caused by having the action be
abort in one direction and ripple in the other.

5.4 Optimization via Inverse

By virtue of two attributes aI of class S r and a2 of class Sr
beiig inverses, representing a binary one-one relationship,
several equivalent assertions are Que:

We can derive four simplitkation rules corresponding to the
three assertions above. (A simplification rule of the form
P[ei] +P [e2] says that if we have a constraint formula with
some subexpression that matches e,, then we could replace it
by an equivalent formula in which the matched subexpression
is replaced by e 2).

P[o, .a1 =o*] +P[o, =02.a2]
P[o, =02.4*] +P[o, .a,=o*]

The first two rules always result in optimization. The last two
rules, while in themselves are Usually not optimizations, can
often make further optimization possible. For example, the
constraint A attached to the Mgr class (as shown in formula
A2) is:

foreach d in Dept (thereis e in d->emps[[ll
(! ("this" == d->head) I / e->sal() > sa10/2))

If we know that the dept attribute of the Mgr class is the
inverse of the head attribute of the Dept class, then the above
constraint could be simplified to:

thereis e in dept->emps[[l] (e->salO > sa10/2)

For inverse attributes a1 of class St and a2 of class S, that
represent some binary many-one or many-many relationships,
the corresponding attributes aI and/or a2 are set-valued. The
first two simplification rules do not apply. The other two rules
are derived from an appropriate modification of the third
assertion. For instance, if a1 is single-valued but a2 is set-
value the equivalent assertion is

and the applicable simplification rules are

P[o, .a1 =02] +P[o, E 02.a*]
P[OlE02.a2]+P[01.a,=02]

5.5 Optimization via Relational Constraints

Inter-object constraints of the form
(Uo,ES1)(302ES2)e(ol,02), can be transformed with the
help of redundant data, like the constraints discussed in Sec.
4.5. provided that relational integrity is being maintained.

For object class S, and S2. add new attributes a 1 and a2
respectively, which are of type set(S,) and set(S t). For each
object o i of class S, , ot .a1 denotes the set of objects o2 of
class S, that makes e(oi ,oa) true. Similarly, for each object
o2 of class S2, 02.a2 denotes the set of objects oi of class Si
that makes e(oi .02) true.

Associated with classes S i and S 2 respectively are two new
constraints. One says that for every object oi of S,, oi .a, is
computed as the set: (02]02~S2Ae(o,,02)). Another says
that for every object o2 of S2. 02.a2 is computed as the set:
(oi]oi~.Si Ae(o, .oa)). A third intra-object constraint is
associated with Si which says T(ai =NVLL.). Finally, a new
relational constraint claims that a1 and a2 are inverses of each
other.

Theorem 4

Theoriginalconstraint(tlo,~S,)(~lo2~S2)e(o,,02) isvalid
iff the following four new constraints are valid:

(~0~~S~)(~42~S2)(4~~42.42~e(0~.42)) (1)
(~41~S1)(~42~S2)(42~41.4,0e(4,,42)) (2)
(+to,~S1)-,(ol.al=NVU) (3)
(~0~ES~)(fl0~ES,)(0,~0~.4~00~E0~.4~) (4)

Constraints (1) and (3) together are equivalent to the
original constraint. and require the maintenance of the
computed attribute a,. Constraints (2) and (4) assist in the
maintenance of this computed attribute with the help of
relational integrity.

To maintain constraint A this way, we would have a new
attribute associated with class Dept. named d-emps [[] 1,
which is the set of those “distinguished employees” in the
department who earn more than half of the department head’s
salary. A corresponding new attribute associated with class
Emp, named distinguished, which is a boolean-valued
attribute true if and only if the employee is a distinguished
member of his department (it is not a set-valued attribute
because the relationship between employees and departments is
many-to-one). Besides maintaining d-emps [[]] and its
inverse distinguished, constraint A ensures that
d-emps [[]] is always non-empty.

In the cost table below, we assume that the objects of S2
that satisfy the relationship e(oi .02) with respect to specific
o, are uniformly distributed; and the same with objects of S i.
From the table, it is obvious that the more frequently S, is
deleted from, the more savings our optimization provides. On
the other hand, if the creation of objects in Sa and the deletion

477

of objects in Si are more frequent the original constraint is
cheaper to maintain. In particular, consider a sequence of x
insertions into and y deletions from S,, while S, remains
unchanged. The total cost for this sequence of operations is
x + ylS,IIS21 with the original constraint, and
xlSl I + ylSl I/IS21 with the optimization. Assuming ISI I
and ISa I are both a> I, the optimized constraint is cheaper to
maintain iff x/y C I Sa I In other words, the optimization is to
be preferred unless the total number of insertions exceeds the
total number of deletions by a factor that is larger than the size
of the set itself.

