
Temporal Query Processing and Optimization in
Multiprocessor Database Machines*

T.Y. Cliff Leungt Richard R. Muntz
Department of Computer Science

University of California, Los Angeles

Abstract

In this paper, we discuss issues involving tempo-
ral data fragmentation, temporal query processing,
and query optimization in multiprocessor database
machines. We propose parallel processing strategies,
which are based on partitioning of temporal relations
on timestamp values, for multi-way joins (e.g., com-
plex temporal pattern queries) and optimization al-
ternatives. We analyze the proposed schemes quanti-
tatively, and show their advantages in computing com-
plex temporal joins.

1 Introduction

With the availability of cheaper and larger sec-
ondary storage devices such as magnetic/optical disks,
more historical data can be stored on line instead of
being archived onto magnetic tapes or being purged
from the database. Recently, there have been active
research efforts that attempt to provide basic tempo-
ral functionality so that historical data can be accessed
and queried more efficiently [SooSl]. There are several
classes of temporal queries. Among the most difficult
to process are the inequality joins and multi-way joins
such as complex temporal pattern queries. Even in

*This work was partially supported by a MICRO grant from
the University of California and the Hughes Aircraft Company.

+The author is currently with IBM Santa Teresa Laboratory,
San Jose, USA.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

centralized database systems, these queries are often
expensive to process.

Recently there has been growing interest in multi-
processor database machines which appear to have
better price-performance than traditional centralized
DBMS residing in mainframe computers [DeWSO,
Ter85]. A crucial design issue in these database ma-
chines is the fragmentation strategy, which specifies
how tables are fragmented and stored, and which has
a significant impact on the efficiency of query process-
ing. Unfortunately, providing temporal functionality
in parallel database machines as well as addressing
the issue of fragmentation strategies for temporal data
have largely been ignored.

In [LeuSO] we proposed stream processing algo-
rithms for processing temporal inequality join and
semijoin operations. In this paper, we develop parallel
join strategies for multiprocessor database machines
based on the stream processing paradigm. For an in-
equality join of two relations, a conventional strategy
in multiprocessor database machines, which is not al-
ways desirable, is to dynamically and fully replicate
the smaller relation. We propose parallel processing
strategies that are based on partitioning of tempo-
ral relations on timestamp values, and show that they
can be attractive alternatives to conventional strate-
gies. An analytic model is developed for estimating the
number of tuples that have to be replicated; the model
indicates in which situations only a fraction of tuples
needs to be replicated among processors as opposed to
replicating the entire relation.

Another subclass of complex queries is called snap-
shot or interval join queries. These queries refer to tu-
ples that are active as of a certain time point or over a
certain time interval in the past. Basically, the query
qualification contains join predicates and comparison
predicates on timestamps. We discuss optimization al-
ternatives when these queries are processed using our
approach.

The organization of this paper is as follows. In Sec-
tion 2 we present the fundamental concepts. The par-
allel query processing strategies and optimization al-

383

Smith] $20K) 15) now

I IfI/ I
Table 1: A Sample Emp(Name,Sal,TS,TE) Relation Figure 1: Classes of Temporal Joins

ternatives will be the main focus in Section 3 and Sec-
tion 4 respectively. Finally, we discuss related work
in Section 5, and conclusions and future research are
included in Section 6.

2 Data Model

In the temporal data model, time points are re-
garded as natural numbers { 0, 1, . ., now } and
are monotonically increasing. The special marker now
represents the current time point. A time-interval tem-
poral relation is denoted as X(S,V,TS,TE), where S is
the surrogate, V is a time-varying attribute, and the
interval [TS,TE) d enotes the eflective lifespan of a tu-
ple [Sno87, Seg87]. The TS and TE attributes are
referred to as timestamps. In Table 1 we show a sam-
ple employee relation which stores the salary history
of employees. All temporal relations are assumed to
have a homogeneous lifespan - [O,now). Furthermore,
we require that for each tuple, the TS value is always
smaller than the TE value.

We first propose a classification of Temporal Select-
Join (denoted as TSJ) queries. This classification pre
vides a meaningful partitioning of query types with re-
spect to the difficulty and complexity of query process-
ing and optimization. Each class has a restricted form
of query qualification which is defined as a conjunc-
tion of several comparison predicates and join predi-
cates, and thus each class is amenable to a particu-
lar query processing algorithm. We consider two spe-
cial kinds of joins whose formal definitions will be pre-
sented shortly; both are referred to as “overlap joins”
in the sense that the lifespans of tuples satisfying the
join condition must overlap. Informally, their charac-
terizations are:

TSJl - All participating tuples that satisfy the join
condition share a common time point, as illus-
trated in Figure l(a). For example, finding a com-
plex “event” pattern in which all (interval) events
occur during the same period of time (or as of a
time point) can be regarded as a TSJl join query.

time

TSJ2 - The tuples that satisfy the join condition
overlap in a “chain” fashion, as illustrated in Fig-
ure l(b). However, not all participating tuples
that satisfy the join condition have to have a com-
mon time point. For example, finding a pattern in
which (interval) events occur in some overlapping
sequence can be regarded as a TSJ:! join query.
Note that all TSJl queries are also TSJz queries.

In this paper, we focus on only TSJl queries.

We now precisely define the classes of queries that
are of interest here. Given a query Q E aP(&,...,R,)
(R1,-&J1, we construct a join graph, denoted as
G, from the query quaIification P(R1,. . . , Rm) using
Definition 1 below. Based on the join graph, we are
able to formally define TSJl and TSJB join queries.

Definition 1 Join Graph. There are m nodes in
the join graph G; each node represents an operand
relation Rk, llk<m, and is labeled with the name
of that relation. We add an undirected edge between
nodes Ri and Rj, where i, j E (1,. + .,m} and ifj, to G
if the following condition is satisfied:

P(R1,-..,R,) + Ri.TS<Rj.TE A Rj.TS<Ri.TE2.

