
Composite Event Specification in Active Databases:
Model & Implementation

N. H. Gehani
H. V. Jagadish

0. Shmueli

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Active database systems require facilities to specify triggers
that fire when specified events occur. We propose a language
for specifying composite events as eveti expressions, formed
using event operators and events (primitive or composite). An
event expression maps an event history to anothe-r event history
that contains only the events at which the event expression is
“satisfied” and at which the trigger should 6re. We present
several examples illustrating how quite complex event
specifications are possible using event expressions.

In addition to the basic event operators, we also provide
facilities that make it easier to specify composite events.
“Pipes” allow users to isolate sub-histories of interest.
“Correlation variables” allow users to ensure that different
parts of an event expression are satisfied by the same event,
thereby facilitating the coordination of sub-events within a
composite event.

We show how to efficiently implement event expressions using
finite automata. Each event causes an automaton to change
state. When an automaton reaches an accepting state, a
composite event of interest is recognized, and the
corresponding trigger fired.

Events have attributes. For primitive events, these could be
parameters of the activity that caused the event, selected parts
of the database state, or functions computed therefrom. For
composite events, attributes are derived from the attributes of
the constituent primitive events. These attributes can be used
in checking conditions, and in any actions triggered. Event
expressions can specify values (or sets or ranges of values) for
particular attributes, and can even require that some attributes
be equal. The composite event specified by the expression
does not occur unless the specified condition on attributes is
satisfied.

Permission to copy withoutfee all or port of rhis material is granted provided
that the copies are rwt made or distributed for direct commercial advantage.
the VLDB copyright notice and the title of the pubkatum and its date
appem. and notice L given that copying is by permission Of the Very Large
Data BUM E&mm. TO copy othenvire. or w republish. reqtirer = fee
on&r special permission from the Endowmmt.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada, 1992

1. INTRODUCTION

Of late, there has been a surge of interest in active databases
[2,5,5,8,12.14-161. In an active database, a trigger ties when
an event of interest happens and some condition is satisfied.
Most efforts have focussed on the trigger firing mechanism and
the execution of the triggered action. However, recent work
[3,6,9], has recognized the importance of event specification.
Of special interest is the Specification of composite events,
which are constructed from (simpler) primitive events [5].

We propose a language for composite event specification.
Specifying composite events is non-tivial because a composite
event refers to events that do not all happen simultaneously and
because a composite event can often be caused in more than
one way. Composite events are specified as event expressions,
which are formed using evenf operators. An event expression
maps an evetu history to another event history that contains
only the events at which the event expression is “satisfied.”
An event history, or simply a history, is an ordered set of
primitive events. Primitive events are database operations of
interest such as the update of a data value, the commit of a
transaction, etc.

To facilitate writing composite event expressions we provide
some additional constructs. “Pipes” allow users to focus only
on events of interest. “Correlation variables” allow users to
ensure that different parts of an event expression are satisfied
by the same event. This facilitates coordination of sub-events
within a composite event. One can think of them as
“pointers” to specific history events, as free variables in a
logic program, or a communication mechanism as in statecharts

1101.

Events have attributes. For primitive events, these could be
parameters of the activity that caused the evenL selected parts
of the database state, or functions computed theretiom. For
composite events, atnibutes are derived from the attributes of
the constituent primitive events. These attributes can be used
in checking conditions, and in any procedure actions triggered.
Event expressions can specify values (or sets or ranges of
values) for particular attributes. and can even require that some
atnibutes be equal. The composite event specified by the
expression does not occur unless the specified condition on
attributes, if any, is satisfied. We note a similarity between
events with attributes and parametrized states in statechar&

[lOI.

Event expressions have the same expressive power as regular
expressions. As such, any mapping from histories to histories

327

that can be specified by an event expression can be executed by
a finite automaton. We show explicitly how to construct such
an automaton for an event expression. We also show how
(multiple) automata can be constructed to handle events with
attributes. These automata can directly be translated into code
such that an inexpensive state transition table look-up for
relevant automata is all that is required each time an event
(such as an update) occurs in the database.

occurred.

An event history, or simply a history, is a finite set of event
occurrences in which no two event occurrences have the same
event identifier. When this set is empty, the history is called
the null history. The event occurrences in a history are
sometimes referred to as points. A special primitive event sturt
occurs at the beginning of the system history Y. Its eid is less
than the eids of all other event occurrences.

The paper is organized as follows. In section 2 we formalize
event expressions, introduce a collection of useful operators
and present examples. In section 3 we explain how to build
tinite automata for event expressions. The notion of an
occurrence tuple. which is a “justification” for the occurrence
of a composite event, is introduced in Section 4. Section 5
treats correlation variables in expressions. Event attributes are
examined in section 6. Two comprehensive examples are
presented in Section 7. Section 8 concludes.

2.2 EVENT EXPRESSIONS

An event expression E. which specifies a primitive or
composite event, is a mapping from (domain) histories to
(range) histories:

E: histories + histories

2. EVENTS

The result of applying an event expression to a history h is
itself a history which contains the event occurrences of h at
which the events specified by E take place. These intuitive
notions are formalized below.

An “event” is a happening of interest. Events, including
composite events, happen instantaneously at specific points in
time. In object-oriented databases, for example, events are
related to object manipulation actions such as creation,
deletion, and update or access by an object method (member
function). Similarly, in a relational database, events are related
to actions such as insert, delete, and update. The events can be
specified to happen just prior to or just after the above actions.
In addition, events can be associated with transactions and
specified to happen immediately after a transaction begins,
immediately before a transaction attempts to commit,
immediately after a transaction commits, immediately before a
transaction aborts, and immediately after a transaction aborts.
Events can also be associated with time, for example, clock
ticks, and the recording of the passage of a day, an hour, a
second, or some other time unit.

Let E be an event expression. E[h] denotes the application of
E to history h. It is always the case that E[h] E h. We say
that E takes place at event e in h iff e E E[h]. An event
occurrence ee h satiqfies expression E iff eE E[h]; E is said to
be satisjied by e.

An event occurrence e, takes place after (before) an event
occurrence e2 if the eid of e, is larger (smaller) than the eid of
ea. Two event occurrences e, and e2 refer to the same event
occurrence if their eids are identical.

An event expression is formed using primitive events and the
operators (connectives) described below. An event expression
can be-NULL., any primitive event a, or an expression formed
using the operators A, ! (not), relative and relutive +. The
semantics of event expressions are defined as follows (E and F
are used to denote event expressions):

Event specification must start with a set of basic events, such
as the ones mentioned above, which are supported by the
database system. Primitive events’ are basic events optionally
qualified by a mark, which is a predicate used to hide or
“mask” the occurrence of an event. For instance, the event
“before large withdrawal” can be composed using the basic
event “before execution of the method withdrawal” and
qualifying it with the mask “withdrawal amount > 1000”. We
shall use primitive events as the basis of our discussion of
composite event specification. We assume that primitive
events are mutually exclusive and that their number is finite.

