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Abstract 
This paper presents a portable, efficient method for accessing 
memory resident persistent objects in virtual memory in the con- 
text of the E progr amming language. Under the approach, objects 
are copied from the buffer pool of the underlying object manager 
into virtual memory on demand, as they are accessed by an E pro- 
gram. The cumulative effects of updates to a persistent object are 
then propagated back to the object manager via a single write 
operation at the end of each transaction. The method incorporates 
a comprehensive pointer swizzling mechanism to enhance perfor- 
mance. Swizzling is done a pointer-at-a-time and software checks 
are used to detect the use of swizzled pointers. The paper also 
presents the results of a performance study comparing the method 
presented here with several alternative software architectures 
including ObjectStore V1.2, a commercially available OODBMS. 
The results highlight the tradeoffs between providing software vs. 
memory-mapped support for pointer swizzling and quantify the 
effects of pointer swizzling on overall performance. In addition, 
the significant performance impact of pointer swizzling on the 
generation of recovery information is examined. The experimen- 
tal results show that in many situations a software approach can 
outperform the memory-mapped approach. 

1. Introduction 
E is a persistent programmin g language [Rich89, Rich901 that was 
originally designed to ease the implementation of data-intensive 
software applications, such as database management systems, that 
require access to huge amounts of persistent data. The current 
implementation of E (E 2.0) uses an interpreter, the E Persistent 
Virtual Machine (EPVM l.O), to coordinate access to persistent 
data [Schuh90] that is stored using the EXODUS Storage Manager 
[Carey89a, Carey89bl. Under the approach taken by EPVM 1.0, 
memory resident persistent objects are cached in the buffer pool of 
the EXODUS Storage Manager (ESM) and persistent objects are 
accessed m-place. In addition, EPVM 1.0 provides support for a 
limited form of pointer swizzling. 

This paper introduces an. alternative implementation of EPVM 
(EPVM 2.0) that is targeted at CAD environments. One common 
example of a CAD application is a design tool that loads an engi- 
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neering design into main memory, repeatedly traverses the design 
while performing some computation over it, and then saves the 
design again on secondary storage. An important property of 
design applications is that they perform a considerable amount of 
focused work on in-memory persistent objects. A major fraction 
of this work involves the manipulation of persistent objects via 
pointers. 

The basic approach employed by EPVM 2.0 is to maintain a cache 
in virtual memory of the set of persistent objects that have been 
accessed by an E program. Objects are copied from the ESM 
buffer pool and inserted into the cache as they are accessed by a 
program. In addition, the cumulative effects of updates to a per- 
sistent object are propagated back to ESM via a single write 
operation when a transaction commits (finishes execution). The 
cache supports a comprehensive pointer swizzling scheme that 
swizzles inter-object pointer references, i.e. converts pointers from 
object identifiers (OIDs) to direct memory pointers. Pointers are 
swizzled one-at-a-time as they are used by an E program. If the 
volume of data accessed by an individual transaction exceeds the 
size of real memory, objects are swapped to disk in their swizzled 
format by the virtual memory subsystem. 

To help evaluate the effectiveness of the design of EPVM 2.0 this 
paper presents the results of a number of performance experiments 
that were conducted using the 001 benchmark [Catte91]. The 
experiments compare EPVM 2.0 with three alternative software 
architectures. The first of these is ObjectStore VI.2 [Objec90], a 
commercially available object-oriented DBMS. ObjectStore uses 
a memory-mapped approach to support pointer swizzling and fault 
objects into main memory. The second architecture is represented 
by EPVM 1 .O which supports only a limited form of pointer swiz- 
zling. The third architecture does not support pointer swizzling, 
and corresponds to using a conventional non-persistent program- 
ming language, i.e. C++, to call ESM directly. 

The experimental results illustrate the tradeoffs between the dif- 
ferent implementations of object faulting and pointer swizzling 
(including doing no swizzling) and examine the impact of the dif- 
ferent schemes on the generation of recovery information. In the 
case of EPVM 2.0, alternative ways of managing the migration of 
persistent objects from the ESM buffer pool into virtual memory 
are also examined. All of the systems included in the study are 
based on a client/server architecture and feature full support for 
transactions, concurrency control, and recovery. The client/server 
version of ESM [Frank92, Exodu92] was used to store persistent 
data for the experiments based on EPVM 2.0, EPVM 1.0, and 
C++. 

This research was funded by the Defense Advanced Research Projects 
Agency under contract DAAB07-92-C-Q.508. 
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The remainder of the paper is organized as follows. Section 2 
discusses related work on object faulting and pointer swizzling. 
Section 3 presents a detailed description of the implementation of 
EPVM 2.0. Section 4 describes the benchmark experiments. Sec- 
tion 5 presents the performance results. Section 6 contains some 
conclusions and proposals for future work. 

2. Related Work 
Previous approaches to pointer swizzling can be roughly divided 
into two groups; those that use memory mapping techniques, simi- 
lar to virtual memory, and those that use software checks to detect 
accesses to nonresident objects. Some early work on software 
implementations of pointer swizzling was done as part of an 
implementation of PS-Algol [Atkin83, Cock84]. This approach 
also used pointer dereferences to trigger the transfer of objects 
from secondary storage into main memory. 

[Moss90] presents a more recent study of software swizzling tech- 
niques, and also examines the issue of storing persistent objects in 
the buffer pool of the object manager versus copying them into 
virtual memory. [Moss90] takes an object-at-a-time approach to 
swizzling in which objects that are in memory are classified as 
either swizzled or unswizzled. Under this approach, all pointers in 
an unswizzled object are swizzled immediately upon the 6rst use 
of the object. This causes the objects that the pointers reference to 
be faulted into memory and marked as unswizzled. Finally, the 
initial object is marked as swizzled. 

One advantage of this approach over that of milso90] (see below) 
is that it should generally perform less unnecessary swizzling and 
unswizzling work. A disadvantage, however, is that objects that 
are not accessed by a program can be faulted into memory by the 
swizzling mechanism, resulting in unnecessary I/O operations. In 
particular, unswizzled objects, while they are memory resident, 
have by definition not been referenced. 

A restricted form of pointer swizzling is supported by EPVM 1.0 
[Schuh90]. Since it maintains memory resident objects in the 
ESM buffer pool, swizzling inter-object pointer references is 
difficult to implement efficiently. Hence, only local program vari- 
ables that are pointers to persistent objects are swizzled. 

The advantage of this approach is that it allows objects to be writ- 
ten back to disk in the presence of swizzled pointers. In general, 
this is very hard to do efficiently when using a software approach, 
because all swizzled pointers to an object must be found and 
unswizzled, before the memory space occupied by the object can 
be reused. However, the E compiler stores local pointers to per- 
sistent objects on a special ‘pointer stack” that is maintained in 
parallel with the regular procedure activation stack. When space 
in the buffer pool needs to be reclaimed, EPVM 1.0 scans the 
pointer stack and unswizzles any swizzled pointers that it contains. 
This ensures that there are no dangling references to objects that 
are no longer resident in memory. 