Cl

Definition 2 TSJ2. Q 3 OP(R~ ,..., R,) (R1,. . , Rm)
is a TSJz query if:

1. m>l, and

2. the join graph G constructed using Definition 1 is
a connected graph. cl

Definition 3 TSJl. A TSJz query is also a TSJl
query if the join graph G constructed using Defini-
tion 1 is a fully connected graph. In other words, for
all i and j such that i, j E { 1; . .,m) and ifj, the fol-
lowing condition holds:

1 Ri’s need not be distinct.
’ This condition is defined such that we can also handle the

join predicate “X.TE=Y.TS” for a join of two relations. Test-
ing the implications can be readily achieved via algorithms pre-
sented in [RosSO, Ull82, sun89].

384

P(R1, . , R,) 3 Ri.TS<Rj.TE A Rj.TS<Ri.TE.

That is, for each m-tuple <rl, ..s ,I~>, where rk
E Rk, l<k<m, that satisfies the join condition
P(Rl,~..,Rm), all participating tuples (rk’s) must
span a common time point. 0

TSJi and TSJ2 queries are multi-way temporal
joins (e.g., temporal pattern queries) in which the
lifespans of tuples intersect. Non-TSJZ queries in-
clude Cartesian products across multiple relations (i.e.,
no join predicates) and a query with join condition
“Ri.TE<Rj .TS” This characterization is crucial in
developing the parallel processing algorithms to be
described later. Examples of TSJi queries include
the “natural time-join” [Cli85, Cli87], the “intersec-
tion join” [GunSl], and the following temporal join
operators [AllS3, LeuSO]:

contain-join(X,Y) E “X.TS<Y.TS A Y.TE<X.TE”
overlap-join(X,Y) I “X.TS<Y.TS A Y.TS<X.TE

A X.TE<Y .TE”
intersect-join(X,Y) E “X.TS<Y.TE A Y.TS<X.TE”

We now show how common temporal queries can be
formulated in TSJr Consider the following temporal
relations which store information on studios, directors
and stars in the film industry3:

Studio(Sname,Head,TS,TE) - the head of a studio
Dir(Dname,Sname,TS,TE) - directors who worked

for a studio
Stars(Star,Dname,TS,TE) -film stars who acted in

films directed by a director

where Sname and Dname stand for the name of studios
and directors respectively,

Example 1 Find the heads of studios and the direc-
tors who worked for the studios at the same time:

0 P A Studio.Sname=Dir.Sname (Studio,Dir)4

where P is “intersect-join(Studio,Dir)“. 0

Example 2 Find all combinations of studio heads,
film stars and directors such that they worked during
the same period of time and when the star acted in a
film that the director directed at the studio:

0 p1 ,, pz (Studio,Dir,Stars)

where Pi is “intersect-join(Studio,Dir) A intersect-
join(Dir,Stars) A intersect-join(Studio,Stars)“, and
Pz is “Studio.Sname=Dir.Sname A Dir.Dname=
Stars.Dname” cl

3 Adopted from examples in [Cli87].
4 A more appropriate response might include two “com-

puted” fields which represent the lifespan of a joined tuple. In
this paper, we focus only on the query qualification which is a
major optimization issue.

data values

]pli p2i p3i p4i . . . :time

t1 t2 t3 t4 t5

Figure 2: Range-partitioning along a Timestamp

3 Parallel Temporal Query Processing

In this section, we discuss data fragmentation
schemes that facilitate the processing of temporal
joins. We then introduce the notion of checkpointing
the execution state of a query, and present the parallel
query processing strategies.

3.1 Data Fragmentation

A number of well-known fragmentation strategies
have been proposed and implemented in multiproces-
sor database machines [Ter85, DeWSO, GhaSO]. They
include: range-partitioning, round-robin, and hash-
ing. Below we discuss the strategy based on range-
partitioning the timestamp values; a discussion of
other strategies can be found in [Leu92].

The strategy is to partition temporal relations
based on a timestamp (e.g., TS) as illustrated in Fig-
ure 2. For example, tuples that started during the in-
terval [tr ,ts) are stored in processor pr . Suppose there
are n processors in the database machine, and let the
processors be denoted as pi, for l<iln. Let npi be the
number of intervals in the partitioning function:

[t1,t2), . . ., [tllpi-lttIIpi)7 [tnpi>tIlpi+l).

We refer to ti and [ti,ti+i) as the partitioning bound-
ary and the partitioning interval (or simply partition)
respectively. As relation lifespans are assumed to be
[O,no2u), by convention ti is 0 and &-,,;+I is now. In
general, we require that the number of partitions be at
least as large as the number of processors, i.e., n,i>n.
For simplicity, we adopt the hybrid range-partitioning
scheme in [GhaSO]: an interval [tj ,tj+l) is assigned to pi
if i equals j modulo n. Partitioning relations on the TS
(respectively TE) t’ lmestamp is called TS (respectively
TE) range-partitioning. With TS range-partitioning,
processor pi stores a fragment of relation X, denoted
as Xi, which contains tuples of X that started during
the interval [ti,ti+i), i.e., “ti<X.TS<ti+i” holds. Sim-
ilarly for the TE range-partitioning, Xi contains tuples
that ended during the interval.

385

Figure 3: A Merge-join Stream Processor

In this paper, we assume that all operand relations
of a given query are homogeneously range-partitioned,
i.e., relations are partitioned using the same partition-
ing functions. We note that range-partitioning along
the time dimension can facilitate the processing of
complex temporal joins. The intuition is that tem-
poral tuples with close timestamp values are likely to
be clustered within the same processor and therefore a
pair of tuples that satisfy the temporal join condition
are likely to be stored at the same processor. Hence,
fewer tuples would be copied between processors. In
the following sections, we further develop the query
processing strategies based on this approach.

