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ABSTRACT 
It is often the case that the set of values over which 
a B-Tree is constructed has a skewed distribution. 
We present a geometric growth technique to 
manage postings records in such cases, and show 
that the performance of such a technique is better 
than that of a straightforward fixed length postings 
list: It guarantees 1 disk access on searching, and it 
takes a fraction of the space that its competitor 
requires (55% to 66%, in our experiments). 

1. INTRODUCTION 
Often, an index is constructed over an attri- 

bute that takes on discrete values and has the same 
value in multiple records. For instance, in a typi- 
cal employee database, attributes of this sort 
include Job Title, Age, Work Location, and 
perhaps even Salary. A straightforward way to 
construct such an index is to build a B-Tree on the 
distinct attribute values, and then to have a pointer 
to a postings list at the leaf of the tree. Each post- 
ings list is a set of postings pointers (which could 
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be record locators or object identifiers or tuple 
IDS), one for each record that has the specified 
value for that attribute. 

In this paper we study how to organize such 
postings lists. We show that how these lists are 
organized can significantly affect performance, in 
terms of times for look-up and for insertion, and 
storage cost. 

These costs are a function of the distribution 
of attribute values. Our thesis is that traditional 
approaches are reasonable when this distribution is 
uniform, or near uniform. However, there are 
many situations where this distribution is skewed 
[Christodoulakis84a]. For instance, each of the 
attributes mentioned in the first paragraph above is 
likely to be distributed in a highly non-uniform 
fashion. Most companies would have many people 
with a few common titles (“Member of Technical 
Staff’, “Sales Associate”, “Secretary”, etc.) but 
only one person with a title of “President”. Simi- 
larly with the other attributes listed above. 

The straightforward way of managing the 
postings lists is to use fixed size postings recorak, 
chained together for long lists. We present a 
“doubling” scheme that has significantly better 
performance than fixed-size postings records when 
the distribution of attribute values is skewed. 

In Section 2, we present experimental evi- 
dence to show that significantly skewed distribu- 
tions do arise in many different situations. In Sec- 
tion 3, we describe the different techniques to 
organize a postings list. In Section 4, we present 
some analytical results comparing the different 
approaches, and in Section 5 we provide simplified 
formulas for Zipf distributions. In Section 6 we 
present some experimental evidence to back up the 
analysis. We make some concluding remarks in 
Section 7. 
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2. MOTIVATION 

Skewed distributions of attribute values 
appear frequently in database systems 
[Christodoulakis84a], and they are the norm in text 
retrieval systems [Zipf49a]. However, due to the 
simplicity that the uniformity assumption results 
in, few analyses have considered skewed distribu- 
tions. Non-uniformities have been considered in 
estimating the intermediate results of joins 
[IoannidisBla], as well as in a parallel hash-join 
algorithm proposed in [ WolfPla]. In this paper we 
examine the effects of non-uniformity on a secon- 
dary index, organized as a B-tree, With minor or 
no changes, the proposed methods and analysis can 
be used for a hashed secondary index. 

We conducted measurements on several dif- 
ferent databases to determine whether there indeed 
were attributes that occurred with skewed distribu- 
tions, as we would expect intuitively. Some results 
of interest are presented below. 

The first database contained N=ll,657 
records from the on-line telephone directory at 
University of Maryland. Each record contained the 
last and first name of an employee, the telephone 
number, the address etc. The frequency-rank dis- 
tributions of the names are skewed, as shown in 
Graph 2.1. Notice that they are close to straight 
lines, with slopes -0.65 and =: -0.8 for the last and 
first names, respectively. As intuitively expected, 
the distribution of first names is more skewed than 
the distribution of last names. In Section 5 we 
shall see that these are cases of generalized Zipf 
distributions. 

Similar trends were observed on the names 
from the telephone directory at Bell Laboratories. 
The database had =37,000 records. The slope for 
the last names was -0.63 (very close to the one of 
the previous graph!), while the slope for the first 
names was z-0.9. The results are shown in Graph 
2.2. 

