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Abstract 

In the past, two basic approaches for sampling 
f5-om B+ trees have been suggested: sampling from 
the ranked trees and acceptance/rejection sampling 
i?om non-ranked trees. The first approach requires 
the entire root-to-leaf path to be updated with each 
insertion and deletion. The second has no update 
overhead, but incurs a high rejection rate for the 
compressed-key B+ trees commonly used in prac- 
tice. In this paper we introduce a new sampling 
method based on pseudo-ranked B+ trees, which 
are B+ trees supplemented with information loosely 
describing the estimated rank limits. This new 
method exhibits a very small rejection rate while 
paying only a marginal cost of the tree update 
overhead. We also present comparative efficiency 
measurements of different methods that were run 
on production databases and on several prototype 
workload simulations. 

1. Introduction 

A number of database applications, like financial 
auditing [Ark841 or quality control HWW841, rely 
on extraction of a small portion of records at ran- 
dom from a large data collection. Without a good 
sampling mechanism, such random sample extrac- 
tion may be expensive when running on traditional 
DBMS. One should perform a full scan of the most 
compact index, collect record IDS, do random sam- 
pling from the record ID list, and then fetch the se- 
lected records. An alternative way of sampling is to 
pick an index with the flattest B+ tree, repeatedly 
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descend the tree in random directions, reject some 
of the attempts to achieve the unbiased randomness 
(if needed), and fetch the records for the successful 
descents. The latter approach supersedes the previ- 
ous one and constitutes a foundation of a majority 
of sampling methods that use B+ trees. 

A demand for eficient sampling techniques is even 
higher when random samples are used for estima- 
tion of different quantities involved in aggregate, 
join, or select operations. In recent publications, 
random samples serve for building approximate se- 
lectivity histograms PiCo84,MuDe883, for estima- 
tion of aggregate queries [HOT88,HOT89], for es- 
timation of query size lLiNa89,LiNa90,LNS90]. R. 
Lipton, J. Naughton, and D. Schneider in [LNSSO] 
presented new low sample size bounds for estima- 
tion with a given precision and confidence thus 
proving sample-based estimation is a more practi- 
cal technique than was previously thought. 

However, sample-based estimation can only be as 
efficient as the method of obtaining the unbiased 
random samples. To see the realistic performance 
figures of the major existing sampling methods, we 
analyzed the B+ trees of all the indexes in one of 
our customer databases using DEC’s Rdb/VMS * re- 
lational nmtime. The results were discouraging. 
The biggest (x9OOK) index would require more than 
three thousand attempts to descend its B+ tree be- 
fore one attempt is accepted as valid for simple ran- 
dom sampling using the acceptance/rejection (AIR) 
algorithm described in [OlRo89]. In section 3, we 
discuss this experiment in more detail, construct a 
really bad “worst case” index, and offer explanations 
for a poor performance of A/R sampling on large B+ 
trees used in commercial databases. 

A three decimal order rejection rate, as compared 
to the theoretically fastest single B+ tree descent 
per sample, makes random sampling a bottleneck 
for sample-based estimation algorithms. 

In this paper we present a new method of sam- 
pling from B+ trees supplemented with rank-related 
information. With this method: 

(1) Sample acceptance rate is on the order of 50%. 

DEC and Rdb’VMS are trademarks of Digital Equipment Chporation. 
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(2) Acceptance rate stays stable for a variety of the 
tree sizes and degrees of index key compression. 

(3) Tree maintenance overhead is on the order of 1%. 
(4) Sampling performance can be balanced with 
maintenance overhead as we11 as tuned to different 
tree shapes. 

The new method, called random sampling from 
pseudo-ranked B+ trees, unifies the two known 
basic approaches: sampling from ranked trees 
[Knu73,SrLu88] and A/R sampling from non-ranked 
trees [OlRo89]. Remarkably, this unification does 
not just break a middle ground between the two ex- 
tremes and achieve tunability, but rather takes the 
best from both worlds, minimizing both overhead 
and sampling time. 

There are a few important variations of the basic 
sampling algorithms: sampling with and without 
replacement, iterative and batch sampling. They 
are all applicable to “pseudo-ranked” sampling, but 
we will not discuss them here. Instead we refer to 
their detailed description in F. Olken and D. Rotem 
[OlRo891. 

