
Extensible Buffer Management of Indexes?

Chee Yong Chan Beng Chin Goi Hongjun Lu
Department of Information Systems and Computer Science

National University of Singapore
Lower Kent Ridge Road

Singapore 05 11

Abstract
Most extensible database systems support addition of new
indexes or new data types. However, the reference pat-
terns exhibited by these new indexes may not be
efficiently supported by existing buffer replacement stra-
tegies. In this paper, we propose a new mechanism that
allows an index method to pass replacement hints to the
buffer manager by assigning priority values to the buffer
pages to reflect the desired replacement criteria. The pro-
posed approach provides more flexible control over the
replacement criteria as different semantics can be
encoded using priority values which can also be changed
dynamically. Buffer replacement thus becomes extensi-
ble since it is possible to customize a strategy to exploit
lmowledge about the reference pattern of the application.
This extensibility also facilitates the design and fine tun-
ing of better replacement strategies. The approach is
illustrated with a hierarchical index example. Experimen-
tal results show that a customized priority-based replace-
ment strategy outperforms the commonly used LRU stra-
WY.

1. Introduction
Emerging applications such as CAD/CAM and GIS

have motivated research into extensible database manage-
ment systems which aim to achieve two goals [CaH901.

t This work was in part supported by NUS Research Grant
Rp910694.

Penn&ion io copy W&XU fee alI or part of rhir mated ti
granted provided that the copies are not ma& or distributed for
direct commerctil advatiage, tk VWB copyright notice and the
title of tk publication and its date appear, and notice ir given that
copying ir by permission of the Very Lurge Daa Base
Endowment. To copy otherwire, or to republirh, requLes a fee
and/or special permission from lk Etuiownmenf.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

The tirst important objective is to support addition of new
features like new data types, complex objects and access
methods to provide greater modeling power and perfor-
mance. Secondly, extensible systems also seek to facili-
tate the incorporation of new technologies. Existing pro-
totypes of such systems (e.g. GENESIS [BBG88],
EXODUS [CDG90], Starburst [HCL90], DASDBS
[SPS90], PGSTGRES [StR86], etc) provide extensibility
to varying degrees - query language extensions, query
processing, storage and access methods, etc. A significant
parameter affecting database performance is the I/O cost
Various approaches have been used to minimize the
number of disk accesses: clustering of related objects that
are frequently retrieved together on disk; using efficient
index methods to provide fast access paths to the data;
and effective buffering of data pages to reduce page
faults. Although most of the prototypes provide support
for new data types and index structures, little work has
been done in supporting these new index structures, in
particular, taking advantage of the knowledge of the
reference behaviour of the index structures to optimize
the performance of the buffer manager.

New index structures such as spatial indexes (e.g.
R-trees [Gut84]) and complex object indexes (e.g. H-trees
lJOL92]) are commonly used in applications where data
are multi-dimensional or where object-oriented concepts
are supported. These indexes exhibit new reference
behaviours which may not be efficiently supported by
existing buffer replacement strategies. Most of these
indexes are hierarchical and the leaf pages cannot be
ordered easily. As such, unlike conventional B+-trees,
these leaf nodes are not linked sequentially. Queries that
involve the search over a range of values are common.
Range queries on such indexes typically involve more
index page accesses since each leaf page access is pre-
ceded by one or more index page accesses. Thus the
resulting page fault rate can be extremely high if the
index pages are not buffered efficiently.

444

For explanation purposes, we consider a variant of
the B+-tree in which the leaf pages are not sequentially
linked. For a given range query, the index node that con-
tains the entire query range such that no other nodes in
the subtree rooted at that node contain that range can be
uniquely identified for the index. We call such a node the
anchor node of the query. To answer a range query basi-
cally involves a depth-first traversal of the subtree rooted
at the anchor node.

Let Ref(N) denotes the page reference string of a
depth-first traversal of an index subtree rooted at node N
and N, , N, , N, be the child nodes of the index node,
N. Therefore, Ref(N) = <N, Ref(N,), N, Ref(Nz) ,... ,N,
Ref(N,), N>. Managing the index pages with the com-
monly used LRU replacement algorithm is not efficient
since it attempts to keep recently accessed pages which
may correspond to pages of a traversed subtree that will
not be used again.

Consider the example index shown in Figure 1
where node A is the root of the index. Suppose node B is
the anchor node; that is, the subtree rooted at node B is
the smallest subtree that contains the answer. The logical
page reference string for the index traversal is <A,, B,,
C3, I&, ES, D6, Fly OS, G9, Dlo, I-&,, D12, C13, . ..>. -l-he
subscript in each page number denotes the reference
sequence number.