1.

2.

3.

4.

5. (!E)[h] = (h-E[h]).

2.1 EVENT OCCURRENCES AND EVENT 6.
HISTORIES

An event occurrence (informally referred to as an event) is a
tuple of the form (primitive event, event-identifier). Event-
identifiers (eids) are used to detine a total ordering, denoted by
<, on event occurrences. An example of an event identifier is a
time-stamp specifying the time at which the primitive event

E[null] =null for any event E. where null is the empty
history.

NULL[h] = null.

a[h], where CI is a primitive event, is the maximal subset
of h composed of event occurrences of the form (a, eid).

(E A F)[h] = h,nh, where
h, = E[h] and h, = F[h].

relutive(E, F)[h] are the event occurrence-s in h at
which F is satisfied assuming that the history started
immediately following some event occurrence in h at
which E takes place.

Formally, relative(E, F)[h] is de&red as follows. Let
E’[h] be the iti event occurrences in E[h]; let hi be
obtained from h by deleting all event occurrences whose
eids are less than or equal to the eid of E’[h]. Then
relutive(E, F)[h] = UF[h;],

where i ranges from 1 to the cardinality of E[h].

328

7. refative+(E)[h] = firelative’(E)[h] where
i=l

relufive’(E) = E and
relative’(E) = reZative(relutive’-‘(E), E).

Regular expressions are widely used for specifying sequences
The above event expression language has the same expressive
power as regular expressions [9].’ It can be shown that the
operators A. !, relative, and relative + constitute a minimal
operator set; reducing it will make the expressive power less
than that of regular expressions.

2.3 MORE OPERATORS FOR EVENT
EXPRESSIONS

We present some additional operators (connectives) that make
composite events easier to specify. These operators do not add
to the expressive power provided by the operators introduced in
the previous section.

Let h denote a non null history, and E, F, and Ei denote event
expressions. The new operators are

a. E v F=!(!E A !F).

b. any denotes the disjunction of all the primitive events
except for start.

c. prior(E. F) specifies that an event F that takes place
after an event E has taken place. E and F may overlap.
Formally, prior(E, F) = relutive(E, any) A F.

d. prior(E,, . . . , E,) specifies occurrences, in order, of
the events E,. E, ,..., E,.
prior(E,, . . . , E,) =

prior(@rior(E,, . . . , E,,,-,), E,).

e. sequence(EI,. . . , E,) specifies immediately
successive occurrences of the events E, , E, ,..., E,:

1.
sequence(E, , . . . , E,) =

sequence((sequence(E, , . . . , E,-l) , E,).

2.
sequerxce(E,, E,) =

rdative(E, ,!(relative(urzy, any))) A E,.

The first operand of the conjunction specifies the
first event following event Er. The second
operand specifies that the event specified by the
complete event expression must satisfy Ez.

f. first identifies the first event in a history.
first = !reZative(any, any).

g. (EIF)[h] = F[E[h]]; i.e., F applied to the history
produced by E on h. Operator 1 is called pipe, with
obvious similarity to the UNIX@ operator.

h.

i.

j.

k.

1.

m.

n.

0.

P.

(<n > E) specifies the n* occurrence of event E.
Formally,
(<n>E) = ((Elseq(ony,, any,, . . . , onyn))lfirst),
where each any i is simply any.

(every <n > E) specifies the n*, 2n*, . . , occurrences
of event E. Formally,
(every <n>E)=(Elrelative+(<n>any)).

(F / E)[h] = F[h’] where h’ is null if E[h] = null
and otherwise h’ is the history obtained from h by
eliminating all the event occurrences before and
including (<l>E)[h]. Formally,
F/E = relative((!prior(E. any)~E), F), equivalently,
F/E = reMve((Elfirst),F).

Suppose that E takes place m times in h. F /+ E [h] =

GF[h’;]. h’;, l<i<m-1, is obtained from h by
i=l

eliminating all event occurrences before and including
event (< i > E)[h] and all event occurrences including
and following (<i+ l>E)[h]. h’, is obtained from h
by eliminating all event occurrences before and including
event (<m>E)[h].

E is used to delimit sub-histories of h, where the
“delimiter” are event occurrences at which E takes
place. F is applied to each such sub-history, and the
results of these applications are combined (unioned) to
form a single history.

firstAffer(E 1, E2, F)[h] specifies events E 2 that take
place relative to the last preceding occurrence of E,
without an intervening occurrence of F relative to the
same E I. Formally,

firsfAffer(E,, E2. F) =
(E, A !prior(F, MY)) /+ El.

before(E) = prior(E. any).

happened(E) = E v prior(E, any).

prefix(E) [h] is satisfied by each event occurrence e
such that there exists a history h’ identical to h up to
event occurrence e, and E is satisfied in h’ at some event
occurrence following e. In other words, prefix(E) is
recognized at each event occurrence as long as a
possibility exists that an E event will be recognized
eventually. This operator is normally used in the form
!prefix(E). which occurs as soon as we can be sure that
E cannot occur.

E*T is a series of zero or more E events followed by a 7’
event.
E*T = T A !prior(!E, T).

In addition to the operators described above, there may be
composite event sub-expressions that are used repeatedly in
particular applications. Such sub-expressions may be defined,
named and then used in building up larger expressions. We do
this in some of the examples later on.

2.4 EXAMPLES

329

2.4.1 EVENTEXPRESSIONS:
1.

2.

3.

4.

5.

6.

All occurrences of an event a:

a

The5* occurrence of deposit:

(<S>deposit)

deposit followed immediately by withdraw:

.sequence(deposit, withdraw)

deposit followed eventually by withdraw:

priortdeposit, withdraw)

deposit followed eventually by withdraw with no
intervening interest:

relativetdeposit, !before(interest))
A withdraw

Event expression that is satisfied when an E occurs
provided there is no “non E" event before it. We are
essentially recognizing a series of E events:

E A !prior(!E, E)

2.4.2 DISCOUNT RATE CUT: The United State Federal
Reserve Board raises and lowers a key interest rate, called the
discount rate, to control inflation and economic growth. Three
or more successive discount rate cuts (D) without an
intervening discount rate increase (I) is a rare phenomenon and
is of interest to the financial community. Many other events
can occur, for example, the prime rate may be cut and the stock
market can crash, but these events do not interest us here. Our
problem is to write an event expression that is satisfied by such
cuts in the discount rate.