A pointer swizzling scheme based on virtual memory techniques 
is described in [wilso90]. A similar approach is used in Object 
Design’s ObjectStore [Objec90, Lamb91]. The basic idea 
presented in [Wilso90] is to allocate virtual memory addresses for 
pages containing persistent data one step ahead of a program’s 
actual usage of the pages. When a program hrst attempts to access 
a page, a virtual memory page fault occurs. This fault is inter- 
cepted by the underlying object manager which then loads the 
page into its preassigned location in memory. 

One advantage of this method of swizzling is that programs only 
see regular virtual memory pointers, allowing accesses to per- 
sistent objects to occur at memory speeds. In addition, the same 
compiled code can be used to access both persistent and non- 
persistent objects. Objects that span multiple pages in virtual 
memory can be handled transparently as long as sufficient con- 
tiguous virtual memory address space can be reserved for the 
entire object. 

A disadvantage of the basic approach described in [Wilso90] is 
that programs may incur unnecessary swizzling and unswizzling 
overhead. This is because swizzling and unswizzling are done at 
the granularity of individual pages, and it is unlikely that most 
programs will use all of the pointers located on each page. 
[Objec90] describes an extension of the basic technique that can 
avoid this problem by eliminating the need to swizzle and unswiz- 
zle pointers in many cases. In effect, pointers are always stored in 
their swizzled format in [Objec90]. 

3. EPVM 2.0 Design Concepts 

3.1. Object Caching 
As mentioned in Section 1, ESM is used to provide disk storage 
for the persistent objects that are accessible to an E program. 
EPVM 2.0 copies objects from the ESM client buffer pool into 
virtual memory as they are accessed. Separate schemes are used 
to cache objects that are smaller than a disk page, hereafter 
referred to as small objects, and large objects that can span any 
number of pages on disk. Small objects are copied from the ESM 
client buffer pool in their entirety and stored in individual contigu- 
ous regions of virtual memory. A bitmap, which is appended to 
the beginning of each region is used to record the locations of all 
swizzled pointers contained in the small object. 

Large objects are cached a page-at-a-time in units of 8K bytes. 
Individual large object pages are cached on demand, so that only 
the pages that have been referenced are cached. Each cached page 
has appended to it a bitmap that keeps track of all swizzled 
pointers on the page. Different pages of a large object are not 
necessarily stored contiguously in virtual memory. This fact has 
important implications for pointer swizzling since it essentially 
means that pointers to large objects cannot be swizzled because 
accesses to large objects through such pointers can span page 
boundaries. 

Objects that have been cached in virtual memory are organized 
using a hash table on each object’s identifier (OID). Entries in this 
hash table are pointers to object descriptors (see Figure 1). In the 
case of a small object, the object descriptor contains a single 
pointer to the copy of the object in virtual memory. Paired with 
this pointer are a low and a high byte count that are used to keep 
track of the range of modified bytes in the object. For each update 
of a small object the range is expanded by decrementing and 
incrementing the low and high byte counts respectively, as 
needed. Note that this method of keeping track of the modified 
portion of an object works best when there is some locality of 
updates to objects. The range of modified bytes together with the 
bitmap stored at the beginning of the object determines the portion 
of the object that must be written to disk, and the subset of swiz- 
zled pointers in the object that must be unswizzled when a transac- 
tion completes. 

The object descriptor of a large object contains an array of 
pointers to pages of the large object. Each large object page has 
associated with it a low and high byte count that are used to keep 
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Figure 1. An object descriptor for a large object. 

track of the modified portion of the page, in a manner analogous to 
that used for small objects. 

Figure 2 shows an example of small and large objects that have 
been cached. The small objects’ descriptors each contain a single 
pointer to their respective objects, while the large object’s descrip- 
tor contains pointers to two pages of the large object. Note that 
these pointers point to the beginning of the object/page and not to 
the corresponding bitmap. In Figure 2, the last page of the large 
object has not been referenced, so the object descriptor points only 
to the Crst two pages. 

The object descriptors of small objects are organized in a second 
hash table according to the disk page on which their corresponding 
objects reside. All small objects that reside on the same disk page 
are in the same overflow chain. This allows the effects of updates 
to all objects on the same page to be propagated back to the ESM 
buffer pool at the same time when a uansaction commits. Large 
objects are kept in a separate linked list that is traversed at the end 
of a transaction to write back dirty portions of large object pages. 

Figure 2 depicts two small objects, residing on the same disk page. 
The objects are linked together by the next page pointers in their 
object descriptors. Of course, it is possible that objects from dii- 
ferent disk pages may be found in the same overflow chain if their 
page numbers hash to the same value. In practice, however, the 
low cost of this strategy, plus the fact that such collisions are rare, 
allows it to perform well. 

3.2. Pointer Swizzling in EPVM 2.0 
Since all persistent objects are accessed through pointers in E, it is 
important to provide an efficient mapping from E pointers to per- 
sistent objects. When a pointer is dereferenced by an E program it 
may be in one of two states: unswizzled, in which case it contains 
the value of an object identifier (OLD); or swizzled, meaning that 
it contains a direct memory pointer. Dereferencing an unswizzled 
pointer basically incurs the cost overhead of a lookup in the OID 
hash table in order to obtain a pointer to the referenced object. 
Dereferencing a swizzled pointer avoids this cost as a swizzled 
pointer contains a direct memory pointer to the object it refer- 
ences. 

While the difference in dereferencing cost may seem small, it is 
important to remember that tens or hundreds of thousands of 
pointer dereferences can occur during the execution of a program. 
Hence, the potential savings offered by pointer swizzling is indeed 
large. A key assumption of any pointer swizzling scheme is that 
pointers are used often enough on average to justify the costs of 
doing the pointer swizzling. 

EPVM 2.0 supports a pointer swizzling scheme that converts 
pointers from OID form to direct memory pointers incrementally 
during program execution. The goal is to quickly and cheaply 
convert pointers to swizzled format so that a program “sees” only 
swizzled pointers during the majority of the time it is executing. 

Software checks are used to distinguish swizzled and unswizzled 
pointers. This seems reasonable since the price of such checks 
should be a very small part of overall program execution time; a 
fact that has been independently confirmed in [Moss90]. Further- 
more, it is possible to do standard kinds of compiler optimizations 
to eliminate checks from a program (though the E compiler 
currently does not do this). The software approach combines 
efficiency with portability, and provides a flexible environment for 
conducting further research. The swizzling scheme used in EPVM 
2.0 is further characterized by the fact that it swizzles pointers 
one-at-a-time, as opposed to the approach described in [Wilso90] 
which swizzles a page-at-a-time, and [Moss901 which swizzles 

1 , OID HashQable ),I ,Paqe tiash Table 1 

Figure 2. Object cache containing small and large objects. 
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pointers at the granularity of objects. The type of swizzling 
scheme used by EPVM 2.0 is referred to as an ‘edge marking’ 
scheme in [Moss90]. 