Figure 1: Traversal of a Hierarchical Index

Let us assume that the allocated buffer has 5 pages.
Table 1 compares the buffer contents as the index tree is
being traversed. Each row in the table shows the buffer
contents after the page indicated by the reference number
in column one is accessed. The second column shows the
buffer contents managed under the LRU replacement stra-
tegy while the third column shows the state of the buffer
under Belady’s Optimal Replacement Strategy, which
selects the page with the longest expected time until its

Reference
NUlllbW

5

LRU Strategy
LRU -* MRU

ABCD E ABCD E

6 ABCE D ABCD E

I

8

9

10

11

12

13

B C E D F/A

BCEF D

A B C D F/E

ABCD F

C E F D G/B A B C D GIF

CEFG D ABCD G

E F G D H/C A B C D HIG

E FGH D ABCD H

FGHDC/E ABCD H

Table 1: Buffer Contents Under LRU and Optimal Strategy

next reference for replacement [Be166]. A buffer entry I/J
means that a page replacement has occurred with page I
replacing page J.

Clearly, the LRU strategy is sub-optimal since it
results in more page faults due to poor replacement deci-
sions. Useful pages like B and C, which are needed later,
were being replaced by pages in reference numbers 9 and
11 respectively. In fact, by comparing the current buffer
contents, we see that only one out of the five buffer pages
under the LRU strategy is useful @age C) while under an
ideal situation, three pages are useful (pages B and C,
and page A which is very likely to be referenced again in
subsequent queries).

A hint passing mechanism that enables the buffer
manager to exploit any semantics inherent in the index
structure or the predictability of its access pattern is desir-
able. For example, it was observed in [ChK89] that
object-oriented applications perform more navigation
than ad-hoc queries during runtime, and that most of the
access patterns are predictable. The performance of a
buffer manager is dependent on both the size of the allo-
cated buffer pool as well as the replacement strategy
used. In this paper, we focus on the second issue and pro-
pose a priority-based mechanism that enables index
methods to pass hints to improve on the buffer replace-
ment decision. This makes the buffer replacement stra-
tegy extensible since a replacement strategy can be cus-
tomized for query reference patterns based on an index
structure. A tighter control over buffer page replacement
will lead to an improvement in the number of page hits
and hence the system performance. The performance
analysis for a hierarchical index example indicates that
our strategy is more superior than conventional strategies

Optimal Strategy

445

used in buffering index pages. The proposed approach
can be generalized to handle different data pages.

The rest of the paper is organized as follows. In the
next section, we review related work on buffer manage-
ment and extensible database systems. In section 3, we
present the design of a mechanism for extensible buffer
replacement strategy. Section 4 illustrates an application
of the proposed mechanism using a hierarchical index as
an example. Both analytical and experimental results that
compare the performance of our approach with the LRU
strategy are also presented. Finally in section 5, we com-
pare the proposed approach with existing mechanisms,
and highlight some future directions.

2. Related Work
In this section, we review earlier work on buffer

management strategies for relational DBMS and examine
the various approaches adopted in existing buffer
managers.

The objective of a buffer replacement strategy is to
optimize the selection of a replacement page so as to
maximize the number of page hits for an allocated
number of buffer pages. The performance of a replace-
ment algorithm depends on its utilization of the buffer
pages. For a buffer size of say B pages, an ideal utiliza-
tion is when the buffer always contains the next B unique
referenced pages. This is impractical in general since it
demands a priori knowledge of the paging characteristics
of a query. Existing replacement algorithms use various
criteria to predict the reference behaviour of queries.
These buffer management algorithms (e.g. LRU, FIFO)
are basically adaptations of memory management policies
used in operating systems. A detailed discussion of the
various algorithms can be found in [EfI-I84]. These algo
rithms are however, not suitable for relational database
environment as they do not take advantage of the access
pattern of the query plan [StoSl]. In [SaS82, SaS86],
Sacco and Schkolnick proposed the hot set model, a
model for buffer management using the LRU strategy that
takes into account the page reference behaviour of queries
to determine the optimal buffer space allocation for a
query. Chou and Dewitt [ChD85] extended this model
with the DBMIN algorithm that separates the modeling of
the reference behaviour from any particular buffer
management algorithm. Thus, in addition to determining
the optimal buffer size for a query, the DBMIN algorithm
also uses knowledge of the access pattern to select an
optimal replacement strategy for the query. Empirical
results show that these query-oriented strategies outper-
form the conventional virtual memory page replacement
strategies.

More recent work has looked into buffer manage-
ment in a DBMS with workload consisting of transactions

of different priority levels, such as in transaction process-
ing and real-time systems. In [CJL89], two priority buffer
management algorithms were proposed, the Priority-L&U,
based on LRU, and the Priority-DBMIN, based on
DBMlN. The major difference between the new schemes
and their non-priority equivalents is that the proposed
strategies allow higher priority transactions to steal buffer
pages from lower priority transactions. The priority-
based approach was further developed in [JCL90], where
a new algorithm, the Priority-Hints was proposed. This
new algorithm was shown to perform better than
priority-LRU, and to perform as well as Priority-DBMIN,
even for workload that consisted of transactions of equal
priority.