Finally, Graph 2.3 gives the log-log rank- 
frequency plot for words in two collections of the 
Associated Press News-wire articles. This collec- 
tion was used in [Faloutsos92a]. The large collec- 
tion contained 10,075 documents, from 40 random 
days in 1989. Each article was 300 to 600 words 
long; the total size of the database was a little over 
30Mb. The small collection was a sample of 10% 
of the articles in the large collection. The straight 
line corresponds to an ideal Zipf distribution (see 
Section 5). The plot illustrates that, for large text 
databases, the distribution of words in natural 
language can be closely approximated with a Zipf 
distribution, regardless of the size of the database. 

rank-frequency plot for UMD names 

log 

log rank 

Graph 2.1: Rank-Frequency plot of the names in 
the UMD telephone directory. Last names are 
marked with “+“,first names with circles. 

3. ORGANIZING POSTINGS RECORDS 
Several different schemes are introduced 

below. We measure the space overhead using the 
postings pointer as the unit (4 bytes, in our experi- 
ments). We also assume that we can force two 
pages to be consecutive on the disk, for example, 
by writing on the raw device, under UNIXTM. 

We are concerned with three measures of 
cost: 
0 Storage Overhead. In addition to the space 

occupied by the postings pointers, there are 
three more reasons for wasting space. One is 
a constant charge per postings record used, in 
terms of a pointer to the next postings record, 
and possibly some additional identifying 
information. The second reason is internal 
fragmentation, that is, the empty slots left 
when the number of postings does not com- 
pletely fill a postings record. The third rea- 
son is external fragmentation, when a post- 
ings record is returned to the free store. For 
the rest of the paper, the term “fragmenta- 
tion” will denote “external fragmentation”, 
unless explicitly mentioned otherwise. 
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rank-frequency plot for BTL names 
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Graph 2.2: Rank-frequency plot of the names in 
the Bell Labs directory. Lust names are marked 
with I’+“, first names with circles. 

lOOoO0 

10000 

# of occurrences 

100 

i - loo . lo600 . 

Rank of word 

Graph 2.3: Rank-frequency plot of the words in 
Associated Press Newswire articles - 30Mb and 
3Mb databases, marked with circles and triangles, 
respectively. The dashed line corresponds to an 
ideal Zipf distribution. 

ii) Time to Access. Access is always to the 
entire postings list. For a large enough data- 
base it is unlikely that successive postings 
records will be in the same disk block. In 
fact it is unlikely even that they will be in 
successive disk blocks. Therefore the access 
time is roughly the cost of reading as many 
disk blocks at random as there are postings 
records. 

iii) Time to Update. As before, this cost is meas- 
ured by the number of disk accesses, either 
reads or writes. On insertions, we have to 
traverse the chain of postings records, to 
locate the correct one, bring it in, and write it 
back; if an overflow occurs, we have to do 
some additional disk accesses, depending on 
the method. On deletion, we have to do the 
reverse, possibly facing an underflow. Dele- 
tions pose the extra problem of “holes” - we 
propose to fill in the holes, either by contract- 
ing the whole postings list, or by copying the 
last entry of the list into the hole. 

Next, we present some alternative designs for the 
organization of the postings lists. 

3.1. Fixed Size Posting Records (“FCHAIN”) 
The standard design is to keep fixed size 

postings records, chained in a linked list on 
overflows. This method will be referred to as 
“FCHAIN”, for fixed-size postings records, 
chained together. Figure 3.1 illustrates the 
approach, assuming that each postings record can 
hold b =2 record identifiers and 1 pointer for chain- 
ing. 

B-tree Postings File 
--------------------------------------~ 

e-postings list---- I 
I I I 

i 
I 

po&zc. i 

b=2 I I 
postings ptr I ,,,,,,,-------------------------------~ 

Figure 3.1: Fixed Size Postings Records 
(‘FCHAIN’), with b =2 postings per record (plus 
the overflow pointer. 

The smaller the size of a postings record, the 
greater the chance of an overflow, and the greater 
the number of postings records required for any 
given attribute value, resulting in a greater time to 
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access. On the other hand, the larger the size of a 
postings record, the more the space wasted, as a 
result of having empty postings pointer slots in the 
last postings record. Of course, there is a fixed 
storage overhead per postings record, in terms of 
the pointer to the next record in the postings list, so 
too small a size for the postings record also wastes 
space. 