There will certainly be many natural situations
in which not all relations are homogeneously range-
partitioned or relations are fragmented using other
schemes. In Section 3.3 we will briefly describe the
case when this assumption is relaxed, and we note that
our processing strategies still apply.

3.2 Checkpointing Execution State

In order to introduce checkpointing in this context,
we first discuss 1) the stream processing paradigm for
temporal query processing, and 2) the notion of check-
pointing a stream processing execution.

3.2.1 Stream Processing

In [LeuSO], we introduced stream processing algo
rithms for processing temporal joins and semijoins. A
stream is abstractly defined as an ordered sequence
of data objects. A stream processing algorithm can
be abstractly described as a stream processor which
takes one or more input data streams and produces
one or more output data streams. A classical exam-
ple of stream processing operations is the merge-join
where both operand relations are sorted on their join
attribute as depicted in Figure 3; the output from the
join is also a data stream sorted on the join attribute.

Stream processing in database systems has several
interesting characteristics. First, a computation on a
stream has access only to one element at a time (refer-
enced via a data stream pointer) and only in the spec-

ified ordering of the stream. Second, stream proces-
sors may keep some local state information in order to
avoid multiple readings of the same data stream. The
state information represents a summary of the history
of a computation on the portion of data streams that
have been previously read. Depending on the opera-
tion itself, the state may be composed of copies of some
elements (e.g., tuples for join operations) or some sum-
mary information of the objects previously read (e.g.,
partial sum for aggregate functions). In [LeuSO] we
noted that the storage requirements for the local state
information can depend heavily on the sort ordering of
input streams, data statistics and the operation itself.
As a simple example from conventional query process-
ing, when we merge-join two relations sorted on their
key attribute, at any point in time we need only one
tuple from each table as the state information. On
the other hand, if an operand relation is not sorted,
keeping all its tuples in the local workspace is required
prior to reading the other relation. Alternatively, one
can reduce the storage size by allowing the unsorted
relation to be read multiple times - the merge-join
then becomes a nested-loop join.

3.2.2 Checkpointing Stream Processors

We now discuss the notion of checkpointing the execu-
tion state of a query in the context of stream process-
ing. To illustrate the idea more clearly, we consider a
stream processor that implements a query Q with data
streams X and Y as shown in Figure 4, and we assume
that both X and Y are sorted on a timestamp (either
TS or TE) in increasing order. A stream processor
that implements the processing of a query Q starts by
reading elements at the beginning of data streams. At
any time t, the execution state of the stream processor
includes:

state information, denoted as sg(t), stored in the
local workspace of the stream processor.

dsp,(t) and dspy (t): the data stream pointer for
X and Y respectively which represent the posi-
tions in the data streams up to which the stream
processor has read so far. Recall that data stream
elements are accessed one at a time using the data
stream pointer.

A checkpoint of the execution state of a query at time
t, denoted as ckq(t), has the following characteristic:

The execution state at any time t’>t is a
function of ck,(t) and all tuples in the data
stream X (respectively Y) between dspx(t)
(respectively dsp,(t)) and the first tuple in

386

dspx (t>

dsp, (t)

a stream processor for Q

dy&)

X t

Y time
+ ‘t’

dsp, (t)

Figure 4: Checkpointing the Execution of a Stream
Processor for Query Q

+
. .

Interconnection Network

4 4 i
Pi P1+1 . .

.-.-.

*

Y :
X,,Yi ’ Xi+l,yi+l ’

i tit1 k-i-2

time

dspx (ti>

dspy (ti)

dsPx(ti+l)

dsPy(titl)

%Cti) %Cti+l 1

Figure 5: The Parallel Processing Strategy

the data stream after t’. That is, the exe-
cution state at t’ contains sufficient informa-
tion so that re-reading the portions of data
streams prior to dsp,(t) and dsp, (t) can be
avoided.

The type of state information required depends on the
query itself. We will define what state information is
required for TSJr queries shortly, but intuitively, at
any time the state information of a join query consists
of a subset of tuples of operand relations that were
previously read.

3.2.3 The Approach

We now outline the parallel processing strategy for
TSJr queries. Remember that relations are homoge-
neously range-partitioned on a timestamp (TS or TE),
i.e., the partition [ti,ti+r) is assigned to processor pi as
depicted in Figure 5. For the moment, we assume that
the data stream pointers at the partitioning boundary
ti, dspx(ti) and dsp,(ti), are “pointing” at the rela-

tion fragments Xi and Yi respectively. Given a query
Q, the strategy is to construct the state information
at evenJ partitioning boundary so that each proces-
sor can independently process the query Q on its local
relation fragments using the constructed state infor-
mation. For example, as shown in Figure 5, pi will
process its local fragments Xi and Yi using the state
information Ss(ti). Similarly, piti will process Xi+1
and Yi+i using the state information sg(ti+i). In gen-
eral, the strategy has three distinct phases:

Replication Phase Construct the state information
for every partition.

Join Phase The query can be executed by each pro-
cessor using its local relation fragments and the
constructed state information.

Merge Phase The query response is produced by
merging the results returned from all processors
and eliminating duplicates.

Let us emphasize that TSJr queries are multi-way tem-
poral joins in which all participating tuples share a
common time point. For the sake of simplicity of ex-
position, we focus on joins of two relations unless oth-
erwise stated.

3.3 Replication Phase

Intuitively, the replication phase copies tuples
whose lifespans intersect with each other such that
they co-exist at the same processor for the subsequent
join phase. Instead of copying all tuples that span a
partitioning interval to the corresponding processor,
one may limit which tuples need to be copied using a
state predicate which is defined formally below. For
each relation, we derive a state predicate using the
query qualification as we will explain shortly. In gen-
eral, the more restrictive state predicates are, the fewer
tuples would have to be replicated.

