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Abstract 
Most extensible database systems support addition of new 
indexes or new data types. However, the reference pat- 
terns exhibited by these new indexes may not be 
efficiently supported by existing buffer replacement stra- 
tegies. In this paper, we propose a new mechanism that 
allows an index method to pass replacement hints to the 
buffer manager by assigning priority values to the buffer 
pages to reflect the desired replacement criteria. The pro- 
posed approach provides more flexible control over the 
replacement criteria as different semantics can be 
encoded using priority values which can also be changed 
dynamically. Buffer replacement thus becomes extensi- 
ble since it is possible to customize a strategy to exploit 
lmowledge about the reference pattern of the application. 
This extensibility also facilitates the design and fine tun- 
ing of better replacement strategies. The approach is 
illustrated with a hierarchical index example. Experimen- 
tal results show that a customized priority-based replace- 
ment strategy outperforms the commonly used LRU stra- 
WY. 

1. Introduction 
Emerging applications such as CAD/CAM and GIS 

have motivated research into extensible database manage- 
ment systems which aim to achieve two goals [CaH901. 
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The tirst important objective is to support addition of new 
features like new data types, complex objects and access 
methods to provide greater modeling power and perfor- 
mance. Secondly, extensible systems also seek to facili- 
tate the incorporation of new technologies. Existing pro- 
totypes of such systems (e.g. GENESIS [BBG88], 
EXODUS [CDG90], Starburst [HCL90], DASDBS 
[SPS90], PGSTGRES [StR86], etc) provide extensibility 
to varying degrees - query language extensions, query 
processing, storage and access methods, etc. A significant 
parameter affecting database performance is the I/O cost 
Various approaches have been used to minimize the 
number of disk accesses: clustering of related objects that 
are frequently retrieved together on disk; using efficient 
index methods to provide fast access paths to the data; 
and effective buffering of data pages to reduce page 
faults. Although most of the prototypes provide support 
for new data types and index structures, little work has 
been done in supporting these new index structures, in 
particular, taking advantage of the knowledge of the 
reference behaviour of the index structures to optimize 
the performance of the buffer manager. 

New index structures such as spatial indexes (e.g. 
R-trees [Gut84]) and complex object indexes (e.g. H-trees 
lJOL92]) are commonly used in applications where data 
are multi-dimensional or where object-oriented concepts 
are supported. These indexes exhibit new reference 
behaviours which may not be efficiently supported by 
existing buffer replacement strategies. Most of these 
indexes are hierarchical and the leaf pages cannot be 
ordered easily. As such, unlike conventional B+-trees, 
these leaf nodes are not linked sequentially. Queries that 
involve the search over a range of values are common. 
Range queries on such indexes typically involve more 
index page accesses since each leaf page access is pre- 
ceded by one or more index page accesses. Thus the 
resulting page fault rate can be extremely high if the 
index pages are not buffered efficiently. 

444 



For explanation purposes, we consider a variant of 
the B+-tree in which the leaf pages are not sequentially 
linked. For a given range query, the index node that con- 
tains the entire query range such that no other nodes in 
the subtree rooted at that node contain that range can be 
uniquely identified for the index. We call such a node the 
anchor node of the query. To answer a range query basi- 
cally involves a depth-first traversal of the subtree rooted 
at the anchor node. 

Let Ref(N) denotes the page reference string of a 
depth-first traversal of an index subtree rooted at node N 
and N, , N, , . . . . N, be the child nodes of the index node, 
N. Therefore, Ref(N) = <N, Ref(N,), N, Ref(Nz) ,... ,N, 
Ref(N,), N>. Managing the index pages with the com- 
monly used LRU replacement algorithm is not efficient 
since it attempts to keep recently accessed pages which 
may correspond to pages of a traversed subtree that will 
not be used again. 

Consider the example index shown in Figure 1 
where node A is the root of the index. Suppose node B is 
the anchor node; that is, the subtree rooted at node B is 
the smallest subtree that contains the answer. The logical 
page reference string for the index traversal is <A,, B,, 
C3, I&, ES, D6, Fly OS, G9, Dlo, I-&,, D12, C13, . ..>. -l-he 
subscript in each page number denotes the reference 
sequence number. 

