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Abstract 

We propose an extended relational database model 
which can model both uncertainty and imprecision in 
data. This model is based on Dempster-Shafer theory 
which has become popular in AI as an uncertainty 
reasoning tool. The definitions of Be1 and Pls functions 
in Dempster-Shafer theory are extended to compute the 
beliefs of various comparisons (e.g., equality, less than, 
etc.) between two basic probability assignments. Based 
on these new definitions of Be1 and Pls functions and the 
Boolean combinations of Be1 and Pls values for two 
events, five relational operators such as Select, Cartesian 
Product, Join, Projection Intersect, and Union are 
defined. 
Keywords.. database systems, uncertainty, Dempster- 
Shafer theory, Artificial Intelligence, relational algebra, 
uncertain and imprecise information. 

1. Introduction 

In the real world, data is often imperfect, not just 
because of the unreliability of its source, but also 
because of its nature. Consider weather reports, doctor’s 
medical diagnoses, or any data that has stochastic 
features. One of our goals in computer science is to 
design intelligent software which can store imperfect 
information and interpret queries about it. Most data in 
biology, genetics, and physics are stochastic in nature. 
When database systems are designed for these fields, 
they should be able to handle imperfect information. 

In [Duboi86], imprecision and uncertainty are stated as 
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two complementary aspects of imperfect information, 
since imprecision refers to the contents of data and 
uncertainty refers to the degree of truth of data. 
Imprecision in data is usually modeled by exclusive 
disjunction as in [Morri90], Lipsk79], [WilliSS], [Ola 
921. For example, when the location of some conference 
for the next year, which should be either in Europe or 
U.S.A., has not been determined, we represent this 
information as (Europe, U.S.A.). Several ways to 
represent uncertainty in data exist: the approaches based 
on fuzzy set and possibility theory [Zadeh78] and the 
approaches based on probability theory. Refer to [Lee 
921 for the references of these approaches. Though 
approaches based on fuzzy set and possibility theory 
seem to be good solutions for problems that arise due to 
lexical imprecision, it is difficult to justify these 
approaches for the areas where stochastic models are 
very popular. There are relatively few works based on 
probability theory. 

Though there are many cases where modeling both 
imprecision and uncertainty in data is quite helpful, few 
works have looked into modeling both imprecision and 
uncertainty in database systems. We proposed a new 
database model which can both model imprecision and 
uncertainty in data using Dempster-Shafer theory of 
belief Lee 921. We often need to represent imprecision 
in the probability distribution of a data object for the 
same reason that we need to represent imprecision in a 
certain data value just like the conference example given 
above. Suppose we know more information about the 
conference location: We have the following probability 
distribution: Europe/O.5 + U.S.A./OS. If it is in Europe, 
it will be in Paris or Vienna. If it is in U.S.A., it will be 
in Phoenix, Iowa City, or Kansas City. We don’t know 
any probability distribution for these locations. In this 
case, it is natural to represent this information as {Paris, 
Vienna]/O.S + {Phoenix, Iowa City, Kansas City)/O.S. 
Note that the imprecision in this example is due to the 
lack of information of probability distribution between 
the cities. Representing this kind of lack of information 
is one of motivations behind Dempster-Shafer theory. 
Modeling both imprecision and uncertainty in data 
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makes sense in the cases where the nature of information 
is uncertain and the complete information is often not 
available. 

Dempster-Shafer theory [Shafe76], which has attracted 
much attention in AI as a tool to handle uncertain 
information, has become a standard tool in expert 
systems applications [Duboi87], [Abel 881, palke88], 
l&i 881, [ProvBO]. In bee 921, we proposed an 
extended database model based on Dempster-Shafer 
theory, but we did not define the Select operation which 
involves the comparisons between two attributes as well 
as all the other relational operators. In this paper, we 
propose a solution to these problems. This paper is 
organized as follows: in Section 2, we briefly review 
Dempster-Shafer theory and extend it so that the belief 
of the various comparisons of two basic probability 
assignments can be computed. We review the extended 
relational model proposed in bee 921 in Section 3. In 
Section 4, we define five relational operators (Select, 
Join, Cartesian Product, Intersect, Union) and give 
examples. In Section 5, we summarize the paper and 
discuss our future work. 