Here is an example history with the dots marking the events in
the history with the discount rate cut events labeled by D
(decrease) and increases labeled by I (increase):

D ID D D# D#I

The composite event of interest cccurs at the last two D events
(marked with #).

We will now give an event expression that specifies a
composite event satisfied when three or more successive
discount rate cut events D take place without an intervening
rate increase event I. We specify this composite event in
steps. First, the event expression

prior(1, D)

specilies D events that are preceded by an I event. Expression

!prior(I, D)

specilies all events except the occurrences of D that are
preceded by I. Expression

!prior(I, D) h D

specifies D events that are not preceded by an I event.

The expression

relative(D, !prior(I, D) A D)

specifies a D event followed eventually by another D event with

no intervening I events. This expression gives us a pair of D
events with no intervening I events. Note that in this case, the
relative operator is used to look at the history starting after
a D event.

Finally, the event that we are interested in can be specified as

relative (relative (D, !prior(i, D) A D),
!prior(i, D) A D)

The outermost relative tinds another D without a preceding
I giving us three D events without an intervening I event.

Using the pipe operator, we can write the composite event for
the three successive discount rate cuts simply as

(I v 0) I sequence(D, D, D)

3. AUTOMATA CONSTRUCTION

In the previous section we developed a powerful mechanism to
specify composite events. In a real database, we have to be
able to detect these occurrences on the fly, for instance as a
consequence of some update. Clearly, it is impractical to
perform a complete check for each composite event every time
a primitive event occurs in a database. We present an
incremental detection technique in this section.

Since event expressions are equivalent to regular expressions,
except for E which is not expressible using event expressions
[9], it is possible to “implement” event expressions using
finite automata. The history in the context of which an event
expression is evaluated provides the sequence of input symbols
to the automaton implementing the event expression. The
automaton is fed as input the primitive event components from
event occurrences in the history, one at a time, (in eid order) as
they occur. If, after reading a primitive event, the automaton
enters an accepting state, then the event implemented by the
automaton is said to take place at the primitive event just read.
The history need not be known in its entirety u priori, and the
automaton can be used, in “real time”, as a triggering device.

Given an event expression, E, we now show how to build an
automaton Ms. The construction resembles that of an
automaton for a regular expression. All machines have a non-
accepting start-state. Let E denote an empty event which can
be used in automata transitions; it is similar to the empty string
in automata theory. We consider the possibilities for E:

330

NULL: ME has a start-state and an additional state p
(non-accepting). On all primitive events the move from
the start-state is into p; p self-loops on all primitive
events.

a, where a is a primitive event: ME has three states: the
start state (non-accepting), p (accepting) and q (non-
accepting). On a the move from the start-state is into p.
On all other primitive events the move is into q. On a
both p and q move into p and on all other primitive
events both p and q move into q.

Et I\ Ea: Using inductively M1 for El and Mz for EZ,
build an automaton M that is the product of the two, with
each state in M corresponding to a pair of states, one in
M, and one in Mz. A state in M is marked accepting if
and only if the states of M, and M, in the corresponding

pair are both accepting. All other states in M are non-
accepting. The unique start state of M is the state
corresponding to the pair of start states of M, and Ma.
Let Ai be the transition relation of M,, i = 1.2. From
state (p, q) on a M moves to (r. s) such that
~6 AI (p. Q) and SE b(q. a).

!E: Let ME be a deterministic automaton for E. The
automaton for !E is obtained from M, by switching the
roles of accepting and non-accepting states, except for
the start-state which remains non-accepting.

relative(E, F): Build two automata ME and MF for E
and F, respectively. Connect the accepting states of ME
with E (empty event) transitions to the start state of MF.
The accepting states are the accepting states of MP and
the start state is that of M,. Note that M, may be non-
deterministic.

relative +(E): Build an automaton ME for E. Connect
the accepting states of MB with E (empty event)
transitions to the start state of ME. The accepting states
of the newly constructed automaton are those of M,, and
the start state is the start state of ME. Note that the new
automaton may be non-deterministic.

Theorem 1: Let h be a history. Let E be an event expression
and ME the constructed automaton. Let MEd be a deterministic
automaton accepting the language accepted bt M,. Then, the
last event occurrence of h is in E[h] iff MEd is in an accepting
state after scanning h.

Proof follows from the construction, inductively.

Corollary 1: Let h, E, and MEd be a deterministic automaton
as above. Then E[h] contains exactly the event occurrences o
such that when scanning h, MEd is in an accepting state
immediately after scanning 0.

Automata can be derived for the additional operators by using
their translation into basic operators. While more efficient
direct constructions may exis.L we shall not present these, for
brevity. The only exception are the 1 (pipe), / + and the prefix
operators, items g, k and o respectively in Sec. 2.3, for which
we have not provided a translation into basic operators so far.

Consider an expression E 1 F employing the pipe operator. Let,
inductively, Me (respectively, MF) be a finite automaton for E
(respectively, F). Without loss of generality, both automata aTe
deterministic with transition functions AE and AF. Form a
cross-product machine M from ME and MF. The start-state of
M is the state composed of the two start states of ME and MF.
Suppose M is in state @. q) scanning u. If AE@, a)=f is an
accepting state of ME then the new state of M is v ,AF(q, a)),
otherwise it is v,q). Intuitively, the effect is that M, only
‘sSWS” occurrences which ME declares to be in its output
history. The accepting states of M are those (p, q) where p is
an accepting state of ME and q is an accepting state of MF.

Consider an expression F/+E. Using inductively (w.1.o.g the
deterministic) finite automata M, for E and M, for F, build an
automaton M that is the product of the two, with each state in
M corresponding to a pair of states, one in ME and one in Mp.
A state in M is accepting if and only if the component state of

MF is accepting. The unique start state of M is the state
corresponding to the pair of start states of ME and MF. Let As
(A,) be the transition function of M, (MF). We now explain
how M moves when in state @, q). On reading u, the move is
into (r, s) where As(u)=r and A,(u)=s, unless r is an
accepting state of ME. If r is an accepting state of ME. then
instead of moving into (r, s), move into (r,SturtF). Finally,
construct the desired machine M’ as a combination of ME and
M, with the start state of M’ being the start state of M,, the
accepting states of M’ being the accepting states of M, and all
transitions out of all accepting states of ME are replaced by E
(empty event) transitions to the start state of M.

Consider an expression prefix(E). Using inductively
automaton M, for E, build an automaton M for prefir(E) as
follows. M is the same as M, except for the specification of
accepting states. A state q in M is an accepting state iff there
exists a sequence of primitive events taking q to a state which
is an accepting state in ME.