Figure 1: Traversal of a Hierarchical Index 

Let us assume that the allocated buffer has 5 pages. 
Table 1 compares the buffer contents as the index tree is 
being traversed. Each row in the table shows the buffer 
contents after the page indicated by the reference number 
in column one is accessed. The second column shows the 
buffer contents managed under the LRU replacement stra- 
tegy while the third column shows the state of the buffer 
under Belady’s Optimal Replacement Strategy, which 
selects the page with the longest expected time until its 

Reference 
NUlllbW 

5 

LRU Strategy 
LRU -* MRU 

ABCD E ABCD E 

6 ABCE D ABCD E 

I 

8 

9 

10 

11 

12 

13 

B C E D F/A 

BCEF D 

A B C D F/E 

ABCD F 

C E F D G/B A B C D GIF 

CEFG D ABCD G 

E F G D H/C A B C D HIG 

E FGH D ABCD H 

FGHDC/E ABCD H 

Table 1: Buffer Contents Under LRU and Optimal Strategy 

next reference for replacement [Be166]. A buffer entry I/J 
means that a page replacement has occurred with page I 
replacing page J. 

Clearly, the LRU strategy is sub-optimal since it 
results in more page faults due to poor replacement deci- 
sions. Useful pages like B and C, which are needed later, 
were being replaced by pages in reference numbers 9 and 
11 respectively. In fact, by comparing the current buffer 
contents, we see that only one out of the five buffer pages 
under the LRU strategy is useful @age C) while under an 
ideal situation, three pages are useful (pages B and C, 
and page A which is very likely to be referenced again in 
subsequent queries). 

A hint passing mechanism that enables the buffer 
manager to exploit any semantics inherent in the index 
structure or the predictability of its access pattern is desir- 
able. For example, it was observed in [ChK89] that 
object-oriented applications perform more navigation 
than ad-hoc queries during runtime, and that most of the 
access patterns are predictable. The performance of a 
buffer manager is dependent on both the size of the allo- 
cated buffer pool as well as the replacement strategy 
used. In this paper, we focus on the second issue and pro- 
pose a priority-based mechanism that enables index 
methods to pass hints to improve on the buffer replace- 
ment decision. This makes the buffer replacement stra- 
tegy extensible since a replacement strategy can be cus- 
tomized for query reference patterns based on an index 
structure. A tighter control over buffer page replacement 
will lead to an improvement in the number of page hits 
and hence the system performance. The performance 
analysis for a hierarchical index example indicates that 
our strategy is more superior than conventional strategies 

Optimal Strategy 
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used in buffering index pages. The proposed approach 
can be generalized to handle different data pages. 

The rest of the paper is organized as follows. In the 
next section, we review related work on buffer manage- 
ment and extensible database systems. In section 3, we 
present the design of a mechanism for extensible buffer 
replacement strategy. Section 4 illustrates an application 
of the proposed mechanism using a hierarchical index as 
an example. Both analytical and experimental results that 
compare the performance of our approach with the LRU 
strategy are also presented. Finally in section 5, we com- 
pare the proposed approach with existing mechanisms, 
and highlight some future directions. 

2. Related Work 
In this section, we review earlier work on buffer 

management strategies for relational DBMS and examine 
the various approaches adopted in existing buffer 
managers. 

The objective of a buffer replacement strategy is to 
optimize the selection of a replacement page so as to 
maximize the number of page hits for an allocated 
number of buffer pages. The performance of a replace- 
ment algorithm depends on its utilization of the buffer 
pages. For a buffer size of say B pages, an ideal utiliza- 
tion is when the buffer always contains the next B unique 
referenced pages. This is impractical in general since it 
demands a priori knowledge of the paging characteristics 
of a query. Existing replacement algorithms use various 
criteria to predict the reference behaviour of queries. 
These buffer management algorithms (e.g. LRU, FIFO) 
are basically adaptations of memory management policies 
used in operating systems. A detailed discussion of the 
various algorithms can be found in [EfI-I84]. These algo 
rithms are however, not suitable for relational database 
environment as they do not take advantage of the access 
pattern of the query plan [StoSl]. In [SaS82, SaS86], 
Sacco and Schkolnick proposed the hot set model, a 
model for buffer management using the LRU strategy that 
takes into account the page reference behaviour of queries 
to determine the optimal buffer space allocation for a 
query. Chou and Dewitt [ChD85] extended this model 
with the DBMIN algorithm that separates the modeling of 
the reference behaviour from any particular buffer 
management algorithm. Thus, in addition to determining 
the optimal buffer size for a query, the DBMIN algorithm 
also uses knowledge of the access pattern to select an 
optimal replacement strategy for the query. Empirical 
results show that these query-oriented strategies outper- 
form the conventional virtual memory page replacement 
strategies. 

