
A Conceptual Model for Dynamic Clustering in Object Databases 

Qing Li* 
Department of Computer Science 

Hong Kong University of Science & Technology 
Clear Water Bay,7Kowloon, Hong Kong 

qing@uxmail.ust.hk 

John L. Smith 
Division of Information Technology 

CSIRO 
Canberra, ACT 2601, Australia 

smith@csis.dit.csiro.au 

Abstract 1 Introduct ion 

In object-oriented database systems, it is assumed 
silently that fundamental object types and inter-object 
relationships can be classified statically, prescribing 
basic structural and behavioral properties for all the 
objects in the database. Such a classification-based ap- 
proach falls short of supporting those data-intensive 
applications requiring more advanced dynamic func- 
tions. A particular kind of such advanced functions 
is “dynamic clustering” - the ability to group/cluster 
existing objects to form typeless, ad-hoc collections 
(called “clusters”) which are directly denotable and 
employable. Such clusters can be formed by taking 
copies or by including the Oids of the input objects, 
and can be explicitly defined or indefinitely defined, 
exhibiting thus different impacts and characteristics, 
ranging from loosely-coupled to tightly-coupled ones. 
In this paper we describe an on-going project of de- 
vising a conceptual clustering model. A real life DB 
application is used as a basis for testing and evaluating 
the model. An implementation prototype has been im- 
plemented, based on a comprehensive object database 
programming system. 

*The work by this author was supported, in part, by the 
Commonwealth Scientific and Industrial Research Organization 
(CSIRO) under contract BT00825. 

Permissions to copy without fee all or part of this mate- 
rial is granted provided that the copies are not made or 
distributed for direct commercial advantages, the VLDB 
copyright notice and the title of the publication and its date 
appear, and notice is given that copying is by permission of 
the Very Large Data Base Endowment. To copy otherwise, 
or to republish, requires a fee and/or special permission 
from the Endowment. 

Proceedings of the 18th VLDB Conference 
Vancouver, British Columbia, Canada 1992 

Object-oriented languages and systems are becom- 
ing more and more popular for applications which 
model environments that lend themselves to exten- 
sive classifications, complex objects and inter-object 
relationships [KLE89, Mey88, ZMESO]. In a conven- 
tional object-oriented database, the conceptual struc- 
ture (schema) is embodied by a collection of abstract 
data types (called “classes” in this paper) which, when 
defined, are organized into an inheritance (ISA) hier- 
archy. Objects can then be created within classes, in- 
stantiating and justifying these predefined data types. 
In this way, a class prescribes both structural and 
behavioral properties (attributes and methods) of its 
objects, and objects in the class can be stored effi- 
ciently through a shared representation. Further, set- 
oriented access of class members can be applied effi- 
ciently, which is suitable and desirable for many appli- 
cations whose objects can be classified statically (or at 
least to a large extent, with additional facilities for in- 
troducing/deriving new classes such as specialization 
and/or generalization [Sci89, SNSS]). 

Such a classification-based approach, however, falls 
short of supporting those applications involving ob- 
jects and inter-object relationships that are by nature 
tentative, irregular, ill-structured, evolving, or sim- 
ply unpredicatable. *In particular, certain objects may 
arise dynamically as “clusters” of existing objects in 
some ad hoc fashion. While it is always in theory 
possible to accommodate such new types of objects 
through introducing new classes accordingly, in prac- 
tice there are several reasons against this obvious ap- 
proach. First, the number of such ad hoc objects may 
not be large enough to warrant the introduction of new 
classes (e.g., we may end up with many ad hoc classes). 
Second, the evolving/uncertain nature of some objects 
implies the inappropriateness of using class structure 
(as the classes would have to undertake similar evolu- 

457 



tion structurally). Third, some of the objects may be 
introduced merely for tentative/temporary purposes 
(e.g., for comparison of different alternatives), thus it 
would be too costly to introduce classes for such tem- 
porary objects. Finally, we feel that there is some 
deficiency in the current object class paradigm when 
modeling i&a-class object (behavioral) interactions, 
thus it is inadequate for accommodating such ad hoc 
objects completely. 

In this paper, we report an ongoing collaborac 
tive project we are engaged in (between HKUST and 
CSIRO). The project is aimed at extending object- 
oriented database technology to accommodate non- 
trivial application dynamics. To this end, we propose a 
model based on the notion of “conceptual clustering”, 
to facilitate dynamic creation, deletion, and manipu- 
lation of ad hoc object clusters, which complements 
existing object class power for accommodating generic 
application dynamics. Besides the capabilities for ob- 
jects to be clustered dynamically, we also investigate 
various implications to the objects that constitute a 
cluster. While all these are studied generically, a real 
life application domain is used as a basis to test the 
ideas. The purpose of this paper is therefore to devise a 
conceptual model for accommodating dynamic object 
clusters, and to investigate (practical) solutions to the 
problems resulting from implementing this model. 

The rest of the paper is organized as follows. In 
section 2 we describe the conceptual model for accom- 
modating various object clusters, and discuss the re- 
lationships between clusters and other closely related 
concepts such as classes, views, and frames. In section 
3, we describe a real life database application which is 
used as a testbed. In section 4, we describe an exper- 
imental approach of implementing the cluster model 
on top of an object database system. Conclusions and 
future research directions are given in section 5. 