4. OCCURRENCE TUPLES

An occurrence tuple encodes a derivation tree showing why
sub-expressions of an event expression are “satisfied”. When
a composite event occurs, it is possible to &rive one or more
occurrence tuples for it to explain why it occurred, and to
identify particular events in the history that were relevant to its
occurring. The identification of an occurrence tuple from a
history in an active database is akin to parsing a string in a
compiler.

Let E be an event expression and let El, . . . , EL be its sub-
expressions (including itself as El). These sub-expressions are
determined by inductively decomposing the event expression to
form a “parse-tree”. These sub-expressions can be (uniquely)
ordered by a (preorder) traversal of this tree. For example, if
E = relative (a, relative + (a)), then the sub-expressions of E are
E, D (first), relative +(a), and u (second, inside the relutive +).

An occurrence tuple for E (for a history h) is a tuple of the
form (origin,f, ,e,, . . . , fk,et) where origin is an event
occurrence in h with eid less than or equal to the eid of each ei
or fi. Each e;, for i = 1, . . . , k, is an event occurrence in h, at
which the sub-expression Ei is “satisfied”. Each f; is an event
occurrence whose eid is less than or equal to the eid of ei,
i=l ,...,k; it indicates “from” where in the history the
satisfaction of the i’th sub-expression starts, origin = f 1. So,
the i’th sub-expression is satisfied on the history segment from
fi till ei.

If the sub-expression Ei consists of the operator rehive + and
its argument, then ei is not a single event occurrence but rather
is a sequence of one or more occurrence tuples, fi’s eid must be
less than or equal to the eids in these tuples. Since E, is
always the event E itself, the eid of its occurrence point e,
must be greater than or equal to the eids of all other ei.

A sub-expression Ei ferminutes at event occurrence e relative
to an occurrence tuple t if either ei. its entry in I, is e, or Ei is
of the form relative +(F) and e is the &dive e, which is
defined as the largest eid in the last occurrence tuple contained
in e,.

331

See the appendix for a formal definition of an occurrence tuple
for an event expression.

5. CORRELATION VARIABLES

Correlation variables are used to refer to the same event in the
history in different parts of an event expression. Consider the
following event expression E that contains the correlation
variable x:

E = 3 xprior(b=x, c) ,-, !relative(x, prior(a, c))
A refafive(x. prior(d. c))

Consider the following histories (h, is a prefix of ha which is a
prefix of h s):

h,=ebac
h,=e b a c d b c
h,=ebacdbcdbc

We want to determine if E can be satisfied (will trigger) at the
last event, a c ever& in the above histories. When determining
the points at which E can be satisfied in the above histories, the
correlation variable x will be associated with a specific b event
in each history. In case of h,, x must be associated with the
only b present; E will not trigger at c because
!relative(x, prior(a, c)) is not satisfied. In case of h,, there
are two b events. The first has the same problem as in h 1. If
we associate x with the second b in of h,, then
relative(x, prior(d, c)) is not satisfied. In case of h,, there
are three choices of b with which to associate x. If we choose
the first, !reZative(x.prior(a. c)) is not satisfied. If we choose
the third, relative(x. prior(d, c)) is not satisfied. However, if
we choose to associate x with the second b, then E will trigger
at the last c.

To appreciate the role played by x, consider the event
expression E’. given below, which is the same as E except that
the last occurrence of x has been replaced by b.

E’ = 3 x prior(b=x, c) /\ !rel&ive(x, prior(a, c))
A relative(b, prior(d. c))

E’ triggers on h, in the same way as E. However, it also
triggers on h,, where x is associated with the second b.
relative(b,prior(d, c)) is satisfied now on account of the first
b, which does not have to be associated with x.

Finally, the event expression E”, without correlation variables,
given below, does not trigger on h,, h,, hJ, or any other
history of which h 1 is a prefix. The reason is that h 1 has in it
the sequence b a c guaranteeing that the clause
!relative(b, prior(a, c)) can never be satisfied.

E” = prior(b, c) A !refative(b, prior(a, c))
A relative(b, prior(d, c))

We shall use the notation E to denote an event expression
without any correlation variables, E<x,, x2, . . . x,> to
denote an event expression E with a “free” set of correlation
variables (xi, x2, . . . x,), n10, and the notation EC> to
denote an event expression E with correlation variables none of
which are “free”.

We use the quantifier 3 to specify the scope of correlation
variables. The syntax of event expressions with correlation

variables, and the concepts of free and bound variables, are
defined inductively below. The definition of satisfaction of an
event expression by an occurrence tuple is extended.

1.

2.

3.

4.

5.

6.

7.

E: E has no free variables.

relative(E<xl.x2 ,._., x,>, F<y,,y,,. ..,y,>):
The free variables are (xi, x2, . . . , x,) u

(Yl. Y2, ‘.. s Yn).

relative + (E < >): Operator relative + cannot be applied
to an event expression with free correlation variables.

Ecx,,x2.x..,> A F<y,,yz, ..., yn>: The
free variables are (xi, x2. . . . , x,) u

(Yl. Y23 ... 9 Yn).

!E<x,, x2, ..., X,X The free variables are
(Xl, 7.2. . . . > Xm).

3 w E<x,.x,, x,,w>: All variables in
(x1. x2. . . ,x,) are free in this expression, w is
bound.

An occurrence tuple r satisfies a sub-expression of the
form 3 wA<xl,x2,x.,,> of E. if it satisfies
A<*,, x2, x,, w> and all sub-expressions,
appearing in A<x,, x2. x,. w>, which are
equated with w are satisfied, and terminate at the same
event occurrence.

E<x,, x2, ..-,x,> = w, where w is not in
(xl. x2. ... ,x,1. The free variables are
(Xl, x2 9 ... 7 x,,w).

An occurrence tuple t sati$es the sub-expression
A <xi, x2. . .. , x, > = w of E, if t satisfies

Acx,,x,, ... ,x,>.

Finite automata construction for expressions containing
correlation variables is given in the Appendix.

Let us examine another example:

E = 3 x relafive(a,refarive(b =x,c))
A !relafive(x, prior(d, any))

Consider the history h = a b d c a b c. For the last c to
satisfy E we must identify a point x. The fust b, namely
a (b=x) d c a b c is problematic, because in dcabc

the last c is preceded with a d. Choosing x to label the second
b, we get a b d c a (b=x) c, now we can satisfy c in the
first conjunct of E and there is no satisfaction of prior(d, any)
in the history c and so the expression E is satisfied by the last c

in h.

In the same spirit we can introduce correlation variables into
the additional operators that we have presented in Section 2.3.
For example, operator “/+I’ was explained horn first principles
since, in Section 2.3, it was too cumbersome to define in terms
of event expressions. However, with the help of correlation
variables, such definition becomes easy:
Fl+ E = relative(E=x, F) A !prior(prior(x, E),any)

A !E.