3.2. Adaptive Size Postings Records (“CON- 
TIGUOUS”) 

The idea is to have larger postings records for 
attribute values that occur frequently, and smaller 
ones for the others. If this information were 
known a priori, it could be used to assign a post- 
ings record size for each value, statically, based 
upon the expected frequency of occurrence. How- 
ever, a more typical situation is one in which we 
do not know how any particular postings list will 
grow. Therefore, the size has to be made to adapt 
dynamically. We propose that, on overflow, a 
new, larger postings record is allocated, and that 
the contents of the old postings record are copied 
consecutively in the new one. For this reason, we 
call this method “CONTIGUOUS”. Figure 3.2 
illustrates the method. 

We propose that the size of a postings record 
be multiplied by a “growth factor” g , every time 
that there is an overflow. Thanks to the contiguity, 
the access cost is guaranteed to be a single look- 
up. Insertion cost is generally low, unless a copy 
has to be done The smaller g is, the lower the 
storage overhead, but the higher the expected 
insertion cost. 

bg2 

bg 

b 

Figure 3.2: Adaptive Size Postings Records 
(TONTIGUOUS’). Initial size b =I, growth factor 
g =2. 

Adaptive Size with No Copying 
:‘?ACHAIN~~ ) 

The major drawback of the adaptive scheme 
proposed above is the potentially large amount of 
copying that may have to be done upon an inser- 
tion. This work can be avoided if we adaptively 
grow the size of postings records as before, but do 
not have any copying allowed. That is to say, the 
first postings record is of a small size b, the next 
record, when needed, is h times bigger than first 
one, the next is h times bigger again, and so on. In 
such a case, the insertion cost is back down to a 
low fixed cost as for fixed size records. Each 
access requires reading more than one record. The 
choice of h value is a tradeoff between number of 
records read at access time, and storage space 
wasted due to empty slots in the last postings 
record. We call this method “ACHAIN” since it 
consists of chains of postings records, whose sizes 
grow adaptively. Figure 3.3 illustrates the method. 

/I b=l bh bh2 

Figure 3.3: Adaptive size without copying 
(‘ACHAIN”). Initial size b =I, growth factor h =2. 

Hybrid 
g-iYBRIDgt) 

Adaptive, with Copying 

A compromise between ACHAIN and CON- 
TIGUOUS is a method that copies only after K 
records have overflowed. That is, the maximum 
length of a chain of postings records is K. 
Overflows that result in chains shorter than K are 
handled according to ACHAIN; overflows that 
would result in a chain longer than K are handled 
by copying all the postings pointer in a large, con- 
tiguous place. This postings record will be the first 
of a chain that will grow according to the 
ACHAIN method, with growth factor h, until the 
new chain contains K postings records. In that 
case, all the postings pointers will be copied on a 
contiguous place again, and so on. Figure 3.4 
illustrates the method, with initial size b =l, 
growth factors h =g=2 and K =3 records in the 
longest chain. 

366 



+--.-bHg =7*2- 

kjyy bh bh2 
Figure 3.4: HYBRID method, for b=l, h=g =2, 
K=3. After the third record ovemws (middle list) 
everything is copied in a record g times larger 
(top list). 

Thus the cost of access is limited to a fixed 
constant K, and the cost of copying during inser- 
tion is paid only infrequently. There are two 
parameters now, in addition to K: a parameter h 
determines the size of each new postings record 
within a set of K, and a parameter g determines 
the size of a new postings record into which the 
postings pointers in each K records are to be 
copied. 

Let there be b postings pointers in the very 
first postings record. Then there are bh postings in 
the second record, bh* in the third record, and so 
on, for the first K records, which in total store 
b* (hK-l)l(h -1) pointers (h > 1). Let us call this 
b*H, where 

K-l 
HECL’=$.+ if h>l (3.1) 

i=O 

or 

HEK ifh=l 

Then the K+l* postings record can have b H g 
postings, enough to hold the b H entries of the first 
K records, plus some room for growth (this is why 
we multiply by g). Of course, the first K records 
will be returned to the free store for reuse. The 
K +2* record can have bHgh , the K+3’ can have 
bHgh2 and so on so that the second set of K 
records can have a total of bH*g postings. The 
2K+l* postings record then has room for bH2g2 
postings, and the process carries on. 