2 A Conceptual Model 

In this section, we describe a conceptual model for fa- 
cilitating a useful kind of dynamic function, namely 
“dynamic clustering” - to dynamically cluster exist- 
ing objects with dynamically introduced roles, forming 
homogeneous/heterogeneous collections (called “clus- 
ters”). There are a number of ways in which clusters 
can be formed, and in turn this may modify the states 
and behaviour of the constituent objects (objects that 
constitute the clusters). Special facilities must there- 
fore be devised in supporting such interactions. In 
the following, we first establish a taxonomy of clusters 
necessary for our subsequent discussions, and then de- 

fine corresponding cluster operators. The relationships 
and differences between clusters and such related nu 
tions as classes and frames are also briefly discussed, 

2.1 Clusters: a Taxonomy 

We have established a taxonomy of 12 kinds of clus- 
ters, based on combinations of three major perspec- 
tives: derivation, uncertainty, and behavior. These are 
described immediately below. 

2.1.1 Derivation 

There are essentially two ways of clustering from ex- 
isting object sources: “clustering-by-copy” in forming 
aggregate-like objects, and “clustering-by-reference” 
in forming complex clusters. These are captured by 
the following terms: 

l Deep Cluster: a deep cluster X is somewhat 
similar to an aggregate object: it consists of deep 
copies (as defined in SmallTalk-80) of the input 
objects (taken at the time of the creation of this 
cluster) as its constituents, with each constituent 
being assigned a role (i.e., each constituent is a 
“roled-constituent”);i as a result of this cluster- 
ing, the deep copies of the source objects become 
roled-members owned by X (i.e., if X vanishes, so 
do its roled-members, though the original sources 
are not effected). 

l Shallow Cluster: a shallow cluster Y is analo- 
gous to an extended complex object, whose con- 
stituents are references/pointers (or called shaI1ow 
copies in SmallTalk-80) to the input objects, with 
each constituent being assigned a role. Y does 
not own the constituent objects as a result of such 
clustering (i.e., if Y vanishes, its constituent ob- 
jects can still exist). 

It is also possible for a cluster to be a “hybrid” 
one, with some of its constituents being pointers to 
and others being deep copies of existing objects. We 
omit discussion of such hybrid clusters in this paper, 
since their features are obvious from the characteristics 
of a deep and a shallow clusters. 

Complementary to the above terms, clusters are 
further distinguished (with respect to their derivation 
from sources) to be adaptive and infixed ones. These 
are described as follows: 

‘A role here can be an empty one (void), a default one, or a 
newly introduced one; see section 2.2. 

458 



l Adaptive Cluster: an adaptive cluster X is 
a cluster whose constituent objects are subject 
to some “local adaptations” when X is formed. 
Such adaptations include: to temporarily filter 
out from its constituents certain properties (non- 
relevant ones), to add certain presumptive prop- 
erties, or to assume some hypothetical states (at- 
tribute values) to its constituents, all of which are 
of local effect only (i.e., they do not carry any 
global effect outside of the cluster X). 

l Infixed Cluster: on the other hand, a cluster 
may be formed directly from the source objects 
as its constituents. Specifically, we call a clus- 
ter Y an infixed cluster if its constituent objects 
are directly accepted without any above men- 
tioned “local adaptations” (i.e., none of their pre- 
vious properties or states will be locally invali- 
dated/suspended in Y, and all changes must be 
of global effect). 

Combining this later aspect to our previous terms, 
we obtain the following possible forms of clusters: 

2.1.2 uncertainty 

An orthogonal yet related issue on clusters concerns 
uncertainty of the constituent objects. In particular, 
a cluster can have component objects that are fully 
determined, only partially identified, or are identified 
disjunctively. That is, there may be an issue of cer- 
tainty/uncertainty involved with a cluster. From this 
perspective we specify the following: 

Explicit Cluster: a cluster X is explicit if every 
constituent object of X is fully determined at the 
time when X is formed. 

Obscure Cluster: a cluster Y is obscure if Y 
contains some “vague constituents” (constituents 
that are not fully determined or identified). An 
obscure cluster may or may not become explicit 
later on, depending on the nature and degree of 
the uncertainty involved. 

Applying the above terms to our earlier table, we 
obtain the following taxonomy:’ 

2Note that in the resultant taxonomy, ODIC and ODAC are 
not implementable if the candidate constituents cannot be iden- 
tified (hence their deep copies cannot be taken until they are 
fully instantiated later on). 

1 DAC 1 DIC 1 SAC 1 SIC 
Explicit 1 EDAC 1 EDIC I ESAC 1 ESIC 
Obscure 1 ODAC 1 ODIC 1 OSAC 1 OSIC 

2.1.3 Behaviour 

Besides the above two important factors, there is yet a 
third factor pertinent to object clustering, namely, be- 
havioral interactions out of the clustering. Specifically, 
we are concerned here with whether as a consequence 
of the clustering, the constituent objects entail new 
behavior (either explicitly or implicitly) which inter- 
acts with their pre-existing behavior and/or with the 
resultant cluster’s. From this perspective we define the 
following: 

Loosely-coupled Cluster: a cluster X is 
loosely-coupled (or simply L-coupled) if, as a con- 
sequence of the clustering, X’s source objects are 
not effected in any way with respect to their prop- 
erties and states (attribute values). Note that 
a loosely-coupled cluster is different from an in- 
fixed cluster: though an infixed cluster does not 
have local adaptations, global changes (in terms of 
properties and states) are still possible to its con- 
stituents (through their respective classes), which 
is not the case in a loosely-coupled cluster. 

Tightly-coupled Cluster: a cluster Y is tightly- 
coupled (or simply T-coupled) if, as a consequence 
of the clustering, Y’s source objects can be ef- 
fected in terms of their properties and states. 
This typically involves some behavior interactions 
(through some methods) between Y and its con- 
stituents, and/or among the constituents them- 
selves. 