The rest of this paper is organized as follows. 
Overviews of “ranked” and “A/R” sampling tech- 
niques are given in sections 2 and 3 respectively. 
A new method of simple random sampling from 
pseudo-ranked B+ trees is introduced in section 4. 
Section 5 describes a calculation scheme for pseudo- 
ranked tree maintenance, including a variant which 
simulates A/R sampling. Section 6 contains the per- 
formance evaluation results. A summary and direc- 
tions for future work are given in section 7. 

2. Sampling from Ranked Trees 

Simple random sampling from a table is a selec- 
tion of one or more of its records with equal proba- 
bility across all records and with no dependencies 
between different trials. Sampling from B+ tree 
is sampling of records Tom its underlying table by 
means of traversing a B+ tree structure. Random- 
ness of selections implies a total independence of 
a sampling method fi-om the B+ tree keys, separa- 
tors, and node fanouts. When descending a B+ tree 
with random sampling in mind, all key and separa- 
tor values can be simply ignored. But different den- 
sities of node fanouts in different tree areas may sig- 
nificantly distort a tree shape uniformity and thus 
require special mechanisms to correct such distor- 
tions. 

We will further concentrate only on simple ran- 
dom sampling from B+ trees and explore several 
mechanisms for distorted tree shape compensation. 
Also, to simplify algorithms, we will consider only 

B+ trees with two or more levels, because any sam- 
pling from a single-level tree is a trivial matter. 

Suppose that each record in a table corresponds to 
one key in a B+ tree and all keys are ranked from 1 
to K following the tree sequence. A B+ tree can be 
supplemented with information which allows one to 
find a k-th ranked key with one tree descent. Such 
trees are called ranked trees. Based on ranked B+ 
trees one can draw a random sample by first picking 
an equi-probable kE[l, KJ, then descending to the k- 
th key and fetching the record. This idea of a direct 
or random k-th key access via a ranked B+ tree is 
discussed in [Knu73,BeKr75,SrLu88] 

Notations. Let N be an arbitrary B+ tree node 
having f children ni , . . . . nf or containing f keys (leaf 
node case), where f is a fanout of node N. Let 
c; be a cardinality of child n; (number of keys in 
n;‘s branch) and 7; = cjli cl be a rank of child 
n; (rank of n;‘s last key) within its parent’s branch. 
When needed, we will also use f(N), n;(N), c;(N), 
r;(N) notations to directly specify a desired node 
and avoid ambiguity. Finally, let T be a tree top 
(root) node so that the tree cardinality K = r,(T), 
and let’s use TO = 0 notation for the convenience of 
the reverse calculation of cardinalities: c; = ri-ri-1. 

If each non-leaf node is supplemented with cardi- 
nalities or ranks of its children stored along with the 
pointers to children, then such B+ tree is a ranked 
B+ tree with a “descend to k-th key” procedure de- 
fined by the following algorithm. 

1. Start from top: NtT 
2. pick arbitrary kE[l, K] 
3. Find i: ri-1 < ksr; 
4. Reset k: k+-k - T;-1 
5. Descend: N+n; 
6. If N is not leaf, go to 3 
7. Deliver record k from N 

Algorithm 2: Sampling from Ranked Tree 

Sampling from the ranked B+ trees is the fastest 
possible, one-descent procedure. It avoids a tree 
shape uniformity distortion by providing a direct 
access to the k-th key. The direct access power of 
ranked B+ trees broadens their usage to include 
such applications as a quick location of the k-th 
byte in large continuous objects [CDRS86]. At the 
same time, maintenance of ranked B+ trees incurs 
a top cost of updating ranks along the entire root- 
to-leaf path for each insert/delete operation. ‘Ibis 
high maintenance cost, along with a necessity of tie- 
quent root node locking, limits any usage of ranked 
B+ trees, including sampling, only to the low update 
rate environments. 
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3. A/R Sampling from Non-Ranked Trees 

A very different sampling method, described in 
this section, is based on exercising a random choice 
at each level of descent by picking a random child to 
descend. In this method, a non-uniform distribution 
of fanouts is compensated by extending a given B+ 
tree to an equi-fan tree, descending it, and applying 
an acceptance/rejection technique to pick only the 
nodes of the original tree. 