Implementation Strategy 
Since pointers are swizzled dynamically during program execu- 
tion, the key decision that must be made is when during execution 
to actually do the swizzling. One possibility is to swizzle pointers 
when they are dereferenced. To see how this is done, consider in 
detail what happens when an unswizzled pointer is dereferenced 
during the execution of an E program. First, the memory address 
of the pointer is passed to an EPVM function that performs a 
lookup in the OID hash table using the value of the OID contained 
in the pointer. An E pointer is composed of a 12 byte OID 
(volume id: 2 bytes, page id: 4 bytes, slot number: 2 bytes, unique 
field: 4 bytes) and a 4 byte offset field. If the referenced object is 
not found, then it must be obtained from the EXODUS Storage 
Manager (ESM), possibly causing some I/O to be done, copied 
into virtual memory, and inserted into the cache. The pointer may 
then be swizzled since the virtual memory addresses of both the 
pointer and the object it references are known. This type of swiz- 
zling will be referred to as swizzling upon dereference. 

The advantage of this scheme is that pointers that are never 
dereferenced are never swizzled, so the amount of unnecessary 
swizzling work is minimized. Furthermore, since only pointers to 
referenced objects are swizzled unnecessary I/O operations are 
avoided. Swizzling upon dereference does present a major prob- 
lem, however. In particular, when a pointer is dereferenced, it has 
often already been copied into a temporary memory location, e.g. 
a local pointer variable somewhere on the activation stack. Swiz- 
zling upon dereference, therefore, fails to swizzle pointers 
between persistent objects and can, in effect, force programs that 
use these pointers to work with unswizzled pointers throughout 
their execution. 

The approach used by EPVM 2.0 is to swizzle pointers within 
objects as they are “discovered’, i.e. when the location of the 
pointer becomes known. We shall call this type of swizzling swiz- 
zling upon discovery. A pointer within an object may be 
discovered when its value is assigned to another pointer, when it is 
involved in a comparison operation, or in a number of other ways. 
In the context of EPVM, pointers are discovered as follows. First, 
EPVM is passed the persistent address of the pointer that is a can- 
didate for swizzling. The contents of this persistent address are 
then used to locate the object containing the candidate pointer in 
the cache. (Note that this initial step may involve actually caching 
the object that contains the pointer to be swizzled.) Once the vir- 
tual memory address of the candidate pointer is known, its con- 
tents can be inspected, and if it is not already swizzled, used to 
perform a lookup in the OID hash table to lind the object that it 
references. If the object denoted by the candidate pointer is found 
in the cache, then the candidate pointer is swizzled. Note that this 
swizzling scheme solves the major problem associated with swiz- 
zling upon dereference since pointers within persistent objects are 
swizzled. 

Next consider the case when the object referenced by the candi- 
date pointer is not found in the cache. One alternative would be to 
go ahead and cache the object. This “eager” approach could result 
in unnecessary I/O operations, however, since the object refer- 
enced by the candidate pointer may in fact not be needed by the 
program. For example, consider a persistent collection object that 
is used to store pointers to objects of some other class. The 

routine that implemenrs deletion from the collection may need to 
compare the value of a pointer being deleted with an arbitrary 
number of pointers in the collection. Each of these comparisons 
discovers a pointer contained in the collection objecL so the dele- 
tion operation could fault in a large number of objects if eager 
swizzling upon discovery were used. Since a swizzling scheme 
should avoid causing unnecessary I/O operations, EPVM 2.0 takes 
a lazy approach in which it does not swizzle the candidate pointer 
when the object it references is not already cached. 

In sumnary, the swizzling scheme used by EPVM 2.0 uses only 
pointer dereferences to fault objects into the cache. Then, once an 
object is in the cache, pointers that reference the object are swiz- 
zled when their locations are discovered. Pointers to an object that 
are discovered before the object has been referenced are not 
immediately swizzled. Lastly, note that swizzling on discovery 
restricts swizzling activity to those pointers that are actually used 
by a program, so programs that do not use many pointers do not 
have tc pay a big price in terms of swizzling overhead. Also, only 
those objects actually needed by the program are cached, so no 
extra I/O activity results nom swizzling. 

The example in Figure 3 is designed to illustrate the differences 
between swizzling upon dereference and the eager and lazy varia- 
tions of swizzling upon discovery that were described above. The 
functicn TotalCost traverses an assembly of persistent part objects 
(which is assumed to form a tree for simplicity) in depth first order 
and calculates the total cost of the assembly. Each part object 
contains a cost field and three pointers to subparts. We also 
assume that the collection of part objects is as shown in Figure 4% 
i.e. theze are eight part objects in the collection whose OIDs are 
represented by the letters A to H, and the objects form a tree of 
height two. Figure 4a depicts the format of the part objects when 
they are stored on disk and the connections between parts are 
represented by OIDs. 

Note ,hat the only pointer that is actually dereferenced in the 
example is root; a transient, local pointer variable. If swizzling 
upon sdereference is used while executing TotalCost, then only 
roof will be swizzled, and the subpart pointers contained within 
part objects will always remain in their unswizzled form. This 
implies that repeated traversals of the parts assembly will always 
encounter unswizzled pointers, i.e. the assembly will remain in the 
forma: shown in Figure 4a. 

Pointers located within part objects are discovered by the Toral- 
Cosr function when the expression root->subParr[ij is evaluated 

1 dbstruct part ( 
2 dbint pCost; 
3 part *subPart[3]; 
4 I; 

// structure of a part 

5 int TotalCost(part *root, int depth) ( 
6 int totCost = 0; 
7 for (int i = 0; i < 3; i++) 
8 if (root->subPart[i] && depth) 
9 totCost += TotalCost(root->subPart[i], depth-l); 
10 totCost += root->pCost; 
11 return totCost; 
12 1 

Figure 3. Example E function. 

422 



lb) 

Figure 4. Different representations of a collection of objects. 

in line 8. Note that whenever a part object is visited, all three of 
the subPurr pointers located in the object are discovered. Suppose 
that the collection of parts shown in Figure 4a is repeatedly 
traversed using the TotaZCost function, beginning at object A, to a 
depth of 1. If the eager implementation of swizzling upon 
discovery is used, then all three subparts of each leaf node in the 
subtree visited by Tot&m are cached. Figure 4b shows the basic 
structure of the part assembly in memory after the first traversal of 
the parts using this method. In this example, a total of eight part 
objects are read from disk and cached, which is double the number 
of objects actually needed. 

NexL consider how the swizzling scheme used in EPVM 2.0 
behaves when doing the same traversal. After the 6rst traversal of 
the collection, the part objects that have been cached will appear 
as in Figure 4c. Note that all of the objects accessed by the pro- 
gram have been cached, but that the pointers among the objects 
are still in their unswizzled OID form. In this case, none of the 
subpart pointers have been swizzled since, when they are 
discovered on line 8 during the first traversal, the objects that they 
reference are not yet in the cache. The objects are faulted into the 
cache during the first traversal when the pointer root is derefer- 
enced on line 8. After a second traversal, the structure of the col- 
lection is as in Figure 4d. Note that all of the pointers between 
objects that have been visited by the program are swizzled, and 
that further traversals of the collection will dereference only swiz- 
zled pointers. 