Applying above definitions to our earlier taxon- 
omy, we obtain a set of clustering primitives/concepts, 
which are both semantically and behaviorally rich and 
expressive. These are described immediately below. 
Note that in the resulting taxonomy, deep clusters are 
not compatible with tightly-coupled; rather they are 
always loosely-coupled with respect to their source (in- 
put) objects. 

EDAC EDIC ESAC ESIC 
L-coupled J J LESAC LESIC 
T-coupled X X TESAC TESIC 

ODAC ODIC OSAC OSIC 
L-coupled J J LOSAC LOSIC 
T-coupled X X TOSAC TOSIC 

459 



2.2 Operators Over Clusters 

To support dynamic cluster creation, deletion, and 
manipulation, we have identified a collection of 
basic clustering operators for coping with vari- 
ous “application dynamics” prevailing in real life 
database applications. The operators are divided 
into 2 categories: generic cluster operators, and 
special-purpose operators. 

2.2.1 Generic Cluster Operators 

Operators of this category are general-purpose: they 
are applicable to any type of clusters specified above. 
There are 12 such generic operators: 

1. CL USTERING(C: cluster-name, DR: default- 
role, S: set-of-objectrej M: mode): Oid. This op- 
erator forms a cluster object C from a specified set 
S of input objects which takes DR as their default 
role within the cluster; DR may be an empty role 
(void), and objects in S may or may not be of the 
same type (i.e., they can be heterogeneous). The 
fourth argument determines one of the two modes 
for the clustering, i.e.: 

(a) clustering-by-copy: when M = “Deep”, this 
operator creates cluster C by taking copies 
of the objects in S, resulting in a deep clus- 
ter which can be inclusive or exclusive, and 
explicit or obscure (i.e., one of the four pos- 
sibilities: EDAC, EDIC, ODAC, ODIC); 

(b) clustering-by-reference: when M = $!%al- 
low”, this operator creates cluster C by in- 
cluding object references (Oids) in S into C’s 
extent, resulting a shallow cluster which can 
be one of the other eight possibilities de- 
scribed above. 

2. DECL USTER(C: cluster-ref). This operator 
deletes a cluster denoted by the cluster-reference 
C (C is either the name of the cluster, or a vari- 
able of type Oid holding the cluster’s Oid) from 
the database. If the cluster denoted by C (called 
cluster C for simplicity) is a deep cluster, all its 
components and C itself are removed; if C is a 
shallow cluster, all its constituents (references to 
the source objects) are excluded from C, and C 
itself is removed from the database (including all 
its attributes and methods). 

3. SET-DEFAULT-ROLE(C: cluster-ref DR: 
default-role). This operator (re-)sets the de- 
fault role of cluster C to DR. All C’s con- 
stituents/members which take C’s default role as 
their role wilI be (re-)set consequently. 

4. ADD-TO-CLUSTER(C: cluster-ref, 0: 
objectrefi, R : role]). This operator adds an object 
0 with its specified role R (if given) to the cluster 
C. A default role prescribed by C will be assigned 
to 0 if the third argument is omitted. In the case 
that the cluster is a deep cluster, a deep copy of 
0 is taken and included to C; otherwise (i.e., C is 
shallow), O’s Oid is added to C’s extent. 

5. REMOVE-FROM-CLUSTER(C:cluster-reJ 0: 
objectref). This operator causes the specified ob- 
ject 0 and its associated roles to be removed from 
the cluster C. If C is a deep cluster, the deep copy 
of 0 will be deleted from the database completely. 

6. ADD-PROPERTY(C: cluster-ref, T: property- 
ref). This operator adds a property T (an at- 
tribute or a method) to the cluster C. The prop- 
erty T can be a brand new one, a reference to one 
of its component object’s, or a composition of its 
components’ (e.g., if the property is a method). 

7. DELETE-PROPERTY(C: cluster-ref, T: 
property-ref). This operator deletes an existing 
property .T (an attribute or a method) from the 
cluster C. 

8. ADD-ROLE(C: cluster-ref, 0: objectref, R: role). 
This operator adds a role R to the specified object 
0 in the cluster C. Note that an object in a cluster 
can acquire more than one role. 

9. DELETE-ROLE(C: cluster-ref, 0: objectref R: 
role). This operator deletes a role R to the 
specified object 0 in the cluster C. If R is the 
only role 0 has, then 0 becomes a role-less con- 
stituent/member (i.e., 0 is of void role). 

10. ITERATE-OVER-EXTENT(C: cluster-ref[, R : 
role]): set-of-objectref. This operator returns a 
set of (heterogeneous) object references by iterat- 
ing over the extent of the cluster C. If the second 
argument R is given, then it returns all the refer- 
ences to those constituents holding the specified 
role R in C. 

11. STORE-CL USTER(C: cluster-ref): Oid. This 
operator is used to make a cluster C persistent 
in the database. (Note that clusters by default 
are temporary/non-persistent.) 

12. REMOVE-CL USTER(C: cluster-ref). This op- 
erator removes a persistent cluster from the 
database. 

460 



2.2.2 Special-Purpose Operators 

Operators of this category are generally only applica- 
ble to certain types of clusters but not all. There are 
10 operators in this category, where the first three op- 
erators are defined for obscure clusters, the next three 
specifically for adaptive clusters, and the last four are 
applicable to all tightly-coupled clusters. 

1. 

2. 

3. 

4. 

CREATE- VC(D: domain, P: condition): Oid. 
This operator generates a virtual constituent 
(VC) holding the condition P on the specified 
domain D; it is used to form an obscure clus- 
ter temporarily. D can be a class, a cluster, a 
result of some (intermediate) query, or combina- 
tions of these. P is either a declarative predicate 
or a procedural definition. An important exam- 
ple of a VC (and an obscure cluster) is given in 
section 3.2. The VC can be subsequently instanti- 
ated/bounded or removed by the next two opera 
tors. An instantiation may bind a VC to a simple 
object, or a set of objects, as determined by its 
nature (i.e., its condition P). 