Although various extensible database systems have
been designed and implemented, only a few of them have
looked into means of passing hints to guide the buffer
replacement decision to reduce page faults and to fully
utilize the buffer. In Exodus [CDG90], most of the sys-
tem components are extended using a programming
language, E, which is an extension of C++. One way sug-
gested in [RiC87] to enable index methods to pass hints to
the buffer manager is to allow the database implementor
to associate buffering hints with operator methods that are
defined for abstract data type classes. In Starburst
[HCL90], the buffer pool manager uses the CLOCK algo-
rithm to provide hints on the expected future use of a
page. However, it is not clear to what extent these vari-
ous hint passing mechanisms improve the system perfor-
mance.

In WiSS [CDK85], a flexible data storage system
designed for very high performance, the buffer pool
manager uses a LRU replacement strategy combined with
hints from the system on which pages are important. The
hint specified can be low, mid or high. WiSS buffer
manager selects the page with the lowest hint and the old-
est timestamp for replacement.

From the literature survey, we observe two trends.
Firstly, due to the inadequacy of traditional buffer
replacement strategies for database systems, there is a
development of increasingly more sophisticated query-
oriented approaches for buffer management where
lmowledge about the reference behaviour of queries are
exploited to achieve better performance. Hence, to obtain
even better buffer utilization, it seems that more
knowledge will have to be communicated to the buffer
manager. Secondly, the buffer manager in recent systems
adopts basically the same approach: a hint mechanism is
used to enhance its replacement strategy which is typi-
tally the LRU strategy or a variation of it However, this
approach is rather restrictive since the replacement stra-
tegy is actually fixed and it is not clear to what degree the
hints can influence the replacement decision. Thus, a

446

more effective hint mechanism is desirable so that more
information can be passed to the buffer manager to
improve its performance.

3. Design of Hint Passing Mechanism
The design of an effective hint passing mechanism

should satisfy two objectives. Firstly, the mechanism
should be flexible enough to allow different levels and
types of hints to be passed depending on the index
methods. For example, an index method with a more
predictable reference behaviour should be able to provide
more detailed hints that result in a tighter and better con-
trol of the buffer replacement. Secondly, the mechanism
should be easy to use.

As can be observed from the various existing buffer
replacement strategies, the criteria used for replacement
differ basically in their interpretation of the priority asso-
ciated with the buffer pages. For example, the FIFO algo
rithm assigns higher priority to younger buffer pages than
older ones, the LFU algorithm favours more frequently
referenced buffer pages, and the LRU algorithm allocates
higher priority to more recently referenced pages. This
leads to the motivation of .using priority as a representa-
tion of hints to the buffer manager, allowing an index
method to pass replacement hints to the buffer manager
by assigning priority values to the buffer pages to reflect
the desired replacement criteria. The buffer manger can
then select from among the buffer pages, the one with the
lowest priority for replacement. Different replacement
strategies can be implemented by varying the assignment
of priority values. The explicit use of priority to encode
the replacement criteria not only enables existing replace-
ment policies to be implemented but also facilitates
experimentation and fine-tuning of new strategies to tailor
to new index methods and applications. In fact, this
priority-based approach is a generalization of all the
replacement strategies since the selection of buffer pages
for replacement is basically a scheduling problem. With
such an approach, different semantics can be dynamically
encoded using priority values to provide a more accurate
and better control of the replacement decision.

In our priority-based hint mechanism, each buffer
page allocated for an index method is associated with a
priority value. Every index page fetched into the buffer
will be assigned a priority value which will be modified
as the buffer pages are accessed to reflect its “replacement
potential” relative to the other buffer pages. When a page
fault occurs, the buffer manager will then select the page
with the lowest priority value for replacement. Since both
the initialization and updating of priority values are deter-
mined by the replacement strategy, the buffer manager
must share the same interpretation of the priority values
as the replacement strategy in order to choose the correct

replacement page. To facilitate this requirement, we
design an abstraction for a replacement strategy that con-
sists of four interface routines and an allocated memory
space, referred to as the work space. The work space
serves as a global data region that is accessible by both
the interface routines and the index method. The contents
of the work space are dependent on the information
required by the replacement strategy to encode the prior-
ity values. The details of the interface routines are shown
in Table 2.

Interface Routine
initialize()

accessPage(P:
pageAddress)

comparePriority(Bi,
B2: priorityValue)

changePriority(P:
pageAddress; B:
priorityvalue)

Description
Allocates memory for the work
space and initiali&s its contents.
This routine is invoked before
the use of the index method.

Update the Priority values of the
pages in the buffer when an
index page, P, is accessed.

Evaluate two input priority
values and return the lower of
the two. This is used by the
buffer manager to seIect a
replacement page.

Update the priority value of an
index page, P, to B.

Table 2: Interface Routines for Replacement Strategy

The first three interface routines are buj5er interjhce
routines and can only be invoked by the buffer manager.
To enable priority values to be updated between buffer
manager calls, another routine, chungePriority(), is pro
vided for use in the index method. Each replacement
strategy is therefore defined by this abstraction of four
routines and work space. We outline two buffer manager
routines in Figure 2 to illustrate how they interact with the
buffer interface routines. The algorithms are simplified to
show only the necessary details.

