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ABSTRACT 

Active database systems require facilities to specify triggers 
that fire when specified events occur. We propose a language 
for specifying composite events as eveti expressions, formed 
using event operators and events (primitive or composite). An 
event expression maps an event history to anothe-r event history 
that contains only the events at which the event expression is 
“satisfied” and at which the trigger should 6re. We present 
several examples illustrating how quite complex event 
specifications are possible using event expressions. 

In addition to the basic event operators, we also provide 
facilities that make it easier to specify composite events. 
“Pipes” allow users to isolate sub-histories of interest. 
“Correlation variables” allow users to ensure that different 
parts of an event expression are satisfied by the same event, 
thereby facilitating the coordination of sub-events within a 
composite event. 

We show how to efficiently implement event expressions using 
finite automata. Each event causes an automaton to change 
state. When an automaton reaches an accepting state, a 
composite event of interest is recognized, and the 
corresponding trigger fired. 

Events have attributes. For primitive events, these could be 
parameters of the activity that caused the event, selected parts 
of the database state, or functions computed therefrom. For 
composite events, attributes are derived from the attributes of 
the constituent primitive events. These attributes can be used 
in checking conditions, and in any actions triggered. Event 
expressions can specify values (or sets or ranges of values) for 
particular attributes, and can even require that some attributes 
be equal. The composite event specified by the expression 
does not occur unless the specified condition on attributes is 
satisfied. 
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1. INTRODUCTION 

Of late, there has been a surge of interest in active databases 
[2,5,5,8,12.14-161. In an active database, a trigger ties when 
an event of interest happens and some condition is satisfied. 
Most efforts have focussed on the trigger firing mechanism and 
the execution of the triggered action. However, recent work 
[3,6,9], has recognized the importance of event specification. 
Of special interest is the Specification of composite events, 
which are constructed from (simpler) primitive events [5]. 

We propose a language for composite event specification. 
Specifying composite events is non-tivial because a composite 
event refers to events that do not all happen simultaneously and 
because a composite event can often be caused in more than 
one way. Composite events are specified as event expressions, 
which are formed using evenf operators. An event expression 
maps an evetu history to another event history that contains 
only the events at which the event expression is “satisfied.” 
An event history, or simply a history, is an ordered set of 
primitive events. Primitive events are database operations of 
interest such as the update of a data value, the commit of a 
transaction, etc. 

To facilitate writing composite event expressions we provide 
some additional constructs. “Pipes” allow users to focus only 
on events of interest. “Correlation variables” allow users to 
ensure that different parts of an event expression are satisfied 
by the same event. This facilitates coordination of sub-events 
within a composite event. One can think of them as 
“pointers” to specific history events, as free variables in a 
logic program, or a communication mechanism as in statecharts 

1101. 

Events have attributes. For primitive events, these could be 
parameters of the activity that caused the evenL selected parts 
of the database state, or functions computed theretiom. For 
composite events, atnibutes are derived from the attributes of 
the constituent primitive events. These attributes can be used 
in checking conditions, and in any procedure actions triggered. 
Event expressions can specify values (or sets or ranges of 
values) for particular attributes. and can even require that some 
atnibutes be equal. The composite event specified by the 
expression does not occur unless the specified condition on 
attributes, if any, is satisfied. We note a similarity between 
events with attributes and parametrized states in statechar& 

[lOI. 

Event expressions have the same expressive power as regular 
expressions. As such, any mapping from histories to histories 
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that can be specified by an event expression can be executed by 
a finite automaton. We show explicitly how to construct such 
an automaton for an event expression. We also show how 
(multiple) automata can be constructed to handle events with 
attributes. These automata can directly be translated into code 
such that an inexpensive state transition table look-up for 
relevant automata is all that is required each time an event 
(such as an update) occurs in the database. 

occurred. 

An event history, or simply a history, is a finite set of event 
occurrences in which no two event occurrences have the same 
event identifier. When this set is empty, the history is called 
the null history. The event occurrences in a history are 
sometimes referred to as points. A special primitive event sturt 
occurs at the beginning of the system history Y. Its eid is less 
than the eids of all other event occurrences. 

The paper is organized as follows. In section 2 we formalize 
event expressions, introduce a collection of useful operators 
and present examples. In section 3 we explain how to build 
tinite automata for event expressions. The notion of an 
occurrence tuple. which is a “justification” for the occurrence 
of a composite event, is introduced in Section 4. Section 5 
treats correlation variables in expressions. Event attributes are 
examined in section 6. Two comprehensive examples are 
presented in Section 7. Section 8 concludes. 

2.2 EVENT EXPRESSIONS 

An event expression E. which specifies a primitive or 
composite event, is a mapping from (domain) histories to 
(range) histories: 

E: histories + histories 

2. EVENTS 

The result of applying an event expression to a history h is 
itself a history which contains the event occurrences of h at 
which the events specified by E take place. These intuitive 
notions are formalized below. 

An “event” is a happening of interest. Events, including 
composite events, happen instantaneously at specific points in 
time. In object-oriented databases, for example, events are 
related to object manipulation actions such as creation, 
deletion, and update or access by an object method (member 
function). Similarly, in a relational database, events are related 
to actions such as insert, delete, and update. The events can be 
specified to happen just prior to or just after the above actions. 
In addition, events can be associated with transactions and 
specified to happen immediately after a transaction begins, 
immediately before a transaction attempts to commit, 
immediately after a transaction commits, immediately before a 
transaction aborts, and immediately after a transaction aborts. 
Events can also be associated with time, for example, clock 
ticks, and the recording of the passage of a day, an hour, a 
second, or some other time unit. 

Let E be an event expression. E[h] denotes the application of 
E to history h. It is always the case that E[h] E h. We say 
that E takes place at event e in h iff e E E[h]. An event 
occurrence ee h satiqfies expression E iff eE E[h]; E is said to 
be satisjied by e. 

An event occurrence e, takes place after (before) an event 
occurrence e2 if the eid of e, is larger (smaller) than the eid of 
ea. Two event occurrences e, and e2 refer to the same event 
occurrence if their eids are identical. 

An event expression is formed using primitive events and the 
operators (connectives) described below. An event expression 
can be-NULL., any primitive event a, or an expression formed 
using the operators A, ! (not), relative and relutive +. The 
semantics of event expressions are defined as follows (E and F 
are used to denote event expressions): 

Event specification must start with a set of basic events, such 
as the ones mentioned above, which are supported by the 
database system. Primitive events’ are basic events optionally 
qualified by a mark, which is a predicate used to hide or 
“mask” the occurrence of an event. For instance, the event 
“before large withdrawal” can be composed using the basic 
event “before execution of the method withdrawal” and 
qualifying it with the mask “withdrawal amount > 1000”. We 
shall use primitive events as the basis of our discussion of 
composite event specification. We assume that primitive 
events are mutually exclusive and that their number is finite. 