More recent work has looked into buffer manage- 
ment in a DBMS with workload consisting of transactions 

of different priority levels, such as in transaction process- 
ing and real-time systems. In [CJL89], two priority buffer 
management algorithms were proposed, the Priority-L&U, 
based on LRU, and the Priority-DBMIN, based on 
DBMlN. The major difference between the new schemes 
and their non-priority equivalents is that the proposed 
strategies allow higher priority transactions to steal buffer 
pages from lower priority transactions. The priority- 
based approach was further developed in [JCL90], where 
a new algorithm, the Priority-Hints was proposed. This 
new algorithm was shown to perform better than 
priority-LRU, and to perform as well as Priority-DBMIN, 
even for workload that consisted of transactions of equal 
priority. 

Although various extensible database systems have 
been designed and implemented, only a few of them have 
looked into means of passing hints to guide the buffer 
replacement decision to reduce page faults and to fully 
utilize the buffer. In Exodus [CDG90], most of the sys- 
tem components are extended using a programming 
language, E, which is an extension of C++. One way sug- 
gested in [RiC87] to enable index methods to pass hints to 
the buffer manager is to allow the database implementor 
to associate buffering hints with operator methods that are 
defined for abstract data type classes. In Starburst 
[HCL90], the buffer pool manager uses the CLOCK algo- 
rithm to provide hints on the expected future use of a 
page. However, it is not clear to what extent these vari- 
ous hint passing mechanisms improve the system perfor- 
mance. 

In WiSS [CDK85], a flexible data storage system 
designed for very high performance, the buffer pool 
manager uses a LRU replacement strategy combined with 
hints from the system on which pages are important. The 
hint specified can be low, mid or high. WiSS buffer 
manager selects the page with the lowest hint and the old- 
est timestamp for replacement. 

From the literature survey, we observe two trends. 
Firstly, due to the inadequacy of traditional buffer 
replacement strategies for database systems, there is a 
development of increasingly more sophisticated query- 
oriented approaches for buffer management where 
lmowledge about the reference behaviour of queries are 
exploited to achieve better performance. Hence, to obtain 
even better buffer utilization, it seems that more 
knowledge will have to be communicated to the buffer 
manager. Secondly, the buffer manager in recent systems 
adopts basically the same approach: a hint mechanism is 
used to enhance its replacement strategy which is typi- 
tally the LRU strategy or a variation of it However, this 
approach is rather restrictive since the replacement stra- 
tegy is actually fixed and it is not clear to what degree the 
hints can influence the replacement decision. Thus, a 
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more effective hint mechanism is desirable so that more 
information can be passed to the buffer manager to 
improve its performance. 

3. Design of Hint Passing Mechanism 
The design of an effective hint passing mechanism 

should satisfy two objectives. Firstly, the mechanism 
should be flexible enough to allow different levels and 
types of hints to be passed depending on the index 
methods. For example, an index method with a more 
predictable reference behaviour should be able to provide 
more detailed hints that result in a tighter and better con- 
trol of the buffer replacement. Secondly, the mechanism 
should be easy to use. 

As can be observed from the various existing buffer 
replacement strategies, the criteria used for replacement 
differ basically in their interpretation of the priority asso- 
ciated with the buffer pages. For example, the FIFO algo 
rithm assigns higher priority to younger buffer pages than 
older ones, the LFU algorithm favours more frequently 
referenced buffer pages, and the LRU algorithm allocates 
higher priority to more recently referenced pages. This 
leads to the motivation of .using priority as a representa- 
tion of hints to the buffer manager, allowing an index 
method to pass replacement hints to the buffer manager 
by assigning priority values to the buffer pages to reflect 
the desired replacement criteria. The buffer manger can 
then select from among the buffer pages, the one with the 
lowest priority for replacement. Different replacement 
strategies can be implemented by varying the assignment 
of priority values. The explicit use of priority to encode 
the replacement criteria not only enables existing replace- 
ment policies to be implemented but also facilitates 
experimentation and fine-tuning of new strategies to tailor 
to new index methods and applications. In fact, this 
priority-based approach is a generalization of all the 
replacement strategies since the selection of buffer pages 
for replacement is basically a scheduling problem. With 
such an approach, different semantics can be dynamically 
encoded using priority values to provide a more accurate 
and better control of the replacement decision. 