Access to the various instances of replacement stra-
tegy abstraction is through the use of a vector list indexed
on the replacement strategy. Vectors of functions and
values have been widely used in Starburst as a mechan-
ism to permit easy extensibility [HCL90]. The set of
interface routines can also be extended easily, if neces-
sary. The use of the interface routines should become
clearer in the next section. In addition to coding the inter-
face routines, defining a new replacement strategy also
requires registration of information into system catalogs
so that the new strategy is made known to the system and
at the same time, it also serves as documentation for
future uses and extensions.

447

(This routine allocates a new buffer pool]
openBuffer (buffer&e)
begin

Invoke initialize0 to initialize work space;
end.

[This routine searches for pageNo in buffer pool)
getPage (pageNo)
begin

if pageNo is not found in the buffer then
use comparePriority() to select a
replacement page from among the buffer pages;

Let pageAdd be the address of pageNo;
Invoke acessPage(pageAdd) to update the priority

of the page;
end.

Figure 2: Outline of Interaction between Buffer
Manager and Buffer Interface Routines

4. An Application of the Hint Mechanism
This section illustrates an application of the pro-

posed mechanism using a variant of the B+-tree index
example introduced in Section 1. We show that it is pos-
sible to design an optimal replacement strategy using the
new priority-based approach by exploiting the predictable
access pattern of the index method. Both analytical and
experimental results are also presented to compare the
performance of the proposed approach with the LRU stra-
tegy. We chose to analyze the performance of our pro-
posed strategy on the B+-tree variant because the struc-
ture, when its leaf nodes are not linked sequentially,
behaves like other unconventional hierarchical indexes
that are based on B+-trees (e.g. R-trees [G&4]).

4.1. Priority-based Replacement Strategy
The index pages in the buffer can be partitioned

into two sets based on their usefulness. A buffer page is
considered useful if it is referenced again later and useless
otherwise. The usefulness of an index page in this exam-
ple is known because of the predictability of the reference
pattern. Within each set, the pages can be further parti-
tioned using the level number of the page with respect to
the anchor node. The priority assignment is as follows.
Useful pages are assigned higher priority than useless
ones. Among useless buffer pages, priority is given to
pages that are closer to the root level since they are more
likely to be referenced again in subsequent queries. For
useful pages, priority is given to the more recently used

pages since they will be re-referenced sooner because of
the depth-first traversal reference pattern. This translates
to a lower priority for a useful page that is closer to the
root level. Ties among useless index pages at the same
level are resolved arbitrarily. However, with page shar-
ing, the other priority values associated with the pages
need to be considered too. Note that there can be at most
one useful page in the buffer of a certain level number.
This priority allocation scheme is dynamic since the
priority of a page may decrease as the index tree is
traversed. A useful page becomes useless after the subtree
rooted at that useful page has been traversed.

The replacement strategy designed for the Bf-tree
variant using the proposed dynamic priority scheme
yields an optimal strategy. Useful pages, being assigned
higher priority, will not be chosen for replacement until
all the useless buffer pages have become replaced. Then
under the designed replacement strategy, the useful page
with the lowest level number will be selected for replace-
ment, which corresponds to the page with the longest
expected time until its next reference for a depth-first
traversal. For example, consider the index tree in Figure
1. Suppose now the allocated buffer has only four pages
and the anchor node is page A. A page fault will occur on
the 5* page reference. Since all the buffer pages are use-
ful, under the proposed priority allocation, the page with
the lowest level number, page A, will be selected for
replacement. The choice would have been the same
under Belady’s Optimal Replacement Policy because
among the buffer pages {A, B, C, D), page A has the
longest future reference distance.

The designed replacement strategy is a hybrid
replacement strategy since the useful pages are managed
differently from the other pages. In fact, the strategy can
be treated as a combination of the LRU and MRU
replacement policies. Useful pages are managed in a
LRU manner as those pages with a lower level number
are accessed less recently, are assigned a lower priority.
On the other hand, the management of useless pages is in
a MRU order since those pages with a lower level number
are assigned a higher priority.

4.2. Implementation of Interface Routines
In this section, we demonstrate how the dynamic

priority scheme discussed in the previous section can be
easily implemented using the replacement strategy pro-
cedural interface.

Following the discussion, the priority of an index
page is based on two factors - its status (useful or use-
less) and level number. We associate a priority byte to
each buffer page in used to represent its priority value.
The status and level number information is encoded as
follows. The most significant bit (MSB) is used to encode

448

initialize()
begin

Allocate memory for variables status and level;
Initialize status to useless;
Initialize level to 1;
Set pointer in appropriate vector to the

allocated memory;
end.

accessPage@’ : pageAddress)
begin

Locate the buffer page containing P;
Encode its priority byte using the values

in the work space;
end.

ComparePriority (B,, B2 : priorityByte)
begin

if MSB(B,) = offand MSB(Bd = offthen
return MAX (B,, B2)

else
return MIN (B,, BJ

end.