Finally, continuing our discount rate example from Section 2,
we will now use correlation variables to specify three or more
successive cuts in the discount rate without any intervening

increases:

relative(D, prior(D, D=d3) A !prior(I, d3))

Correlation variables make it simpler to write the expression by
giving us a handle with which to refer to specific instances of
events.

6. EVENTS WITH ATTRIBUTES

A set of attributes can be associated with each primitive event.
These attributes can carry information about the action that
caused the event to occur, such as the transaction id, the issuing
user, and so on. The attributes can also record information
about the state of the database (as visible to the transaction
causing the event to occur) at the time the event occurs. This
information can be used when a composite event occurs (at a
later time), typically by routines executed in the action part
when a trigger fires.

For example, the event hire might have three positional
attributes which semantically refer to the name, age and sex of
the employee. Each event occurrence will have attribute values
associated with these attributes. For example,
hire(smith, 27, m). Another example is an eventfire that has
one attribute: the m of an employee. An example of a fire
event is fire(smiZh).

Composite events “inherit” their attributes from constituent
simpler events. Consider the following example:

immediute~re~hire(X) = sequence(fire(X), hire(X, Y, Z))
// attribute specification for a composite event.

The event immediate-re-hire is the a hiring of an employee
immediately after firing the employee: the attribute of interest
is the name of the employee.

6.1 ATTRIBUTE COLLECTION

Given a composite event specification of the form
composite-event(X)= E, and an automaton implementing E
(ignoring the attributes), one may ask for the values of the
attributes each time the automaton reaches an accepting state.
A difficult issue in attribute value collection is the multiplicity
of ways @arsings) in which an event occurrence may be
declared as part of the output history, i.e., the multiplicity of
occurrence tuples that could justify a particular composite
event occurrence.

Each occurrence tuple specifies a different interpretation of the
history points where sub-expressions are satisfied, and hence a
different set of attribute values will in general be collected.
Such a set of attribute values is called a tuple of compatible
uttribute values. For example, consider the composite event
fire-after hire defined as

fire-after-hire(X, W) = prior(hire(X, Y, Z). fire(W))

Once this expression is satisfied, the value, w. of the fired
employee, IV. is uniquely determined. There may be many hire
event occurrences preceding this fire event occurrence. Each
such hire occurrence may supply a different value, x, for X
resulting in a different tuple (x, w) of compatible values.

One way is to legislate a preference. Natural candidates are the
“most recent” or “earliest” sets of satisfying events. This

seems to be an ad-hoc choice as there might be other
interesting criteria related to, say, the value of the attributes.
So, we shall break the problem into two parts. The first part is
the generation of all possible sets of compatible tuples of
attribute values. The second part is choosing attribute values of
interest from within this collection. The second part can be
thought of as asking a query against a relation, which is the set
of compatible tuples.

There are two main steps in collecting attributes values. One
component is an annotated version of the history that we call
the annotated history; it contains the necessary information to
form all possible ways of satisfying an expression. The second
component is an annotated automaton that is used to produce
the annotated history. When tuples of compatible attribute
values are needed, they can be generated easily from the
annotated history.

This technique creates all possible compatible tuples of
attribute values for a composite event occurrence. Typically,
one is interested in applying a (selection or aggregation) query
to this set of tuples. Optimization issues with regard to how
such selections and/or aggregations can be moved in are a topic
for further research. A detailed description of this technique,
including possible optimizations. will be given in a future
paper.

6.2 EVENT MODIFICATION BY AlTRIBUTE
SPECIFICATION

If the same variable appears in multiple places in
expression it constrains the corresponding values to
identical. We shall illustrate this concept using an example.

Consider a brokerage system with accounts 1, . . . ,

an
be

m.
Suppose there are two kinds of primitive events or&r and
perform. The declarations are as follows:

Primitive Events:
order(accouti-num, ask-quantity)
perform(account-rum, actual-quantity)
Composite Events:
complete(I)=prior(order(I, Q) , perform(I. A))

So, the complete event checks for a perform event occurrence
which follows an order occurrence for the sutne account
number. Formally, this expression is a shorthand for the
following set of expressions:

(complete(i)=prior(order(i, Q) , perform(i. A)) :
i E Accounts)

where Accounts is the set of all possible account numbers.

Thus, we can express a set of expressions (one for each value
of i in the above example), while writing a single expression,
via attributes. This, in effect, makes the alphabet potentially
infinite and takes us out of the realm of finite automata.

In general, there is no need to restrict constraints between
attribute values just to the simple equality between attributes
discussed above. One could specify arbitrary constraints
among attribute values. For instance, an event expression may
be conjoined with an expression of the form X#Y, indicating
that the values of attributes X and Y need be distinct; or of the
form X = constant, constraining the value of attribute X to equal

333

constant If no constraint is specilied, directly or transitively,
for X and Y then they specify values that may be equal or not
tXpl.

In the Appendix we provide a construction of (multiple)
automata to implement events modified by attribute values.

7. EXAMPLES

Our composite event specification facilities provide a
convenient mechanism for specifying complex situations. The
declarative nature of these facilities makes complex situations
relatively easy to specify when compared to how one would
write code to detect these situations in an imperative language
such as C++ or C.

We will consider two examples: specification of the end of a
point in the game of racketball, and detection of plane landings
at an airport. Writing event specifications, particularly when
these specifications are declarative, clarifies the conditions
required to make an event happen.

7.1 RACKETBALL

Racketball is a ball game that typically is played by two players
in an enclosed room. The ball can hit the walls, the ceiling, or
the floor. Each of these is significant in that there are rules as
to when the ball can hit them. For the purpose of this example,
we ignore the lines on the floor and on the back wall, and allow
the players only one serve per point.

A point starts when a player, say player 1, starts off by
“serving” the ball, the ball must hit the “front” wall directly,
and then player 2 must hit the ball. Player 2 can hit the ball
before it lands on the floor the second time (no landing on the
floor or one landing on the floor is okay; the ball can hit the
side walls or the back wall in between, but must not hit the
front wall again before the hit). Player 2’s hit must take the
ball to the front wall but it can hit the other walls in the
process. Players 1 and 2 now alternate in hitting the ball. The
point terminates whenever the above rules are violated.