In our priority-based hint mechanism, each buffer 
page allocated for an index method is associated with a 
priority value. Every index page fetched into the buffer 
will be assigned a priority value which will be modified 
as the buffer pages are accessed to reflect its “replacement 
potential” relative to the other buffer pages. When a page 
fault occurs, the buffer manager will then select the page 
with the lowest priority value for replacement. Since both 
the initialization and updating of priority values are deter- 
mined by the replacement strategy, the buffer manager 
must share the same interpretation of the priority values 
as the replacement strategy in order to choose the correct 

replacement page. To facilitate this requirement, we 
design an abstraction for a replacement strategy that con- 
sists of four interface routines and an allocated memory 
space, referred to as the work space. The work space 
serves as a global data region that is accessible by both 
the interface routines and the index method. The contents 
of the work space are dependent on the information 
required by the replacement strategy to encode the prior- 
ity values. The details of the interface routines are shown 
in Table 2. 

Interface Routine 
initialize() 

accessPage(P: 
pageAddress) 

comparePriority(Bi, 
B2: priorityValue) 

changePriority(P: 
pageAddress; B: 
priorityvalue) 

Description 
Allocates memory for the work 
space and initiali&s its contents. 
This routine is invoked before 
the use of the index method. 

Update the Priority values of the 
pages in the buffer when an 
index page, P, is accessed. 

Evaluate two input priority 
values and return the lower of 
the two. This is used by the 
buffer manager to seIect a 
replacement page. 

Update the priority value of an 
index page, P, to B. 

Table 2: Interface Routines for Replacement Strategy 

The first three interface routines are buj5er interjhce 
routines and can only be invoked by the buffer manager. 
To enable priority values to be updated between buffer 
manager calls, another routine, chungePriority(), is pro 
vided for use in the index method. Each replacement 
strategy is therefore defined by this abstraction of four 
routines and work space. We outline two buffer manager 
routines in Figure 2 to illustrate how they interact with the 
buffer interface routines. The algorithms are simplified to 
show only the necessary details. 

Access to the various instances of replacement stra- 
tegy abstraction is through the use of a vector list indexed 
on the replacement strategy. Vectors of functions and 
values have been widely used in Starburst as a mechan- 
ism to permit easy extensibility [HCL90]. The set of 
interface routines can also be extended easily, if neces- 
sary. The use of the interface routines should become 
clearer in the next section. In addition to coding the inter- 
face routines, defining a new replacement strategy also 
requires registration of information into system catalogs 
so that the new strategy is made known to the system and 
at the same time, it also serves as documentation for 
future uses and extensions. 
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( This routine allocates a new buffer pool ] 
openBuffer (buffer&e) 
begin 

Invoke initialize0 to initialize work space; 
end. 

[ This routine searches for pageNo in buffer pool ) 
getPage (pageNo) 
begin 

if pageNo is not found in the buffer then 
use comparePriority() to select a 
replacement page from among the buffer pages; 

Let pageAdd be the address of pageNo; 
Invoke acessPage(pageAdd) to update the priority 

of the page; 
end. 

Figure 2: Outline of Interaction between Buffer 
Manager and Buffer Interface Routines 

4. An Application of the Hint Mechanism 
This section illustrates an application of the pro- 

posed mechanism using a variant of the B+-tree index 
example introduced in Section 1. We show that it is pos- 
sible to design an optimal replacement strategy using the 
new priority-based approach by exploiting the predictable 
access pattern of the index method. Both analytical and 
experimental results are also presented to compare the 
performance of the proposed approach with the LRU stra- 
tegy. We chose to analyze the performance of our pro- 
posed strategy on the B+-tree variant because the struc- 
ture, when its leaf nodes are not linked sequentially, 
behaves like other unconventional hierarchical indexes 
that are based on B+-trees (e.g. R-trees [G&4]). 