ChangePriority (P : pageAddress; B
begin

: priorityByte)

Locate the buffer page containing P;
Update its priority byte to B;

end.

indexsearch (rl, r2 : datavalue)
begin

Search the index for anchor node using query range
bl, fJ;

Invoke changePriority to change the priority byte of
anchor page such that its status becomes useful;

Set status in the work space to useful;
Traverse index tree rooted at anchor node using

depth-6rst traversal;
Whenever an index page P backtracks

invoke changePriority to change the priority
byte of P such that its status becomes useless;

As the index is traversed, update the level number
in work space;

end.

Figure 3: Outline of Buffer Interface & indexsearch
Algorithms

the page status. It is set for a useful page and off other-
wise. The remaining least significant bits (LSB) are used
to encode the level number of the page. The work space
therefore consists of just two variables: status and level.
The algorithms for the interface routines and the index
search are outlined in Figure 3.

Notation Definition
h Height of index subtree rooted at the

anchor node, excluding the leaf level.

Ni Node at level i in subtree rooted at the
anchor node, 01 i 5 h. Therefore, No is
the anchor node and N, refers to a
parent-of-leaf node.

f Order of index, no internal node has
more than 2f keys.

k Average number of keys in an internal
node or average fan-out of the index.

B Number of allocated buffer pages, B > 0.

P load Total number of page faults caused by
initial reading of index pages.

Q.Ru Total number of page faults caused by
re-referencing of replaced pages using
the LRU replacement strategy.

hzw Total number of page faults caused by
re-referencing of replaced pages using
the proposed priority-based replacement
strategy.

Table 3: Notations Used in Analysis

An advantage of the proposed priority-based
approach is that the replacement strategy can be easily
extended and fine tuned. For example, to handle updated
index pages, one of the seven LSBs can be reassigned as a
dirty bit and the compurePriorify() routine modified to
allocate higher priority to dirty pages to defer their more
expensive replacement.

4.3. Analytical Results
This section provides an analytical comparison of

the performance of the proposed and LRU replacement
strategies. The performance metric used is the number of
page faults. Table 3 explains the notations used in the

449

analysis.
We assume in the analysis that each index node is

In2 full on average [Yao78], which implies k = 2 f ln2.
The total number of page faults = Soad + PLRv/NEw where

h

P road = Ck’, assuming that every index page in the sub-
i=O

that no page fault occurs when backtracking from an
index node at level i to level (i- 1). it also implies that no
page fault will occur when backtracking from a node at
leve;lsr greater than i. It follows that when

1 h-i
2+ Ckj,B<2+ Ckj, i22, PLRu = Ckj, since a page

tree rooted at the anchor node is accessed.
For the proposed strategy, the optimal buffer utili-

zation occurs when B = h + 1. In this case, the buffer
always contains a complete path of useful nodes, (No, N1 ,

j=l j=l j=l

fault cccurs only when an index node Nj, 1 I jl h-i,
backtracks to its parent node. The analysis for the LRU
strategy is as follows:

. . . . Nhml, Nh), from the anchor node level down to the
parent-of-leaf level. Since all the pages to be reused am
always available in the buffer, therefore PNEw = 0.
Clearly, no benefit will be gained if more than 01 + 1)
buffer pages are allocated. However, when B < h + 1, the
initial retrieval of nodes N,, Nn+r, and Nh, will
replace the useful nodes No, N1, and Nh-n. Subse-
quently, a page fault will occur whenever an index node,
Ni, 15 i < h + 1 - B, backtracks to its parent node. There-
fore, for the proposed strategy,

ikj if B=l, h>O
j=l

i

h-l

Ckj if lcB<:k+2, h>l
j=l

P LRU= h-i i-l

Ckj if 2+ CkjIB<2+ ikj, i22, h>!?
j=l j=l j=l

0 otherwise

C ti if B<h+l, h>O

The analysis has identified the various hot points, as
defined by the Hot Set Model [SaS86], for both the pro-
posed and LRU strategies.

otherwise (1) 4.4. Experimental Results

h
For the LRU strategy, when B = 1, PLRu = Cl?, if

i=l

h > 0, since a page fault will occur whenever an index
node backtracks to its parent node; otherwise PLRu = 0 if
h = 0. When 1 < B < k + 2, all the useful nodes except
Nhel, will be replaced by the retrieval of the k nodes at
level h. Hence, this means that a page fault will occur
whenever an index node, Ni, 1 Ii 5 h - 1, backtracks to its

h-l

parent node. Therefore, PLRu = C k’ when 1 < B < k + 2.
i=l

However, when B = k + 2, an additional useful node,
NhT2, is also not paged out by the fetching of level h
nodes. This is because N,-, is always accessed before
the retrieval of its subtree so that the traversal of its next
subtree will replace only the pages occupied by the previ-
ously traversed subtree, leaving Nhm2 still in the buffer.
In fact, (k + 2) is the minimum number of pages required
in the buffer in order that no page fault arises when a
node Nh-r backtracks t0 its parent node, Nh-2. By
extending this argument, we conclude that in general, the
minimum number of buffer pages required such that no
page fault will occur when an index node, Nh-i+r, back-

1-l

tracks to its parent node at level h-i, is (2 + Ckj), i 22.
j=l

Note that when sufficient buffer space is available such

In this section, we present the results of experi-
ments conducted on the B+-tree variant index. The results
are verified with the analytical results. The same nota-
tions are used as in the analysis.