4. Performance Experiments 
The performance experiments were done using the traversal por- 
tion of the 001 Benchmark [Catte91]. The traversal portion 
involves repeatedly traversing a collection of part objects, begin- 
ning at a randomly selected part, in a depth-first fashion to a depth 
of 7 levels. Each of the individual traversals is referred to as an 
iteration of the benchmark. As each part is visited during an itera- 
tion a simple function is called with four values in the part object 
as parameters. In addition, the ability to update part objects was 
added, so that each time a part object is visited, a simple update 
can be performed with some fixed probability. The update opera- 
tion was defined as incrementing two 4-byte integer fields con- 
tained in the part object. 

A total of eight different software versions were evaluated. These 
software versions can be classified into four basic architectures 
(see Section 4.1). The experiments compare the performance of 
the different architectures and investigate the relative performance 
of several versions of the approach used by EPVM 2.0. The use- 
fulness of pointer swizzling is also evaluated. A number of exper- 
iments that vary the frequency with which updates are performed 
on objects were also conducted. This was done to access the 
impact that the diierent swizzling approaches have on the genera- 
tion of recovery information. All of the architectures that are 
examined offer equivalent transaction facilities, i.e page level 
locking, atomicity of transactions, and transaction rollback. Some 
architectures attempt to batch updates of objects together and gen- 
erate recovery information for all of the updates made to an object 
at the end of the transaction, while other architectures take the 
traditional database approach of generating log records for each 
individual update. Both approaches have important implications 
for systems that do redo/undo logging. The experiments also 
compare the different software versions using a small database 
that fits into main memory and a large database that represents a 
working set size that is bigger than main memory[Catte91]. 

4.1. Software Versions 
The iirst architecture, which is shown in Figure 5, results when a 
conventional non-persistent programming language, i.e. C-t+, is 
used to call ESM directly. This approach accesses objects in the 
client buffer pool of ESM using a procedural interface, The rou- 
tines that make up the ESM interface are linked with the applica- 
tion at compile time and the client buffer pool is located in the 
application’s private address space. In all of the experiments, the 
server process was located on a separate machine that was con- 
nected to the client over a network. 

I I Page 1 pagen I 
I ’ I 

i 
network 

Figure 5. Architecture 1. 
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Accesses occur within a particular transaction, and take place dur- 
ing a visit to an object as follows. When an application first wants 
to read a value contained in an object, it calls an ESM interface 
function. The interface function requests the page containing the 
object from the server if necessary (possibly causing the server to 
perform some I/O on its behalf), and pins the object in the client 
buffer pool. Next, the interface function returns a data structure to 
the application, known as a user descriptor [Carey89a], that con- 
tains a pointer to the object. The application can then read values 
in the object any number of times by following the pointer con- 
tained in the user descriptor. 

Each time the application wants to update a portion of an object it 
must call an interface function, passing in (among other things) 
the new value, and a user descriptor pointing to the object as 
parameters. The update function then updates the specified por- 
tion of the object in the client buffer pool and generates a log 
record for the update using the old value contained in the object 
and the new value which was passed as a parameter. When an 
application is finished visiting an object it calls an ESM function 
to unpin the object in the client buffer pool. If all objects on the 
page are unpinned at this point, the page becomes a candidate for 
replacement by the client buffer manager. 

Note that in this architecture, a pin/unpin sequence of operations 
on an object generally takes place during a very short period of 
time relative to the life of a program, often during a single invoca- 
tion of a function. This causes an object to be pinned and 
unpinned multiple times if it is visited more than once by a pro- 
gram. In addition, each update operation causes a log record to be 
generated. 

In the current release of ESM, data pages are cached in the client’s 
buffer pool between transactions. However, the client must com- 
municate with the server to reacquire locks for cached pages that 
are accessed in succeeding transactions. Transaction commit 
involves shipping dirty data pages and log pages back to the 
server, writing log pages to disk, and releasing locks [Frank92]. 
In the future, ESM will support “callbacks” i?om the server to the 
client. This will allow inter-transaction caching of locks at the 
client and eliminate the need to ship dirty data pages back to the 
server during transaction commit. No pointer swizzling is done in 
this architecture. A single software version based on this architec- 
ture was used (referred to as CESM). The size of the ESM client 
and server buffer pools was 5 megabytes. 

The second architecture represents the approach taken by EPVM 
1.0 [Schuh90]. Figure 6 shows the client portion of this architec- 
ture (The server portion is identical to the server shown in Figure 
5). EPVM 1.0 avoids calls to the storage manager by maintaining 
a cache of worthy objects in the ESM client buffer pool. Objects 
are accessed in the following way. The first time that an object is 
needed by an application, EPVM 1.0 calls an ESM interface func- 
tion that pins the object in the client buffer pool, and returns a user 
descriptor through which the object can be referenced. This may 
involve communication between the client and the server and the 
server may in turn perform some I/O on behalf of the client. Next, 
EPVM 1 .O creates an ently for the object in a hash table based on 
the object’s OID. The hash table maintains a mapping from OIDs 
to user descriptors that remains valid until either the client buffer 
pool becomes full or program execution completes. 

Objects that are cached in the ESM buffer pool are accessed by 
doing a lookup in the OID hash table, or by following a swizzled 
pointer since EPVM 1.0 supports a limited form of pointer swiz- 
zling (see Section 2). Updates to objects, however, require EPVM 

OID hash table 

\ 

-4 OID hash entxv 
ESM Client 

buffer pool 

pj . ..q 

page 1 me 2 page n 

I I 
: (network connected to server) 

Figure 6. Architecture 2. 

1.0 to invoke a storage manager interface function. The interface 
function updates the object in the buffer pool and generates a log 
record for the update. Transaction commit requires that EPVM 
1.0 scan the OID hash table and unpin all objects, in addition to 
the usual operations performed by ESM to commit a transaction. 

In order to measure the effectiveness of the swizzling technique 
employed by EPVM 1.0, experiments were performed using two 
versions of this architecture, the first version had the limited form 
of pointer swizzling enabled, and the second had swizzling turned 
off. These versions will be referred to as EPVMl and EPVMl- 
NO, respectively. Again, 5 megabyte client and server buffer 
pools were used. 

The third architecture investigated corresponds to the approach 
taken by EPVM 2.0. Let us briefly review how objects are 
accessed with this architecture. When an object is first needed by 
an application program, EPVM 2.0 calls ESM on behalf of the 
application. ESM then pins the object in the client buffer pool, as 
shown in Figure 5. Next, EPVM 2.0 uses the user descriptor 
returned by ESM to copy the object into virtual memory and 
EPVM 2.0 inserts the object into the cache in the manner depicted 
in Figure 2. EPVM 2.0 then calls ESM to unpin the object in the 
client buffer pool. All subsequent reads or updates of the object 
during the current transaction occur in the cache and are handled 
exclusively by EPVM 2.0. 