4.1. Priority-based Replacement Strategy 
The index pages in the buffer can be partitioned 

into two sets based on their usefulness. A buffer page is 
considered useful if it is referenced again later and useless 
otherwise. The usefulness of an index page in this exam- 
ple is known because of the predictability of the reference 
pattern. Within each set, the pages can be further parti- 
tioned using the level number of the page with respect to 
the anchor node. The priority assignment is as follows. 
Useful pages are assigned higher priority than useless 
ones. Among useless buffer pages, priority is given to 
pages that are closer to the root level since they are more 
likely to be referenced again in subsequent queries. For 
useful pages, priority is given to the more recently used 

pages since they will be re-referenced sooner because of 
the depth-first traversal reference pattern. This translates 
to a lower priority for a useful page that is closer to the 
root level. Ties among useless index pages at the same 
level are resolved arbitrarily. However, with page shar- 
ing, the other priority values associated with the pages 
need to be considered too. Note that there can be at most 
one useful page in the buffer of a certain level number. 
This priority allocation scheme is dynamic since the 
priority of a page may decrease as the index tree is 
traversed. A useful page becomes useless after the subtree 
rooted at that useful page has been traversed. 

The replacement strategy designed for the Bf-tree 
variant using the proposed dynamic priority scheme 
yields an optimal strategy. Useful pages, being assigned 
higher priority, will not be chosen for replacement until 
all the useless buffer pages have become replaced. Then 
under the designed replacement strategy, the useful page 
with the lowest level number will be selected for replace- 
ment, which corresponds to the page with the longest 
expected time until its next reference for a depth-first 
traversal. For example, consider the index tree in Figure 
1. Suppose now the allocated buffer has only four pages 
and the anchor node is page A. A page fault will occur on 
the 5* page reference. Since all the buffer pages are use- 
ful, under the proposed priority allocation, the page with 
the lowest level number, page A, will be selected for 
replacement. The choice would have been the same 
under Belady’s Optimal Replacement Policy because 
among the buffer pages {A, B, C, D), page A has the 
longest future reference distance. 

The designed replacement strategy is a hybrid 
replacement strategy since the useful pages are managed 
differently from the other pages. In fact, the strategy can 
be treated as a combination of the LRU and MRU 
replacement policies. Useful pages are managed in a 
LRU manner as those pages with a lower level number 
are accessed less recently, are assigned a lower priority. 
On the other hand, the management of useless pages is in 
a MRU order since those pages with a lower level number 
are assigned a higher priority. 

4.2. Implementation of Interface Routines 
In this section, we demonstrate how the dynamic 

priority scheme discussed in the previous section can be 
easily implemented using the replacement strategy pro- 
cedural interface. 

Following the discussion, the priority of an index 
page is based on two factors - its status (useful or use- 
less) and level number. We associate a priority byte to 
each buffer page in used to represent its priority value. 
The status and level number information is encoded as 
follows. The most significant bit (MSB) is used to encode 
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initialize() 
begin 

Allocate memory for variables status and level; 
Initialize status to useless; 
Initialize level to 1; 
Set pointer in appropriate vector to the 

allocated memory; 
end. 

accessPage@’ : pageAddress) 
begin 

Locate the buffer page containing P; 
Encode its priority byte using the values 

in the work space; 
end. 

ComparePriority (B,, B2 : priorityByte) 
begin 

if MSB(B,) = offand MSB(Bd = offthen 
return MAX (B,, B2) 

else 
return MIN (B,, BJ 

end. 

ChangePriority (P : pageAddress; B 
begin 

: priorityByte) 

Locate the buffer page containing P; 
Update its priority byte to B; 

end. 

indexsearch (rl, r2 : datavalue) 
begin 

Search the index for anchor node using query range 
bl, fJ; 

Invoke changePriority to change the priority byte of 
anchor page such that its status becomes useful; 

Set status in the work space to useful; 
Traverse index tree rooted at anchor node using 

depth-6rst traversal; 
Whenever an index page P backtracks 

invoke changePriority to change the priority 
byte of P such that its status becomes useless; 

As the index is traversed, update the level number 
in work space; 

end. 

Figure 3: Outline of Buffer Interface & indexsearch 
Algorithms 

the page status. It is set for a useful page and off other- 
wise. The remaining least significant bits (LSB) are used 
to encode the level number of the page. The work space 
therefore consists of just two variables: status and level. 
The algorithms for the interface routines and the index 
search are outlined in Figure 3. 