1. 

2. 

3. 

4. 

5. (!E)[h] = (h-E[h]). 

2.1 EVENT OCCURRENCES AND EVENT 6. 
HISTORIES 

An event occurrence (informally referred to as an event) is a 
tuple of the form (primitive event, event-identifier). Event- 
identifiers (eids) are used to detine a total ordering, denoted by 
<, on event occurrences. An example of an event identifier is a 
time-stamp specifying the time at which the primitive event 

E[null] =null for any event E. where null is the empty 
history. 

NULL[h] = null. 

a[ h], where CI is a primitive event, is the maximal subset 
of h composed of event occurrences of the form (a, eid). 

(E A F)[h] = h,nh, where 
h, = E[h] and h, = F[h]. 

relutive(E, F)[h] are the event occurrence-s in h at 
which F is satisfied assuming that the history started 
immediately following some event occurrence in h at 
which E takes place. 

Formally, relative(E, F)[h] is de&red as follows. Let 
E’[h] be the iti event occurrences in E[h]; let hi be 
obtained from h by deleting all event occurrences whose 
eids are less than or equal to the eid of E’[ h]. Then 
relutive(E, F)[h] = UF[h;], 

where i ranges from 1 to the cardinality of E[ h]. 
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7. refative+(E)[h] = firelative’(E)[h] where 
i=l 

relufive’(E) = E and 
relative’(E) = reZative(relutive’-‘(E), E). 

Regular expressions are widely used for specifying sequences 
The above event expression language has the same expressive 
power as regular expressions [9].’ It can be shown that the 
operators A. !, relative, and relative + constitute a minimal 
operator set; reducing it will make the expressive power less 
than that of regular expressions. 

2.3 MORE OPERATORS FOR EVENT 
EXPRESSIONS 

We present some additional operators (connectives) that make 
composite events easier to specify. These operators do not add 
to the expressive power provided by the operators introduced in 
the previous section. 

Let h denote a non null history, and E, F, and Ei denote event 
expressions. The new operators are 

a. E v F=!(!E A !F). 

b. any denotes the disjunction of all the primitive events 
except for start. 

c. prior(E. F) specifies that an event F that takes place 
after an event E has taken place. E and F may overlap. 
Formally, prior(E, F) = relutive(E, any) A F. 

d. prior(E,, . . . , E,) specifies occurrences, in order, of 
the events E,. E, ,..., E,. 
prior(E,, . . . , E,) = 

prior(@rior(E,, . . . , E,,,-,), E,). 

e. sequence(EI,. . . , E,) specifies immediately 
successive occurrences of the events E, , E, ,..., E,: 

1. 
sequence(E, , . . . , E,) = 

sequence((sequence(E, , . . . , E,-l ) , E,). 

2. 
sequerxce(E,, E,) = 

rdative(E, ,!(relative(urzy, any))) A E,. 

The first operand of the conjunction specifies the 
first event following event Er. The second 
operand specifies that the event specified by the 
complete event expression must satisfy Ez. 

f. first identifies the first event in a history. 
first = !reZative(any, any). 

g. (EIF)[h] = F[E[h]]; i.e., F applied to the history 
produced by E on h. Operator 1 is called pipe, with 
obvious similarity to the UNIX@ operator. 

h. 

i. 

j. 

k. 

1. 

m. 

n. 

0. 

P. 

(<n > E) specifies the n* occurrence of event E. 
Formally, 
(<n>E) = ((Elseq(ony,, any,, . . . , onyn))lfirst), 
where each any i is simply any. 

(every <n > E) specifies the n*, 2n*, . . , occurrences 
of event E. Formally, 
(every <n>E)=(Elrelative+(<n>any)). 

(F / E)[ h ] = F[ h’ ] where h’ is null if E[h] = null 
and otherwise h’ is the history obtained from h by 
eliminating all the event occurrences before and 
including (<l>E)[h]. Formally, 
F/E = relative((!prior(E. any)~E), F), equivalently, 
F/E = reMve((Elfirst),F). 

Suppose that E takes place m times in h. F /+ E [ h ] = 

GF[ h’;]. h’;, l<i<m-1, is obtained from h by 
i=l 

eliminating all event occurrences before and including 
event ( < i > E)[ h] and all event occurrences including 
and following (<i+ l>E)[h]. h’, is obtained from h 
by eliminating all event occurrences before and including 
event (<m>E)[h]. 

E is used to delimit sub-histories of h, where the 
“delimiter” are event occurrences at which E takes 
place. F is applied to each such sub-history, and the 
results of these applications are combined (unioned) to 
form a single history. 

firstAffer( E 1, E2, F)[h] specifies events E 2 that take 
place relative to the last preceding occurrence of E, 
without an intervening occurrence of F relative to the 
same E I. Formally, 

firsfAffer(E,, E2. F) = 
(E, A !prior(F, MY)) /+ El. 

before(E) = prior(E. any). 

happened(E) = E v prior(E, any). 

prefix(E) [h] is satisfied by each event occurrence e 
such that there exists a history h’ identical to h up to 
event occurrence e, and E is satisfied in h’ at some event 
occurrence following e. In other words, prefix(E) is 
recognized at each event occurrence as long as a 
possibility exists that an E event will be recognized 
eventually. This operator is normally used in the form 
!prefix(E). which occurs as soon as we can be sure that 
E cannot occur. 

E*T is a series of zero or more E events followed by a 7’ 
event. 
E*T = T A !prior(!E, T). 

In addition to the operators described above, there may be 
composite event sub-expressions that are used repeatedly in 
particular applications. Such sub-expressions may be defined, 
named and then used in building up larger expressions. We do 
this in some of the examples later on. 

2.4 EXAMPLES 
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2.4.1 EVENTEXPRESSIONS: 
1. 

2. 

3. 

4. 

5. 

6. 