2. Dempster-Shafer Theory 

2.1. Background 

A universe, orframe of discernment is a set of mutually 
exclusive and exhaustive hypotheses about some 
problem domain [Shafe76]. A body of evidence 
describing some uncertain information can be 
represented in the following way: 

Definition 2.1: Let D be a frame of discernment, then, a 
function m: 2O + [O,l] is called a basic probability 
assignment whenever 

(a) m(0) = 0. (b)AxDm(A) = 1. 

and, an element A of ZD is called a focal element 
whenever m(A) > 0. 

m(A) shows a relative confidence exactly in A, not in 
any subset of A. Since m can be viewed as a probability 
measure on 2O (not on D), each focal element need not 
be disjoint, nor form a covering of D. In fact, D can be a 
focal element: m(D) is interpreted as the level of 
confidence for ignorance. For instance, m(D) = 1 means 
total ignorance. The most two important functions based 
on a basic probability assignment m are the belief and 
plausibility functions given as follows: 

Definition 2.2: (Be/ and Pls functions) For some given 
m, the belief function Be1 and plausibility function Pls 
for an event B c D, in the sense of probability theory, 
are defined as: 

(a> BeW = A E Bm(A). 

(b) Pls(B) = A n 5 m$A) = 1 - Bel(4). 

and, if all focal elements of Be1 are singletons, then Bef 
is called Bayesian. 

Bel(B) reflects the total weight of evidence (belief) in 
B, while Pfs(B) reflects the total weight of evidence 
which is not committed to 18 where 4 = D - B, 
(complement of B). For more information about 
Dempster-Shafer theory, refer to [Shafe76], [Shafe86], 
[Shafe87], [Halpe90], [Orpon90]. 

2.2. Extended Definitions of Be1 and PZs 
functions 

In conventional probability theory, we can easily 
compute the probability of the comparison of two 
independent probability distributions. But, Dempster- 
Shafer theory does not have the corresponding definition 
of Be1 and Pls functions to handle the comparison of two 
independent basic probability assignments. When we 
use basic probability assignments to represent uncertain 
and imprecise information instead of probability 
distributions, it is necessary to extend the definition of 
Be1 and Pls function which can handle the comparison of 
two independent basic probability assignments. For 
example, let’s suppose that we have uncertain and 
imprecise information about the blood types of Jim and 
his wife Kim. Now we want to compute the Be1 and Pls 
values of the case that their blood types are equal. The 
current Dempster-Shafer theory cannot compute the Be1 
and Pls values of such events. 

Let’s think about the probability of the various 
comparisons of two probability distributions. Let X and 
Y be two random variables which are independent and 
whose probability functions are Px, Pr: D + [O, 11. 
Then 

Pr(X= Y) = C Px(a )* P,ca) 
flED 

Pr(X<Y)= C P,(a) * c P,(b) 
aeD 6cDAacb 

Since a basic probability assignment is a probability 
distribution of the power set of a domain, this idea can 
be used to compute the Be1 and Pls values of the various 
comparisons of the probability distributions on the power 
set of a domain. Then m,, my: 2D + [O, 11 will be used 
instead of Px, P, 

Definition 2.3: Let X, Y be two random variables which 
are independent and whose probability functions (basic 
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probability assignments) are mx, my: 2O + [0, 11, 
respectively. Then, for a, b c D, 