Notation Definition 
h Height of index subtree rooted at the 

anchor node, excluding the leaf level. 

Ni Node at level i in subtree rooted at the 
anchor node, 01 i 5 h. Therefore, No is 
the anchor node and N, refers to a 
parent-of-leaf node. 

f Order of index, no internal node has 
more than 2f keys. 

k Average number of keys in an internal 
node or average fan-out of the index. 

B Number of allocated buffer pages, B > 0. 

P load Total number of page faults caused by 
initial reading of index pages. 

Q.Ru Total number of page faults caused by 
re-referencing of replaced pages using 
the LRU replacement strategy. 

hzw Total number of page faults caused by 
re-referencing of replaced pages using 
the proposed priority-based replacement 
strategy. 

Table 3: Notations Used in Analysis 

An advantage of the proposed priority-based 
approach is that the replacement strategy can be easily 
extended and fine tuned. For example, to handle updated 
index pages, one of the seven LSBs can be reassigned as a 
dirty bit and the compurePriorify() routine modified to 
allocate higher priority to dirty pages to defer their more 
expensive replacement. 

4.3. Analytical Results 
This section provides an analytical comparison of 

the performance of the proposed and LRU replacement 
strategies. The performance metric used is the number of 
page faults. Table 3 explains the notations used in the 
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analysis. 
We assume in the analysis that each index node is 

In2 full on average [Yao78], which implies k = 2 f ln2. 
The total number of page faults = Soad + PLRv/NEw where 

h 

P road = Ck’, assuming that every index page in the sub- 
i=O 

that no page fault occurs when backtracking from an 
index node at level i to level (i- 1). it also implies that no 
page fault will occur when backtracking from a node at 
leve;lsr greater than i. It follows that when 

1 h-i 
2+ Ckj,B<2+ Ckj, i22, PLRu = Ckj, since a page 

tree rooted at the anchor node is accessed. 
For the proposed strategy, the optimal buffer utili- 

zation occurs when B = h + 1. In this case, the buffer 
always contains a complete path of useful nodes, (No, N1 , 

j=l j=l j=l 

fault cccurs only when an index node Nj, 1 I jl h-i, 
backtracks to its parent node. The analysis for the LRU 
strategy is as follows: 

. . . . Nhml, Nh), from the anchor node level down to the 
parent-of-leaf level. Since all the pages to be reused am 
always available in the buffer, therefore PNEw = 0. 
Clearly, no benefit will be gained if more than 01 + 1) 
buffer pages are allocated. However, when B < h + 1, the 
initial retrieval of nodes N,, Nn+r, . . . . and Nh, will 
replace the useful nodes No, N1, . . . . and Nh-n. Subse- 
quently, a page fault will occur whenever an index node, 
Ni, 15 i < h + 1 - B, backtracks to its parent node. There- 
fore, for the proposed strategy, 

ikj if B=l, h>O 
j=l 

i 

h-l 

Ckj if lcB<:k+2, h>l 
j=l 

P LRU= h-i i-l 

Ckj if 2+ CkjIB<2+ ikj, i22, h>!? 
j=l j=l j=l 

0 otherwise 

C ti if B<h+l, h>O 

The analysis has identified the various hot points, as 
defined by the Hot Set Model [SaS86], for both the pro- 
posed and LRU strategies. 

otherwise (1) 4.4. Experimental Results 

h 
For the LRU strategy, when B = 1, PLRu = Cl?, if 

i=l 

h > 0, since a page fault will occur whenever an index 
node backtracks to its parent node; otherwise PLRu = 0 if 
h = 0. When 1 < B < k + 2, all the useful nodes except 
Nhel, will be replaced by the retrieval of the k nodes at 
level h. Hence, this means that a page fault will occur 
whenever an index node, Ni, 1 Ii 5 h - 1, backtracks to its 

h-l 

parent node. Therefore, PLRu = C k’ when 1 < B < k + 2. 
i=l 

However, when B = k + 2, an additional useful node, 
NhT2, is also not paged out by the fetching of level h 
nodes. This is because N,-, is always accessed before 
the retrieval of its subtree so that the traversal of its next 
subtree will replace only the pages occupied by the previ- 
ously traversed subtree, leaving Nhm2 still in the buffer. 
In fact, (k + 2) is the minimum number of pages required 
in the buffer in order that no page fault arises when a 
node Nh-r backtracks t0 its parent node, Nh-2. By 
extending this argument, we conclude that in general, the 
minimum number of buffer pages required such that no 
page fault will occur when an index node, Nh-i+r, back- 

1-l 

tracks to its parent node at level h-i, is (2 + Ckj), i 22. 
j=l 

Note that when sufficient buffer space is available such 

In this section, we present the results of experi- 
ments conducted on the B+-tree variant index. The results 
are verified with the analytical results. The same nota- 
tions are used as in the analysis. 