All occurrences of an event a: 

a 

The5* occurrence of deposit: 

(<S>deposit) 

deposit followed immediately by withdraw: 

.sequence(deposit, withdraw) 

deposit followed eventually by withdraw: 

priortdeposit, withdraw) 

deposit followed eventually by withdraw with no 
intervening interest: 

relativetdeposit, !before(interest)) 
A withdraw 

Event expression that is satisfied when an E occurs 
provided there is no “non E" event before it. We are 
essentially recognizing a series of E events: 

E A !prior(!E, E) 

2.4.2 DISCOUNT RATE CUT: The United State Federal 
Reserve Board raises and lowers a key interest rate, called the 
discount rate, to control inflation and economic growth. Three 
or more successive discount rate cuts (D) without an 
intervening discount rate increase (I) is a rare phenomenon and 
is of interest to the financial community. Many other events 
can occur, for example, the prime rate may be cut and the stock 
market can crash, but these events do not interest us here. Our 
problem is to write an event expression that is satisfied by such 
cuts in the discount rate. 

Here is an example history with the dots marking the events in 
the history with the discount rate cut events labeled by D 
(decrease) and increases labeled by I (increase): 

D ID D D# D#I 

The composite event of interest cccurs at the last two D events 
(marked with #). 

We will now give an event expression that specifies a 
composite event satisfied when three or more successive 
discount rate cut events D take place without an intervening 
rate increase event I. We specify this composite event in 
steps. First, the event expression 

prior(1, D) 

specilies D events that are preceded by an I event. Expression 

!prior(I, D) 

specilies all events except the occurrences of D that are 
preceded by I. Expression 

!prior(I, D) h D 

specifies D events that are not preceded by an I event. 

The expression 

relative(D, !prior(I, D) A D) 

specifies a D event followed eventually by another D event with 

no intervening I events. This expression gives us a pair of D 
events with no intervening I events. Note that in this case, the 
relative operator is used to look at the history starting after 
a D event. 

Finally, the event that we are interested in can be specified as 

relative (relative (D, !prior(i, D) A D), 
!prior(i, D) A D) 

The outermost relative tinds another D without a preceding 
I giving us three D events without an intervening I event. 

Using the pipe operator, we can write the composite event for 
the three successive discount rate cuts simply as 

(I v 0) I sequence(D, D, D) 

3. AUTOMATA CONSTRUCTION 

In the previous section we developed a powerful mechanism to 
specify composite events. In a real database, we have to be 
able to detect these occurrences on the fly, for instance as a 
consequence of some update. Clearly, it is impractical to 
perform a complete check for each composite event every time 
a primitive event occurs in a database. We present an 
incremental detection technique in this section. 

Since event expressions are equivalent to regular expressions, 
except for E which is not expressible using event expressions 
[9], it is possible to “implement” event expressions using 
finite automata. The history in the context of which an event 
expression is evaluated provides the sequence of input symbols 
to the automaton implementing the event expression. The 
automaton is fed as input the primitive event components from 
event occurrences in the history, one at a time, (in eid order) as 
they occur. If, after reading a primitive event, the automaton 
enters an accepting state, then the event implemented by the 
automaton is said to take place at the primitive event just read. 
The history need not be known in its entirety u priori, and the 
automaton can be used, in “real time”, as a triggering device. 

Given an event expression, E, we now show how to build an 
automaton Ms. The construction resembles that of an 
automaton for a regular expression. All machines have a non- 
accepting start-state. Let E denote an empty event which can 
be used in automata transitions; it is similar to the empty string 
in automata theory. We consider the possibilities for E: 
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NULL: ME has a start-state and an additional state p 
(non-accepting). On all primitive events the move from 
the start-state is into p; p self-loops on all primitive 
events. 

a, where a is a primitive event: ME has three states: the 
start state (non-accepting), p (accepting) and q (non- 
accepting). On a the move from the start-state is into p. 
On all other primitive events the move is into q. On a 
both p and q move into p and on all other primitive 
events both p and q move into q. 

Et I\ Ea: Using inductively M1 for El and Mz for EZ, 
build an automaton M that is the product of the two, with 
each state in M corresponding to a pair of states, one in 
M, and one in Mz. A state in M is marked accepting if 
and only if the states of M, and M, in the corresponding 



pair are both accepting. All other states in M are non- 
accepting. The unique start state of M is the state 
corresponding to the pair of start states of M, and Ma. 
Let Ai be the transition relation of M,, i = 1.2. From 
state (p, q) on a M moves to (r. s) such that 
~6 AI (p. Q) and SE b(q. a). 

!E: Let ME be a deterministic automaton for E. The 
automaton for !E is obtained from M, by switching the 
roles of accepting and non-accepting states, except for 
the start-state which remains non-accepting. 

relative(E, F): Build two automata ME and MF for E 
and F, respectively. Connect the accepting states of ME 
with E (empty event) transitions to the start state of MF. 
The accepting states are the accepting states of MP and 
the start state is that of M,. Note that M, may be non- 
deterministic. 

relative +(E): Build an automaton ME for E. Connect 
the accepting states of MB with E (empty event) 
transitions to the start state of ME. The accepting states 
of the newly constructed automaton are those of M,, and 
the start state is the start state of ME. Note that the new 
automaton may be non-deterministic. 

Theorem 1: Let h be a history. Let E be an event expression 
and ME the constructed automaton. Let MEd be a deterministic 
automaton accepting the language accepted bt M,. Then, the 
last event occurrence of h is in E[ h] iff MEd is in an accepting 
state after scanning h. 

Proof follows from the construction, inductively. 

Corollary 1: Let h, E, and MEd be a deterministic automaton 
as above. Then E[h] contains exactly the event occurrences o 
such that when scanning h, MEd is in an accepting state 
immediately after scanning 0. 

Automata can be derived for the additional operators by using 
their translation into basic operators. While more efficient 
direct constructions may exis.L we shall not present these, for 
brevity. The only exception are the 1 (pipe), / + and the prefix 
operators, items g, k and o respectively in Sec. 2.3, for which 
we have not provided a translation into basic operators so far. 

Consider an expression E 1 F employing the pipe operator. Let, 
inductively, Me (respectively, MF) be a finite automaton for E 
(respectively, F). Without loss of generality, both automata aTe 
deterministic with transition functions AE and AF. Form a 
cross-product machine M from ME and MF. The start-state of 
M is the state composed of the two start states of ME and MF. 
Suppose M is in state @. q) scanning u. If AE@, a)=f is an 
accepting state of ME then the new state of M is v ,AF(q, a)), 
otherwise it is v,q). Intuitively, the effect is that M, only 
‘sSWS” occurrences which ME declares to be in its output 
history. The accepting states of M are those (p, q) where p is 
an accepting state of ME and q is an accepting state of MF. 