I Before After ,
Create Si 1 s2 s2
Delete S i
Create S2
Delete S 2

constant
constant
Is, IXISJ

6. REFERENTIAL INTEGRITY

Referential integrity requires that any object referenced by
another object actually exist. In an object-oriented system,
references are recorded by means of object identifiers. Since
the user has no way of generating or modifying object
identifiers accidentally, the system can easily guarantee that a
reference is valid at the time at which it is recorded. What
requires work is to ensure that there are no references left to an
object anywhere in the system when it is deleted. This
question of maintaining referential integrity at object deletion
time is our primary concern in this section.

Suppose that an object to be deleted still has a reference to
it. There are three standard maintenance options [9]. The
reference can be deleted as part of the transaction deleting the
object (by placing a NULL in the reference pointer), the
referencing object can be deleted, or the deletion of the object
can be disallowed

Which of the three we want for each reference is specified
once as part of the class definition, and is applicable to all
instances of the class. This specification is inherited in derived
classes. We use the keywords nullify, ripple, and
abort, respectively for the three possible actions. We also
introduce the keyword off to indicate explicitly that
referential integrity is not to be maintained. The general
statement for referential integrity is of the form:

cattr-decb reference policy :

and is included in the class definition, one for each reference.
The policy is one of the four keywords mentioned above. The
<attr-&cl> is the declaration of an attribute in the usual form.
The &fault policy is off, if nothing is specified for some
attribute. Here is an example:

class Dept i

Mgr* head0
inverse dept abort reference abort ;

Emp* emps[[50]1
inverse dept ripple reference nullify :

. . .

a Mgr object, the transaction should be aborted if this object is
listed as the head of some Dept object in the database. When
a Emp object is deleted, any reference to this object from the
Dept this employee works should be nullified and the deletion
allowed to commit.

In general, referential integrity requires that at the time
deletion is attempted on an object 0 of class 5. for every class S
in the database, for every attribute u of S that is a reference to
an object of class 5, we check V’OE S(o.a+G). The possible S
and a values are known at compile time, and are independent
of the size of the database. For each such S and (I, one
constraint of the form just shown is placed in the definition of
class S. and associated with every instance of the class.

In Section 5.5 we discussed how relational integrity can be
used to improve the enforcement of constraints of the form
V (El 0). Since referential integrity has this form, the same
technique is applicable here. Suppose we know that .?.7i is the
inverse of S.a. Then the constraint associated with the class S
simply reduces to checking that Z is NULL (or the empty set, if
it is set valued). This check can be performed cheaply, in
constant time. If relational integrity is not maintained, other
techniques, such as reference counts, can be used to get rid of
the universal quantifier. The key point to note is that referential
integrity can be implemented, and optimized, using the general
inter-object constraint mechanisms described in Sec. 4.

7. UNIQUENESS

Another special type of inter-object constraint is
uniqueness, requiring that every object of a certain class have a
unique value for some attribute. CIAO+t introduces the
keyword unique, which can be used when declaring any
attribute in a class definition. When applied to a set-valued
attribute, it is taken to mean that the corresponding sets are
disjoint. When applied to an array-valued attribute, it is taken
to mean that the corresponding arrays differ in at least one
element. These constraints can be written in the canonica1
inter-object form in a straightforward fashion, and the
techniques discussed in the preceding sections used. For
instance, we could have:

class Dept t
unique persistent Mgr *head0 ;
unique persistent Emp *emps[[MAX-EMPSII ;

. . .
1

The first constraint above states that no two departments can
have the same head (that is, no one manager can
simultaneously head two departments), and is equivalent to:

foreach m in Dept (foreach n in Dept
((m == n) I/ (m->headO != n->headO)));

The second constraint states that no two departments can have
any employees in common (that is, each employee works in no
more than one department), and can be written as:

foreach m in Dept (foreach n in Dept
(foreach e in m->emps[[ll

(foreach f in n->emps[[ll
((m == n) II (e!=f))))) ;

The example above states that when a deletion is attempted on

478

When a uniqueness constraint is violated, the action is
assumed to be an abort of the transaction violating the
consmint.

As an aside observe that when attributes on which
uniqueness is specified have inverses declared, then the
maintenance of relational integrity automatically also maintains
uniqueness. For instance, if a Mgr object has a single-valued
Dept attribute, then (with relational integrity maintained) no
two departments can have the same manager. Similarly, if an
Emp class has a single-valued dept attribute, inverse of the
emps [[]] attribute in the Dept class, then it is not possible
for any Emp object to be. recorded in the emps [[]] set of
more than one department.