INSTANTIATE- VC(V: VC-ref M: method): 
Oid. This operator instantiates a VC according 
to a specified method M, causing the VC to be 
bound to a (set of) fully identified object(s); the 
VC itself vanishes if its associated condition has 
been completely satisfied. 

REM0 VE- VC(V: VC-ref). This operator re- 
moves a VC without instantiating it. 

FILTER-OUT(C: cluster-ref 
SP: set-of-properties). This operator is used to 
form an adaptive cluster C by filtering out irrel- 
evant or non-applicable properties SP (attributes 
and methods) from its constituent objects. The 
properties in SP can be original ones and/or pre- 
sumptive ones added by the next operator. 

5. ADD-PRESUMPTIVE-PROPERTY(C: ciuster- 
ref P: property-refi, R : role]). This opera- 
tor causes a new presumptive property P (at- 
tribute/method) to be temporarily added to all 
C’s constituents holding (the default) role R (if 
specified);3 if R is not specified, then P is added to 
all C’s constituents indiscriminately. The effects 
of this operator (and the next associated one) are 
only of local scope inside C. 

6. SET-PRESUMPTIVE- VAL UE(C: cluster-ref, A: 
attribute-rejt, R : role], V: value). This operator 

3Note that if the third argument R is given, P can be viewed 
as an associated property of the role R in the context of the 
cluster c. 

7. 

8. 

9. 

10. 

sets a presumptive value V to a specified attribute 
A of all C’s constituents holding (the default) role 
R (if R is specified). If R is not specified, but A is 
fully specified (with form 0.A where 0 is a con- 
stituent object in C), then the presumptive value 
V is assigned to 0.A only; otherwise V is assigned 
to all C’s constituents having A indiscriminately. 

IMPOSE-PROPERTY(C: cluster-ref, P: 
property-r&R : role]). This operator is similar 
to the ADD-PRESUMPTIVE-PROPERTY oper- 
ator, except that it is applicable to tightly-coupled 
clusters, in the sense that the new property P to 
be imposed is of global effect (and possibly perma 
nent effect if C is made to be a permanent cluster) 
outside of C. 

SUSPEND- PR OPERTY(C: cluster-ref, P: 
property-refi, R : role]). This operator causes the 
specified property P (attribute/method) of C’s 
constituent objects (holding role R if R is given) 
to become suspended globally. Clearly, the effect 
of this operation can also be permanent if C is a 
persistent cluster. 

RESUME-PROPERTY(C: cluster-ref, 
M: method-refl, R : role]). This operator causes 
a suspended property of C’s constituent objects 
(holding role R if R is specified) to become valid 
again globally. Note that this operation is always 
of permanent effect, no matter if C is permanent 
or temporary. 

INVOKE-METHOD(C: cluster-ref, P: method- 

w‘L R : role], A: list-of-arguments). This oper- 
ator invokes a specified method P using given pa, 
rameters in A. The method P can be a method 
of some constituent objects (holding role R if R is 
given) in C, or a method defined for C itself. 

2.3 Discussions and Comparisons 

So far we have established a taxonomy of 12 kinds 
of clusters, based on the applicable combinations of 
derivation, uncertainty, and behaviour perspec- 
tives. We also defined associated cluster operators 
in supporting the 12 kinds of clusters and their ca 
pabilities. From the above descriptions, -we see that 
there exists a resemblance between a cluster and a 
class. Like a class, a cluster has a collection of ob- 
jects in its extent (as its constituents/members), and 
associated operations such as iterators over the con- 
stituents/members of its extent (as described above). 
But it differs from a class in several fundamental as- 
pects: (i) it is an extended aggregate/composite object 

461 



consisting of a collection of (typically heterogeneous) 
objects,4 rather than a warehouse holding a set of uni- 
form objects; (ii) it supports the notion of dynamic 
“roles” [LPSSl, PerSO], and is a dynamic construct 
useful for transient, tentative, and/or irregular situa 
tions, whereas a class is a statically defined construct 
for stable/regular sets of objects (with frames for pro 
totypical situations); (iii) it only includes/removes ex- 
isting objects to itself, and does not create “new” ob- 
jects (except for new roles and the cluster itself); (iv) it 
allows individuality of its constituent/member objects 
to be expressed (partially through the roles), whereas a 
class emphasizes the commonalities of its objects; (v) 
it supports behavioral interactions between the clus- 
ter and its constituent/member objects (and possibly 
among the constituents themselves) - another feature 
neither supported by a class nor existing in a frame. 

Recently, there have been some proposals for view 
support in object databases (e.g., [AB91, SLTSl]). 
Compared with classes, views are closer to our clusters 
because views basically are also derived from existing 
objects. However, since views are just another kind 
of class, most of the above points on comparing clus- 
ters and classes are still applicable to views, except for 
point (iii) as views also do not create new objects. The 
work on updatable views in (SLTQl] would also veto 
point (v) partially but not completely, as views typi- 
cally do not facilitate behavioural interactions among 
their objects. 

3 Real Life Examples 

To demonstrate the validity and usefulness of concep- 
tual clusters, we introduce an example here in which 
clusters are found to be a natural and suitable knowl- 
edge representation constructs. These real life exam- 
ples are drawn from a decision support system appli- 
cation. A decision support system provides a rich ap- 
plication environment for a wide range of information 
technology as shown in Figure 1. In the scope of this 
paper we cannot even attempt to summarize the mod- 
ules of a decision support system. However the reader 
can appreciate that these systems aim to provide a user 
with assistance in complex problem solving. Typically 
clusters are invoked in a problem solving model used 
in conjunction with a knowledge/data base (i.e., an 
information base). 