Consider an expression F/+E. Using inductively (w.1.o.g the 
deterministic) finite automata M, for E and M, for F, build an 
automaton M that is the product of the two, with each state in 
M corresponding to a pair of states, one in ME and one in Mp. 
A state in M is accepting if and only if the component state of 

MF is accepting. The unique start state of M is the state 
corresponding to the pair of start states of ME and MF. Let As 
(A,) be the transition function of M, (MF). We now explain 
how M moves when in state @, q). On reading u, the move is 
into (r, s) where As(u)=r and A,(u)=s, unless r is an 
accepting state of ME. If r is an accepting state of ME. then 
instead of moving into (r, s), move into (r,SturtF). Finally, 
construct the desired machine M’ as a combination of ME and 
M, with the start state of M’ being the start state of M,, the 
accepting states of M’ being the accepting states of M, and all 
transitions out of all accepting states of ME are replaced by E 
(empty event) transitions to the start state of M. 

Consider an expression prefix(E). Using inductively 
automaton M, for E, build an automaton M for prefir(E) as 
follows. M is the same as M, except for the specification of 
accepting states. A state q in M is an accepting state iff there 
exists a sequence of primitive events taking q to a state which 
is an accepting state in ME. 

4. OCCURRENCE TUPLES 

An occurrence tuple encodes a derivation tree showing why 
sub-expressions of an event expression are “satisfied”. When 
a composite event occurs, it is possible to &rive one or more 
occurrence tuples for it to explain why it occurred, and to 
identify particular events in the history that were relevant to its 
occurring. The identification of an occurrence tuple from a 
history in an active database is akin to parsing a string in a 
compiler. 

Let E be an event expression and let El, . . . , EL be its sub- 
expressions (including itself as El). These sub-expressions are 
determined by inductively decomposing the event expression to 
form a “parse-tree”. These sub-expressions can be (uniquely) 
ordered by a (preorder) traversal of this tree. For example, if 
E = relative (a, relative + (a) ), then the sub-expressions of E are 
E, D (first), relative +(a), and u (second, inside the relutive +). 

An occurrence tuple for E (for a history h) is a tuple of the 
form (origin,f, ,e,, . . . , fk,et) where origin is an event 
occurrence in h with eid less than or equal to the eid of each ei 
or fi. Each e;, for i = 1, . . . , k, is an event occurrence in h, at 
which the sub-expression Ei is “satisfied”. Each f; is an event 
occurrence whose eid is less than or equal to the eid of ei, 
i=l ,...,k; it indicates “from” where in the history the 
satisfaction of the i’th sub-expression starts, origin = f 1. So, 
the i’th sub-expression is satisfied on the history segment from 
fi till ei. 

If the sub-expression Ei consists of the operator rehive + and 
its argument, then ei is not a single event occurrence but rather 
is a sequence of one or more occurrence tuples, fi’s eid must be 
less than or equal to the eids in these tuples. Since E, is 
always the event E itself, the eid of its occurrence point e, 
must be greater than or equal to the eids of all other ei. 

A sub-expression Ei ferminutes at event occurrence e relative 
to an occurrence tuple t if either ei. its entry in I, is e, or Ei is 
of the form relative +(F) and e is the &dive e, which is 
defined as the largest eid in the last occurrence tuple contained 
in e,. 

331 



See the appendix for a formal definition of an occurrence tuple 
for an event expression. 

5. CORRELATION VARIABLES 

Correlation variables are used to refer to the same event in the 
history in different parts of an event expression. Consider the 
following event expression E that contains the correlation 
variable x: 

E = 3 xprior(b=x, c) ,-, !relative(x, prior(a, c)) 
A refafive(x. prior(d. c)) 

Consider the following histories (h, is a prefix of ha which is a 
prefix of h s): 

h,=ebac 
h,=e b a c d b c 
h,=ebacdbcdbc 

We want to determine if E can be satisfied (will trigger) at the 
last event, a c ever& in the above histories. When determining 
the points at which E can be satisfied in the above histories, the 
correlation variable x will be associated with a specific b event 
in each history. In case of h,, x must be associated with the 
only b present; E will not trigger at c because 
!relative(x, prior(a, c)) is not satisfied. In case of h,, there 
are two b events. The first has the same problem as in h 1. If 
we associate x with the second b in of h,, then 
relative(x, prior(d, c)) is not satisfied. In case of h,, there 
are three choices of b with which to associate x. If we choose 
the first, !reZative(x.prior(a. c)) is not satisfied. If we choose 
the third, relative(x. prior(d, c)) is not satisfied. However, if 
we choose to associate x with the second b, then E will trigger 
at the last c. 

To appreciate the role played by x, consider the event 
expression E’. given below, which is the same as E except that 
the last occurrence of x has been replaced by b. 

E’ = 3 x prior(b=x, c) /\ !rel&ive(x, prior(a, c)) 
A relative(b, prior(d. c)) 

E’ triggers on h, in the same way as E. However, it also 
triggers on h,, where x is associated with the second b. 
relative(b,prior(d, c)) is satisfied now on account of the first 
b, which does not have to be associated with x. 

Finally, the event expression E”, without correlation variables, 
given below, does not trigger on h,, h,, hJ, or any other 
history of which h 1 is a prefix. The reason is that h 1 has in it 
the sequence b a c guaranteeing that the clause 
!relative(b, prior(a, c)) can never be satisfied. 

E” = prior(b, c) A !refative(b, prior(a, c)) 
A relative(b, prior(d, c)) 

We shall use the notation E to denote an event expression 
without any correlation variables, E<x,, x2, . . . x,> to 
denote an event expression E with a “free” set of correlation 
variables (xi, x2, . . . x,), n10, and the notation EC> to 
denote an event expression E with correlation variables none of 
which are “free”. 

We use the quantifier 3 to specify the scope of correlation 
variables. The syntax of event expressions with correlation 

variables, and the concepts of free and bound variables, are 
defined inductively below. The definition of satisfaction of an 
event expression by an occurrence tuple is extended. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

E: E has no free variables. 

relative(E<xl.x2 ,._., x,>, F<y,,y,,. ..,y,>): 
The free variables are (xi, x2, . . . , x,) u 

(Yl. Y2, ‘.. s Yn). 

relative + (E < > ): Operator relative + cannot be applied 
to an event expression with free correlation variables. 

Ecx,,x2. . . ..x..,> A F<y,,yz, ..., yn>: The 
free variables are (xi, x2. . . . , x,) u 

(Yl. Y23 ... 9 Yn). 

!E<x,, x2, ..., X,X The free variables are 
(Xl, 7.2. . . . > Xm). 