Let F,,, = mazN f (N) be a maximum fanout and 
FZFmaz be an upper fanout bound effectively guar- 
anteed for a given tree. Figure 3 depicts the original 
3-level B+ tree and its equi-fan extension. Note that 
the extended tree never materializes, but serves 
merely for conceptual clarity. 

3 2 fanouts -- -- 
3 24 3 2 are -- 

TIT Tl TIT-I III IT indicated 

Original tree. 
F=Fmax=4 

2 
4 . . . . . 4 . . . . . . . 

-4. 4. -4- : 4. 4. .:.. .:.. 
II I: 7-l:: I I II :::: TTI: ii:: :::: :::: 

Original tree extended to ar. equi-fan tree. 

Figure 3: Example of Equi-Fan Tree Extension 

The following LVR algorithm describes a simple 
random sampling procedure presented in [OlRo89] 
as an “early abort method”. (Application of A/R tech- 
niques to sampling from relational operators can be 
found in [OlRo86].) 

1. Pick random root child N+n;(T) 

2. Pick random &[I : F! 

3. If k > f, reject: go to 1 

4. If N is leaf, conclude: go to 7 
5. Descend: Ncnk 
6. Got02 

7. Deliver the k-th record from N 

Algorithm 3: A/R Sampling from Non-Ranked Tree 

Unlike sampling from ranked trees, the A/R method 
uses only fanouts and child pointers available in 
any traditional B+ tree structures. Therefore, it re- 
quires no extra effort to maintain rank-related in- 
formation. The price for providing an equi-probable 
selection of records is paid when some descent ate 
tempts are rejected. 

The descent reject rate largely depends on the 
height of the tree and F,,,,,/ Fave proportion where 
Fatrg is the average fanout across all non-root nodes. 
In turn, the FmazlFa,g ratio largely depends on 
the method of B+ tree balancing. As described in 

[Knu73], node split, merge, or rebalance can be trig- 
gered either when a fanout gets out of its predeter- 
mined limits or when the node page space overflows 
/under-flows (suggested by T.H. Martin for variable 
length keys.) Most commercial databases today use 
various key compression techniques and thus man- 
age rebalancing by node page space. 

To obtain realistic performance figures for A/R 
sampling, we analyzed all indexes in a production 
database whose B+ trees are space-balanced. We 
also obtained analogous performance figures for fan- 
balanced B+ trees by simulating a “random insert” 
workload and then analyzing the created trees. 

-batati B+ trees 

P.ejectbn rate * 
FmazlFavg 
Tree height 

223.2 725.3 3.376.5 
2.1 2.7 3.4 
4 5 6 

Fan-baknced & trees, f~[5. lo] 

Reje3ion rate * 2.90 4.17 6.15 

FmazIFaug 1.341 1.326 ‘I.322 

Tree height 4 5 6 

I Rejechn rate is tie average number of rejects 
per sirgle sample acceptance. 

Table 3: A/R Sampling Performance 

The results for fan-balanced trees in table 3 are 
close to the approximate performance curve pre- 
sented in figure 1 in [OlRo89]. However, the re- 
jection rates for realistic space-balanced trees are 
sharply higher, expressed in hundreds and thou- 
sands of rejects per single acceptance. For a 6-level 
tree this translates into an I/O cost that is several 
hundred times higher than the cost of sampling from 
ranked trees. Another negative performance factor 
should be added on top of the demonstrated rejection 
rate, namely the F/F,,,,, ratio. The upper bound F, 
when deviating from F,,,, has a strong negative 
performance impact. And the task of maintaining 
F close to F,,, is difficult and expensive for space- 
balanced trees when a significant “delete” rate is 
anticipated. 

Finally, we tested the rejection rate stability for B+ 
tree key patterns that lead to low fanout uniformity. 
We created an index with a 3-attribute composite 

key 
(integer, cha~(lOO),integer), 
and loaded 8192 values 
(i/2, “lOO-char-constant”, i), %[1,8192]. 
The results of this B+ tree analysis, even assuming 
F = Frm, were astonishing: 

Rejectin rate 77J96.705.279 
FmazlFaug 6 (-24/4) 
Tree height 10 levels 

77 billion rejects per one acceptance on less than 
10K tree indicates a high instability of A/R sampling 
when done on space-balanced B+ trees. 
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4. Sampling from Pseudo-Ranked Trees 

One can observe that the two major sampling 
methods described above reveal their power and 
weaknesses on sampling cost / update overhead 
scale in the opposite way. A new sampling method 
presented below cuts the weaknesses and retains 
the strengths of “ranked” and “A/R” approaches by 
making their different descent principles work to- 
gether. 