During transaction commit EPVM 2.0 scans the page hash table 
and for each small object that has been updated, EPVM 2.0 calls 
ESM to pin the object in the client buffer pool and update the 
object. Note that this may involve communication between the 
client and the server if the page containing the object is no longer 
present in the client buffer pool. When ESM updates the object in 
the client buffer pool, the new value of the modified portion of the 
object and the old value located in the client buffer pool are used 
to generate a log record for the update. Updates of large objects 
are handled in a similar manner, the only difference being that 
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EPVM 2.0 invokes ESM once for each modified page of the large 
object. 

The perfomxmce of two alternative ways of copying objects from 
the client buffer pool into virtual memory were examined. The 
first copies objects one-at-a-time from the client buffer pool into 
virtual memory while the other copies all of the objects on a page 
when the first object on the page is accessed. These two schemes 
shall be referred to as object caching and page caching respec- 
tively. The tradeoff between the two approaches is that object 
caching generally requires more interaction with the storage 
manager, i.e. one interaction per object, while page caching 
requires only one interaction per page, but has the potential to per- 
form more copying. 

Four versions of this architecture were investigated. Two used 
object caching. In order to study the effect of buffer pool size on 
object caching, the size of the client buffer pool for one version 
was set at 5 megabytes while the client buffer pool for the other 
was set at 1 megabyte (both used a 5 megabyte server buffer 
pool). These versions shall be referred to as OC5M and OClM 
respectively. Both versions did pointer swizzling. 

The third and fourth versions were designed to measure the benefit 
provided by the swizzling technique implemented in EPVM 2.0. 
Both versions do page caching and each was given a 1 megabyte 
client buffer pool to make the amount of memory that they used 
similar to the other versions. Again, a 5 megabyte server buffer 
pool was used for all of the experiments. The version referred to 
as PClM does pointer swizzling, while the version labeled 
PCIM-NO does not. 

The fourth architecture examined was that of ObjectStore V1.2r 
[Lamb91]. Lie ESM, ObjectStore uses a client/server architec- 
ture in which both the client and server processes buffer recently 
accessed pages of objects. All interaction between the client and 
server in ObjectStore was set to take place at the granularity of 
individual pages, just as in ESM. ObjectStore features basically 
the same transaction facilities as ESM, i.e. recovery for updates in 
the event of client or server failure, page level locking, and trar- 
saction rollback. 

ObjectStore also supports inter-transaction caching of persistent 
data in the client’s main memory[Lamb91]. Callback messages 
are sent by the server to clients in order to maintain the coherence 
of cached data. This allows the ObjectStore client to cache locks 
between transactions as well as data pages. To efficiently support 
callbacks, the ObjectStore client is divided into two 
processes[Orens92]: a callback process, and an application pro- 
cess. When only a single client is connected with the server, the 
two-process architecture does not have a noticeable effect on per- 
formance since the application process communicates directly 
with the server to obtain data pages and locks on those pages. 

The most important difference between ObjectStore and the archi- 
tectures already mentioned is that ObjectStore uses a memory- 
mapping scheme, similar to virtual memory, to implement pointer 
swizzling and fault objects from secondary storage into main 
memory (see Section 2). Another important difference is that 
ObjectStore generates recovery information for updates of 

‘We have recently received ObjectStore V1.2.2 which is said by the 
manufacturer to offer improved performance. However, we lacked 
sufficient time to obtain reliable results using the new version, so the 
results presented in the paper are for ObjectStore V1.2. 

persistent data by logging entire dirty pages. Full page logging is 
used to implement recovery largely due to the fact that Object- 
Store applications are allowed to update objects by dereferencing 
normal virtual memory pointers. Because of this, ObjectStore is 
not able to keep track of the modified portions of pages (or 
objects) as is done in EPVM 2.0. The amount of real memory 
available to the client for caching pages of objects during a single 
transaction is fixed. We used 5 megabyte client and server buffer 
pools for all of the experiments. This architecture will be referred 
to as OS. 

4.2. Benchmark Database 
For ESM, the small benchmark database [Cattegl] consumed a 
total of 489 8K-byte disk pages (3.8 Mg) and consisted of a col- 
lection of 20,000 part objects (each object is an average of 176 
bytes in size). Additionally, the Sun benchmark requires that 
objects be indexed, so the parts were indexed using an array of 
20,000 object pointers (OIDs). An array of pointers was used 
instead of a B-tree index in order to keep performance differences 
due to differing B-tree implementations from influencing the 
results. The total size of the index for ESM was 320,000 bytes. 

The small database, including the part index, required 422 8K 
pages (3.3 Mg) using ObjectStore. Each part object contains con- 
nections to three other part objects in the database. These connec- 
tions were implemented using pointers in both systems. The data- 
base required more disk space when using ESM largely because of 
differences in the way that pointers to persistent data are stored by 
the two systems. 

The large benchmark database is identical to the small database 
except that 125,000 part objects were used. The large database 
occupied 3,057 disk pages with an index whose size was 1.9 
megabytes when using ESM. For ObjectStore the large database 
required 2,559 pages. 125,000 objects were used for the large 
database instead of 200,000 as specified in [Cattegl] due to limita- 
tions in the amount of available swap space. Using 125,000 
objects eliminated this problem while still providing a database 
that would not fit into the real memory of the workstations that 
were used. 

4.3. Hardware Used 
All experiments were performed using two identically configured 
SUN SPARCstation ELCs (approximately 20 mips). One was 
used as the client machine and the other was used as the server. 
The two machines were connected via a private Ethernet. Both 
machines had 24 megabytes of main memory. Data was stored at 
the server using 70 megabyte raw disk partitions located on 
separate SUN0207 disk drives. One partition was used for the 
transaction log and the other was used to store normal data. The 
virtual memory swap area on the client machine was also located 
on a SUN0207 and was 32 megabytes in size. 

5. Benchmark Results 

5.1. Small Database Results 
This section contains the results of running several variations of 
the traversal portion of the 001 benchmark using the small bench- 
mark database of 20,000 objects. All of the experiments were 
repeated 3 times and then averaged to obtain the results that are 
shown. All times are listed in seconds. 
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Tables 1,2, and 3 present the individual cold, warm, and hot itera- 
tion times when no updates are performed and the entire bench- 
mark run is executed as a single transaction. The cold time is the 
execution time for the first iteration of the benchmark when no 
persistent data is cached in memory on either the client or server 
machines. The warm time is the execution time for the tenth itera- 
tion of the benchmark. The hot times were obtained by repeating 
the traversal done during the warm iteration, so that all of the 
objects were in memory and all swizzling was done prior to the 
beginning of the hot iteration. The number of I/O operations per- 
formed by the client during each iteration is also given. The times 
in Tables 1, 2, and 3 do not include the overhead for transaction 
begin and commit. 

Table 1 compares one version from each of the four software 
architectures discussed in Section 4.1. The versions selected are 
generally comparable in the sense that each uses a similar amount 
of memory, though PClM does use slightly more memory than 
the others. CESM has the best time in the cold iteration, but 
EPVMl does almost as well. The small difference between 
CESM and EPVMI is likely due to the overhead of inserting 
objects into the OID hash table for EPVMl. PClM is 7% slower 
than EPVMl due to the overhead of caching full pages of objects. 
OS does the worst during the cold iteration despite the fact that it 
performs the fewest I/O operations. Given our understanding of 
how OS works, we believe this is partially due to the overhead of 
mapping data into the client’s address space. 