‘born this viewpoint, a cluster is closer to a frame object; 
however, as shown in subsequent discussion, it also differs from 
a &me in other aspects. 

USER 

Figure 1: A Decision Support Information System 

3.1 The Inquiry Problem 

Frequently today judicial bodies are set up to inquire 
into alleged serious corrupt behaviour by individuals in 
the community. The inquiry body has certain powers 
invested in it to subpoena witnesses and take evidence. 
Its goal is to present a report which will contain con- 
clusions and recommendations about the situation. 

A simple information model of the process is sum- 
marized below. 

Event (e): A well documented factual occurrence 
in the past. 

Witness (w): An individual who makes statements 
to the inquiry. 

Statement (s): An assertion made by a witness 
about a player or players. 

Player (p): An object involved in the inquiry 

Conclusion (c): An interim or final assertion made 
by the inquiry body. 

An object-oriented analysis and design might pro- 
ceed to identify classes and objects, structures, at- 
tributes, services etc. by elaborating on the above 
model. However conclusions would pose a problem for 
this analysis, because they are extremely variable in 
behaviour and properties. In the dynamic processes of 
this decision support application, conclusions would be 
subject to revision, refutation, coexistence with con- 
flicting conclusions, etc. In addition the formation of 
a conclusion would involve collecting together numer- 
ous objects from the database in their respective roles 
(viz. clustering). 

462 



There are clearly many overtones of artificial intel- 
ligence problems in this example (eg default resson- 
ing, non-monotonic reasoning, uncertainty reasoning, 
constraint based reasoning, truth maintenance etc.). 
We are interested here in extending the capability of 
object-oriented technology to provide a more flexible 
and efficient representation capability. We now illus- 
trate the use of clusters in this dynamic application. 

3.2 Clusters in the Inquiry Example 

The simplest conclusion is formed as a result of a sin- 
gle statement. For example suppose there was an 
statement sl describing an action by player pl. A 
conclusion cl could be formed about pl from the de- 
tails of sl. Clearly the conclusion would be dependent 
on sl. This is represented by a cluster having two 
constituents, pl with role ‘about', and sl with role 
‘supporting-evidence’. 

It is possible to anticipate certain roles for con- 
stituents, and the above example could readily be ac- 
commodated in a predefined class with the roles as 
client relationships. However as the inquiry process 
evolves the number of roles will grow and defeat the 
class definition approach. 

For example, suppose we have the following ob- 
jects: 
el : Region rl was rezoned from classification A to 
classification B on date dl 
e2 : Player pl purchased land in rl on date d2 (d2<dl) 
sl : Player pl knew player p2 before date d2 
s2 : Player p2 obtained information on date d3 
(d3<d2) about the proposed rezoning of rl 
s3 
dl 

: Player pl was introduced to player p2 after date 

It may be useful to form a conclusion cluster: 

cl := { confidence: probable 

corrupt-transaction: pl, p2 

related-events: el,e2 

evidence-f or: sl,s2 

evidence-against: s3 

possible-uitness: w7,w9 

others: . . . 

The role ‘possible-witness’ in the conclusion has 
less generality than the others, and suggests that many 
such roles would not be realised until the application 
was underway. 

Shallow clusters would be the automatic choice in 
this example. Hybrid clusters may arise, for exam- 
ple where a statement is adapted for the purpose of a 

conclusion. 

We can extend the above example with the fol- 
lowing information leading to an associated conclusion 
with an obscure constituent. 

s4 : Player pl knew player p3 before date d2 

: Player p3 obtained information on date d3 
(d3?d2) about the proposed rezoning of rl 

s6 : Player pl was introduced to player p3 after 
date dl 

The associated conclusion with an obscure con- 
stituent is: 

c2 := { confidence: most likely 

corrupt-transaction: pl, p2 V p3 

. . . 

1 
Subsequently on the basis of statements ~57, s58 

made by witnesses w7 and w9 we may replace the con- 
clusions cl and c2 with 

c24 := { confidence: confirmed 

confirmed-conclusion: cl 

replaced-conclusions: cl, c2 

conflicts: ~17, cl8 

discussed-with: legal3 

major-evidence: sl, s57 

minor-evidence: s2, s58 

. . . 

1 
Clearly, tight coupling arises in the case of the 

confirmed-conclusion role of cl, and possibly in the 
case of the conflict role of s17 and cl8 as well. On 
the latter, a message which performs verification on 
statement objects (e.g., recalls a witness) may result, 
and the previous unconfirmed conclusion cl8 may be 
refuted. 

3.3 Conclusion Cluster Services 

A number of generic services are desirable for conclu- 
sion clusters. For decision support the most important 
are search and visualisation of the information, based 
on: 

. 

0 

l 

l 

query capability which allows role qualification 

instantiation of the predicates of obscure con- 
stituents 

navigation of objects by role relationship 

inverse queries from constituent qualification 

463 



Our cluster model provides a very suitable basis upon 
which such generic services can be provided. Clearly 
role names here capture much of the semantics of the 
application, thus explicit support of roles is not only 
desirable but also important. Furthermore, it also pro- 
vides us with such useful ‘by-products” as to be able 
to model multi-faceted objects [Sci89]. 