Extending section 2 definitions, let c(n) be a cardi- 
nality of node n, i.e. a number of keys in n’s branch. 
For non-leaf node h-, let’s define some upper bounds 
CT of N’s children cardinalities and store them in N 
along with the pointers to children n;. We also want 
the cz bounds be the bounds of all lower-level bounds 
in n;‘s subrree. This “nested bound” property can be 
enforced by imposing a nested bound condition 

c:(N)> Cfz;‘c:(n,) or 

c:(N)lc(n,) when ni’s are leaves 
for all parent/child pairs Iv, n,. Symmetrically, we 
define lower bounds c; of N’s children cardinalities, 
store them in N, and impose the nested bound con- 
dition 

c;(N)5 C:zi’:;;‘c3(n,) or 

c;(N)lc(n;) when n,‘s are leaves. 
And further, we defme upper and lower rank bounds 
as 

Either cardinality or rank bounds can be stored in 
parent nodes, whichever is more efficient for a given 
implementation. Rank bounds make possible a bi- 
nary search within a node, but require a multiple 
correction, namely corrections of 71, . . . . f;, 7;) . . . . 7f 
during update. 

It is not necessary to store both upper and lower 
cardinality (or rank) bounds. One can store a sin- 
gle quantity cp for each child and calculate ct = 
~rPPe~(c:), c; = Lower(cp) upon need using Upper 
and Lower functions defined for a given tree or 
system-wide. 

Dehitioa Regardless of a storing method, we 
will call a pseudo-ranlzed tree any B+ tree supple- 
mented with information that allows calculation of 
upper and lower cardinalities/ranks satisfying the 
nested bound conditions for all parentichild pairs. 

Maintenance of pseudo-ranked trees is a straight- 
forward procedure. Upon insert or delete operation, 
the nested bound conditions are evaluated for each 
parent and child involved in node’s split, merge, 
and rebalancing. Once the condition breaks, new 
bounds, satisfying the nested bound condition, are 
calculated and stored in a parent node. If a parent 

node is updated due to reorganization of its chil- 
dren, the fresh bounds are calculated and stored in 
the parent to improve a precision even in case of the 
nested bound condition satisfaction. Tree reorgani- 
zation proceeds up toward the root, leaving below 
only “correct” rank bounds. The bound condition 
check and correction proceeds toward the root even 
after a local tree reorganization is accomplished and 
stops when the nested bound condition satisfies. 

To define a sampling procedure for pseudo-ranked 
trees, we first describe an extension of an arbitrary 
pseudo-ranked tree to some ranked B+ tree. Let 

A;(N) = c:(N) - x:i;;)c;(n;) or 

A;(N) = cf(N) - c(n;) if 12;‘s are leaves 
be the bound-related cardinality excesses, all non- 
negative due to the nested bound condition. For 
each non-leaf child n; of parent N with A;(N) > 0 
we add an extra grand child and a single-thread 
branch of its grand...grand children with a leaf-level 
grand...grand child having A;(N) dummy keys. For 
each leaf child n; we simply add A, (N) dummy keys 
to n;. Ifwe set c:(N) = c(n;) for all new nodes n,, 
then CT bounds become real cardinalities through 
the entire extended tree, making it, a (fully) ranked 
tree. 

. . . 
-27- cardinality 

-16- -- 5 'Cpper bounds 
4 5-4- 3 2 are 

TIT 71 I I I I TIT IT indicated 

Original pseudo-ranked tree. 

. . . 
27 . . . . . . . 

16 . . . . . 5 6 -- 
4 . 5... 4 -3. 3 2 ..6... -- - -- 

Ill: II::: !lII ::: TIT IT . . .._. . . . . . . 

Orioinal tree extended to a ranked tree. 

Figure 4: Pseudo-Ranked Tree Extension 

Sampling from a pseudo-ranked tree can now be 
defined as a sequence of descents into an extended 
ranked tree with a descent attempt rejected when 
an extra, non-original child or dummy key is picked. 
Algorithm 4 describes this sampling procedure, us- 
ing the extended ranked tree only as a conceptual 
model without ever materializing it. 