Definition 4 A state predicate for a relation R, de-
noted as PI,, is a query qualification on R. That is, PI,
is a conjunction of several comparison predicates. q

Consider a query involving relations X and Y whose
query qualification is P(X,Y), a state predicate for re-
lation X, denoted as PI,, is obtained from P(X,Y) by
substituting join predicates and comparison predicates
that involve the relation Y with “true”5. That is, PI,
contains only comparison predicates involving only X
in P(X,Y). A state predicate for the relation Y, de-
noted as Ply, is defined analogously.

’ Recall that we consider only conjunctions of join and com-
parison predicates as query qualification.

387

[0,1/85) [1/87,now) TEd - Dir.TE

Figure 6: Constraint Graph for Example 4 - Upper
and Lower Bounds on Timestamps

Example 3 Consider the film industry examples
presented earlier. The query for finding the head of
a studio that the director “Fred” worked for at the
same time is:

0 intersect-join(Studio,Dir) A P (Studio,Dir)

where P is “Studio.Sname=Dir.Sname A Dir.Dname=
Fred”. The state predicate for the relation Dir is
“Dname=Fred” while the state predicate for the re-
lation Studio is “true”. Cl

By propagating constraints between attributes, one
can sometimes find a more restrictive state predicate.
For example, consider the query for finding the head
of the studio “MGM” and the directors who worked
for the studio at the same time is:

0 intersect-join(Studio,Dir) A P (StudWir)

where P is “Studio.Sname=Dir.Sname A Stu-
dio.Sname= MGM”. Using the first (simplistic)
method, the state predicate for the relation Dir
is “true” while the state predicate for the rela-
tion Studio is “Studio.Sname=MGM”. Intuitively,
only tuples in relation Dir that satisfy the predicate
“Dir.Sname=MGM” would participate in the join and
thus only these tuples should be replicated as state
information. Likewise, bounds on timestamp values
can be propagated between relations- [Ull82, Chak84,
Jar84, She89]. Because of space limitations, we only
illustrate the approach using the following example.

Example 4 Suppose we want the combinations of
all stars and directors such that the star acted in films
directed by the director during the entire period of
time in which the director worked for a studio for the
entire interval [l/85,12/86). The query is:

0 contain-join(Stars,Dir) A pWarS,Dir)

where P is “Dir.TS<1/85 A 12/86<Dir.TE”. The con-
straints on timestamp values are represented by a con-
straint graph as shown in the Figure 6. Basically, a

node represents a timestamp and a solid arrow repre-
sents the “before” (i.e., <) relationship between two
timestamps. The values of timestamps “Dir.TS” and
“Dir.TE” are bounded by [0,1/85) and [1/87,nozu) re-
spectively6.

The constraints on timestamp values are then prop-
agated among nodes. For example, in Figure 6, the
TS values of relation Stars (i.e., TS,) are bounded by
the interval [0,12/84) while the TE values (i.e., TE,)
are bounded by [2/87,now). Thus, the state predi-
cate for the relation Stars becomes “Stars,TS<12/84
A 2/87<Stars.TE”. 0

Given a query Q - 0p(X,Y) E TSJi, we first de-
rive a state predicate for each operand with the results
being denoted by PI, and PI,. Using these state pred-
icates, one can define the state information required
on each processor as follows.

Definition 5 Given that the partition [ti,ti+l) is as-
signed to processor pi, the state information for a re-
lation R at the partitioning boundary ti, denoted as
Sr(ti), contains:

{ T 1 T E R A r.TS<ti A ti<r.TE A Plr(r) }
if R is TS range-partitioned

{ T 1 T E R A r.TS<ti+r A ti+i<r.TE A PI,(r) }
if R is TE range-partitioned

where PI, is the derived state predicate for the relation
R, and Plr(r) holds for the tuple T. 0

Essentially, all qualified tuples (based on the state
predicate) whose lifespan intersects with the interval
[ti, ti+i) and are not stored in the local fragments at
processor pi will be replicated at processor pi as “state
information”. In other words, if the lifespans of tuples
intersect, they should co-exist at the same processor.

Note that when relations are not homogeneously
range-partitioned or relations are fragmented using
other schemes? more tuples will be copied between pro-
cessors. For example, consider a temporal join of re-
lations R and S, where R is TS range-partitioned as
before and S is fragmented using a hash function on
any attribute(s). The state information for S at parti-
tion [ti,ti+r) is:

{ s I s E S A s.TS<ti+r A ti<s.TE A PI,(S) }.

We emphasize that only a fraction of S tuples (instead
of the entire relation) is replicated at a partition.

As soon as the state information for all operand re-
lations at all partitions have been constructed, the join

6 We assume that the time gramdarity in this example is
“month”, i.e., consecutive months are mapped into natural num-
bers.

388

phase, which is the focus of the following subsection,
can proceed. That is, the query can be processed in
parallel without additional data transfers.

3.4 Join Phase & Merge Phase

For a query Q F Op(X,Y) E TSJr, each processor
pi can execute Q using its local relation fragments and
the state information constructed at pi. The response
to Q is the union of the results (eliminating duplicates)
from all processors:

Ul<i<*,i { OP(Cxi u sxCti>), tyi u Sy(ti))) 1

where npi is the total number of partitions. For a
TSJi join query involving m relations, we can use
the following strategy whose correctness can be found
in [Leu92]:

Ul<iSn,i{ aP((Rl,i U Sr,(ti)),* ’ .,(Rm,i U Sr,(ti))))

where Rj,i is the ith fragment (i.e., for partition
[ti, ti+i)) of the relation Rj, j E (1; ..,m}, which is
stored at processor pi.

4 Optimization Alternatives

In this section, we discuss several optimization
alternatives for processing TSJl queries in parallel
database machines, and present a quantitative anal-
ysis on the overhead of the replication phase.