3 w E<x,.x,, . . . . x,,w>: All variables in 
(x1. x2. . . ,x, ) are free in this expression, w is 
bound. 

An occurrence tuple r satisfies a sub-expression of the 
form 3 wA<xl,x2, . . ..x.,,> of E. if it satisfies 
A<*,, x2, . . . . x,, w> and all sub-expressions, 
appearing in A<x,, x2. ... . x,. w>, which are 
equated with w are satisfied, and terminate at the same 
event occurrence. 

E<x,, x2, ..-,x,> = w, where w is not in 
(xl. x2. ... ,x,1. The free variables are 
(Xl, x2 9 ... 7 x,,w). 

An occurrence tuple t sati$es the sub-expression 
A <xi, x2. . .. , x, > = w of E, if t satisfies 

Acx,,x,, ... ,x,>. 

Finite automata construction for expressions containing 
correlation variables is given in the Appendix. 

Let us examine another example: 

E = 3 x relafive(a,refarive(b =x,c)) 
A !relafive(x, prior(d, any)) 

Consider the history h = a b d c a b c. For the last c to 
satisfy E we must identify a point x. The fust b, namely 
a (b=x) d c a b c is problematic, because in dcabc 

the last c is preceded with a d. Choosing x to label the second 
b, we get a b d c a (b=x) c, now we can satisfy c in the 
first conjunct of E and there is no satisfaction of prior(d, any) 
in the history c and so the expression E is satisfied by the last c 

in h. 

In the same spirit we can introduce correlation variables into 
the additional operators that we have presented in Section 2.3. 
For example, operator “/+I’ was explained horn first principles 
since, in Section 2.3, it was too cumbersome to define in terms 
of event expressions. However, with the help of correlation 
variables, such definition becomes easy: 
Fl+ E = relative(E=x, F) A !prior(prior(x, E),any) 

A !E. 

Finally, continuing our discount rate example from Section 2, 
we will now use correlation variables to specify three or more 
successive cuts in the discount rate without any intervening 



increases: 

relative(D, prior(D, D=d3) A !prior(I, d3)) 

Correlation variables make it simpler to write the expression by 
giving us a handle with which to refer to specific instances of 
events. 

6. EVENTS WITH ATTRIBUTES 

A set of attributes can be associated with each primitive event. 
These attributes can carry information about the action that 
caused the event to occur, such as the transaction id, the issuing 
user, and so on. The attributes can also record information 
about the state of the database (as visible to the transaction 
causing the event to occur) at the time the event occurs. This 
information can be used when a composite event occurs (at a 
later time), typically by routines executed in the action part 
when a trigger fires. 

For example, the event hire might have three positional 
attributes which semantically refer to the name, age and sex of 
the employee. Each event occurrence will have attribute values 
associated with these attributes. For example, 
hire(smith, 27, m). Another example is an eventfire that has 
one attribute: the m of an employee. An example of a fire 
event is fire(smiZh). 

Composite events “inherit” their attributes from constituent 
simpler events. Consider the following example: 

immediute~re~hire(X) = sequence( fire(X), hire(X, Y, Z)) 
// attribute specification for a composite event. 

The event immediate-re-hire is the a hiring of an employee 
immediately after firing the employee: the attribute of interest 
is the name of the employee. 

6.1 ATTRIBUTE COLLECTION 

Given a composite event specification of the form 
composite-event(X)= E, and an automaton implementing E 
(ignoring the attributes), one may ask for the values of the 
attributes each time the automaton reaches an accepting state. 
A difficult issue in attribute value collection is the multiplicity 
of ways @arsings) in which an event occurrence may be 
declared as part of the output history, i.e., the multiplicity of 
occurrence tuples that could justify a particular composite 
event occurrence. 

Each occurrence tuple specifies a different interpretation of the 
history points where sub-expressions are satisfied, and hence a 
different set of attribute values will in general be collected. 
Such a set of attribute values is called a tuple of compatible 
uttribute values. For example, consider the composite event 
fire-after hire defined as 

fire-after-hire(X, W) = prior( hire(X, Y, Z). fire(W)) 

Once this expression is satisfied, the value, w. of the fired 
employee, IV. is uniquely determined. There may be many hire 
event occurrences preceding this fire event occurrence. Each 
such hire occurrence may supply a different value, x, for X 
resulting in a different tuple (x, w) of compatible values. 

One way is to legislate a preference. Natural candidates are the 
“most recent” or “earliest” sets of satisfying events. This 

seems to be an ad-hoc choice as there might be other 
interesting criteria related to, say, the value of the attributes. 
So, we shall break the problem into two parts. The first part is 
the generation of all possible sets of compatible tuples of 
attribute values. The second part is choosing attribute values of 
interest from within this collection. The second part can be 
thought of as asking a query against a relation, which is the set 
of compatible tuples. 

There are two main steps in collecting attributes values. One 
component is an annotated version of the history that we call 
the annotated history; it contains the necessary information to 
form all possible ways of satisfying an expression. The second 
component is an annotated automaton that is used to produce 
the annotated history. When tuples of compatible attribute 
values are needed, they can be generated easily from the 
annotated history. 

This technique creates all possible compatible tuples of 
attribute values for a composite event occurrence. Typically, 
one is interested in applying a (selection or aggregation) query 
to this set of tuples. Optimization issues with regard to how 
such selections and/or aggregations can be moved in are a topic 
for further research. A detailed description of this technique, 
including possible optimizations. will be given in a future 
paper. 

6.2 EVENT MODIFICATION BY AlTRIBUTE 
SPECIFICATION 

If the same variable appears in multiple places in 
expression it constrains the corresponding values to 
identical. We shall illustrate this concept using an example. 

Consider a brokerage system with accounts 1, . . . , 

an 
be 

m. 
Suppose there are two kinds of primitive events or&r and 
perform. The declarations are as follows: 

Primitive Events: 
order(accouti-num, ask-quantity) 
perform(account-rum, actual-quantity) 
Composite Events: 
complete(I)=prior(order(I, Q) , perform(I. A)) 

So, the complete event checks for a perform event occurrence 
which follows an order occurrence for the sutne account 
number. Formally, this expression is a shorthand for the 
following set of expressions: 

( complete(i)=prior(order(i, Q) , perform(i. A)) : 
i E Accounts) 

where Accounts is the set of all possible account numbers. 

Thus, we can express a set of expressions (one for each value 
of i in the above example), while writing a single expression, 
via attributes. This, in effect, makes the alphabet potentially 
infinite and takes us out of the realm of finite automata. 