4 An Experimental Implemen- 
tation 

To demonstrate the feasibility of our clustering model, 
a prototype implementation has been designed and im- 
plemented. The prototype system is implemented in 
a persistent C++ environment on Sun4, utilizing an 
object-oriented database development system, namely 
ONTOS. In this section we specify our design and im- 
plementation approach in such a comprehensive soft- 
ware engineering environment. First, we briefly intro- 
duce certain aspects of the ONTOS system, which are 
necessary for our subsequent discussions. An imple- 
mentation approach, based on the notion of “meta- 
cluster”, is then described, utilizing existing ONTOS 
class facilities. Such a class-based implementation sug- 
gests that a cluster can also be viewed as (fundamen- 
tally) an instance of some “extended” abstract data 
type. 

4.1 The ONTOS Environment 

ONTOS is an object-oriented database programming 
system developed by Ontos, Inc. [Ontgl]. It uses an 
object model internally, thus directly expressing the 
complex relationships between data, and provides ag- 
gregate classes for modeling one to many relationships. 
A major application program interface it supports is 
a C++ interface, along with an SQL interface for pro- 
grammatic queries [AHSSl]. While there are many 
other aspects and features (such as ONTOS transac- 
tion mechanism, version control, server-client architec- 
ture, exception handling, etc.), we restrict ourselves 
here to the most directly relevant aspects - ONTOS 
C++ interface and class library. 

4.1.1 C++ Interface and Class Library 

The ONTOS C++ interface consists of a relative hand- 
ful of meta classes linked into the user’s application 
and a small class library. It resolves references di- 
rectly and presents objects that are fully compatible 
with the C++ language [Str86]. Its class library pro- 
vides classes of Aggregates and Iterators as well as 

classes for schema definition. In particular, the ON- 
TOS class library introduces an Object class, which 
is the parent of all persistent classes. Object defines a 
constructor for creating objects in the database and a 
destructor for deleting them. It also defines properties 
for an object name (hence object can be referenced 
both by name and by reference) and for the “phys- 
ical clustering” of objects in the database to achieve 
greater performance. The library also contains schema 
classes to represent class definitions (e.g., properties, 
member functions, arguments etc.) in a run-time ac- 
cessible way. Furthermore, Classify, an ONTOS util- 
ity, is provided to generate schema objects from stan- 
dard C++ class definitions. These objects are loaded 
into the database to represent the database schema 
and are accessible both to ONTOS and to the appli- 
cation. 

ONTOS 2.1, the latest release from Ontos Inc., sup- 
ports the C++ 2.0 model, in which multiple inheri- 
tance is allowed (i.e., a child class can have more than 
one immediate parent classes). This feature exhibits 
a more powerful capability in modeling shared sub- 
classes, and allows more concise representations and 
better re-usability of class definitions. It will there- 
fore be utilized in our prototype implementation (see 
below ) . 

4.2 A Meta-Cluster Approach 

The power and flexibility of ONTOS and its associ- 
ated C++ interface provides a suitable implementa 
tion base for the proposed dynamic clustering model. 
As a cluster is conceptually different from a class (note 
that a cluster is itself a complex object), an intuitive 
mapping and extension from a class to a cluster will 
not work. Rather, a cluster is defined as an instance 
of an “extended” abstract data type (the me&cluster 
Cluster), with a meta-cluster lattice hierarchy being 
introduced at an abstract level (as described below). 

4.2.1 The Built-in Cluster Hierarchy 

Figure 2 illustrates a metacluster lattice that we intro- 
duce into the ONTOS existing class mechanism. This 
newly built-in lattice (hierarchy) provides the basic dy- 
namic functions required by various clusters, which are 
not supported by a conventional class hierarchy. The 
lattice is rooted at Cluster which is defined immedi- 
ately under the node Object of ONTOS, since certain 
clusters may be desired to be made persistent under 
certain circumstances (cf. section 2.2.1). 

464 



(OhTOS Dqinikn) 

Applrcorion C&w tre1 

..-...................._._....................................... _ . . ..~..................................._._.. 

Figure 2: The Built-in Cluster Lattice inside ONTOS 

4.2.2 Design Decisions and Implementation 
Issues 

As shown in Figure 2, this newly added lattice in- 
troduces several abstract data types (ADTs), which 
support various forms and characteristics of the afore- 
mentioned clusters. In designing the prototype, we 
have made the following decisions in addressing spe- 
cific implementation issues: 

Default clusters In the established cluster taxon- 
omy, there are altogether 12 possible forms of clus- 
ter. Since some of them are formed by combining 
“seed” clusters (e.g., EDIC from explicit, deep, and 
infixed combination), it is not, necessary to support 
such derived ones explicitly. Furthermore, as clusters 
in real life applications tend to exhibit certain “de- 
fault” forms, we can reduce the number of ADTs by 
imposing default manners for clusters. In particu- 
lar, in our prototype system clusters are defined as 
shallow, infixed, explicit, and loosely-coupled 
by default,. This is realized by implementing the met+ 
cluster Cluster (which is the root of this newly intro- 
duced hierarchy) to support all the general clusters 
functions (cf. section 2.2.1), plus the ones applicable 
to these four types of clusters (cf. section 2.2.2). The 
default manner may of course be overwritten by a clus 
ter if the cluster is created directly at a lower level. 

Data structure for clusters Fundamental to the 
implementation of the cluster model is a “right,” data 
structure for clusters. As a cluster is essentially a vari- 
able collection of cobj ect , role> pairs, an immediate 
choice is to use Class List (or Class Array) in C++ 

[Str86]. In this approach, a cluster is implemented 
as a list containing a (variable) number of instances 
of some ad hoc class (say, a class called Constituent 
which captures the <Oid, role> relationships). Note 
that this approach can be easily extended to support, 
other types of clusters (e.g., roleless clusters, clusters 
of primitive data objects, etc.), through the so-called 
parameterized type or template approach [Str88]. 