For the experiments, we are interested in comparing 
the performance under different index structures (i.e., 
width and depth), in particular, for different values of the 
order of the index, f and the height of the index rooted at 
the anchor node, h. B+-tree variant indexes were con- 
structed with 700,000 records randomly generated over 
the domain of [0..500,000] and with f = 5, 10,20, 30 . . . 
100, ahowing us to study the effect of f on the perfor- 
mance. A mixture of 100 range queries were then run on 
each of the index built. These range queries are randomly 
generated to cover different percentage of the data value 
range, from 25% to 75%, so as to obtain different values 
for h. For each query, we measured the number of page 
faults caused by both initial loading, Plwa, and re- 
referencing, PNEw/LRu, under the two replacement stra- 
tegies for different buffer pool size. The average values 
for the 100 queries are then computed. 

We compare the performance of the two strategies 
using the performance gain and the absolute number of 
page faults. The performance gain is defined as follows: 

P 
Performance Gain = LRu-PNEW 1oo 

pLRU + Pload 
(3) 
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Figure 4(a): Performance Gain as a function of B, 
f=5,h=5 
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Figure 4(b): Performance Gain as a function of B, 
f= lO,h=3 

The performance gain for both analytical and 
experimental results are shown in Figures 4(a) and (b), 
respectively for indexes with f = 5 and f = 10. The graphs 
verify the analytical model: the differences are due to the 
assumptions made in the analysis such as every index 
node has exactly k child nodes. The experimental results 
agree with the analysis as the maximum gain occurs when 
the buffer utilization is optimal (B = h + 1). The initial 
sharp rise in the graphs is because PNEw drops to zero for 
the proposed strategy at the hot point, B = h + 1. From 
these two experiments, we observe that the performance 
gain is highly affected by Ptoad (Proad for Figure 4(a) and 
4(b) are respectively 10875 and 2760), which is deter- 
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Figure 5(a): Performance Gain as a function of B, 
f=5,h=5 
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Figure 5(b): Performance Gain as a function of B, 
f= lO,h=3 

mined by f and h. With a smaller f, the index has more 
nodes and hence a higher height, resulting in queries with 
higher h (height from the anchor node to the leaf minus 
one) and Prozd. When Ptoad is higher, the page faults 
caused by re-referencing under the LRU, Prnu, is more 
while the value of PNEw stablizes very quickly to zero 
independent of PIad. As such, the relative performance 
gain is higher for larger Proad. We expect that as the index 
with large f increases its height, the performance gain will 
increase and become comparable to that of an index with 
smaller f. 

Note that in reading an index, there is a fixed 
amount of initial loading which cannot be saved, which is 
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Ptoad. Depending on the index sizes, such initial loading 
can be far more than the number of page faults caused by 
re-referencing, Pmmu. In order to consider the perfor- 
mance gain independent of Pi-,, which is in any case the 
same under either strategy, we modify the performance 
gain formula in (3) as follows: 

i 

0 ifP,,=O 
Performance Gain = p 

LRu-PNEW 1oo otherwise (4) 

PLRU 

Figure 5 depicts the corresponding graphs in Figure 
4 using the modified performance gain formula These 
graphs illustrate that the proposed replacement strategy is 
in fact optimal with performance gain of lOO%, a 
significant improvement over the LRU strategy. The gain 
drops to zero when a sufficiently large buffer size is used. 

In Figure 6, we illustrate the corresponding graphs 
in Figure 4 using the absolute number of page faults. It is 
clear from the graphs that the savings in the number of 
page faults is significant. Note that when B = h + 1, the 
total number of page faults under the proposed strategy 
drops steeply to Pioad because PNEw = 0. For the LRU 
strategy, more buffer pages are required to achieve the 
same level of efficiency as in the proposed strategy. The 
page fault difference is also greater for smaller value of f 
(larger value of Pi,,J because more pages are re-accessed 
under the LRU strategy. Experiments were also con- 
ducted for indexes with larger values of f. However, the 
number of nodes and the height for indexes with large f 
are still quite small for 700,000 records, yielding small 
Pioad. We are now experimenting with more records so 
that the height of indexes is at least 3. 