We wish to write an event expression to detect the end of a
pint. First, we define the primitive events:

1. Player 1 serves: s i
2. Player 2 serves: s2
3. Player 1 hits: h i
4. Player 2 hits: ha
5. Ball hits floor: floor
6. Ball hits (touches) front wall: front
7. Ball hits (touches) a side wall, the ceiling, or the back

wall: wall

A point ends as a result of a bad serve, a bad hit, or because the
player was unable to return the ball. We now specify each of
these events:

1. Bud serve: A serve is bad if it does not hit the front wall
directly.

Hl = sequence(s,vs,, !front)

2. Bud hit: Ignoring the ball hitting the other walls, the next
event after a hit must be the ball hitting the front wall;
otherwise, the point ends:

H2 =
(!wall) I ((first A !front) /+ (h, v ii,))

3. Unable to Return: First, we define Twice as the ball
hitting the floor or the front wall twice, or hitting the
front wall immediately after hitting the floor:

Twice = sequence(floor, floor) v
sequence(front, front) v
sequence(floor, front)

We now want to specify the end of a point resulting from
the event Twice (ignoring the ball hitting the side
walls). This means that the other player was not able to
hit the ball back in time:

!wall I Twice

The above event expression may be satisfied (triggered)
by several events after a player is unable to return. For
example, if the ball bounces ten times on the floor after
hitting the front, then the expression will be triggered by
every bad bounce. We can refine this expression to catch
only the first error with:

H3 = !wall I
(Twice 1 first) /+ (h, v h, v s, v s2)

The end of a point is simply the disjunction of the above three
expressions dealing with the different ways in which a point
ends:

Hl " H2 " U3

In writing an event expression to detect the end of a point, we
have written event expressions that isolate bad hits. An
alternative strategy would be to write an expression that is
satisfied when the point can no longer be continued because it
does not satisfy the rules for continuing a point

We write an event expression to detect the end of a point
assuming that player 1 is the server. In this example, we use
the event operator prefix (E) .

Player 1 starts off by serving, and the ball must hit the front
wall:

sequencets,, front)

A player can return the ball before it hits the floor or after the
ball hits the floor once but before it hits the floor a second time.
Ignoring the bail hitting the wall, a valid exchange between
players 2 and 1 takes place in one of the following four ways:

1. one = sequence(hs, front, hi, front)

2. two = sequence(floor, h2, front, h,,
front)

3. three = sequence(h2, front, floor, h,,
front)

4. four = sequence(floor, hz, front,
floor, h,, front)

A rally between two players is a series of one or more
exchanges, each of one of the types above:

rally = relt (one v two v three v four)

A point ends when the sequence of events is not a prefix of
rally:

334

(!wall I !prefix(rally)) /t sequencets,, front)

A similar expression can be specified for a point beginning
with a serve by player 2. The final expression is the disjunction
of the two expressions.

One benefit of writing events formally is semantic precision.
For example, consider a situation, when the ball hits the front
wall twice without touching the floor and without a player
hitting the ball. Although such a situation is unlikely, it is
conceivable that a “strong” person could serve or hit the ball
so that it hits the front wall as described. In our specification
such a situation ends the point. (We could not find an answer
to this question from our racketball playing colleagues. Also,
we do not lmow who gets the point.)

7.2 AIRPORT WITH TWO RUNWAYS

A general aviation airport, with two runways A and B, is used
by many planes. It has limited communication facilities and
only visual landings take place. Before takeoff, the pilot of
each plane informs the airport at which runway the plane will
land. Once in a while, because of wind patterns or some other
emergency, the pilot lands a plane at a runway other than the
one previously declared.

We will write event expressions based on the following
primitive events:

1. W-i (i) : Plane i expected to land at A.
2. EB (i) : Plane i expected to land at B.
3. LA (i) : Plane i landed at A.
4. LB (i) : Plane i landed at B.

Here are some event expressions that specify events of interest:

1. Event AT-A (I) denotes the event “plane I is expected
to land at A but has not landed there as yet”:

AT A(I) = !happened(LA(I)) /+ EAtI) -

2. Event LAST-B (I) ¬es the event “last planned
landing of plane I at B”:

LAST-B(I) =
((LB(I))r !before(LA(I))) I first) /+ EB(I)

The right operand of / +

EB(I)

specifies that we look at events after the last declaration
of expected landing at B of plane I. The left hand
operand

LB(I) h !before(LA(I)) I first

specifies the landing of plane I at B and that it has not
landed at A before that landing. Had such a landing
taken place, we would no longer be expecting the plane
to land at B. The right operand of the pipe operator
ensure that we only look at the first planned landing at B.

3. UB (I) denotes an unexpected landing by plane I at B:

UB(1) =
((LB(I) h !before(LA(I))) I first) /+ EAtI)

4. ELAB denotes a landing expected in A that happened at
B:

ELABCI) = AT-A(I) h UB(I)

8. CONCLUSION

We propose a language for specifying composite events in an
active database and provide procedures for compiling the
language expressions using finite automata (and extensions
thereof). The language syntax includes primitive event
symbols and event (temporal) operators. Formally, an event
expression is a function which is applied to an event history
and “produces” another event history. The produced history
represents the points in the argument history at which the
specified composite event which is specified by the expression
occurs. We provide a procedure for constructing a finite
automaton corresponding to an event expression. This
automaton scans the event history in event order, and enters an
accepting state each time the event just scanned should be in
the produced output history. When used as a triggering &vice,
the automaton triggers each time it enters an accepting state.
Thus complex event combinations can be used to fire triggers
in an active database.

We presented a number of extensions. An important extension
is that provided by the pipe operator 1 . Pipes allow the
specifier to extract from the real history a hypothetical history
on which event detection is more convenient We introduced
“correlation variables”, which are used to indicate that distinct
sub-expressions are to be satisfied simultaneously. Pipes and
correlation variables permit a more convenient specification of
event expressions without increasing their expressive power.

Events can have attributes. There are three, in some sense
orthogonal, aspects associated with attributes. First, event
attributes can be used to constrain the occurrence of events.
Second, event attributes can supply parameters to trigger
actions when an event does take place. Third, the attributes of
constituent events can be “collected” for a composite evenf in
the form of a relation to which various queries may be applied.
Of course, an implementation may provide a unified view of
these aspects.

We believe that the language of event expressions presented
here provides a sound basis for specifying quite complex, and
useful, event combinations of interest in active databases. We
have shown how all our constructs can be reduced to automata,
thereby providing an explicit prescription for how code may be
written to implement composite event detection. While
efficient code can be generated for many event expressions,
optimizations are possible, particularly when event attributes
are present, and this is a topic for further research.

Although our motivation in investigating composite events is
uiggers in active databases, event specifications can be used in
other contexts. For example, event specifications are used for
software configuration management and cooperative work
[l 1,131, they can be used for sophisticated text searching
(where the events are the various characters in the text), and
they can also be used to examine histories in the context of
historical databases. Event expressions can also be
incorporated into query languages such as SQL [4] or LDL [II
by using a relation to record the event and the event order [7].