In general, there is no need to restrict constraints between 
attribute values just to the simple equality between attributes 
discussed above. One could specify arbitrary constraints 
among attribute values. For instance, an event expression may 
be conjoined with an expression of the form X#Y, indicating 
that the values of attributes X and Y need be distinct; or of the 
form X = constant, constraining the value of attribute X to equal 
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constant If no constraint is specilied, directly or transitively, 
for X and Y then they specify values that may be equal or not 
tXpl. 

In the Appendix we provide a construction of (multiple) 
automata to implement events modified by attribute values. 

7. EXAMPLES 

Our composite event specification facilities provide a 
convenient mechanism for specifying complex situations. The 
declarative nature of these facilities makes complex situations 
relatively easy to specify when compared to how one would 
write code to detect these situations in an imperative language 
such as C++ or C. 

We will consider two examples: specification of the end of a 
point in the game of racketball, and detection of plane landings 
at an airport. Writing event specifications, particularly when 
these specifications are declarative, clarifies the conditions 
required to make an event happen. 

7.1 RACKETBALL 

Racketball is a ball game that typically is played by two players 
in an enclosed room. The ball can hit the walls, the ceiling, or 
the floor. Each of these is significant in that there are rules as 
to when the ball can hit them. For the purpose of this example, 
we ignore the lines on the floor and on the back wall, and allow 
the players only one serve per point. 

A point starts when a player, say player 1, starts off by 
“serving” the ball, the ball must hit the “front” wall directly, 
and then player 2 must hit the ball. Player 2 can hit the ball 
before it lands on the floor the second time (no landing on the 
floor or one landing on the floor is okay; the ball can hit the 
side walls or the back wall in between, but must not hit the 
front wall again before the hit). Player 2’s hit must take the 
ball to the front wall but it can hit the other walls in the 
process. Players 1 and 2 now alternate in hitting the ball. The 
point terminates whenever the above rules are violated. 

We wish to write an event expression to detect the end of a 
pint. First, we define the primitive events: 

1. Player 1 serves: s i 
2. Player 2 serves: s2 
3. Player 1 hits: h i 
4. Player 2 hits: ha 
5. Ball hits floor: floor 
6. Ball hits (touches) front wall: front 
7. Ball hits (touches) a side wall, the ceiling, or the back 

wall: wall 

A point ends as a result of a bad serve, a bad hit, or because the 
player was unable to return the ball. We now specify each of 
these events: 

1. Bud serve: A serve is bad if it does not hit the front wall 
directly. 

Hl = sequence(s,vs,, !front) 

2. Bud hit: Ignoring the ball hitting the other walls, the next 
event after a hit must be the ball hitting the front wall; 
otherwise, the point ends: 

H2 = 
(!wall) I ((first A !front) /+ (h, v ii,)) 

3. Unable to Return: First, we define Twice as the ball 
hitting the floor or the front wall twice, or hitting the 
front wall immediately after hitting the floor: 

Twice = sequence(floor, floor) v 
sequence(front, front) v 
sequence(floor, front) 

We now want to specify the end of a point resulting from 
the event Twice (ignoring the ball hitting the side 
walls). This means that the other player was not able to 
hit the ball back in time: 

!wall I Twice 

The above event expression may be satisfied (triggered) 
by several events after a player is unable to return. For 
example, if the ball bounces ten times on the floor after 
hitting the front, then the expression will be triggered by 
every bad bounce. We can refine this expression to catch 
only the first error with: 

H3 = !wall I 
(Twice 1 first) /+ (h, v h, v s, v s2) 

The end of a point is simply the disjunction of the above three 
expressions dealing with the different ways in which a point 
ends: 

Hl " H2 " U3 

In writing an event expression to detect the end of a point, we 
have written event expressions that isolate bad hits. An 
alternative strategy would be to write an expression that is 
satisfied when the point can no longer be continued because it 
does not satisfy the rules for continuing a point 

We write an event expression to detect the end of a point 
assuming that player 1 is the server. In this example, we use 
the event operator prefix (E) . 

Player 1 starts off by serving, and the ball must hit the front 
wall: 

sequencets,, front) 

A player can return the ball before it hits the floor or after the 
ball hits the floor once but before it hits the floor a second time. 
Ignoring the bail hitting the wall, a valid exchange between 
players 2 and 1 takes place in one of the following four ways: 

1. one = sequence(hs, front, hi, front) 

2. two = sequence(floor, h2, front, h,, 
front) 

3. three = sequence(h2, front, floor, h,, 
front) 

4. four = sequence(floor, hz, front, 
floor, h,, front) 

A rally between two players is a series of one or more 
exchanges, each of one of the types above: 

rally = relt (one v two v three v four) 

A point ends when the sequence of events is not a prefix of 
rally: 
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(!wall I !prefix(rally)) /t sequencets,, front) 

A similar expression can be specified for a point beginning 
with a serve by player 2. The final expression is the disjunction 
of the two expressions. 

One benefit of writing events formally is semantic precision. 
For example, consider a situation, when the ball hits the front 
wall twice without touching the floor and without a player 
hitting the ball. Although such a situation is unlikely, it is 
conceivable that a “strong” person could serve or hit the ball 
so that it hits the front wall as described. In our specification 
such a situation ends the point. (We could not find an answer 
to this question from our racketball playing colleagues. Also, 
we do not lmow who gets the point.) 

7.2 AIRPORT WITH TWO RUNWAYS 

A general aviation airport, with two runways A and B, is used 
by many planes. It has limited communication facilities and 
only visual landings take place. Before takeoff, the pilot of 
each plane informs the airport at which runway the plane will 
land. Once in a while, because of wind patterns or some other 
emergency, the pilot lands a plane at a runway other than the 
one previously declared. 

We will write event expressions based on the following 
primitive events: 

1. W-i (i) : Plane i expected to land at A. 
2. EB (i) : Plane i expected to land at B. 
3. LA (i) : Plane i landed at A. 
4. LB (i) : Plane i landed at B. 

Here are some event expressions that specify events of interest: 

1. Event AT-A ( I ) denotes the event “plane I is expected 
to land at A but has not landed there as yet”: 

AT A(I) = !happened(LA(I)) /+ EAtI) - 

2. Event LAST-B (I) &notes the event “last planned 
landing of plane I at B”: 

LAST-B(I) = 
((LB(I) )r !before(LA(I))) I first) /+ EB(I) 

The right operand of / + 

EB(I) 

specifies that we look at events after the last declaration 
of expected landing at B of plane I. The left hand 
operand 

LB(I) h !before(LA(I)) I first 

specifies the landing of plane I at B and that it has not 
landed at A before that landing. Had such a landing 
taken place, we would no longer be expecting the plane 
to land at B. The right operand of the pipe operator 
ensure that we only look at the first planned landing at B. 