4.1 Reducing State Information

Depending on the properties of the user query and
data statistics, there are opportunities for reducing the
number of tuples to be replicated as state information.
First, we define the asymmetry property of operands
in a TSJr join query with respect to the TS and TE
timestamps.

Definition 6 Given Q E O~(n~,..,,n,)(Rr,. . . , R,,,)
E TSJr. The relation Rk, k~{l;..,m}, has the asym-
metry property with respect to the TS timestamp if
the following condition is satisfied:

P(Rl,...,R,) + Rk.TS>Ri.TS, V l<i<m.
0

Definition 7 Given Q - ~P(R~,...,R,)(R~,...,R~)
E TSJ1. The relation Rk, kE{l; .,m}, has the asym-
metry property with respect to the TE timestamp if
the following condition is satisfied:

P(Rr;..) Rm) * Rk.TE<Ri.TE, V l<i<m.
0

For each m-tuple <rl, .. ,rm> that satisfies the
query qualification P, where ri E Ri for l<i<m, the --
asymmetry property with respect to the TS time-
stamp means that the tuple rk must have the maximal
TS value among all participating tuples. For exam-
ple, consider contain-join(X,Y) whose join condition is
“X.TS<Y.TS A Y.TE<X.TE” and overlap-join(X,Y)
whose join condition is “X.TS<Y.TS A Y.TS<X.TE
A X.TE<Y.TE”. The relation Y in both contain-
join(X,Y) and overlap-join(X,Y) has the asymmetry
property with respect to the TS timestamp. Similarly,
the asymmetry property with respect to the TE times-
tamp means that the tuple rk must have the minimal
TE value among all participating tuples. For example,
the relation Y in contain-join(X,Y) and the relation X
in overlap-join(X,Y) h ave this asymmetry property.

Depending on whether a relation is TS or TE range-
partitioned, the asymmetry properties can be used to
show that constructing the state information for some
relation is redundant in the sense the result produced
by the local joins using those tuples (as state informa-
tion) would have been produced by some other pro-
cessors, and therefore the replication phase for that
particular relation can be eliminated.

Property 1 Property of Redundant State Informa-
tion. Given:

l a query Q - Crp(Rr;..,R,) E TSJr, and

l there are m’, where l<m’<m, relations which
have the asymmetry property with respect to
their partitioning timestamp (we use a subscript
j to denote these relations as Rj where j =
{ 1,. . .,m’}).

Conditions under which the state information for a
relation is redundant are:

If all Rj’s, jc{l,. . .,m’}, are TS range-partitioned,
then all Rj’s hold the property.

If all Rj’s, jc{l,. . .,m’}, are TE range-partitioned,
then all Rj’s hold the property.

If some Rj’s are TS range-partitioned while others
are TE range-partitioned, then Rj’s can be parti-
tioned into two disjoint sets:

Rj ITS and Rj ITE.

The first set corresponds to TS range-partitioning
while the second set corresponds to TE range-
partitioning. Then relations in either set (not
both sets) hold the property7. 0

’ Then we have a choice of selecting which relations to have
the redundant state information property.

389

Theorem 1 The replication phase for a relation can
be eliminated if the relation holds the property of re-
dundant state information’. 0

Example 5 Consider Example 4 whose join con-
dition is “contain-join(Stars,Dir)“, i.e., “Stars.TS <
Dir.TS A Dir.TE<Stars.TE”. If the relation Dir is TS
range-partitioned, its replication phase can be elim-
inated. That is, one has to replicate only tuples of
relation Stars as state information. 0

There are several interesting observations that can
be made. First, when all temporal join predicates are
inequalities, only one operand relation has the redun-
dant state information property. Second, for contain-
join(X,Y) the relation Y has the asymmetry property
with respect to both the TS and TE timestamps. For
this reason, state information for the relation Y need
not be constructed regardless of whether the relation is
TS or TE range-partitioned. Thirdly, when there is an
equality temporal join predicate (e.g., “X.TS=Y.TS”
or “X.TE=Y.TE”) between two relations, and both
relations have the asymmetry property with respect
to their join attribute (i.e., timestamp), Y has the re-
dundant state information property if the state infor-
mation of X is redundant (or vice versa). As another
example, consider meet-join(X,Y), whose join condi-
tion is “X.TE=Y.TS” , and X is TE range-partitioned
while Y is TS range-partitioned. Both relations have
the asymmetry property with respect to their respec-
tive partitioning timestamp, and thus the state infor-
mation for both X and Y are redundant.

In addition to the above properties, the data statis-
tics of each local fragment can be used to further re-
duce data replication. Let us consider a join of two
relations - X and Y. Suppose that the database sys-
tem keeps the maximum and minimum of the TS and
TE values for every relation fragment. For example,
the TS and TE values of a relation fragment Yi (i.e.,
the interval [ti,ti+i)) of the relation Y are bounded
by the intervals: pi .TSmin, Yi.TS,,] and p,.TEmin,
Yi.TE,,,] respectively. We further suppose that the
fragment Yi is stored at processor pi. Together with
the query qualification, the statistics can be used to
further reduce data replication of the relation X. To il-
lustrate this point, we consider the following examples,
assuming that both X and Y are TS range-partitioned:

l Consider the overlap-join(X,Y) whose join con-
dition is “X.TS<Y.TS A Y.TS<X.TE A X.TE
<Y.TE”. Intuitively, tuples in the relation X that
span the partitioning boundary ti and whose TE
values are smaller than or equal to Y,.TS,i, need

’ A proof of this theorem can be found in [Leu92].

.

.

4.2

not be sent to processor pi because these X tuples
do not join with any tuples in Yi. This is also true
for X tuples that span ti and whose TE values are
larger than or equal to Yi.TE,,,.