335

APPENDIX

1. OCCURRENCE TUPLES

If v is an event occurrence in a history, h. then succ(v) denotes
the event occurrence immediately following v in h (i.e. succ(v)
is the event occurrence w whose event identifier is larger than
that of v and there is no event occurrence u whose event
identifier is less than that of w and larger than that of v). If v is
the last event occurrence in a history then succ(v) is undefined.

Whether an occurrence tuple t = (origin.fl,e,, . . .,fk,ek)
satisfies an event expression E on history h can be determined
inductively as follows. Fist, origin=fi indicates where in h
we start, second, et indicates the event occurrence where
satisfaction occurs relative to origin.

1. Consider the sub-expression a of E. It is satisfied by
occurrence tuple t iff u is the i* sub-expression of E,
e; = fi is an event occurrence in h whose primitive event
is a and whose event identifier is greater than or equal to
the eid of origin and less than or equal to the eid of e i
(Recall that E 1 is E itself).

2. Consider the sub-expression relative(A,B) of E, w.1.o.g.
the k* sub-expression of E. Let A be the i* sub-
expression of E and let B be the jm sub-expression of E.
An occurrence tuple t satisfies this expression if:

1.

2.

3.

4.

5.

t satisfies A and B, separately.

succ(ei)=fj, i.e. B starts afterA.

fi =fk.

ej=ek.

ei and ej are less than or equal to e, in t. where e,
is the primitive event occurrence at which E is
recognized. Similarly, fi is greater than or f?+M.l t0

fi int.

3. Consider the sub-expression reZutive +(A) of E. w.1.o.g.
the k* sub-expression of E. An occurrence tuple t

sutisfis this expression if

1. fk is greater than or equal to f l.

2. ekisatupleofn~loccurrencetuplest,,...,t,.

3. Each t i Satisfies A.

4. The origin-entry of tl is equal to fk in t, the origin
entry of Ii, i> 1, equals succ(e, of tuple tie,).

5. The et entry oft, has an eid less than or equal to
the ei entry of t - it is the “effective et” event
occurrence (where the k” expression ends).

4. Consider the subexpressionA h B of E, w.1.o.g. the k*
sub-expression of E. Let A be the i* sub-expression of E
and let B be the j& sub-expression of E. An occurrence
tuple t satisfies this sub-expression if

1. it separately satisfies both sub-expressions for A
andB.

2. fi=fj=fk.

3. ei=ej=ek

4. ek is less than or equal to e, in t, where e, is the
primitive event occurrence at which E is
recognized. Similarly, fk is greater than or equal
tofl in t.

5. Consider the sub-expression !A of E, w.1.o.g. the k”
sub-expression of E. An occurrence tuple t suGs~s this
sub-expression if there exists no occurrence tuple t’ for
the sub-history from fk till ek which satisfies the sub-
expression A.

Finally, an expression E is satisfied in h at event occurrence o if
there is an occurrence tuple satisfying E whose origin-entry is
first[h] (the first event occurrence in the history h) and its E
entry is e. E [h] is defined to be the set of all event
occurrence.s in h satisfying E.

2. CORRELATION VARIABLES

We describe here how to build an automaton to determine if the
current event satisfies an expression E that contains correlation
variables. Such an automaton will be used to determine if the
current event is in E[h]. The difference between this
construction and the one for expressions without variables is
that the states of the automata we construct may be marked.
An automaton entering a state marked with x after scanning h
means that there is a way for the last event in h to satisfy all
sub-expressions equated with x. In the construction, ME will
denote the marked automaton for E.

We describe here the automata construction for a restricted
case in which no correlation variables appear within negated
sub-expressions. This construction is as follows:

1. For an event expression E without variables, the machine
is ME as constructed in Sec. 3: no states are marked.

2. Consider the event expression E < x,y , . . . > = w and the
machine MEcr,?, ,, let M’ be obtained from
M E<x.y:..> as follows. Introduce a new state q,
connecting via empty event transitions all accepting
states of ME<r.y, _._, to q. making 4 accepting and all
states of MECrJ, , non-accepting. State q is marked
with w. All transitions out of q are into a new non-
accepting state p; p self-loops on all transitions.

3. relative(A <x, y. . . >, B <z, w. *. . >). If there
exists a variable w appearing in both A and B then the
expression can not be satisfied and the resulting machine
is that for NULL in Sec. 3, no states are marked.
Otherwise, use MA<=, r, , and Ma,,, y,. , and
construct a non-deterministic machine by connecting the
accepting states of MA<=, y,. . , to the start state of
M scI y , via E transitions. The start state is that of
M A<X: r,‘... ,. The accepting states are those of
M s <*, y,. ,. Marks are preserved from the constituent
machines.

4. A <x, y, . . . > A B <z. w, . . . >. Form a cross
product machine as for A /\ B in the construction for
expressions without variables. Marks are determined for
each state and each variable as follows. If x is a variable
appearing in A (respectively, in B) but not in B

336

(respectively, not in A), then (p,q) is marked with x in
the cross product machine iff p (respectively, 4) is
marked with x. If x is a variable appearing in both A and
B then (p.q) is marked in the cross product machine iff
both p and q are marked with x.

5. 3 w E <x,y, . . . ,w >. First construct two copies Ml
and M2 of IV~<~,~, . >. Make all states of Ml non-
accepting. For all states q marked with w in Ml, add a
transition on E from q in Ml to q in M2, and erase the w
mark from each state q of Ml and M2. Let the start state
of the combined machine be that of M 1.

The intuition behind the construction is as follows. Let x be a
correlation variable. The machines we construct are generally
non-determinis tic. Once a computation thread enters a state
marked with x. it cannot in the future enter any state marked
with x, this is ensured inductively by the construction. Also, if
a computation thread enters a state marked with x, the only way
for it to parse the history is that all sub-expressions equated
with x are simultaneously satisfied at the event occurrence upon
which the state was entered. What remains is to “force” all
computation threads to pass through an x marked state. This is
achieved by having two machine copies and “jumping” from
one copy to the other. This ensures that any accepting
computation thread will pass through an x marked state.

Theorem 2: Let E be an event expression which may contain
correlation variables subject to the above restrictions. Let
machine M, be constructed as above. Let M,d be a
deterministic automaton accepting the language accepted by
ME. ME’ enters an accepting state on scanning the last event
occurrence in h iff the last event occurrence in h satisfies E.

Proof by induction on the construction. The final step in the
construction is to determinize the machine M, to obtain the
machine ME’.