The HYBRID scheme offers the greatest 
flexibility, and subsumes each of the schemes 
presented above: 
l For K += and h =l , it gives the FCHAIN scheme 
with g immaterial. 
l For K += and some h ~1, it gives the ACHAIN 
scheme, with g once again immaterial. 
l For K =l with some g >l , it gives the CONTIGU- 

OUS scheme, with h immaterial. 

4. ANALYSIS 
Since the HYBRID scheme subsumes all the 

other schemes, it is the only one we need to 
analyze in terms of the different measures of cost 
listed in Section 3. In the next Section we study 
the choice of parameter values that will minimize 
these cost measures. In our analysis we assume 
only insertions (archival environment). Including 
deletions in the analysis is a topic for future 
research. The FCHAIN and CONTIGUOUS 
methods wiIl be examined in more detail, because 
the former is the simplest method, while the latter 
is the fastest on search. Table 4.1 gives a list of 
symbols and their definitions. 

Symbol Definition 
P(X) Probability a postings list has 

length x 
P(x) prob. a list has length Sx 
M size of longest postings list (in 

postings ptrs) 
V vocabulary = cardinal@ = 

number of distinct attribute 
values 

N number of records indexed = 
number of non-distinct attribute 
values 

b size of initial block (in postings 
ptrs) 

g growth factor of postings 
records on copy 

h growth factor of postings 
records when no copy 

K maximum number of postings 
records in a chain 

V overhead per post. record (in 
postings ptrs - typically: 1) 

R@,ghP) avg. response time (in disk 
accesses) 

I(b,g,hX) avg. insertion time (in disk 
accesses) 

S(b,ghX) exp. space required (in postings 
Ptrs) 

Frag (b ,g ,h ,K > space wasted due to External 
fragmentation 

P exponent in the generalized Zipf 
distribution (Section 5) 

Table 4.1: Symbols and definitions. 
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Before we proceed with the analysis, we 
define two fundamental probability distributions 
and prove a lemma. 
Definition 1. For a given state of the relation, we 
define as p(x) the probability that a randomly 
selected value (among the V distinct values of the 
indexed attribute) occurs x times in the relation. 

p(x) E Prob ( a value appears x times } 
Definition 2. Let P(x) be the cumulative proba- 
bility, that is 

P&p(i) 
i=O 

This is the probability that a randomly chosen attri- 
bute value occurs x or fewer times. Clearly 

where M is the length of the longest postings list. 
Lemma 1 The total storage occupied by a postings 
list after i overflows is 

b(Hg)idiv K 
h(i+l)mcd K 

h 1 -1 

Proof: Since we have i oveflows, we have gone 
through copying i divK times, and we currently 
have (i+l) mod K postings records (i div k is the 
quotient when i is divided by k, and i mod k is 
the remainder, e.g., 7 div 3 = 2 and 7 mod 3 = 1). 