Consider the contain-join(X,Y) whose join condi-
tion is “X.TS<Y.TS A Y.TE<X.TE”. Tuples in
the relation X that span ti and whose TE values
are smaller than or equal to Yi.TE,i, need not
be sent to pi as state information.

Consider the meet-join(X,Y) whose join condition
is “X.TE=Y.TS”. Tuples in the relation X that
span ti and whose TE values are smaller than
Yi.TS,i, or larger than Yi.TS,,, need not be sent
to pi as state information.

Participant Processors

For the parallel processing strategies that we dis-
cussed earlier, all processors participate in the replica-
tion and join phases. However, for some TSJi queries,
it can be determined a priori that some processors nec-
essarily return a null response when they perform the
local join. Similarly, it can also be determined a pri-
ori that some processors need not replicate some frag-
ments of a relation in the replication phase since the
relation fragments will not contribute to the query res-
ponse. These situations may occur when the query
qualification contains some comparison predicates in-
volving timestamps (such as in snapshot or interval
queries). To illustrate the idea, we first define the no-
tion of replication-interval and join-interval.

Definition 8 The replication-interval for an oper-
and relation in a query is defined as the minimal in-
terval with the property that only tuples whose parti-
tioning timestamp value falls within the interval must
participate as state informationg. a

Definition 9 The join-interval for a query is defined
as the minimal interval with the property that only
tuples whose partitioning timestamp value falls within
the interval can possibly contribute to the query re-
sponse. 0

Definition 10 A join processor is referred to as a
processor that has to participate in the join phase
(of our parallel processing strategy), i.e., a proces-
sor which has a partitioning interval that intersects
with the join-interval. Otherwise, it is referred to as
a non-join processor which necessarily returns a null
response. 0

’ Note that if the relation has the property of redundant state
information discussed in the previous section, the correspond-
ing replication-interval is necessarily null (i.e., no tuples will be
replicated as state information).

390

replication-interval .
G /

. te; TE; f te$
Ri trj, TSi is; .

.
. .

t
ts, TSj . ! ts; time

Rj . te; ’ TEj : tez
.

&- join-interval : +
. . .

. replication-interval .

Constraints:
ts, 5 TSi < tsz ts; 2 TSj < tsc
te; 5 TEi < tez te; 5 TEj < te;
TSi < TEi and TSj < TEj for all tuples

Ri, Rj: TS range-partitioned

Figure 7: Determining the Join-interval and the
Replication-intervals

Definition 11 A replication processor is referred to
as a processor that has to participate in the replica-
tion phase (of our parallel processing strategy), i.e.,
the processor which has a partitioning interval that
intersects with the replication-intervals. Otherwise, it
is referred to as a non-replication processor. cl

If the join-interval is null, the join response is nec-
essarily null. Similarly, if the replication-interval for
a relation is null, tuples of that relation need not be
replicated as state information. Otherwise, tuples in
the replication-intervals are replicated on join proces-
sors as state information for the join phase.

The join-interval and replication-intervals for a
given query depend on the following:

1. the TS and TE range-partitioning functions, and

2. the query qualification:

l the relationship between the comparison
predicates involving timestamps and the
temporal join predicates.

l the property of redundant state information
discussed earlier.

Earlier we briefly mentioned the issue of determining
upper and lower bounds on the TS and TE values of
each individual relation by propagating constraints be-
tween relations using a constraint graph. Below we
address other issues.

Consider a TSJi join query with relations Ri and Rj.
Suppose that the upper and lower bounds of the time-
stamp values have been determined. As illustrated in
Figure 7, we denote ts, and ts$ as the lower and upper
bounds on the TS timestamp of relation R respectively,
and similarly te; and te$ for the TE timestamp. Here
we consider only the case when both Ri and Rj are TS
range-partitioned; a discussion for other situations can
be found in [Leu92]. There are three situations to be
considered:

1.

2.

3.

When neither Ri nor Rj has the property of re-
dundant state information, the join-interval for
the query is:

[max(ts;, ts;),min(max(ts$, ts$),te$ tee))“.

The replication-interval for relation Rk, where
kE{ij}, is:

[max(min(ts;, ts;),ts;k),min(min(ts$ tsz),ts;t,)).

In Figure 7, the join-interval is [ts;, tez), and the
replication-interval for Ri is [ts; , tsz) while that
of Rj is [ts, , ts;(;).

When the relation Ri (but not Rj) has the prop-
erty of redundant state information, the join-
interval becomes:

[max(ts;, ts;), min(ts:, tez)),

and the replication-interval for Ri is a null interval
while that of Rj is:

[ts;,min(tsz, ts$.)).

When both relations Ri and Rj have the property
of redundant state information, the join-interval
becomes:

[max(ts,,ts;), min(t$,t$))

and the replication-intervals of both relations are
null intervals.

Example 6 Find the directors who joined a studio
sometimeduring [l/85,1/86) and also became the head
of the studio sometime during [l/86,1/87):

0 p (Studio,Dir)

where P is “intersect-join(Studio,Dir) A Studio.Sname
= Dir.Sname A 1/85<Dir.TS A Dir.T%1/86 A
1/86lStudio.TS A Studio.TS<1/87”. Suppose that
both relations Studio and Dir are TS range-
partitioned. The constraints on the TS timestamps

lo The operator max(A,B) (respectively min(A,B)) returns the
larger (respectively smaller) value of A and B.