3. UB (I ) denotes an unexpected landing by plane I at B: 

UB(1) = 
((LB(I) h !before(LA(I))) I first) /+ EAtI) 

4. ELAB denotes a landing expected in A that happened at 
B: 

ELABCI) = AT-A(I) h UB(I) 

8. CONCLUSION 

We propose a language for specifying composite events in an 
active database and provide procedures for compiling the 
language expressions using finite automata (and extensions 
thereof). The language syntax includes primitive event 
symbols and event (temporal) operators. Formally, an event 
expression is a function which is applied to an event history 
and “produces” another event history. The produced history 
represents the points in the argument history at which the 
specified composite event which is specified by the expression 
occurs. We provide a procedure for constructing a finite 
automaton corresponding to an event expression. This 
automaton scans the event history in event order, and enters an 
accepting state each time the event just scanned should be in 
the produced output history. When used as a triggering &vice, 
the automaton triggers each time it enters an accepting state. 
Thus complex event combinations can be used to fire triggers 
in an active database. 

We presented a number of extensions. An important extension 
is that provided by the pipe operator 1 . Pipes allow the 
specifier to extract from the real history a hypothetical history 
on which event detection is more convenient We introduced 
“correlation variables”, which are used to indicate that distinct 
sub-expressions are to be satisfied simultaneously. Pipes and 
correlation variables permit a more convenient specification of 
event expressions without increasing their expressive power. 

Events can have attributes. There are three, in some sense 
orthogonal, aspects associated with attributes. First, event 
attributes can be used to constrain the occurrence of events. 
Second, event attributes can supply parameters to trigger 
actions when an event does take place. Third, the attributes of 
constituent events can be “collected” for a composite evenf in 
the form of a relation to which various queries may be applied. 
Of course, an implementation may provide a unified view of 
these aspects. 

We believe that the language of event expressions presented 
here provides a sound basis for specifying quite complex, and 
useful, event combinations of interest in active databases. We 
have shown how all our constructs can be reduced to automata, 
thereby providing an explicit prescription for how code may be 
written to implement composite event detection. While 
efficient code can be generated for many event expressions, 
optimizations are possible, particularly when event attributes 
are present, and this is a topic for further research. 

Although our motivation in investigating composite events is 
uiggers in active databases, event specifications can be used in 
other contexts. For example, event specifications are used for 
software configuration management and cooperative work 
[l 1,131, they can be used for sophisticated text searching 
(where the events are the various characters in the text), and 
they can also be used to examine histories in the context of 
historical databases. Event expressions can also be 
incorporated into query languages such as SQL [4] or LDL [II 
by using a relation to record the event and the event order [7]. 
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APPENDIX 

1. OCCURRENCE TUPLES 

If v is an event occurrence in a history, h. then succ( v) denotes 
the event occurrence immediately following v in h (i.e. succ(v) 
is the event occurrence w whose event identifier is larger than 
that of v and there is no event occurrence u whose event 
identifier is less than that of w and larger than that of v). If v is 
the last event occurrence in a history then succ(v) is undefined. 

Whether an occurrence tuple t = (origin.fl,e,, . . .,fk,ek) 
satisfies an event expression E on history h can be determined 
inductively as follows. Fist, origin=fi indicates where in h 
we start, second, et indicates the event occurrence where 
satisfaction occurs relative to origin. 

1. Consider the sub-expression a of E. It is satisfied by 
occurrence tuple t iff u is the i* sub-expression of E, 
e; = fi is an event occurrence in h whose primitive event 
is a and whose event identifier is greater than or equal to 
the eid of origin and less than or equal to the eid of e i 
(Recall that E 1 is E itself). 

2. Consider the sub-expression relative(A,B) of E, w.1.o.g. 
the k* sub-expression of E. Let A be the i* sub- 
expression of E and let B be the jm sub-expression of E. 
An occurrence tuple t satisfies this expression if: 

1. 

2. 

3. 

4. 

5. 

t satisfies A and B, separately. 

succ(ei)=fj, i.e. B starts afterA. 

fi =fk. 

ej=ek. 

ei and ej are less than or equal to e, in t. where e, 
is the primitive event occurrence at which E is 
recognized. Similarly, fi is greater than or f?+M.l t0 

fi int. 

3. Consider the sub-expression reZutive +(A) of E. w.1.o.g. 
the k* sub-expression of E. An occurrence tuple t 

sutisfis this expression if 

1. fk is greater than or equal to f l. 

2. ekisatupleofn~loccurrencetuplest,,...,t,. 

3. Each t i Satisfies A. 

4. The origin-entry of tl is equal to fk in t, the origin 
entry of Ii, i> 1, equals succ(e, of tuple tie,). 

5. The et entry oft, has an eid less than or equal to 
the ei entry of t - it is the “effective et” event 
occurrence (where the k” expression ends). 

4. Consider the subexpressionA h B of E, w.1.o.g. the k* 
sub-expression of E. Let A be the i* sub-expression of E 
and let B be the j& sub-expression of E. An occurrence 
tuple t satisfies this sub-expression if 

1. it separately satisfies both sub-expressions for A 
andB. 

2. fi=fj=fk. 

3. ei=ej=ek 

4. ek is less than or equal to e, in t, where e, is the 
primitive event occurrence at which E is 
recognized. Similarly, fk is greater than or equal 
tofl in t. 

5. Consider the sub-expression !A of E, w.1.o.g. the k” 
sub-expression of E. An occurrence tuple t suGs~s this 
sub-expression if there exists no occurrence tuple t’ for 
the sub-history from fk till ek which satisfies the sub- 
expression A. 

Finally, an expression E is satisfied in h at event occurrence o if 
there is an occurrence tuple satisfying E whose origin-entry is 
first[h] (the first event occurrence in the history h) and its E 
entry is e. E [h] is defined to be the set of all event 
occurrence.s in h satisfying E. 

2. CORRELATION VARIABLES 

We describe here how to build an automaton to determine if the 
current event satisfies an expression E that contains correlation 
variables. Such an automaton will be used to determine if the 
current event is in E[h]. The difference between this 
construction and the one for expressions without variables is 
that the states of the automata we construct may be marked. 
An automaton entering a state marked with x after scanning h 
means that there is a way for the last event in h to satisfy all 
sub-expressions equated with x. In the construction, ME will 
denote the marked automaton for E. 