8. IMPLEMENTATION

CIAO++ is accepted by the ciaofront preprocessor,
which generates equivalent 0~ code. The Ott code
generated is then compiled with the O+t compiler, comprising
ofront and the C++ compiler. If 0~ is input to
ciaof ront, then it is output with no modification: only the
constructs specific to CIAO++ are processed6.

Since all the new constructs in CIAO++ &al with class
definition, only the class definitions need be processed through
ciaof ront. This pre-processor works in two passes. In the
first pass, it collects all the constraints and transforms them into
their canonical representations. It then ensures that it has
available to it all the class definitions that require one or more
of these constraints to be included In the second pass, the
transformed constraints are placed in all the appropriate
classes, performing optimizations where appropriate. In C++,
it is necessary that declaration precede use. In particular, it is
not permissible for a member of a class A to be referenced in a
class B unless the definition of A precedes that of B. A typical
inter-object constraint is likely to involve members of multiple
classes, such as A and B, so that we seem to be in trouble
whichever we place first. ciaofront resolves this problem
by encapsulating the condition evaluation in a function. The
body of this function is placed after the declarations of all the
classes involved.

All the optimizations described in this paper are at the
language level, and are incorporated into the CIAO++ language
compiler. Lower level optimizations can also be of value, and
may work in cases where language level optimizations are not
possible. For instance, if objects of class S are indexed on the
u attribute, then the constraint +/oeS(o.a#val) translates to
$o~S(o.a=val), and can be evaluated by a single index
look-up to determine whether there is indeed an object o that
has an attribute a with the prescribed value. In other words,
due to the existence of the index, the universal quantifier does
not render the constraint expensive to maintain. We are
currently studying how such “lower-level” optimizations may
be incorporated into ciaof ront.

6. Atafuwedatc. wcintmdtomergc ciaofront wib ofront tocreatca
single pmprocessor. The cvcmual goal is 10 have a single efficimt compila
for a stable language, without piping tigb multiple layers.

By the very nature of inter-object constraints, it is not
possible to compile interconnected classes separately. Now
suppose that we have a database with an existing class A,
already populated with several objects. What happens if one
wishes to add a class B to the database, and create inter-object
constraints between these two classes? Even if the inter-object
constraints are stated with class B, class A also has to be
recompiled. The objects existing in the database may not
satisfy the new constraint: what do we do about them? These
and other such problems compound the already hard question
of schema evolution. We are currently studying this problem.

9. CONCLUSIONS

Object-oriented databases pose new challenges to semantic
integrity, both in terms of constraint representation, and in
terms of constraint maintenance. We have developed a
constraint compilation approach that facilitates efficient
representation and localized processing on one hand, and
ensures global declarative specification and consistency
maintenance on the other hand. Constraints are specified
declaratively in the shared logical language. We have
demonstrated the feasibility of our approach by designing a
constraint preprocessor for the Ode object-oriented database
system.

Constraint compilation is a kind of knowledge compilation,
where the generic constraint knowledge expressed in logic is
compiled into object-oriented representations. In general, a
knowledge representation scheme always provides constructs
that ease the expression of certain types of knowledge, while
making the expression of others hard. But no schemes are
perfect for every possible application. We believe that our
approach properly resolves the conflict between shared generic
knowledge specification and localized efficient representation.

A lot of work remains to be done. In particular, we have
only scratched the surface of optimization. With the rich
semantics of object-oriented paradigm, more optimization
techniques can be developed for constraint compilation. We are
also working on the implementation of the constraint compiler
for Ode. Our work can be generalized to constraint compilation
into other kinds of semantic data models, and to knowledge
compilation in knowledge-based systems.

Acknowledgements

We are grateful to Narain Gehani for several useful
discussions. We are also grateful to Shaul Dar, Narain Gehani,
and Dan Lieuwen for a careful reading of a draft of this paper.

479

[II

PI

[31

[41

PI

161

[71

181

[91

DO1

[111

WI

u31

1141

R. Agrawal and N. H. Gehani, “ODE (Object Database
and Environment): The Language and the Data Model,”
Proc. ACM SIGMOD 1989 Int’l Conf Management of
Data, Portland, Oregon, May-June 1989.

A. Albano, G. Ghelli, and R. Qrsini, “A Relationship
Mechanism for a Strongly Typed Object-Oriented
Database Progr amming Language,” Proc. of the 17th
Int’l Conf. on Very Lurge Databases, Barcelona, Spain,
September 1991,565-576.