For the experiments, we are interested in comparing
the performance under different index structures (i.e.,
width and depth), in particular, for different values of the
order of the index, f and the height of the index rooted at
the anchor node, h. B+-tree variant indexes were con-
structed with 700,000 records randomly generated over
the domain of [0..500,000] and with f = 5, 10,20, 30 . . .
100, ahowing us to study the effect of f on the perfor-
mance. A mixture of 100 range queries were then run on
each of the index built. These range queries are randomly
generated to cover different percentage of the data value
range, from 25% to 75%, so as to obtain different values
for h. For each query, we measured the number of page
faults caused by both initial loading, Plwa, and re-
referencing, PNEw/LRu, under the two replacement stra-
tegies for different buffer pool size. The average values
for the 100 queries are then computed.

We compare the performance of the two strategies
using the performance gain and the absolute number of
page faults. The performance gain is defined as follows:

P
Performance Gain = LRu-PNEW 1oo

pLRU + Pload
(3)

450

Perf.
8-

Gain 6
(%I

4

12-

10-

2

00
02 5 10 15 20

Buffer size

Figure 4(a): Performance Gain as a function of B,
f=5,h=5

02 5 10 15 20 25
Buffer size

Figure 4(b): Performance Gain as a function of B,
f= lO,h=3

The performance gain for both analytical and
experimental results are shown in Figures 4(a) and (b),
respectively for indexes with f = 5 and f = 10. The graphs
verify the analytical model: the differences are due to the
assumptions made in the analysis such as every index
node has exactly k child nodes. The experimental results
agree with the analysis as the maximum gain occurs when
the buffer utilization is optimal (B = h + 1). The initial
sharp rise in the graphs is because PNEw drops to zero for
the proposed strategy at the hot point, B = h + 1. From
these two experiments, we observe that the performance
gain is highly affected by Ptoad (Proad for Figure 4(a) and
4(b) are respectively 10875 and 2760), which is deter-

Perf.
Gain 50
(%I

I I I I I I
02 10 20 30 40 50 60

Buffer size

Figure 5(a): Performance Gain as a function of B,
f=5,h=5

Perf.
Gain 50
(o/o)

0 I I I I I I I I
0 2 5 10 15 20 2.5 30 35 40

Buffer size

Figure 5(b): Performance Gain as a function of B,
f= lO,h=3

mined by f and h. With a smaller f, the index has more
nodes and hence a higher height, resulting in queries with
higher h (height from the anchor node to the leaf minus
one) and Prozd. When Ptoad is higher, the page faults
caused by re-referencing under the LRU, Prnu, is more
while the value of PNEw stablizes very quickly to zero
independent of PIad. As such, the relative performance
gain is higher for larger Proad. We expect that as the index
with large f increases its height, the performance gain will
increase and become comparable to that of an index with
smaller f.

Note that in reading an index, there is a fixed
amount of initial loading which cannot be saved, which is

451

Ptoad. Depending on the index sizes, such initial loading
can be far more than the number of page faults caused by
re-referencing, Pmmu. In order to consider the perfor-
mance gain independent of Pi-,, which is in any case the
same under either strategy, we modify the performance
gain formula in (3) as follows:

i

0 ifP,,=O
Performance Gain = p

LRu-PNEW 1oo otherwise (4)

PLRU

Figure 5 depicts the corresponding graphs in Figure
4 using the modified performance gain formula These
graphs illustrate that the proposed replacement strategy is
in fact optimal with performance gain of lOO%, a
significant improvement over the LRU strategy. The gain
drops to zero when a sufficiently large buffer size is used.

In Figure 6, we illustrate the corresponding graphs
in Figure 4 using the absolute number of page faults. It is
clear from the graphs that the savings in the number of
page faults is significant. Note that when B = h + 1, the
total number of page faults under the proposed strategy
drops steeply to Pioad because PNEw = 0. For the LRU
strategy, more buffer pages are required to achieve the
same level of efficiency as in the proposed strategy. The
page fault difference is also greater for smaller value of f
(larger value of Pi,,J because more pages are re-accessed
under the LRU strategy. Experiments were also con-
ducted for indexes with larger values of f. However, the
number of nodes and the height for indexes with large f
are still quite small for 700,000 records, yielding small
Pioad. We are now experimenting with more records so
that the height of indexes is at least 3.

5. Discussions and Future Work
In this paper, we have proposed a priority-based

hint mechanism which is not only more dynamic than
current hint mechanisms but also makes the buffer
replacement strategy extensible to some extent. To our
knowledge, none of the existing extensible database sys-
tems provides such a level of extensibility. With our
approach, an efficient buffer replacement strategy can be
tailored for an index method to provide a tighter and
better control over the replacement decision. This helps
to achieve a better buffer utilization and hence improves
the system performance.