3.1) we have that the last record has 
~~~~%!k~imodK postings for all integer i20. 
Adding the lengths of the previous records proves 
the lemma. 

Here we give the final cost formulas for the 
HYBRID method in general. The proofs are given 
in a technical report [Faloutsos92b]. 
The total space (measured in postings pointers) is 
given by: 

S@,ghX)=V vR@,g,hP) [ 
+bP(b)+ ~(bH’g’(P(bH’g’)-P(bH’g’-1))) 

i=l 

+ ; bffgi($h’) 

i=2 1 I=0 

+Fw(b,ghP) (4.1) 
where Frag 0 measures the external fragmentation: 

Frag(b,g,hX)= 

K-l 
bHi+lgi(~h’)p(bHi+lgi) 

I=0 
Z j-1 
i=’ (chf)p(b~'giJ~hf)-Hp(bH'+Lg') 1 (4.2) 

I==0 l=o 

Insertion cost, in disk accesses: 

Z(b,g,h,K)=2+ $CbH’g’-‘p(bH’g’-‘) (4.3) 
i=l 

Retrieval cost, in disk accesses: 

R(b,g,hX)=P(b) 

+ &P(bH’g’)-P(bH’g’-‘)) 
i=l 

+ ijc P(bHigi(sh’)) - 
j=2 i=O I. I=0 

P(bH’g’(zh’)) 
I=0 I 

(4.4) 

For the FCHAIN and CONTIGUOUS methods, the 
above formulae are simplified as follows: 
FCHAIN (K=, h =l): 

sFCHAlN = v @ +I’ > RFCHAIN (4.5) 

IFCHAIN = 2 (4.6) 

RFCHMN =P@)+ cj[P@M’@o.-l))l (4.7) 
j=2 

CONTIGUOUS (K=l): 

SCOATIGUOUS = v [ v + bp @ > + 

$(bg’(P(bg’)-P(bg’-‘))) + 
i=l I 

i 
bg ‘+‘p (bg i+l) 

i=ooP(bg’-‘)-gP(bg’) 
(4.8) 

ICO~IGVOUS = 2 + :bg’-‘p (bd-‘) 
i=l 

RCONTIGVOVS = 1 

(4.9) 

(4.10) 

5. SPECIAL CASE: ZIPF DISTRIBUTION 
The formulas derived up to now hold for any 

frequency distribution p(). Thus, these formulas 
could be used to predict the performance of the 
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corresponding method, when the distribution p () is 
known or when it can be estimated, for example, 
through sampling. In order to get a better intuition 
about the behavior of the methods as their parame- 
ters vary, in this Section we simplify the derived 
formulas even more, assuming a Zipfian distribu- 
tion. The main goal is to arrive at arithmetic 
examples that will highlight the weak and strong 
points of each method. Moreover, the simpler for- 
mulas will allow optimal choice of the design 
parameters. 

For relations, we use the terms “attribute 
value”, “cardinality of the attribute”; for docu- 
ments, the equivalent terms are “word” and 
“vocabulary”. We use the latter set of terms, for 
brevity. Under a Zipfian distribution we have 

fi-equency(r )=C Jr (5.1) 
where r is the rank of the word, sorted in decreas- 
ing frequency order, and frequency(r ) is the 
occurrence frequency of the r -th most frequent 
word. C is a normalizing constant (C=V= voca- 
bulary size). Clearly, the rank-frequency plot of a 
Zipfian distribution in a log-log graph is a straight 
line with slope -1. The generalized Zipf distribu- 
tion obeys the equation 

frequency(r )=C lrP (5.2) 

In this case, the log-log rank-frequency plot has 
slope -p . As mentioned in Section 2, the distribu- 
tions of the first names and the last names in our 
experiments can be approximated by generalized 
Zipfian distributions with p=O.63-0.65 for the last 
names and p=O.8-0.9 for the first names. For 
Zipfian distributions, notice that 

V=M 

and the total number of records is 

N =VlnV 

In a Zipfian distribution, the probability of a 
vocabulary word occurring x times or more is l/x. 
The probability of a vocabulary word occurring 
x-l times or less is then 

&l=x-l 
x X 

Therefore, 

and 

p(x)=P(x)--P(x-1)= 1 
x(x + 1) 

For x 1, we shall approximate this with 

p(x) = 1/x2 (5.3) 
We also approximate P (x) with 

P(x) = 1 - l/x (5.4) 

We use eqs (5.3) and (5.4) to simplify the cost for- 
mulas for the two methods of interest, FCHAIN 
and CONTIGUOUS. Eqs. (4.5) to (4.10) become 
as follows: 

RFcHtiN=(l-++$b,’ l))=l-++y 
J-2 - 

and, since J=[M/~‘] we finally obtain eq. (5.5). 
1 ln(M/b) 

RFCHAIN = = 1-b+ b (5.5) 

s FCHAIN =V(~+VY+CHAIN (5.6) 
I FCHAIN =2 (5.7) 

The respective formulae for the CONTIGUOUS 
method are eqs. proximation in eq. 
(5.9) holds since I = and M b . 

&7-IG,,, =v(" +b - 1 +I@-I))+ 

gM-b 

k-u2 
(5.8) 

kONTlGUOUS = 2 + i -!- 
i=l bg’-’ 

=2+ g 
b&-l) 

G-9) 

Within the family of schemes that we have 
introduced, it appears that copying every time is 