1. Start from top: N+T 
2. Pick random k~jl, r;] 
3. If k > r;, reject: go to 1 
4. Find i: 7:-I < k<rf 

5. Reset k: ktk - 7:-I 

6. Descend: Ntn; 
7. If N is not. leaf, go to 3 
8. If k > c(N), reject: go to 1 
9. Deliver record k from N 

Algorithm 4: Sampling &from Pseudo-Ranked Tree 
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Applied to a ranked extension of the original 
pseudo-ranked tree, algorithm 4 performs no rejec- 
tions and acts exactly as “ranked sampling” algo- 
rithm 2, selecting each key kE[I, r;(T)] with equal 
probability l/r; (2”). The extended tree descents, 
that pick keys (and records) from the original tree, 
coincide precisely with records selected by algorithm 
4 applied to the original tree. Since all descent at- 
tempts are independent, selection of records from 
the original subtree of the extended tree is also equi- 
probable, no matter to which of the two trees algo- 
rithm 4 is applied. This proves the following theo- 
rem. 

Theorem 4 Sampling from a pseudo-ranked B+ 
tree by one or multiple applications of algorithm 4 
is a simple random sampling from the underlying 
table. Probability of selecting each record is l/c(T). 

From the extended tree definition it follows that 
the extended tree cardinality equals the rank bound 
r;(T) of the last child of the root of the original tree. 
Further, 

T;(T) = c(T) -t &N,ni) A;(N), 

where c(T) is the original tree cardinality. The al- 
gorithm 4 rejection rate can now be expressed as 

(r;(T) - cP’))/c(T) = &.,,, Ai(N)Ic(T). 

This means that when setting new upper bounds 
during insert/delete operations, the excess quan- 
tity A;(N), relative to the lower level bounds, con- 
tributes directly to the rejection rate increase. On 
the other hand, A;(N) determines the margins for 
maintenance-free inserts/deletes performed within 
ni’s branch and thus contributes positively to the 
maintenance overhead reduction. 

If we only do inserts, only the upper rank bounds 
can be violated. In this case, maintenance of up- 
per bounds only is sufficient. When we do multiple 
deletes and do not maintain lower bounds, the up 
per bounds will remain the same causing a constant 
growth of rejection rate (r;(T)/c(T) - 1) due to a 
tree cardinality decrease. Therefore, maintenance 
of the lower bounds 7: is necessary for controlling 
the rejection rate when deletes are considered. 

5. Bound Maintenance 

There are many ways of setting new cardinality 
or rank bounds when the nested bound condition 
breaks. We will successively narrow this task’s gen- 
erality and come up with a calculation scheme that 
gives good sampling performance. We will also de- 
scribe a simulation of AIR method, and incorporate 
its advantages into sampling from pseudo-ranked 
trees. 

Step 1. For any child n;, let’s store only one, 
cardinality-related quantity cp in 12;‘s parent and 
calculate 
c: = cp * (1 + E), c; = cY/(l -!- E), 
r: = Cjsi c:, r; = C,,; c; upon need, assuming E 
is a function of any information related to a given 
B+ tree and ~20. 

Step 2. Assume that in different areas of a single 
tree level a tree shape development has insignificant 
bearing on rank bounds, or that it pays to ignore 
the horizontal shape non-uniformity. Then we can 
further assume that for a given tree, E depends only 
on the tree level of child n;. If h(n) is a height of a 
node n branch, a finite set {~h}~e~r,~r), may be used 
in bounds calculation, like 
C: = cp * (1 + oh) or simply 
c: = c4 * (1 + Q) since the node is known. 

Step 3. When the bound recalculation is needed 
for parent/child pair N, n;, let’s set 

c:(N) = ~~~i’cP(n;) ifh(n;) > 1 and 

c:(N) = c(n;) if h(n,) = 1. 
Let’s also consider only non-decreasing ~1, . . . , EMT) 
sequences, Eh>Eh-i for any h > 1, because they 
guaranty satisfaction of the nested bound condition. 