391

l/85 Dir.TS l/86
time

l/86 Studio.TS l/87

Figure 8: Constraints on TS Timestamps of Relations
Dir and Studio

of both relations are illustrated in Figure 8. The join-
interval for the query is [l/86,1/87). The replication-
interval for relation Dir is [l/85,1/86) and that for
relation Studio is a null interval. That is, the state
predicates for relations Dir and Studio are “l/85 5
Dir.TS A Dir.TS < l/86 A Dir.TE 2 l/86” and “false”
respectively. The join phase involves only joining
the state information for the relation Dir and the lo-
cal fragments of relation Studio that started during
[l/86,1/87)? 0

To recap, using the query qualification one can a
priori determine which processors have to send data
as state information and which processors have to re-
ceive data as state information. In the following sub-
section, we discuss the overhead of constructing the
state information.

4.3 Quantitative Analysis

The overhead associated with constructing the state
information for a relation R can be measured in terms
of the number of tuples to be replicated since the com-
munication and/or storage costs will be directly re-
lated to this number (and the tuple size). We let ,J be
the rate of insertion of tuples into the relation R (in
terms of number of tuples per time unit), G be the
average tuple lifespan, and TRl, be the relation lifes-
pan. Using Little’s result [LitGl], the average number
of tuples that are active as of a particular time, de-
noted by ?i, is given by:

-
-ii = /\ .T1,.

A natural assumption is that the average number of
active tuples at partitioning boundaries is also H. Sim-
ilarly, the total number of tuples in the relation R is:

X TRI,.

Suppose that the selectivity of the state predicate q
that is used to construct the state information for the

I1 One can obtain tighter bounds by examining (and thus
accessing) local fragment of relation Studio tlztt started dur-
ing [l/86,1/87), as well as further analyzing the temporal join
predicates involved.

relation R is uq and is defined as the fraction of tuples
in R that satisfy q. The number of tuples that are
copied as state information is then given by:

‘Tq ‘nP .ii = uq.np.X.x

where np is the number of partitioning boundaries at
which state information has to be constructed (i.e.,
the partitioning intervals that overlap with the join-
interval that we discussed in the previous section).
Note that np must be smaller than the total number
of partitioning intervals (np;).

Definition 12 The overhead is defined as the ratio
of the number of tupIes to be copied over the total
number of tuples in the relation:

aq.np.X.%/(X.TRI,) = gq.np.%/TRls. c3

The quantity is consistent with our intuition that:

. l np. the overhead increases as the number of par-
titions with state information increases.

l uq: the more selective the state predicate (which
constructs the state information) is, the less over-
head is incurred.

l z/TRl,: the overhead is smaller for relations
with relatively short tuple lifespans (compared
with the relation lifespan).

5 Previous Work

The parallel processing schemes that we present in
this paper is a substantial extension of the work on
generalized data stream indexing [Leu92a] - the no-
tion of checkpointing the execution state of a query
appears in both [Leu92a] and this paper. In [Leu92a],
we proposed an indexing technique based on periodi-
cally checkpointing on data streams which are sorted
on the timestamp values. Checkpoints are stored in a
file structure which is in turn indexed on checkpoint
times. In this paper, we apply the idea of checkpoint-
ing in parallel database machines.

[KarSO] is apparently the first publication that ap-
pears to support temporal features in multiproces-
sor database machines. The paper, however, only
discussed a front-end syntactic translator for a rela-
tional database system regardless of whether or not
the database system is residing on a multiprocessor
database machine. Moreover, there is no discussion on
query processing optimization or fragmentation strate-
gies.

In [DeWSl] a “partitioned band” join algorithm was
proposed to evaluate the so-called “band join”‘*:

I2 One can think of it as a “fuzzy” equi-join.

392

A “band join” between relations R and S on
attributes R.A and S.B is a join in which the
join condition is “R.A-cl 2 S.B 2 R.A+cz”,
where cl and c:! are non-negative constants.

In the band join algorithm, ranges of the operand re-
lations Ri and Si, where i E { 1,. .,n}, are found such
that (1) R = U i R, and S = U i S,, and (2) for ev-
ery tuple T in Ri, it is required that all tuples of S
that join with r appear in Si. The complete join is
formed by joining Ri and Si for each range (i=l; . .,n)
and merging the result. With the assumption that the
width of a “band” (i.e., ci+cz) is small, the major
concern in [Dew911 is to choose the ranges such that
each of the Ri fits entirely into the buffer pool. For
the parallel version of the band join algorithm, each
join between ranges Ri and Si can be performed by a
separate processor.

One can process the above band join using our
strategies as follows. Suppose both relations R and S
are range-partitioned based on the join attribute (R.A
and S.B) using the same partitioning function. This
assumption is easily relaxed and would just result in
greater data movement. We further suppose that a
partitioning interval [vi,vi+i) is assigned to a proces-
sor pi, i.e., a tuple r E R (similarly for tuples in S)
is stored at pi if its join attribute value falls into this
interval. The replication phase then involves copying
tuples s E S to pi if the value of s.B falls into the
interval [vi-ci,vi) or [vi+i,vi+l+cz). When both ~1

and c2 are small, tuples from only processors pi-1 and
pi+1 are replicated at processor pi. After the replica-
tion process, the join can be processed as the merging
of the results of the parallel local joins. If say R is
range-partitioned on the join attribute but S is not,
then the same strategy works except that the tuples
in S replicated on processor pi (i.e., those tuples whose
attribute B values fall into [vi-c1 ,vi+i+cz)) may come
from all other processors.

In this paper, we consider temporal join queries
with several time-interval relations and investigate the
query processing issues by studying the qualification
clause as opposed to individual join operators. More-
over, we address the issues related to both TS and TE
range-partitioning schemes, as well as several query
optimization strategies.

6 Conclusions & Future Work

We discuss parallel query processing strategies for
the complex temporal join queries and a number of
optimization alternatives. Based on the query qual-
ification, some work can be shown to be redundant
and therefore can be eliminated from the replication

or join phase. We note that data statistics and the
characteristics of the query qualification can also be
used to reduce the state information to be constructed
and thus the overhead of the replication phase can
further be reduced. Finally, we provide an analytic
method which allows us to estimate the overhead as-
sociated with the replication phase, i.e., the number of
tuples that should be copied between processors. The
overhead is small when the average tuple lifespan is
small compared with the relation lifespan or the query
qualification is restrictive.