We have demonstrated with a hierarchical index
example that an optimal hybrid replacement strategy can
be designed and implemented with our mechanism. A
comparison of the proposed strategy and the LRU, using

Total

Page

Fault

\ \
‘\

5 10 15 20

Buffer size

Figure 6(a): Total Page Fault as a function of B,
Soad = 10875, f = 5, h = 5

2950

1 r-----Y

2900
-I';

\
’ LRustmegy
\

Total

Page

Fault

\

--,-, 2750-J

5 10 15 20 25

Buffersize

Figure 6(b): Total Page Fault as a function of B,
Pi,,=276O,f= lO,h=3

both analytical and experimental results, shows that the
proposed strategy outperforms the LRU strategy.

The proposed hint mechanism is more flexible as it
is not tied to any particular replacement strategy since the
replacement strategy is implemented by the hint mechan-
ism. Unlike the buffer manager in WiSS, which uses a
fixed replacement strategy with a restrictive three level
hint mechanism, our approach enables encoding of dif-
ferent number of levels and types of hints, depending on
the knowledge that can be exploited and incorporated into
the design. Although the DBMIN algorithm supports a
multi-strategy approach, it is based on a classification of

452

query reference patterns exhibited by common access
methods and database operations. The set of strategies
supported is therefore fixed and is hardwired into the
database system. Addition of new replacement strategies
to exploit reference patterns of new applications is not
easy as the DBMIN approach is not extensible. Priority
based replacement algorithms like Priority-LRU and
Priority-DBMIN [CJL89], and Priority-Hints [JCL901 are
designed for a multi-priority transactions based system.
Our approach can be extended to incorporate the priority
of transactions into the priority encoding used in the hint
mechanism.

The flexibility and extensibility of the proposed
mechanism aIso enables experimentation of various
buffer management schemes. In [EfH84], Effelsberg and
Haerder proposed various versions of two main classes of
replacement algorithms: one is based on the GCLOCK
algorithm and the other is based on the LRD (least refer-
ence density) algorithm. Robinson and Devarakonda
[RoD90] have also proposed a frequency-based replace-
ment algorithm that effectively combines the principles of
locality of reference and reference frequency. All these
algorithms involve the use of various parameters for fine
tuning. The implementation and fine tuning of such algo-
rithms can be supported by the proposed extensible
mechanism.

Some applications that require a non standard
replacement strategy include some heuristic-based join
algorithms FoP89, Omi89], a run-time clustering algo-
rithm that exploits intelligent buffer replacement
[ChK89], and a buffer manager that implements complex
objects using pages with different sizes [Sik88]. We
believe that the design of new access methods and algo-
rithms will benefit from an extensible hint mechanism that
enables domain related semantics to be exploited for
greater efficiency.

Although the focus of this paper has been on
management of index pages, the proposed mechanism can
be applied to handle the access pattern of other types of
pages under various database operations. As part of our
future work, we intend to conduct a more extensive
experimental study to compare the performance of vari-
ous database operations using the proposed hint mechan-
ism. There are also other directions that deserve further
work. Instead of relying on the programmer to code the
replacement strategy by providing a priority scheme,
another approach is for the system to derive a priority
assignment for the application based on its past reference
behaviour and generate the code automatically. Other
research areas include the incorporation of a transaction’s
priority into the hint mechanism for a system with dif-
ferent priority transactions and issues related to the use of
the hint mechanism in a dual-buffer architecture

employed in some object-oriented DBMSs (e.g. O2
[Deu903, and DASDBS [SPS90]).

Acknowledgements
We would like to thank the anonymous referees for their
useful comments.

References

[BBG88] Batory, D.S., Bamett, J.R., Garza, J.F., Smith,
K.P., Tsukuda, K., Twichell, B.C., and Wise,
TE., “GENESIS: An Extensible Database
Management System,” IEEE Transactions on
Software Engineering, Vol. 14, No. 11,
November 1988, pp. 1711-1729.

[Be1661 Belady, L.A., “A study of replacement algo-
rithms for virtual storage computers,” IBM Sys-
tem Journal, Vol. 5, No. 2, 1966,~~. 78-101.

[CaH903 Carey, M.J., and Haas, L.M., “Extensible Data-
base Management Systems,” ACM SIGMOD
Record, Vol. 19, No. 4, December 1990, pp.
54-60.

[CDG90] Carey, MJ., Dewitt, D.J., Graefe, G., Haight,
D.M., Richardson, J.E., Schuh, D.T., Shekita,
EJ., and Vandenberg, S.L., “The EXODUS
Extensible DBMS Project: An Overview,” in
Readings in Object-Oriented Database Systems,
S. Zdonik and D. Maier teds.), Morgan-
Kaufmann Publishers, 1990, pp. 474499.