Indeed, if h = h(n;) and h > 1, then 

~~~i’Cf(n;) = ~~~;‘)(c~(n;)(l + 6h-1)) = 

(1 i E&l) ~;I;i’C;(%) = (1 t k+:(N) , 

c:(N) = i& C;zi’ cf(nj), and 

C:(N) = cy(N)(l -f- Ch) = e ~~~“C;(nj). 

The following also holds: 

q-(N) = * CY$“c;(nj) if h = h(n;) > 1, 

c:(N) = (1 + ci)c(n;) if h(n;) = 1, 
c;(N) = &C(n;) if h(?Li) = 1. 

Now we see that the nested bound condition holds 
for newly recalculated bounds because Eh>ch-l>O 
and E-dependent terms are > 1 for upper bounds and 
are 51 for lower bounds. 

Step 4. Let’s limit cl, . . . . cMn sequences to se- 
quences Eh = n:i’(l + A * Q’) - 1 based on geo- 
metric sequences A * Q h-1 with a first term A and 
a common ratio Q, A>O, Q>O. 

A/R simulation. Let F be some upper fanout 
bound and CT = FM”;‘, CT = 0 be cardinality bounds 
for all parent/child pairs N, n;. A probability of ac- 
ceptance of picking a grandchild or a key of child n; 
when sampling from such pseudo-ranked B+ tree is 

p,c,(ni) = C’~” c:.(*i) c<si’ FMni)-’ 

c;(N) = Fh(ni) 
_ f(n;) 

F or 

pact(%) = $$j = F if h(n;) = 1. 
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This matches exactly an acceptance probability of 
A/R sampling from non-ranked tree at all (non- 
root) nodes n;. To simulate a “non-ranked” sam- 
pling driven by kl, . . . . k,, . . . random sequence with 
k, E [ 1, F], one can compose 

k = c”,z:( (k, - I)@~‘-“) + 1 as a random number 
fi-om [I, FMT’] and apply it at tip 2 of algorithm 4. 
After rejection or acceptance, repeat the k composi- 
tion starting with a k, next a&r the last one used 
in a parallel run of algorithm 3. 

Step 5. For any calculation scheme S delivering CT 
and CT cardinality bounds and for any upper fanout 
bound F, let’s use a new scheme 2 with bounds 
t: = min(c:,FM”‘) ), in = CT for each pare&child 
pair N, n;. 

New bounds satisfy the nested bound condition be- 
cause 

min(CzI;” c;(n;), Cfzi’ F”-‘) 5 

min(c:(N), Fh) = t:(N) if h = h(n;) > 1 , 

c(ni)<c:(N) and c(n;)SF yield 
c(n;)<min(ct(N), F) = E:(N) if h(n;) = 1 , 

and because the lower bounds remain unchanged. 

Dehition. For a given ranked, pseudo-ranked, 
or non-ranked tree, let C be the average cost of ob- 
taining a single sample from this tree measured in 
units of processed nodes, excluding the root node T 
which is assumed to be a memory resident, hence 
making no contribution to the node fetch I/OS. 

Lemma 5 Let 2: and ct be upper bounds of two 
pseuderanked trees based on a common B+ tree, 
t:<ct for all parent /child pairs N, n;. If we apply 
algorithm 4 for sampling from both trees, the rejec- 
tion rate (point one) and cost C (point two) of sam- 
pling from the first tree do not exceed those from the 
second tree. 

Proof: Using upper rank bounds, rejection rates 
are expressed as 

2 = i;(T)/c(T) - 1 = c;?y i-;(T)/c(T) - 1 , 

R = r;(T)/c(T) - 1 = ~;~T’c;(T)/c(T) - 1 , 

Combined with ?t<c:, it yields a<R, and thus 
proves the first point. 

For bounds cf, let’s consider all different equi- 
probable descent attempts starting with iz = 1, . . . . r;(T) 
as selected in step 2 of algorithm 4. It is easy to ver- 
ify that for each parent/child pair N, ni, any k set 
by step 5, kc[l, c:(N)], has exactly one k[l, T;(T)] 
which determines this particular descent to child n;. 
Therefore, the descent to child n; in step 6 is per- 
formed exactly c:(N) times in all descent attempts 
with i; = 1, . . . . r;(T). 

Now note that each single-level descent in step 6 
accounts for one cost unit and that there are no 
other steps in algorithm 4 which contribute to the 
cost increase. The cached root node fetch in step 1 
does not count. We can now express the total cost 
of all descent attempts as Ctotol = &N.n ,) c:(N) 
and the average cost to obtain a single saAple as 

C = &.n;) c:(N)lc(T). 

Compab c = CcN.ni) Ef(N)/c(T) with C under 

assumption c^r<cf, we come up with ?sC which 
proves the second point. 

Theorem 5 For a pseudo-ranhed tree with ?: cal- 