indeed the best, since the additional cost at inser- 
tion time is not too high, and the savings at look- 
up time can be considerably more than that. We 
compare the scheme CONTIGUOUS to the tradi- 
tional FCHAIN scheme in the following, using the 
Zipf distribution. CONTIGUOUS requires one 
disk access on search; the cost of insertion 
decreases monotonically with g. Similarly, 
FCHAIN has a constant cost for insertion, and the 
search time decreases monotonically with b. 
Thus, the only non-trivial cost to optimize is the 
space overhead. The details follow: 
Optimizing the space for FCHAIN: From eqs. 
(5.6) and (5.5) we have 

with J=M lb. To optimize it, we have to solve 

asFCHAIN 
tIb =O 
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Numerical techniques may be required. Arithmetic 
examples, with v=l, show that 

b=2 is optimal for a vocabulary V=lO; 
b=3 is optimal for V in the range from 100 
to ld; 
b=4 is optimal for V in the range from lo4 to 
107. 

Moreover, the function is rather flat at the minimal 
point. Thus, if 

b=3 or b=4 

the space of FCHAIN will be optimal or close to 
optimal for any practical application. 
Optimizing the space for CONTIGUOUS: From 
eq. (5.8) we have 

&mm~uous = V(v +b - 1 +I&-1)) 

+gM 
(g-U2 

and, after substituting I = In, (M lb) we have 

SCONTIGUOUS = v [ V + b - 1+ 

(g-l)lnWWW] 

+gM 
cg-u2 

(5.10) 

The optimal values should fulfill the set of equa- 
tiOllS 

LScohJTIGuous=O & (5.11) 

$scohTIGuous=o 
Eq. (5.11) gives 

(5.12) 

v ln(Mlb) _ (g-l)ln(Mlb) _ 

[ NT lmg)2 1 
M(g+l)-2b =. 

(g-U3 
The second term is the derivative of the external 
fragmentation, and is always negative for g > 1 and 
b&/2. This means that the external fragmenta- 
tion decreases with g , which agrees with our intui- 
tion. The first term is the derivative of the internal 
fragmentation. Algebraic manipulation shows that 
it has the same sign as 

1-g 

which is positive for g > 1. As such, to reduce the 
internal fragmentation we should choose g to be 
as small as possible. Since the external fragmenta- 

tion is smaIl compared to the external one (see, 
e.g., Graph 6.2), the optimal value of g should be 
small. Since g 11.5 (otherwise, there is no guaran- 
tee that the new record will be larger than the old 
record, on overflow), g should be close to 1.5. 
From eq. (5.12) we have: 

aSCOh'TIGUOUS 

ab 

or, after solving for b : 

b= 
g-l 

I 
Cl-- V&l) )Ing 

If V(g-1)1, then we have 

b g-1 - 
lng 

For g in the range ( 1.5,2), b should be close to 1. 
This is intuitively expected: Since several values 
appear once only, it is wasteful to have a large ini- 
tial size b for postings records. 

Next, we present the results of arithmetic 
examples, indicating the optimal values of b and g 
for several values of V (recall that M=V, for 
Zipfian distributions). 

V b ‘opt. 

10 2 
100 1 
ld 1 
lo4 1 
16 1 

g opt. 

2.0 
1.7 
1.6 
1.54 
1.5 

Thus, the conclusion is that good choices for the 
parameters are: 

b = 1 and g = 1.5-2 

6. EXPERIMENTS 
We implemented the FCHAIN and the CONTIGU- 
OUS method under a B-tree, in “c” and UNIX. 
The size of each pointer was 4 bytes. We per- 
formed experiments with the FCHAIN method and 
several values of b , and with the CONTIGUOUS 
method with several values of the growth factor g 
including g =1.6 18 (the “golden ratio”). 

We used the telephone catalogue at the 
University of Maryland which is available on-line. 
It contains 11,657 entries, with 86Kb of last names 
and 80Kb of first names (middle names, “Jr.” etc 
were ignored). The distribution of names was plot- 
ted in Graph 2.1. There were Vbt=7,148 distinct 
last names, with M&,, =88 appearances for the most 
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common one. Similarly, there were V,,,=3,269 
distinct first names, with Mfvsl=288 appearances 
for the most common one. 

We used eqs. (5.5-5.9) to predict the perfor- 
mance in a fictitious database with the same 
number of records N, but with a Zipfian distribu- 
tion (p=l). We used V=M=l%O, since 