The ordering of times for the warm iteration in Table 1 is just the 
reverse of that for the cold iteration. OS is much faster than the 
other versions in the warm iteration since it incurs essentially no 
overhead for accessing in-memory objects in this case. PClM is 
next in terms of performance. PClM is 33% faster than EPVMl 
because EPVMl incurs the overhead of inserting a large number 
of objects into the OID hash table while PClM caches only 2 
pages (80 objects). Since PClM is more aggressive at caching 
than EPVMl, it has already cached the additional objects during 
previous iterations. CESM has the worst performance in the warm 
iteration due to the overhead of calling ESM for each object that is 
visited during the iteration. 

Table 2 presents the results for each of the versions based on 
EPVM 2.0. OClM has the worst performance during the cold 
iteration because its small client buffer pool size forces it to reread 
pages from the server. It may seem surprising that OClM is only 
10% slower than OC5M given that it performs 33% more I/O 
operations. This is due to the fact that the server buffer pool is 
large enough to hold all of the pages read by the client in this case 
and shipping pages from the server is much faster than reading 
them from disk. OC5M is 6% faster than PClM due to the over- 
head that PClM incurs for copying full pages into virtual memory. 
The similarity of PClM and PClM-NO shows that there is essen- 
tially no advantage or disadvantage to doing swizzling during the 
cold iteration. 

In the warm iteration, Table 2 shows that PClM has the best per- 
formance. PCIM and PClM-NO do better than the object caching 
versions during the warm iteration because many more objects are 
being cached than are pages. More precisely, 2 pages are cached 
during the warm iteration by the page caching versions, while 
1097 objects are cached by the object caching versions. PClM 
caches fewer objects in the warm iteration because it has already 
cached the additional objects during previous iterations. This 
accounts for the somewhat strange fact that PClM-NO (which 
does page caching and no swizzling) is 40% faster than OC5M 

(which does full swizzling). OClM continues to reread pages 
from the server in the warm iteration and consequently has the 
worst performance. Turning to swizzling. in the warm case Table 
2 shows that swizzling provides a 12% reduction in execution time 
for page caching. The times for EPVMl-NO are not shown in 
Tables 1 and 2. There was essentially no difference between 
EPVMl and EPVMl-NO in the cold iteration for this experiment. 
In the warm iteration, swizzling made EPVMl 8% faster than 
EPVMl-NO. 

The hot times in Table 3 represent the asymptotic behavior of each 
of the versions, when no further conversion or copying of in- 
memory objects is taking place. An additional version, labeled C, 
has been added to Table 3. C represents an implementation of the 
benchmark coded in non-persistent C++ using transient in- 
memory objects. C represents the best performance that a per- 
sistent system could hope to achieve in the hot case. 

We first examine architectural differences. OS does the best dur- 
ing the hot iteration. The fact that the performance of OS is ident- 
ical to C shows that the memory-mapped architecture of OS 
imposes no additional overhead in the hot case. OS is 33% faster 
than PClM because of the overhead for swizzle checks and 
EPVM 2.0 function calls that PClM incurs. In addition, the fact 
that pointers to persistent objects in E are 16 bytes long as 
opposed to 4 bytes in OS further slows the performance of PClM. 

EPVMl is third in terms of performance and is 21% slower than 
PClM. This is because EPVMl does not swizzle pointers 

Table I . Single transaction without updates (times are in second s). 

Traversal without updates 
Version Cold I/OS Warm I/OS 
OC5M 10.750 327 0.227 2 
OClM 11.799 434 1.979 171 
PClM 11.386 327 0.120 2 
PClM-NO 11.384 327 0.136 2 

Table 2. Single transaction without updates (times are in seconds). 

Traversal without updates 
Version Hot Hot w/o random 
C 0.039 0.005 
OS 0.039 0.005 
PClM 0.058 0.024 
PClM-NO 0.078 0.044 
EPVM 1 0.074 0.040 
EPVM 1 -NO 0.082 0.048 
CESM 0.230 0.196 

Table 3. Single transaction without updates (times are in seconds). 
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between persistent objects and also because of the extra level of 
indirection imposed upon it by user descriptors. CESM has the 
worst performance in the hot iteration. Its hot time is approxi- 
mately 3 times that of EPVMl and nearly 6 times that of OS. This 
is due to the fact that CESM calls ESM to pm and unpin each 
object that is visited during the iteration. OC5M and OClM were 
identical to PClM in the hot iteration, so they are not shown. 
Comparing PClM with PClM-NO, we see that swizzling has 
improved performance by 26% in the hot case for page caching 
while swizzling makes a difference of just 10% for EPVM 1.0. 

It seemed surprising that in the hot column of Table 3, OS is only 
33% faster than PClM. Upon closer inspection of the benchmark 
implementation, it was noticed that the Unix function random was 
being called during each visit of a part object as part of the over- 
head for determinin g whether or not to perform an update. The 
last column of Table 3 shows the results for the hot traversal when 
the overhead for calling random is removed. Note that OS now 
has approximately 5 times the performance of PClM. This is 
closer to what one would expect given the differences between 
these two architectures. Similarly, the difference between PCIM 
and EPVMl increases to 40%. Both sets of hot results have been 
included since we believe that they illustrate how quickly the 
difference in performance between the architectures diminishes 
when a small amount of computation is performed on each object 
access. 

Table 4 contains the cold and warm iteration times for traversal 
without updates over the small database when each iteration is 
executed as a separate transaction. In Table 4 the relative perfor- 
mance of the different architectures is identical to Table 1 during 
the cold iteration. Comparing the cold iteration times of Table 4 
with Table 1 also shows that the overhead of transaction commit is 
relatively minor for all of the versions when no updates are done. 
The warm iteration results in Table 4 highlight the effects of 
inter-transaction caching. OS has the best performance in large 
part because it caches both data pages and locks between transac- 
tions. The OS client, therefore, only has to communicate with the 
server process once, to read the one page which was not accessed 
during the previous nine iterations. The versions using ESM. on 
the other hand, must communicate with the server to read 
uncached data pages and to reacquire locks on cached pages. 
PClM caches the fewest pages between transactions because it 
only has a 1 megabyte client buffer pool. This causes it to have 
the worst performance. We also ran this experiment without 
inter-tmnsaction caching for ESM. Inter-transaction caching 
improved performance by 40% for CESM and EPVMl and by just 
7% for PClM during the warm iteration. 

The cold and warm times for the four versions based on EPVM 
2.0 are not shown for the multiple transactions experiment. The 
cold iteration times were all within 1% of those shown in Table 2. 

Table 4. Multiple transactions w/o updates (times are in seconds). 

The warm iteration times were, of course, slower than the warm 
times in Table 2 since locks on pages had to be reacquired. 
OC5M had the best performance in the warm iteration. It was 
42% faster than PClM and 50% faster than OClM. Pointer swiz- 
zling made essentially no difference for either PClM or EPVMl 
in this experiment. In addition, the hot times were within 2% of 
the warm times for PClM and OClM. The hot time for OS was 
0.377 seconds which is 7% faster than the warm time for OS 
(Table 4). The hot times for CESM, EPVMl, and OC5M were 
approximately 50% faster than their corresponding warm times. 