culated by step 5 scheme S based on a given B+ tree, 
the rejection rate and cost C incurred by algorithm 
4 do not exceed those for algorithm 3 applied to the 
original B+ tree, if the same F is used in both algo- 
rithms. 

Proof: Let scheme S be the scheme defined in A/R 
simulation: ct = FM”“;‘, c; = 0. The rejection rate 
and cost C stay identical for algorithm 3 applied to 
the original tree and algorithm 4 applied to the S- 
defined tree. Let us use S as scheme S in step 5. 
Then i: = min(cf, FM”‘“;‘) 5 FM”;) = CT because the 
same F is used in schemes S and S. The theorem 
proof comes from applying lemma 5 to schemes 2 
and S. 

u 

6. Performance Evaluation 

Further we will use the following notations: 

RS - sampling from ranked trees, 

NRS - A/R sampling from non-ranked trees, 

PRS - sampling from pseudo-ranked trees. 

For the PRS method, all bounds will be calculated 
based on steps 1-5. 

We first notice a strict ordering of update overhead 
(u-0.) and rejection rate (r.r.) incurred by three sam- 
pling methods: 

1 > RS U.O. 2 PRS U.O. 2 NRS U.O. = 0, 

0 = RSr.r. < PRSr.r. 5 NRSr.r < (F/2)“‘17-l , 

assuming that f(n)>2 for all non-leaf nodes n and 
that F is common in PRS and NRS methods. Here 
upa!ute overhead is measured as the average num- 
ber of bound-maintenance YOs per a single insert 
/delete-related I/O, the root node is assumed to be a 
memory resident. 
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In addition to superseding RS and NRS in terms of 
U.O. and r.r. respectively, the PRS method can grad- 
ually approach and fully simulate the lowest (zero) 
RS rejection rate and the lowest (zero) NRS up 
date overhead. The complete tunability of “pseudo- 
ranked” sampling method is illustrated in the fol- 
lowing table obtained from experiments run on a 
prototype so&ware. 

0.1 0.3 0.1 0.03 
PRS u.0. w. u.0. 1.1. u.0. r.r. u.0. r.r. 

AZ10 0% 907.7 0.01% 35.56 0.18% 9.674 0.43% 6.162 

3 0.06% 114.6 0.22% 4.208 1.12% 2.326 3.06% 1.900 

1 0.60% 9.837 1.22% 0.962 4.14% 0.671 6.64% 0.579 

0.3 4.18% 1.047 6.25% 0.267 15.2% 0.211 20.1% 0.188 

0.1 12.1% 0.326 18.3% 0.104 42.1% O.O& 49.3% 0.078 

0.03 22.9% 0.105 39.4% 0.040 75.4% 0.033 78.W 0.031 

0 78.0% 0 78.0% 0 780% 0 7aa% 0 
- - - - 

Pseudo-ranked Bees are built by 100.000 random inserts 
based on a B+ tree with h(T)&. F~Fmax-34. Favg.10.72. 

Table 6.1: PRS Performance Tunability 

In table 6.1, the extreme cases are reached with 
A = 10, Q = 1 (NRS simulation) and with A = 0 
(RS simulation.) A desired balance between the two 
penalties, U.O. and r-r., is controlled by tuning pa- 
rameter A. Rner tuning of balance and a simulta- 
neous u.0Jr.r. decrease can be achieved by selecting 
parameter Q. But the most striking result is that 
in A = 1: Q = 0.3 region both penalties are kept 
very low: about 1 reject with 1% update overhead. 
In the following table we compare performance of 
three sampling methods within this region for dif- 
ferent tree heights and fanout distribution factors. 

Rs FfiS Nus 
cm h(lJ FFavg U.O. r.r. LO. r.r. u.o. r.r. 

1.000.000 6 3X11 80.79% 0 0.90% 0.950 0% 1457.0 

1.000.000 5 W/16 80.18% 0 0.56% 0.901 0% 936.5 

l.OOO,OOO 4 80123 77.78% 0 0.40% 0.877 0% 490.5 

100.000 3 80/28 71.44% 0 0.33% 0.928 0% 65.6 

10.000 2 8Ol43 64.90% 0 0.52% 0.863 0% 6.0 

Pseudo-ranked Vees with A-1. Cl-O.3 are bulk by random inserts 

Table 6.2: Performance Comparison 

Experimental results in table 6.2 demonstrate a 
clear superiority of the PRS method over each of 
the two other methods. In addition, sampling from 
pseudo-ranked trees exhibits a very high rejection 
rate stability over arbitrary tree sizes and heights. 
The update overhead also stays stable and low. 

It is important to keep in mind that frequent up 
dates of high-level tree nodes contribute to frequent 
locking of big portions of the tree, thus increasing 
dead lock rate in a multi-user environment. The RS 