Bel(X = Y) = c m,(a) * my(a). 
lal = 1 

Pls(X = Y) = c mx (a) * my(b) 
anbt0 

= 1- c m,(a )” m,(b). 
anb=0 

The definition of Bel(X = Y) is quite intuitivel. Suppose 
Au, b) = m-J4 * m,,(b) be a joint basic probability 
assignment between two independent random variables 
X, Y in the same way as a joint probability distribution 
between two independent random variables is defined in 
probability theory. Then, {<a, u> I u E D) is used for 
the event (X = Y). Be/(X = Y) is the sum of the 
multiplication of the degrees of support from two 
different sources represented by random variables X and 
Y for every singleton element a in a domain D, while 
Pls(X = Y) represents 1 - the sum of the multiplication of 
the degrees of support from two sources for any two 
subsets a, b when they have no common elements. For 
example, suppose that we have the following information 
about the blood types for Jim and Kim. BloodType,, = 
(A)/05 + (A, B}/0.5 and BloodType, = {A)/0.3 + 
(B)/0.3 + {A, B]/0.4. Then, Bel(X = Y) = 0.15 and 
Pls(X = Y) = 0.15 + 0.20 + 0.15 + 0.15 + 0.20 = 0.75 
where X and Y denote the random variables for the blood 
types for Jim and Kim. Note that when BloodType,i,,, = 
(A, B)/l.O and BloodType, = (A, B}/l.O, Bel(X = Y) = 
0 instead of 1. From the definition above, the following 
result can be easily derived. 

Theorem 2.1: For two independent random variables X, 
Y whose probability functions (basic probability 
assignments) are mx, my : 2O + [0, 11, respectively, 

(1) Be&X f Y) =a nF=;x (a) * my(b) , where u,b c D 

(Proof) From Definition 2.2 (b) and Definition 2.3, (1) 
and (2) can be directly derived.M 

For the non-equality comparisons, we can have the 
similar definition and theorem. Next, the definition for 
BeZ(X c Y) and Pk(X < Y) is introduced. 

1 To the best of our knowledge, we don’t know any similar 
definition of B&X = Y) and Pls(X = I’) appearing in the 
literature. Hence, we could not compare this definition with 
others. 

Definition 2.4: Let X, Y be two random variables which 
are independent and whose probability functions (basic 
probability assignments) are mx, my: 2O + [0, 11, 

respectively. Then, 

Bel(X<Y)= C mx(a) * IL my(b) 
UCD bcDha<‘b 

where a -? b 5 Vc E b [a c c] 

Pls(X<Y)= c ?r.y,-(a)” c my fb) 
IlCD bcDhac3b 

whereu<3b=3cE b[u<c] 

The computation of Be/(X < Y) and Pls(X < Y) is based 
on the comparison between a focal element of mx and a 
focal element of my When every member of a focal 
element of mx is less than every member of a focal 
element of my, the multiplication of the corresponding 
probabilities is included in the computation of Be&X < 
Y). Similarly, when every member of a focal element of 
mx is less than some member of a focal element of my, 
the multiplication of the corresponding probabilities is 
included in the computation of Pls(X < Y). We have the 
following theorem. 

Theorem 2.2 : For two independent random variables X, 
Y whose probability functions (basic probability 
assignments) are mx, my : 2D -+ [0, 11, respectively, 

(1) Be/(X I Y) = C mx(a) * 
acD bcD:&b my(b’ 

where a Iv b = Vc E b [a 5 c] 

(2)Pls(Xsy)= ZDmxkd * C 
bcDhns3b 

my(b) 

where a s3 b = 3c E b [a 5 c] 

(Proof) From Definition 2.2 (b) and Definition 2.4, (1) 
and (2) can be directly derived.H 

Note that Be/(X I Y) 2 Bel(X < Y) + BeZ(X = Y). For 
example, we have the following information about the 
college GPAs of Jim and Kim. GPA,, = (Cl/O.3 + (B, 
Cl/O.7 and GPA, = (B]/l.O. Let X and Y denote the 
random variables for the GPAs of Jim and Kim. Then, 
BeZ(X I Y) = 1, but Bel(X < Y) = 0.3 and Be/(X = Y) = 0. 
This relation also applies to other inequality comparison 
cases and the Pls function, too. In addition to the 
previous two theorems, we can easily prove that the 
definitions of Be/(X 9 Y) and Pls(X 8 I’) where 8 E (=, f, 
<, I ) satisfy the following properties. 