P. Bernstein B. Blaustein, and E. Clarke, “Fast
Maintenance of Semantic Integrity Assertions Using
Redundant Aggregate Data,” Proc. 6zh Int’l Conf on
Very Large Databases, 1980.126-136..

M. Casanova and P. Bernstein, “A Formal System for
Reasoning about Programs Accessing a Relational
Database,” ACM Transactions on Programming
Languages and Systems, 2(3), July 1980.386414.

M. Casanova, L. Tucherman. and A. Furtado,
“Enforcing Inclusion Dependencies and Referential
Integrity,” Proc. 14th Int’l Con5 Very Large Data
Bases, 1988.38-49.

S. Ceri and J. Widom, “Deriving Production Rules for
Constraint Maintenance,” Proc. 16th Int’l Conf. Very
Large Data Bases, 1990, 566-577.

U. S. Chakravarthy, J. Grant, J. Minker. and Logic-
Based Approach to Semantic Query Optimization, ACM
Trans. on Database Systems, lS(2). June 1990, 162-207.

D. Cohen , “Compiling Complex Database Transition
Triggers,” Proc. ACM-SIGMOD 1989 Int’l Con& on
Management of Data, 1989.225-234..

C. J. Date, “Referential Integrity,” Proc. 7th Int’l Conf
Very Lurge Data Bases, 198 1.

G. Gardarin and M. Melkanoff, “Proving Consistency of
Database Transactions,” Proc. 5th Int’l Co@ Very

Large Data Bases, 1979, 291-298.

N. H. Gehani and H. V. Jagadiih, “Ode as an Active
Database: Constraints and Triggers,” Proc. 17th Int’l
Conf. Very Large Data Bases, Barcelona, Spain, 1991,
327-336.

L. Henschen, W. McCune, and S. Naqvi, “Compiling
Constraint-Checking Programs from First-Order
Formulas,” in Advances in Database Theory, Vo1.2, , H.
Gallaire, J. Minker, and J-M. Nicolas (ed.), Plenum
Press, 1984.145-170.

A. Hsu and T. Imielinski, “Integrity Checking for
Multiple Updates,” Proc. ACM-SIGMOD I985 Int’l

Conf. on Management ofData, 1985.152-168.

S. N. Khoshafian, G. P. Copeland, and 406416, “Object
Identity, ” Prcc. 1st Int’l Co& Object-Oriented

Programming Systems, Lunguages, and Applications,
Portland, Oregon, Sept. 1986.

480

WI

P61

[l71

WI

u91

WI

WI

P21

[231

1241

1251

WI

W. Kim, “OBJECT-Oriented Databases: Definition and
Research Directions,” IEEE Tramactiom on Knowledge
and Data Engineering, June 1990.327-341.

S. Koenig and R. Paige, “A Transformational
Framework for the Automatic Control of Derived Data”
Proc. 7th Intl. Co@. on Very Large Data Bases, 1981,
306-318.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb, “The
ObjectStore Database System,” Common icafiom of the
ACM, 34(10), October 1991.51-63.

G. Moerkotte and P. C. Lockemann, “Reactive
Consistency Control in Deductive Databases,” ACM
Trans. on Database Systems, 16(4), December 1991,
670-702.

J-M. Nicolas, “Logic for Improving Integrity Checking
in Relational Data Bases,” Acta Informotica , 18, 1982.
227-253.

R. Paige, “Applications of Finite Differencing tc
Database Integrity Control and Query/Transaction
Optimization,” in Advances in Database Theory, Vo1.2,
H. Gallaire, J. Minker, and J-M. Nicolas (ed.). Plenum
Press, 1984, 171-209..

X. Qian and D. Smith, “Integrity Constraint
Reformulation for Efficient Validation,” Proc. 13th Int’l
Conf. Very Large Data Bases, 1987.417425.

X. Qian, “An Effective Method for Integrity Constraint
Simplification,” Proc. IEEE 4th Int’l Cor$ Data
Engineering, 1988, 338-345.

T. Sheard and D. Stemple, “Automatic Verification of
Database Transaction Safety,” ACM Transactions on
Database Systems, 14(3), September 1989,322-368.

D. Stemple, S. Mazumdar, and T. Sheard, “On the
Modes and Meaning of Feedback to Transaction
Designers,” Proc. ACM-SIGMOD 1987 Int’l Conf on
Management of Data, 1987,374-386.

M. R. Stonebraker. “Implementation of Integrity
Constraints and Views by Query Modification,” Proc.
ACM-SIGMOD 1975 I&l Conf. on Management of
Data, 1975, 65-78.

G. Wiederhold, “Views, Objects, and Databases,” IEEE
Computer, 19(12), December 1986.37-44.