VlnV=10,96O=N. In the upcoming graphs, the 
labels “last names” and “first names” mark the 
curves for the corresponding data sets; the label 
“zipf’ marks the curve for theoretically derived 
values, assuming Zipf distribution. For the latter, 
the curve is plotted with a dotted line. 

FCHAIN - Space in bytes, vs. b 

0’ I 
1 2 3 4 5 6 

block. size b 

Graph 6.1 : Space of the postings jile, as a func- 
tion of b (FCHAIN method). 

Graph 6.1 shows the space occupied by the 
postings file, as a function of b for the FCHAIN 
method, for the last names, and for the first names. 
Notice that 
0 the Zipf curve is minimized for b=3, as dis- 

cussed before. 
l the smaller the slope p of the generalized 

Zipf distribution, the smaller the optimal 
value of b : A small slope p means that many 
values appear once only, which means that 
b =l is a good choice. For this reason, the 
curve for the first names (pa.8) was optim- 
ized for b=2. while the curve for the last 

CONTIGUOUS - Space in bytes, vs. g 

80000 

1 
. . ..-+zipf -- ---____ f ______ + _____- A------------- 

2moo' 
/ 

ext. frag. - last names 

“1.5 1.6 1.8 1.9 2.0 2.1 

growth factor g 

Graph 6.2: Space of the postings file, as a function 
of g (CONTIGUOUS method). b = I. Dashed lines 
shows external fragmentation for real data; dotted 
line for the fictitious Zipf distribution. 

names (p =O.65) was optimized for b =l. 
l the curve for the Zipf distribution is rather 

flat around the minimal value of b , suggest- 
ing that a small error in the choice of b will 
waste little space. 
Graph 6.2 shows the space of the postings 

file as a function of g for the CONTIGUOUS 
method, for the last and first names. The space 
wasted on external fragmentation is shown with 
dashed lines. The main observations are: 

the space lost to external fragmentation is 
negligible for the real data: >6% for the first 
names, >l% for the last names. For the ficti- 
tious Zipf distribution, it is small (> 13%). 
therefore, the total space increases with 
increasing g , according to eq. (5.8). 
The Zipf distribution needs more the space; 
the space occupied increases with the slope 
p . This is expected, because the uniform dis- 
tribution (p=O, i.e., every value occurs once) 
will have no internal fragmentation; the more 
we deviate from that, the worse the internal 
fragmentation. A large growth factor g will 
amplify the problem, as confirmed from the 
graph- 
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0 for the actual data, the space requirements are 
significantly smaller than FCHAIN (5 1Kb vs. 
93Kb for the last names, or 55%; 57Kb vs. 
86Kb for the first names, or 66%) 

CONTIGUOUS - Insertion, in d.a., vs. g 

last names 

4oooo’ 

disk accesses lirst names 

._------- ---- -se--* 
2oooo. FCHAIN 

growth factor g 

Graph 6.3 : Insertion cost (total # of disk 
accesses) as a function of g (CONTIGUOUS 
method). The dashed line shows the (con- 
stant) cost of FCHAIN. 

Graph 6.3 plots the insertion time (number of 
random disk accesses - sum of reads and writes to 
insert all N keys) for the CONTIGUOUS method 
as a function of g . For FCHAIN, the cost is con- 
stant, as expected theoretically. Its numerical 
value is Z*N=22,314 disk accesses. Graph 6.3 
shows that the insertion cost decreases with the 
growth factor g , as expected by eq. (5.9). 

However, the number of (logical) disk 
accesses in Graph 6.3 should only be treated as a 
qualitative measure of the actual time. Logical 
disk accesses do not necessarily translate to physi- 
cal disk accesses; the translation depends on 
severa.I implementation details, which are difficult 
to include in our formulas. For example, the 
buffering that UNIX performs, the specific han- 

. dling of the updates on the heads of the free lists of 
the postings records etc. 

For a better comparison between the two 
methods, we timed them while they were building 
each index. With the same, light load on a Spare 

IPC, the speed of CONTIGUOUS is 35% of the 
speed of FCHAIN. 

FCHAIN - Search, in d.a., vs. b 

5 