5. Discussions and Future Work 
In this paper, we have proposed a priority-based 

hint mechanism which is not only more dynamic than 
current hint mechanisms but also makes the buffer 
replacement strategy extensible to some extent. To our 
knowledge, none of the existing extensible database sys- 
tems provides such a level of extensibility. With our 
approach, an efficient buffer replacement strategy can be 
tailored for an index method to provide a tighter and 
better control over the replacement decision. This helps 
to achieve a better buffer utilization and hence improves 
the system performance. 

We have demonstrated with a hierarchical index 
example that an optimal hybrid replacement strategy can 
be designed and implemented with our mechanism. A 
comparison of the proposed strategy and the LRU, using 
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Figure 6(a): Total Page Fault as a function of B, 
Soad = 10875, f = 5, h = 5 
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Figure 6(b): Total Page Fault as a function of B, 
Pi,,=276O,f= lO,h=3 

both analytical and experimental results, shows that the 
proposed strategy outperforms the LRU strategy. 

The proposed hint mechanism is more flexible as it 
is not tied to any particular replacement strategy since the 
replacement strategy is implemented by the hint mechan- 
ism. Unlike the buffer manager in WiSS, which uses a 
fixed replacement strategy with a restrictive three level 
hint mechanism, our approach enables encoding of dif- 
ferent number of levels and types of hints, depending on 
the knowledge that can be exploited and incorporated into 
the design. Although the DBMIN algorithm supports a 
multi-strategy approach, it is based on a classification of 
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query reference patterns exhibited by common access 
methods and database operations. The set of strategies 
supported is therefore fixed and is hardwired into the 
database system. Addition of new replacement strategies 
to exploit reference patterns of new applications is not 
easy as the DBMIN approach is not extensible. Priority 
based replacement algorithms like Priority-LRU and 
Priority-DBMIN [CJL89], and Priority-Hints [JCL901 are 
designed for a multi-priority transactions based system. 
Our approach can be extended to incorporate the priority 
of transactions into the priority encoding used in the hint 
mechanism. 

The flexibility and extensibility of the proposed 
mechanism aIso enables experimentation of various 
buffer management schemes. In [EfH84], Effelsberg and 
Haerder proposed various versions of two main classes of 
replacement algorithms: one is based on the GCLOCK 
algorithm and the other is based on the LRD (least refer- 
ence density) algorithm. Robinson and Devarakonda 
[RoD90] have also proposed a frequency-based replace- 
ment algorithm that effectively combines the principles of 
locality of reference and reference frequency. All these 
algorithms involve the use of various parameters for fine 
tuning. The implementation and fine tuning of such algo- 
rithms can be supported by the proposed extensible 
mechanism. 

Some applications that require a non standard 
replacement strategy include some heuristic-based join 
algorithms FoP89, Omi89], a run-time clustering algo- 
rithm that exploits intelligent buffer replacement 
[ChK89], and a buffer manager that implements complex 
objects using pages with different sizes [Sik88]. We 
believe that the design of new access methods and algo- 
rithms will benefit from an extensible hint mechanism that 
enables domain related semantics to be exploited for 
greater efficiency. 

Although the focus of this paper has been on 
management of index pages, the proposed mechanism can 
be applied to handle the access pattern of other types of 
pages under various database operations. As part of our 
future work, we intend to conduct a more extensive 
experimental study to compare the performance of vari- 
ous database operations using the proposed hint mechan- 
ism. There are also other directions that deserve further 
work. Instead of relying on the programmer to code the 
replacement strategy by providing a priority scheme, 
another approach is for the system to derive a priority 
assignment for the application based on its past reference 
behaviour and generate the code automatically. Other 
research areas include the incorporation of a transaction’s 
priority into the hint mechanism for a system with dif- 
ferent priority transactions and issues related to the use of 
the hint mechanism in a dual-buffer architecture 

employed in some object-oriented DBMSs (e.g. O2 
[Deu903, and DASDBS [SPS90]). 
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