The general case involves the appearance of correlation
variables within negated sub-expressions. The difficulty is that
to form a machine for ! E we need to determinize the machine
for E. In doing so, we have states associated with subsets of
states in E and the determination of markings is more complex.
Due to its length the full construction is not presented here.

However, it is not too hard to extend the above construction to
the case where a correlation variable appears solely within a
negated sub-expression (or solely within a rel+ sub-
expression). In such a case, construct the machine for the sub-
expression as just shown and determinize it. Observe that
there are no markings in the machine at this stage so that
nothing special need be done with respect to markings in the
determinization. Thereafter, continue the inductive
construction of the machine for the full expression, including
the negation (or rel+). which is now applied to an event
expression with no (free) variables, so that step 1 of the
construction applies.

3. EVENT MODIFICATION BY ATTRIBUTE
SPECIFICATION

We outline an implementation of attribute modified event
expressions. We first consider the sub-class of expressions in
which there is a single attribute, say I (which is account# in the

following example). We start with a single automaton M, for
the whole set of expressions represented by an attribute event
expression. M, is an incomplete machine in that it may scan
symbols for which it has no defined transitions. For such
symbols, each state is equipped with a transition on such
“unknown alphabet symbols”. Upon an attribute event
occurrence, e.g. order(i= 121.40). if M, has a transition on
order(l) then we create a new automaton Mltl as a copy of
M,. In this automaton, all transitions on order(l) are replaced
with order(121). This automaton starts at the state M, was in
and continues on the event order(121). M, continues as
specified by the unknown alphabet symbol transition from its
current state. The machine Mlu now operates independently.
In this way as a new account number (0 is introduced, a
dedicated machine for it is spawned. Also, from now on an
event such as order(121) is interpreted as an unknown
alphabet symbol by M,.

This implementation idea generalizes to expressions with more
than one attribute. To illustrate the idea let us consider the case
of two attributes, I and J. Basically, if previously each
spawned machine was indexed by a single item, e.g. M,,, now
each machine will be indexed by either a single value or by two
values. M, spawns as in the case of a single attribute. If M,
spawns a machine for or&r(J= 121.50) this machine will be
denoted MIzlzl. This machine may later on spawn a machine
for perform(Z=33,8), it will be denoted as M,=33J=121. The
process of spawning M,=33J=121 from MI=,,, is similar to that
of spawning M,,, from M, when we treated the single attribute
case. So, in general we shall have machine M, “looking” for
new account numbers, machines that have fixed an account
number for either I or / and machines that fixed account
numbers for both I and J. Once a “parent machine” spawns a
machine for an attribute, it regards future events based on this
attribute as an unknown alphabet symbol.

Consider again the case of a single attribute. At tirst glance, it
appears wasteful to spawn new machines each time a new
account number is encountered. In fact, one need not duplicate
M,. Each machine, for example, M12,, can be represented as
an array element say a[1211, whose content is the state M,ar
is in. Some additional bookkeeping information may be
required, e.g. a list of “activated” machines.

If the domain of potential values for an attribute is large, one
can use a hash table implementation of an array. The method
generalizes naturally for the case of more than one attribute.
The method can be improved upon in various ways and we
leave this topic to future publications.

337

REFERENCES

[l] C. Beeri, S. Naqvi, R. Ramakrishnan, 0. Shmueli and S.
TSW “Sets and Negation in a Logic Database
Language”, Proc. 6th Symp. Principles of Database
Systems, San Diego, Calif., March 1987.21-37.

[2] C. Beeri and T. Mile, “A Model for Active Object

141 U. Schreier. H. Pirahesh, R. Agrawal and C. Mohan,
“Alert: An Architecture for Transforming a Passive
DBMS into an Active DBMS”, Proc. of the 17th Int’l
Conf. on Very Large Databases, Barcelona, Spain, Sept.
1991,469-478.

151 A. Silberschatz, M. Stonebraker and J. Ulhnan,
“Database Systems: Achievements and Opportunities”,
Comm. ACM 34, 10 (October 1991). 110-120.

Oriented Database”, Proc. of the 17th Int’l Conf. on
Very Large Databases, Barcelona, Spain Sept. 1991,
337-349.

[16] M. Stonebraker and G. Kemnitz, “The POSTGRES
Next-Generation Database Management System”,
Comm. ACM 34,lO (October 1991). 78-93.

[3] S. Chakravarthy and D. Mishra, “An Event Specification
Language (Snoop) for Active Databases and its
Detection”, University of Florida CIS Tech. Rep.-91-23,
September 1991.

[4] C. I. Date, A Guide to the SQL Standard. Addison-
Wesley, 1988.

[5] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy,
M. Hsu, R. Ladin. D. McCarthy, A. Rosenthal, S. Sarin,
M. J. Carey, M. Livny and R. Jauhari. “The HiPAC
Project: Combining Active Databases and Timing
consmaints”, ACM-SIGMOD Record 17, 1 (March
1988). 51-70.

[6] U. Dayal. M. Hsu and R. Ladin. “A Transaction Model
for Long-Running Activities”, Proc. of the 17th Int’l
Co@ on Very hge Databases, Barcelona, Spain, Sept.
1991, 113-122.

[7] D. Gabbay and P. McBrien, “Temporal Logic &
Historical Databases”, Proc. 17th Int’l Conf. Very Large
Data Bases, Barcelona, Spain, 1991.423430.

[8] N. H. Gehani and H. V. Jagadish, “Ode as an Active
Database: Constraints and Triggers”, Proc. 17th Int’l
Co@. Very Large Data Bases, Barcelona Spain, 1991.
327-336.

[9] N. H. Gehani. H. V. Jagadish and 0. Shmueli. “Event
Specification in an Active Object-Oriented Database”,
Proc. ACM-SIGMOD 1992 Int’l Conf on Management
of Data, San Diego, CA, 1992.

[lo] D. Harel, “Statecharts: A Visual Formalism for Complex
Systems”, Science of Computer Programming 8, (1988)
231-274.

[ll] B. Krishnamurthy and D. S. Rosenblum, “An Event-
Action Model of Computer-Supported Cooperative
Work: Design and Implementation”, Proceedings of the
Internationai Workshop on Computer Supported
Cooperative Work, April 1991, 132--145.

[12] G. M. Lohman, B. Lindsay, H. Pirahesh and K. B.
Schiefer, “Extensions to Starburst: Objects, Types,
Functions, and Rules”, Comm. ACM 34. 10 (October
1991). 94-109.

[13] D. S. Rosenblum and B. Krishnamurthy. “An Event-
Based Model of Software Configuration Management”,
Proceedings of the 3rd International Workshop on
Sofmare Configuration Management, June 1991,94-97.

338