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3’ 
accesses 
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CONTIGUOUS 

04 . 
1 2 3 4 5 6 

block. size b 

Graph 6.4 : Search time (avg. # of disk accesses) 
for the postings file, as a function of b (FCHAIN 
method). 

Graph 6.4 plots the search time (number of 
random disk accesses for the postings file), for the 
FCHAIN method. For the CONTIGUOUS method 
the answer is always: 1; the dashed line 
corresponds to this performance, and is plotted for 
comparison purposes. The main observation is 
that the Zipf distribution suffers from the worst 
performance, exactly because it has longer lists 
than the other two, smoother distributions. 

7. CONCLUSIONS 
We have proposed the idea of adapting the 

size of the postings records, to accommodate 
skewed distributions. The proposed methods, and 
especially the CONTIGUOUS version, achieve 
low space overhead and excellent response time, 
compared to the simple FCHAIN method. 

Our methods mainly focus on B-tree secon- 
dary indices for relations, both for dynamic and 
archival environments. All these methods can be 
used for B-tree indices on text as well, where 
skewed distributions are almost universal. For 
text, these methods could possibly be used either 
by themselves, or as building blocks within a 
hybrid method [Faloutsos92a], which could utilize 
signature files as well [Faloutsos90a, Sacks- 
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Davis87al. 
In addition, the adaptive growth idea can be 

used in any situation that we have to maintain lists 
of highly varying sizes, where insertions (and pos- 
sibly deletions) are allowed. For example, if the 
indexed attribute has a skewed value distribution, 
even a hashed secondary index will have a skewed 
distribution of its postings list (if the hash table is 
large enough to result in few collisions). Another 
example is the case of joins, where it is often 
beneficial to build an index on the joining attribute, 
on the fly. 
The main observations and practical guidelines of 
this paper are the following: 

skewed distributions of attribute values 
appear often 
the FCHAIN method is straightforward and 
gives low insernon cost, at the expense of 
space and search time. When using 
FCHAlN, a small value of b 

b=3 or b=4 
will minimize the space under Zipfian distri- 
butions. Under smoother distributions (gen- 
eralized Zipf, with p cl), even smaller values 
of b are optimal. 
the CONTIGUOUS method achieves the 
fastest possible search time (1 disk access) 
per query, and low space overhead (=2/3 of 
the FCHAIN, according to our experiments). 
The external fragmentation is negligible, as it 
was expected by the analysis. The insertion 
speed was experimentally found to be ~75% 
of the insertion speed of the FCHAKN 
method. For skewed distributions, the 
recommended values are 

b = 1 and g = 1.5-2 
The contributions of this paper are: 

The proposal of the CONTIGUOUS method, 
as well as a whole family of methods, whose 
general case is the HYBRID method. 
The derivation of formulas (eqs. (4.14)) that 
calculate the pelfOl-IEiIl~ 
(space/insertion/search) for each method, for 
any given distribution of the attribute values. 
Guidelines on how to choose good values for 
the design parameters b and g, for Zipf dis- 
tributions. Although real distributions devi- 
ate from the ideal Zipf distribution, the 
guidelines give a good initial estimate for b 
andg. 
The experimental comparison of the CON- 
TIGUOUS method versus the FCHAIN 
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method. 
Future research could involve: 

analysis in case that the first n pointers are 
stored within the B-tree leaves; optimal 
choice of n , in this case. 
analysis for generalized Zipfian distributions 
analysis in the presence of deletions. 
fine-tuning of the implementation of CON- 
TIGUOUS to reduce its insertion cost. 
Promising approaches include the caching of 
some of the postings lists, or the batching of 
the insertions. 
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