[CDK85] Chou, H-T., Dewitt, DJ., Katz, R.H., and Klug,
A.C., “Design and Implementation of the
Wisconsin Storage System,” SofWare Practice
and Experience, Vol. 15, No. 10, October 1985,
pp. 943-962.

[ChD85] Chou, H-T., and Dewitt, D., “An Evaluation of
Buffer Management Strategies for Relational
Database Systems,” Proc. of 11 th VLDB Con.,
Stockholm, Sweden, August 1985, pp. 127-141.

[ChK89] Chang, E.E., and Katz, R.H., “Exploiting Inher-
itance and Structure Semantics for Effective
Clustering and Buffering in an Object-Oriented
DBMS,” Proc. of ACM SIGMOD Conf., Port-
land, Oregon, December 1989, pp. 348-357.

453

[CJL89] Carey, M.J., Jauhari, R. and Livny, M., “Prior-
ity in DBMS Resource Scheduling,” Proc. of
15th VLDB Co&, Amsterdam, August 1989,
pp. 397410.

[Deu90] Deux, O., et al., “The story of 02,” IEEE Tran-
sactions on Knowledge and Data Engineering,
Vol. 2, No. 1, March 1990,~~. 91-108.

[EfH84] Effelsberg, W., and Haerder, T., ‘Principles of
Database Buffer Management,” ACM Transac-
tions on Database Systems, Vol. 9, No. 4,
December 1984, pp. 560-595.

Fop891 Fotouhi, F., and Pramanik, S., “Optimal Secon-
dary Storage Access Sequence for Performing
Relational Join,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 1, No.
3, September 1989, pp. 318-328.

[Gut841 Guttman, A., “R-Trees: A Dynamic Index
Structure for Spatial Searching,” Proc. of ACM
SIGMOD Co@, May 1984, pp. 47-57.

[HCL90] Haas, L-M., Chang, W., Lohman, G.M.,
McPherson, J., Wilms, P.F., Lapis, G., Lindsay,
B., Pirahesh, H., Carey, M.J., and Shekita, E.,
“Starburst Mid-Flight: As the Dust Clears,”
IEEE Transactions on Knowledge and Data
Engineering, Vol. 2, No. 1, March 1990, pp.
143-160.

[JCL901 Jauhari, R., Carey, MJ., and Livny, M.,
“Priority-Hints: An Algorithm for Priority-
based Buffer Management,” Proc. of 16th
VLDB Colyc., Brisbane, Australia, August 1990,
pp. 708-721.

[LOL92] Low, C.C., Ooi, B.C., and Lu, H., “H-Trees - A
Dynamic Associative Search Index for OODB,”
to appear in Proc. of the 1992 ACM SIGMOD
Conf., San Diego, California, June 1992.

[Omi89] Omiecinski, E.R., “Heuristics for Join Process-
ing Using Nonclustered Indexes,” IEEE Tran-
sactions on Software Engineering, Vol. 1.5, No.
1, January 1989, pp. 18-25.

NC871 Richardson, J.E., and Carey, M.J., “Program-
ming Constructs for Database System Imple-
mentation in Exodus,” Proc. of ACM SIGMOD

Conf., San Francisco, December 1987, pp. 208-
219.

IRoD Robinson, J.T., and Devarakonda, M.V., “Data
Cache Management Using Frequency-Based
Replacement,” Proc. of ACM SIGMETRICS
Confi, Colorado, May 1990, pp. 134-142.

ISaS Sacco, G.M., and Schkolnick, M., “A Mechan-
ism for Managing the Buffer Pool in A Rela-
tional Database System Using the Hot Set
Model,” Proc. of 8th VLDB Co& Mexico City,
September 1982, pp. 257-262.

[SaS861 Sacco, G.M., and Schkolnick, M., “Buffer
Management in Relational Database Systems,”
ACM Transactions on Database Systems, Vol.
11, No. 4, December 1986, pp. 473-498.

[Sik88] Sikeler, A., “VAR-PAGE-LRU: A Buffer
Replacement Algorithm Supporting Different
Page Sizes,” Proc. of Int. Conf. on Extending
Database Technology, Venice, Italy, March
1988, Lecture Notes in Computer Science 303,
Springer-Verlag, pp. 336-35 1.

[SPS90] Schek, H.-J., Paul, H.-B., Scholl, M.H., and
Weikum, G., “The DASDBS Project Objec-
tives, Experiences, and Future Prospects,” IEEE
Transactions on Knowledge and Data
Engineering, Vol. 2, No. 1, March 1990, pp.
25-43.

[Sto81] Stonebraker, M., “Operating System Support
for Database Managemens” Communications of
the ACM, Vol. 24, No. 7, July 1981, pp. 412-
418.

[StR863 Stonebraker, M., and Rowe, L., “The Design of
PGSTGRES,” Proc. of ACM SIGMOD Conf.,
Washington, DC, June 1986, pp. 340-355.

[Yao78] Yao, A., “Random 3-2 Trees,” Acta Znforma-
tica, Vol. 2, No. 9, 1978,~~. 159-170.

454