In [Leu92], we reported a preliminary study on vari-
ous fragmentation schemes for temporal data. We also
proposed a fragmentation scheme in which current and
history tuples are fragmented and stored using differ-
ent strategies - current tuples are partitioned based
on another function such as hashing on surrogate at-
tribute while history tuples are range-partitioned on
the timestamp values. The approach allows more effi-
cient accesses to current tuples via surrogates and yet
facilitates the processing of temporal joins. There are
many research directions which require further inves-
tigation, and some preliminary results can be found
in [Leu92]. The most challenging ones include the
parallel query processing strategies for TSJi queries
whose operand relations are heterogeneously range-
partitioned, i.e., the relations are (timestamp) range-
partitioned using different partitioning functions. Also
it appears that our parallel join strategies presented
here can be easily adopted to process TSJz queries:
the join sequence can be obtained by a graph reduction
algorithm on the join graph constructed using Defini-
tion 1. We plan to investigate this further.

Acknowledgements

The authors are grateful to Prof. Richard Snod-
grass and the anonymous reviewers for improvements
they suggested on the paper.

References

[A11831 J. Allen. Maintaining Knowledge about
Temporal Intervals. Communications
of the ACM, 26(11):832-843, November
1983.

[Chak84] U.S. Chakravarthy, D.H. Fishman, and
J. Minker. Semantic Query Optimization
in Expert System and Database Systems.
In Expert Database Systems, pages 326-
341, 1984.

[Cli85] J. Clifford and A. Tansel. On an Algebra
for Historical Relational Databases: Two

393

[Cli87]

[DeWSO]

[DeWSl]

[GhaSO]

[Gun911

[Jar841

[KarSO]

[LeuSO]

[Leu92]

Views. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages
247-265, May 1985.

J. Clifford and A. Croker. The Histori-
cal Relational Data Model (HRDM) and
Algebra Based on Lifespans. In Proc. of
the IEEE Int. Conf. on Data Engineer-
ing, pages 528-537, February 1987.

D. Dewitt, S. Ghandeharizadeh,
D. Schneider, A. Bricker, H.I. Hsiao, and
R. Rasmussen. The Gamma database
machine project. IEEE Trans. on Knowl-
edge and Data Engineering, March 1990.

D. Dewitt, J. Naughton, and D. Schnei-
der. An Evaluation of Non-Equijoin Al-
gorithms. In Proc. of the Int. Conf. on
Very Large Data Bases, pages 443-452,
1991.

S. Ghandeharizadeh and D. Dewitt.
Hybrid-Range Partitioning Strategy: A
New Declustering Strategy for Multipro
cessor Database Machines. In hoc. of
the Int. Conf. on Very Large Data Bases,
pages 481-492, 1990.

H. Gunadhi and A. Segev. Query Pro-
cessing Algorithms for Temporal Inter-
section Joins. In Proc. of the IEEE Int.
Conf. on Data Engineering, pages 336-
344, 1991.

M. Jarke. External Semantic Query Sim-
plification: A Graph-theoretic Approach
and its Implementation in Prolog. In
Expert Database Systems, pages 467-482,
1984.

S. Karimi, M. Bassiouni, and A. Orooji.
Supporting Temporal Capabilities in a
Multi-computer Database System. In
Proc. of the Int. Conf. on Databases,
Parallel Architectures, and their Applica-
tions, pages 20-26, March 1990.

T.Y. Leung and R.R. Muntz. Query Pro-
cessing for Temporal Databases. In Proc.
of the IEEE Int. Conf. on Data Engineer-
ing, pages 200-207, 1990.

T.Y. Leung. Query Processing and Opti-
mizatzon in Temporal Database Systems.
PhD thesis, University of California at
Los Angeles, 1992. Department of Com-
puter Science.

[Leu92a]

[Lit611

[Ros~O]

[%Nl

[She891

[Sno87]

[SooSl]

[Sun891

[Ter85]

[Ull82]

T.Y. Leung and R.R. Muntz. General-
ized Data Stream Indexing and Tempo-
ral Query Processing. In 2nd Int. Work-
shop on Research Issues on Data Engi-
neering - Transaction and Query Pro-
cessing (RIDE-T&P), February 1992.

J. Little. A Proof of the Queueing For-
mula L = XW. Operational Research, 9,
1961.

D. Rosenkrantz and H. Hunt. Process-
ing Conjunctive Predicates and Queries.
In Proc. of the Int. Conf. on Very Large
Data Bases, pages 64-72, 1980.

A. Segev and A. Shoshani. Logical Mod-
eling of Temporal Data. In Proc. of the
ACM SIGMOD Int. Conf. on Manage-
ment of Data, pages 454-466, May 1987.

S.T. Shenoy and Z.M. Ozsoyoglu. Design
and Implementation of a Semantic Query
Optimizer. IEEE Trans. on Knowl-
edge and Data Engineering, 1(3):344-
361, September 1989.

R. Snodgrass. The Temporal Query Lan-
guage TQuel. ACM Trans. on Database
Systems, 12(2):247-298, June 1987.

M.D. Soo. Bibliography on Temporal
Databases. The ACM SIGMOD Record,
20(1):14-23, March 1991.

X. Sun, N. Kamel, and L. Ni. Solving
Implication Problems in Database Appli-
cations. In Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, pages
185-192, June 1989.

Teradata Corporation. DBC/lOlZ
Database Computer System Manual Re-
lease 2.0, November 1985. Document No.
ClO-0001-02.

J.D. Ullman. Principles of Database Sys-
tems. Computer Science Press, Rockville,
MD, second edition, 1982.

394