We describe here the automata construction for a restricted 
case in which no correlation variables appear within negated 
sub-expressions. This construction is as follows: 

1. For an event expression E without variables, the machine 
is ME as constructed in Sec. 3: no states are marked. 

2. Consider the event expression E < x,y , . . . > = w and the 
machine MEcr,?, ,, let M’ be obtained from 
M E<x.y:..> as follows. Introduce a new state q, 
connecting via empty event transitions all accepting 
states of ME<r.y, _._, to q. making 4 accepting and all 
states of MECrJ, , non-accepting. State q is marked 
with w. All transitions out of q are into a new non- 
accepting state p; p self-loops on all transitions. 

3. relative(A <x, y. . . >, B <z, w. *. . >). If there 
exists a variable w appearing in both A and B then the 
expression can not be satisfied and the resulting machine 
is that for NULL in Sec. 3, no states are marked. 
Otherwise, use MA<=, r, , and Ma,,, y,. , and 
construct a non-deterministic machine by connecting the 
accepting states of MA<=, y,. . , to the start state of 
M scI y , via E transitions. The start state is that of 
M A<X: r,‘... ,. The accepting states are those of 
M s <*, y,. ,. Marks are preserved from the constituent 
machines. 

4. A <x, y, . . . > A B <z. w, . . . >. Form a cross 
product machine as for A /\ B in the construction for 
expressions without variables. Marks are determined for 
each state and each variable as follows. If x is a variable 
appearing in A (respectively, in B) but not in B 
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(respectively, not in A), then (p,q) is marked with x in 
the cross product machine iff p (respectively, 4) is 
marked with x. If x is a variable appearing in both A and 
B then (p.q) is marked in the cross product machine iff 
both p and q are marked with x. 

5. 3 w E <x,y, . . . ,w >. First construct two copies Ml 
and M2 of IV~<~,~, . >. Make all states of Ml non- 
accepting. For all states q marked with w in Ml, add a 
transition on E from q in Ml to q in M2, and erase the w 
mark from each state q of Ml and M2. Let the start state 
of the combined machine be that of M 1. 

The intuition behind the construction is as follows. Let x be a 
correlation variable. The machines we construct are generally 
non-determinis tic. Once a computation thread enters a state 
marked with x. it cannot in the future enter any state marked 
with x, this is ensured inductively by the construction. Also, if 
a computation thread enters a state marked with x, the only way 
for it to parse the history is that all sub-expressions equated 
with x are simultaneously satisfied at the event occurrence upon 
which the state was entered. What remains is to “force” all 
computation threads to pass through an x marked state. This is 
achieved by having two machine copies and “jumping” from 
one copy to the other. This ensures that any accepting 
computation thread will pass through an x marked state. 

Theorem 2: Let E be an event expression which may contain 
correlation variables subject to the above restrictions. Let 
machine M, be constructed as above. Let M,d be a 
deterministic automaton accepting the language accepted by 
ME. ME’ enters an accepting state on scanning the last event 
occurrence in h iff the last event occurrence in h satisfies E. 

Proof by induction on the construction. The final step in the 
construction is to determinize the machine M, to obtain the 
machine ME’. 

The general case involves the appearance of correlation 
variables within negated sub-expressions. The difficulty is that 
to form a machine for ! E we need to determinize the machine 
for E. In doing so, we have states associated with subsets of 
states in E and the determination of markings is more complex. 
Due to its length the full construction is not presented here. 

However, it is not too hard to extend the above construction to 
the case where a correlation variable appears solely within a 
negated sub-expression (or solely within a rel+ sub- 
expression). In such a case, construct the machine for the sub- 
expression as just shown and determinize it. Observe that 
there are no markings in the machine at this stage so that 
nothing special need be done with respect to markings in the 
determinization. Thereafter, continue the inductive 
construction of the machine for the full expression, including 
the negation (or rel+). which is now applied to an event 
expression with no (free) variables, so that step 1 of the 
construction applies. 

3. EVENT MODIFICATION BY ATTRIBUTE 
SPECIFICATION 

We outline an implementation of attribute modified event 
expressions. We first consider the sub-class of expressions in 
which there is a single attribute, say I (which is account# in the 

following example). We start with a single automaton M, for 
the whole set of expressions represented by an attribute event 
expression. M, is an incomplete machine in that it may scan 
symbols for which it has no defined transitions. For such 
symbols, each state is equipped with a transition on such 
“unknown alphabet symbols”. Upon an attribute event 
occurrence, e.g. order(i= 121.40). if M, has a transition on 
order(l) then we create a new automaton Mltl as a copy of 
M,. In this automaton, all transitions on order(l) are replaced 
with order( 121). This automaton starts at the state M, was in 
and continues on the event order( 121). M, continues as 
specified by the unknown alphabet symbol transition from its 
current state. The machine Mlu now operates independently. 
In this way as a new account number (0 is introduced, a 
dedicated machine for it is spawned. Also, from now on an 
event such as order( 121) is interpreted as an unknown 
alphabet symbol by M,. 

This implementation idea generalizes to expressions with more 
than one attribute. To illustrate the idea let us consider the case 
of two attributes, I and J. Basically, if previously each 
spawned machine was indexed by a single item, e.g. M,,, now 
each machine will be indexed by either a single value or by two 
values. M, spawns as in the case of a single attribute. If M, 
spawns a machine for or&r(J= 121.50) this machine will be 
denoted MIzlzl. This machine may later on spawn a machine 
for perform(Z=33,8), it will be denoted as M,=33J=121. The 
process of spawning M,=33J=121 from MI=,,, is similar to that 
of spawning M,,, from M, when we treated the single attribute 
case. So, in general we shall have machine M, “looking” for 
new account numbers, machines that have fixed an account 
number for either I or / and machines that fixed account 
numbers for both I and J. Once a “parent machine” spawns a 
machine for an attribute, it regards future events based on this 
attribute as an unknown alphabet symbol. 

Consider again the case of a single attribute. At tirst glance, it 
appears wasteful to spawn new machines each time a new 
account number is encountered. In fact, one need not duplicate 
M,. Each machine, for example, M12,, can be represented as 
an array element say a[ 1211, whose content is the state M,ar 
is in. Some additional bookkeeping information may be 
required, e.g. a list of “activated” machines. 

If the domain of potential values for an attribute is large, one 
can use a hash table implementation of an array. The method 
generalizes naturally for the case of more than one attribute. 
The method can be improved upon in various ways and we 
leave this topic to future publications. 
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