We next consider the effect of adding updates to the traversal. 
Figure 7 presents the total execution time for a single transaction 
consisting of 1 cold, 9 warm, and 10 hot iterations when the 
update probability ranges between 0 and 1. The non-swizzling 
versions EPVMl-NO and PClM-NO where each within 1% of 
EPVMl and PClM, respectively, and so are not shown. In addi- 
tion, the performance of CESM was roughly 7% faster than 
EPVMl throughout. 

OS has the fastest time when no updates are done. however, the 
relative performance of OS degrades as updates are added due to 
the high cost of transaction commit. We believe that transaction 
commit is more expensive for OS because full page logging is 
used. The performance of OS levels off once the frequency of 
updates is high enough so that all pages are being updated. PClM 
is always faster than OS when updates are performed. The perfor- 
mance of EPVMl continually degrades as the update probability 
is increased because it generates a log record for every update. It 
is a little surprising that EPVMl is better than PClM and OS in 
many cases. This is due in large part to the fact that the log 
records generated by EPVMl can be processed asynchronously by 
the server while the uansaction is running. PClM is faster than 
EPVMl when the update probability is greater than about .3. The 
commit time for PClM is constant once all of the objects visited 
during the transaction have been updated. 

OCIM has the worst performance overall in Figure 7 since it must 
reread pages from the server while the transaction is running and 
also during the commit phase. The performance of OCSM shows 
that object caching can perform quite well when its client buffer 
pool is large enough to avoid having to reread data pages. The 
difference between PClM and OC5M is because PClM must 
reread pages during transaction commit in order to generate 
recovery information. If PClM is given a bigger client buffer 
pool then its performance is nearly identical to the performance of 
OC5M. 

Figure 8 presents the overall execution time for traversal with a 
varying write probability when each iteration of the benchmark 
constitutes a separate transaction. The curves for PClM-NO, 
EPVMl-NO, and CESM are again omitted due to their similarity 
to the curves for PClM, and EPVMl. OS has the best perfor- 
mance when the update probability is low. As the update proba- 
bility is increased, however, the relative performance of OS 
degrades due to the high cost of transaction commit. OCIM is a 
little slower than PClM in Figure 8 because OClM must reread 
pages from the server while a transaction is executing. This over- 
head is greater than the cost of the extra copying done by PClM. 
The curve for OC5M shows that if enough memory is available, 
then object caching performs the best in most cases. EPVMl does 
quite well because it avoids the extra copying overhead of PClM 
and the object caching versions and also does not have to reread 
data pages from the server in the context of any single transaction. 
Finally, we note that inter-transaction caching improved 
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Figure 7. Benchmark run as a single transaction Figure 8. Benchmark run as multiple transactions. 
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Figure 9. Single read-only transaction. 

performance for OC5M and EPVMl from 43% (read-only) to 
29% (write prob. = 1). The improvement was smaller when 
updates were done because of the fixed overhead for sending dirty 
data pages back to the server at the end of each transaction. 
PClM and OClM posted a 5% gain in performance when caching 
was added. 

Figures 9 and 10 fix the number of cold and warm iterations at 1 
and 0, respectively, and vary the number of hot iterations between 
0 and 1000. In both figures each benchmark run was a single tran- 
saction. In Figure 9 the update probability was 0 and in Figure 10 
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Figure 10. Single transaction (update prob. = .Ol), 

it was .Ol. Both figures illustrate the large difference in CPU 
requirements between CESM and the other versions when a large 
number of hot tTaversals are performed. Although it is not easy to 
see in Figure 9, EPVMI has the best performance when the 
number of hot iterations is between 1 and 60 and OS does the best 
when the number of hot iterations is greater than 60. PClM is 
better than EPVM 1.0 after approximately 60 hot iterations have 
been performed as well. 

When 1000 hot iterations are done, OS is 25% faster than PClM, 
39% faster than EPVMl and posts a 76% improvement over 
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CESM. PClM always does better than PClM-NO and shows an 
improvement of 21% when 1000 iterations are done. The results 
for EPVMl-NO are not shown however, EPVMI was 7% faster 
than EPVMl-NO after 1000 iterations. The times for OCSM and 
OCIM were within 1% of PClM in Figure 9, so their times have 
been omitted as well. 

In Figure 10, when the n~ber of hot traversals is between 1 and 
160 EPVMl has the best performance. PClM is the best when the 
number of hot traversals is between 160 and 600. After 600 hot 
iterations OS is always the fastest. It is surprising that 600 hot 
traversals must be performed in order for OS to perform the best, 
but this is due to the relatively high cost of transaction commit for 
OS. Turning to swizzling, after 1000 iterations PClM-NO was 
24% slower than PClM and EPVMl-NO (not shown) was 7% 
slower than EPVMl. OC5M and OClM are also not shown in 
Figure 10. OCIM was within 1% of PCIM in all cases. The per- 
formance of OC5M was initially 15% faster than PClM and 6% 
faster than PClM after 1000 iterations. 

Figure 11 demonstrates what happens when one varies the fraction 
of each part object that is updated while the update probability 
remains fixed In this experiment part objects were defined to con- 
tain an array of 19 integers (76 bytes) instead of the usual non- 
pointer data specified by the 001 benchmark. The x-axis shows 
the percentage of this array that was updated. Not surprisingly, 
OS has relatively flat performance once any updates are done. 
This is because it does full page logging. The versions based on 
EPVM 2.0 also show little change in performance once updates 
are added. This is because the number of log pages that were gen- 
erated only varied from 51 to 160 as the update fraction was 
increased. ESM required roughly two seconds to process these 
extra log pages. The performance of EPVMl degrades quickly as 
a larger portion is updated because it generates a log record for 
each update. The number of log pages generated by EPVMl 
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Figure 11. Single transaction (update prob. = .3). 

varied from 171 (update 1 integer) to 3,325 (update whole array). 

5.2. Large Database Results 
In the large database (125,000 parts) experiments the number of 
page faults that occurred was important for some versions. Page 
faults are listed in parentheses next to the number of normal I/O 
operations done by the client for the versions that experienced 
page faults. The number of page faults was obtained by using the 
Unix gefrusuge system call. 

Tables 5 and 6 present the cold and warm times observed when 
the benchmark was executed as a single transaction, so the time 
for transaction begin and commit is not included. CESM has the 
best performance in the cold iteration of Table 5. PClM does 
fewer I/O operations, but is slower than CESM due to copying 
costs. EPVMl is slower than CESM primarily because it does a 
less effective job of buffer management. OS has the worst perfor- 
mance in the cold iteration. We believe this is due to the cost of 
mapping data in and out of the client’s address space. 

PClM performs the best in the warm iteration, but comparing 
PClM to the other architectures is not strictly fair in this case 
since it is allowed to use all of available memory, as shown by the 
number of page faults that it experiences. CESM and EPVMl are 
close in terms of performance, but EPVMl is a little slower due to 
the fact that it performs more I/O and must insert objects into the 
OID hash table. OS is surprisingly 12% slower than EPVMl in 
the warm iteration. As with the cold iteration, this is likely due to 
data mapping costs[Orens92]. 