Local effect of adaptive clusters While using the 
right data structure allows us to implement most of 
the forms of clusters with relative ease, certain kinds 
of cluster require special treatment and techniques. 
Among them, adaptive clusters are challenging ones 
to implement on a conventional object-oriented system 
such as C++. As described in section 2, an adaptive 
cluster has a special characteristic, namely its local 
adaptations (i.e., changes to its constituents’ defini- 
tions and/or states inside the cluster). While for deep 
clusters this is not a problem, it becomes a non-trivial 
one for shallow clusters since in a shallow cluster, its 
constituents are supposedly taken directly from their 
original classes. Therefore we are facing a somewhat 
paradoxical situation: on one hand, we need to guar- 
antee the local effect, of the local adaptations to the 
constituents, on the other hand, we need to allow “ap- 
plicable” global changes (those not being locally fil- 
tered and adaptated) still to take place on those con- 
stituents. 

To adequately implement shallow adaptive clusters, 
a technique called Oid-forwarding is used for “simulat- 
ing” the desired local effect. Informally, a constituent 
object. Oj in a shallow adaptive cluster is simulated by 
creating a shadow copy’ (say dj) of the source object 
(i.e., Oj), and by attaching a .forward entry (similar 
to the .fomard file in Unix mailing system) to Oj, in- 
side which multiple destinations (e.g., dj and Oj) can 
be specified. This .forward entry will assure that all 
subsequent messages to Oj will be forwarded to the 
specified destinations (i.e., Oj and dj). In this way, 
applicable global changes can still be propagated to 
Oj’s shadow object dj, with the other direction be- 
ing not possible (i.e., changes to dj will only be of 
local scope). Figure 3 illustrates this scenario of Oid- 
forwarding. 

Behaviour interactions of tightly-coupled clus- 
ters Another type of clusters which requires non- 
trivial implementation is tightly-coupled cluster, due 
to the possible behaviour interactions. Within a 

‘A shadow copy is essentially a deep copy, with additional ca- 
pability of reflecting “applicable” changes from external sources, 
as described below. 

465 



Figure 3: Oid-Forwarding for Implementing Shallow 
Adaptive Clusters 

tightly-coupled cluster, a constituent object may have 
four kinds of behaviour (method) distinguished: 

Newly introduced methods that do not con- 
flict with existing ones. This kind of behaviour is 
straightforward to implement in C++, based on 
its existing method mechanism. 

Dominant methods that replace existing ones. 
This type of methods correspond to those that 
have the same names with existing ones, but 
with modified procedure bodies. Messages sent 
to the constituent are to be directed to the dom- 
inant methods which replace existing ones. If the 
cluster is made persistent, then those replaced 
methods are essentially relinquished forever (pro- 
vided that their corresponding dominant ones are 
not dropped). If later on a dominant method is 
dropped (e.g., when its associated role is removed) 
from the constituent, the corresponding method 
will become effective again. Due to these char- 
acteristics, a more sophisticated “virtual func- 
tion” mechanism than that offered by C++ is re- 
quired. In particular, the virtual function mech- 
anism needs to be extended with the capability 
of assigning different weight to its active defini- 
tions (methods), and (re-)direct a message to the 
one with the highest weight. Such an extended 
mechanism is also desired by the next two types 
of behaviour interactions. 

Suspended methods correspond to those that 
are temporarily “turned-off’ (through explicit 
suspension). This can be viewed as a special case 
of the previous one if we regard suspended meth- 
ods being temporarily replaced by empty ones 
(i.e., their dominant methods are empty proce- 
dures). Therefore we can handle this type of be- 

4. 

haviour interaction through the same meachanism 
described above. 

Resumed methods that were suspended before 
and become re-usable (through explicit resump- 
tion). This again can be viewed as a special case 
of the second case, in the sense that the resumed 
methods are essentially replaced methods with 
their dominant ones being dropped from the con- 
stituent. Therefore its implementation becomes 
straightforward with the afore-mentioned mecha 
nism. 

Instantiation procedures for obscure clusters 
The final type of clusters which is not readily imple- 
mentable based on current object-oriented capabilities 
is obscure cluster. As defined in section 2, an obscure 
cluster is the one which contains “vague constituents” 
(e.g., in the form of partial references or disjunctive 
references) that are to be instantiated. This type of 
cluster is typical in hypothetical reasoning applications 
[LS91]. Since logic reasoning capabilities are not sup- 
ported in current object-oriented languages and sys- 
tems, automated instantiation procedures based on 
reasoning are not implementable without integrating 
the object system with an AI system (ruled-based or 
frame-based one). For the current prototype, such in- 
stantiation procedures will therefore be simply interac- 
tive ones (viz., user’s responsibility). A possible can- 
didate for providing such reasoning capabilities into 
Ontos is CLIPS - a C Language Integrated Produc- 
tion System [Cli89]. 

4.3 Discussions 

In this section we have described a straightforward 
implementation approach of our cluster model, based 
on the ONTOS object model and class facilities. In 
particular, from an implementation level a cluster is 
treated as a complex object with additional dynamic 
functions (viz. dynamic updates of the states and be- 
havior of input (component) objects, dynamic instan- 
tiation/binding of virtual components, and dynamic 
filtering capabilities). While such a class-based im- 
plementation approach allows us to come up with a 
quick-and-dirty prototype by utilizing to the extent 
possible existing ONTOS facilities, it is not the “best” 
approach for implementing clusters. Indeed, a more 
radical and efficient approach would be to build the 
cluster mechanism from scratch, which would put the 
Cluster at the same level as ONTOS Object, with 
a common parent (e.g., an Entity) being introduced 
for supporting persistence, identity, iterators, and in- 
heritance, etc. One obvious advantage of the latter 

466 



approach would be the support of a more powerful 
class mechanism (by defining a shared subclass from 
these two), supporting powerful features from both 
sides (e.g., uniformity, dynamic functions and roles, 
and so on). We are currently investigating this ap- 
proach. 