method locks the tree root with every insert/delete 
operation, that alone can make it impractical. Our 
method, on the contrary, does fewer rank-related up- 
dates at higher tree levels and therefore curbs the 
contingency problem expansion. 

If parameter Q is set below 1, it not only affects 
rejection rate reduction, but also forces the majority 
of rejects to occur at low tree levels. Because of this, 
a number of nodes processed during a single descent 
tends to stay at or close to a tree height, no matter 
whether the descent attempt is rejected or accepted. 
Therefore, assuming that the root is cached, the cost 
of obtaining a single sample can be approximated by 

C&%(7.7. + 1)(/L(T) - 1) = gqh(T) - 1) . 
This estimate is conservative, i.e. it is always higher 
or equal to the precise cost 

C= C(rh;) cp w 

The ingre8!&ts of the approximate cost formula are 
usually available at the tree root, including a tree 
cardinality estimate (which plays an important role 
in query optimization.) It gives us an opportunity 
to calculate the sampling cost before sampling and 
retrofit this data into the query optimizer, which in 
turn might pick a better index if several indexes are 
available. 

In this paper we used the exact formula 
7.7. = FU”‘“f(T)/c(T) - I for calculating NRS rejec- 
tion rate. The obtained precise rates differ from ap- 
proximate rates T.T.x(F/F,,~)~~)- 1 we would have 
obtained if we took the estimation approach pre- 
sented in [OlRo89]. The F/Favg ratio usage tends to 
deliver overoptimistic estimates, since between the 
two fanouts f- = F,,, - 6 and f’ = F,,,+6 w-iththe 
same deviation 6 from the average, f- contributes 
to an r.r. increase stronger than f’ contributes to an 
r.r. reduction. This imprecision is very small for fan- 
balanced B+ trees and is about three times overop 
timistic on real space-balanced lOOK-1M trees ac- 
cording to our observations. 

Apart from performance measuring, cardinality 
bounds contained in pseudo-ranked trees allow for 
efficient estimation of restriction selectivities, even 
without random sampling. Selectivity measure- 
ment is usually reduced to estimation of cardinal- 
ities of several node branches at the level where a 
given restriction range covers more than one tree 
node. The branch cardinality estimate of node n; of 
parent N can simply be obtained as c:(N) stored in 
N node. We are also assured that the real branch 
cardinality c(n;) is always within the bounds 
c~(N)/~~;“-~(~+AQ~), c~(N)l-gy-l(l+AQ’) 
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For Q < 1, these bounds in turn have some height- 
independent bounds due to the product fl conver- 
gence. In the A = 1, Q = 0.3 case, the bounds are: 
0.319cy < c(n;) < 3.13c9 
regardless of the branch height. These bounds are 
very strong when applied to space-balanced trees, 
considering the fact that they are valid for any 
branch, including a whole tree, and keeping in mind 
that just a single node fanout is typically limited by 
similar bounds, see tables 3 and 6.2. 

7. Conclusions 

We described a new sampling method, the per- 
formance of which on industry-standard space- 
balanced B+ trees is close to the fastest “one de- 
scent” sampling. Both sampling cost and tree main- 
tenance overhead are small, stable over a variety of 
the tree shapes and sizes, and tunable to arbitrary 
tree update and sampling speed demands. This new 
method unifies the existing “ranked” sampling and 
“AR non-ranked’ sampling approaches at the tech- 
nological level, simulates each of them by simply 
setting A and Q parameters to boundary values, and 
supersedes each of them with A and Q set between 
the boundaries. 

In the future we consider an investigation of how 
partial randomness of fanout distribution, present 
in all B+ tree maintenance procedures, can con- 
tribute to further improvement of sampling perfor- 
mance. 
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