In Table 6 OClM has the worst performance in the cold iteration 
because it performs more I/O operations. PClM is a little slower 
than OC5M due to the overhead of copying full pages. Swizzling 
makes no difference for PClM in the cold iteration. The relative 
times in the warm iteration are similar to the cold iteration. How- 
ever, the performance of PClM-NO is a little better than PClM 
since swizzling dirties pages in virtual memory causing them to be 
written to disk more often. This fact doesn’t show up in the 
number of page faults shown in Table 6 since these numbers only 
give the number of pages read from the swap area by the process. 
The times for EPVMl-NO were essentially identical to EPVMl in 
both the cold and warm iterations and so are not shown, 

I Traversal without updates 

Table 5. Single transaction without updates (times are in seconds). 

Table 6. Single transaction without updates (times are in seconds). 
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When each iteration was executed as a single transaction, the cold 
times were all within 2% of the times shown for the versions in 
Tables 5 and 6. In the warm iteration the times for the versions 
included in Table 5 were also all within 2%. except for PClM 
whose performance was slower by 23%. The decrease in perfor- 
mance for PClM was due to the fact that it was not able to cache 
as much data in virtual memory and it also performed a lot of 
unnecessary copying. OClM was 12% slower than PClM during 
the warm iteration and OC5M was just 2% faster than PClM. 
PClM-NO and EPVMl-NO were each within 1% of PClM and 
EPVMI respectively in the multiple transactions experiment. 
Repeating the experiment without inter-transaction caching 
showed that caching had much less impact on performance when 
using the large database. Caching improved the performance of 
EPVMl by 4% and PClM by just 2% during the warm iteration. 

Figure 12 presents the total execution time for traversal when 1 
cold, 9 warm, and 0 hot iterations are run as a single transaction. 
OS has the worst performance in most cases. It may be surprising, 
given the results presented in Table 5, that OS is better than PClM 
in the read only case. PClM is slower in this case because when it 
scans the page hash table during transaction commit to determine 
which objects have been updated, it causes a signiticant amount of 
virtual memory swapping activity. This poor performance during 
the commit phase makes PCIM slower than the other versions as 
well. 

It should be noted that in the large database case it is not strictly 
fair to compare OS, EPVMl, and CESM to the page caching and 
object caching versions since the caching versions are allowed to 
use more memory. The comparison between EPVMl, CESM, and 
OS is fair, however, since these versions were given equal 
amounts of memory. The times for EPVMI-NO (not shown) were 
all within 1% of EPVMl. PClM-NO, which is also not shown in 
Figure 12, was 4% faster than PClM in the read only case because 
swizzling dirtied pages in virtual memory for PClM which caused 
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Figure 12. Benchmark run as a single transaction. Figure 13. Benchmark run as multiple transactions. 

an increase in paging activity. The difference between PClM and 
PClM-NO gradually diminished as more updates were performed 
and PClM-NO was well within 1% of PClM when the update 
probability was 1. 

Figure 13 presents the total execution time for traversal when 1 
cold, 9 warm, and 0 hot iterations are executed as separate rransac- 
tions. OS has the worst performance in all cases in Figure 13. 
CESM has the best performance, but is only slightly faster than 
EPVMl. Turning to object and page caching, the performance of 
page caching is intermediate between OClM and OCSM. This 
again illustrates the tradeoff made by object caching which must 
reread pages from the server and page caching which caches more 
objects and copies more data into virtual memory. EPVMl-NO 
(not shown) and PCIM-NO (not shown) were always within 1% 
of EPVMl and PClM respectively in Figure 13. 

6. Conclusions 
This paper has presented a detailed discussion of the implementa- 
tion of pointer swizzling and object caching in EPVM 2.0. The 
paper then analyzed the relative performance of several versions 
of EPVM 2.0 using the 001 benchmark. EPVM 2.0 was also 
compared to some alternative methods of supporting persistent 
data access, including the memory-mapped approach of Object- 
Store V1.2. 

The 001 cold iteration times for ObjectStore were slower than the 
cold times for the architectures based on ESM when using both a 
small and a large database. ObjectStore had the fastest warm 
iteration time when using the small database, but when the large 
database was used ObjectStore had the worst warm performance. 
These results suggest that either the I/O performance of Object- 
Store is worse than that of ESM or that mapping data into a 
process’s address space is a relatively expensive operation. The 
hot iteration results (done using the small database) showed that 
the memory-mapped scheme used by ObjectStore is five times 
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faster than the software approach of EPVM 2.0 when operating on 
in-memory data. However, it was observed that the difference in 
performance was only 33% when a small amount of additional 
computation was added 

The paper also compared the total elapsed time of the different 
architectures using several transaction workloads. When a small 
database was used (Figures 7 and 8). ObjectStore had the best per- 
formance in the read-only case. It was shown, however, that 
PClM generally performed better than ObjectStore when updates 
were performed. The main reason for this appears to be that 
ObjectStore does full page logging in order to support crash 
recovery. EPVMl and CESM performed better than ObjectStore 
and PClM when the frequency of updates was low and when mul- 
tiple transactions were used When a large database was used, the 
memory-mapped approach of ObjectStore always had slower per- 
formance than EPVMl and CESM. 

Among the versions based on EPVM 2.0, PClM had better overall 
performance than OClM when the small database was used. 
PClM does well because the cost of copying full pages is rela- 
tively small compared to the cost of copying individual objects in 
this case. PClM also avoided the need to reread pages from the 
server during normal transaction execution as was done by OClM. 
When the large database was used, however, OClM generally per- 
formed better than PClM. PClM performed a lot of unnecessary 
copying work and experienced paging of virtual memory which 
lowered its performance in this case. 

The swizzling scheme used by EPVM 2.0 never noticeably hurt 
performance when the small database was used and improved per- 
formance by as much as 45% in some cases (see Table 3 column 
4). When the large database was used, swizzling did not improve 
performance and resulted in a 4% decrease in a few cases due to 
the fact that it caused an increase in the amount of virtual memory 
paging activity. Lastly, we note that the swizzling scheme used by 
EPVMl improved performance by 16% in some cases when using 
a small database and had no effect when using the large database. 

We feel that an important conclusion that can be drawn from the 
results presented in the paper is that it is important to look at 
overall performance when comparing the different architectures. 
For example, simply comparing the speed with which the architec- 
tures manipulate m-memory data or comparing them without con- 
sidering recovery issues does not capture the true differences in 
performance between the systems. In the future, we would like to 
explore variations of the object caching and page caching schemes 
studied here in the context of EPVM 2.0 to see if an approach 
combining their relative strengths can be found. We are also 
interested in tiding more efficient ways of generating recovery 
information both in the wntext of EPVM and the memory- 
mapped approach. If a more efficient method of generating 
recovery information for the memory-mapped approach can be 
found, then we feel that its performance could be improved sub- 
stantially. 
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