5 Conclusions and Directions 

The Conceptual Clustering Model (CCM) presented in 
this paper aims at extending current object-oriented 
database technology to accommodate important ap- 
plication dynamics, through facilitating dynamic cre- 
ation, deletion, and direct manipulation of ad hoc ob- 
ject clusters. Such dynamic clusters complement ex- 
isting object classes of an object-oriented database 
in modeling irregular, tentative, evolving, and multi- 
perspective objects, allowing dynamic inter-object re- 
lationships and behaviour to be captured on the fly 
(through their dynamic roles and associated methods). 
A taxonomy of 12 kinds of clusters has been estab- 
lished from the perspectives of derivation, uncertainty, 
and behaviour interaction (and their applicable com- 
binations). An AI reasoning application has been used 
as a testbed for this comprehensive model, and an im- 
plementation approach based on a persistent C++ ob- 
ject database system has been described. 

From model refinement and enrichment point of 
view, further important issues such as cluster role ma, 
nipulations, inter-cluster interactions and derivations 
(e.g., to copy or derive clusters from existing ones), 
and dynamic constituent instantiations need to be ad- 
dressed. On the latter, we are exploring the suitabil- 
ity of incorporating a rule base (the afore-mentioned 
CLIPS) into the database system (i.e., ONTOS), in 
hope of acquiring the desired reasoning capability. 
Our continuing prototype implementation experiment 
should also provide significant feedback on refining the 
cluster model and operations (from the practical and 
feasibility viewpoint). 

Finally, our CCM model described in this paper is 
being further investigated and applied to a larger scale 
real life reasoning application. The goal is to pro- 
vide an advanced object-oriented environment inside 
a decision support system, in which the information 
units can change in real time. Our cluster model pro- 
vides a useful basis upon which important services to 
this type of applications can be devised and supported 
(cf. section 3.3). Other interesting applications we 
plan to look into include using clusters as a means for 
knowledge synthesis and discovery, in order to support 
database integration, object migration, and informa, 

tion sharing in a distributed, multiple databases envi- 
ronment . 

ACKNOWLEDGEMENT 

The authors wish to thank William Sun for helping 
constructing the prototype system, and Peter Milne 
for his constructive comments and proof-readings on 
an earlier version of the manuscript. 

References 

[AB91] 

[AHSSl] 

[Cli89] 

[KLE89] 

[LPSSl] 

[LS91] 

[Mey@l 

[Ontgl] 

[PerSO] 

S. Abiteboul and A. Bonner. Objects and 
views. In Proceedings of the ACM SIGMOD 
International Conference on Management of 
Data, pages 238-247. ACM SIGMOD, 1991. 

T. Andrews, C. Harris, and K. Sinkel. Ontos: 
A persistent database for c-t+. In R. Gupta 
and E. Horowitz, editors, Object-Oriented 
Databases with Applications to CASE, Net- 
works, and VLSI CAD, pages 387406. 
Prentice-Hall, 1991. 

NASA Johnson Space Center (AI Section). 
CLIPS Reference Manual - Version 4.3 of 
CLIPS, 1989. 

W. Kim and F.H. Lochovsky (Editors). 
Object-Oriented Concepts, Databases, and 
Applications. ACM Press, 1989. 

Q. Li, M. Papazoglou, and J. Smith. Dy- 
namic object models with spatial appli- 
cation. In Proceedings of the 15th Int’l 
Computer Software and Applications Con- 
ference. IEEE Computer Society, Tokyo, 
Japan, September 1991. 

Q. Li and J. Smith. Dynamic object clus- 
tering: an application and an implementa- 
tion. In Proceedings of the IJCAI-91 Work- 
shop on Integrating Artificial Intelligence 
and Databases. IJCAI, Sydney, Australia, 
August 1991. 

B. Meyer. Object-oriented Software Con- 
struction. Prentice-Hall, 1988. 

Ontos Inc., Three Burlington Woods, 
Burlington, MA01803. ONTOS Reference 
Manual - ONTOS Release 2.1, 1991. 

B. Pernici. Objects with roles. In Confer- 
ences on Ofice Information Systems, pages 
205-215. ACM, 1990. 

467 



[Sci89] 

[SLTSl] 

[SN88] 

[Str86] 

[Str88] 

E. Sciore. Object specialization. 
ACM Transactions on Information Systems, 
7(2):103-122, April 1989. 

M.H. Scholl, C. Laasch, and M. Tresch. Up- 
datable views in object-oriented databases. 
In The 2nd Int’l Conference on Deductive, 
Object-Oriented Databases, Munich, Dec. 
1991. 

M. Schrefl and E. Neuhold. Object class defi- 
nition by generalization using upward inheri- 
tance. In IEEE Database Engineering, pages 
4-13. IEEE, 1988. 

B.L. Stroustrup. The C++ Programming 
Language. Addison-Wesley, Heading, Mass., 
1986. 

B.L. Stroustrup. Parameterized types for 
c++. In Proceedings of the Usenix C++ 
Conference. Denver, 1988. 

[ZMESO] S. Zdonik and D. Maier (Editors). Readings 
in Object-Oriented Database Systems. Mor- 
gan Kaufmann, 1990. 

468 