(1) 0 I Bel(X 8 Y) I Pls(X 8 I’) I 1. 
(2) Bef(X 8 I’) + Be/(7(X 0 y)) I 1. 
(3) Pls(X 6 Y) + Pfs(-T(X 6 Y)) 2 1. 
(4) If all the focal elements of mx, my are singletons, 
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then Bel(X 8 Y) is Buyesian (i.e., Be&X 8 Y) = Pls(X 
8 y) = Pr(X 8 Y)). 

From now on, we introduce a random variable in the 
notation of Be1 and Pls functions so that we can 
represent multiple basic probability assignments and 
their Be1 and Pls values. For example, when we have 
two basic probability assignments mx and my, let Bel(c I 
X), Pls(c I X) and Bel(c I Y), Pls(c I Y) represent Bel(c), 
Pls(c) based on mx and Bel(c), Pls(c) based on my, 
respectively. 

3. Extended Database Model 

3.1. Data Representation 

A domain ( frame of discernment ) is a finite set of 
mutually exclusive and exhaustive values. Let t be a 
data object (tuple), ai be an attribute of t, and Dj be a 
domain of q. An attribute ui is a mapping from a set of 
data objects to a domain Dj u (I] where I represents an 
undefined value, and t.ui represents the mapped value in 
a domain Dj u (I). The inclusion of I in the range of ui 
allows us to handle the special case where applying an 
attribute ui to an data object does not make sense. 

One of the major features of the conventional relational 
database model is that every attribute value is atomic 
[Date 861. In order to represent imprecise and uncertain 
information, we should modify this feature. As an 
attribute value, a set of values should be allowed for the 
representation of imprecise data, while a probability 
distribution should be allowed for the representation of 
uncertain data. 

Definition 3.1: For any data object ti and its any relevant 
attribute uj, let D, denote the domain the attribute maps 
into, and rni represent the basic probability assignment 
for a data object ti and an attribute uY Then, the attribute 
valuet,.uj= { <d,m&d)>Ide D,u (I} Am&d)>O}. 

This definition says that a probability distribution of 
the power set of a domain is allowed in every attribute 
value. As an example, we use information about Mary’s 
health record t,. 
l (t,).disease = < ( dI, dj ) , 0.6 >, < d2, 0.4 >2. This 
attribute value explains that we believe the disease Mary 
has is either d, with a probability 0.4, or one of ( d,, dJ } 
with a probability 0.6. But, we don’t know how probable 
each element of ( d,, d3 ) is, but one of them is sure with 
a probability 0.6. 

The traditional null value can be naturally handled 
using a set. The null value is subdivided into three 

2 The exact notation is ( < ( d,, d3 ), 0.6 >, < ( d2 }, 0.4 > ). 
But, without causing ambiguity, the set notation is omitted. 

different cases such as unknown, inapplicable, and 
unknown or inuppIicable, denoted by the special strings 
nk, nu, and nka, respectively. The string nk represents 
the corresponding domain D itself for an attribute. 
Similarly, nu, and nka represent (I) and D u (I), 
respectively. For example, 
l (t,).eye-color = c nk, 1.0 >. When the corresponding 
domain is { black, brown, blue ), this attribute value 
means that her eye is in one of colors ( black, brown, 
blue ) , but we don’t know which one it is. Put it another 
way, every value in the domain is possible. 
. (t,).husband-name = < nu, 1.0 >. This means that she 
does not have any husband. 
l (t,).husband-name = c nka, 1.0 >. This means we 
don’t know even whether she has a husband at all. 

The above three examples demonstrate how to 
represent and interpret null values in our model. Refer 
to [Lee 921 for detailed explanation and more complicate 
examples. 

3.2. Extended Relational Database Model 

In the conventional relational database, information is 
represented by the set-theoretic relution, which is a 
subset of the Cartesian product of a list of domains D, x 
D, x . . . D,. With the data representation for each 
attribute value of a data object introduced in the previous 
section, which is a probability distribution on the power 
set (basic probability assignment) of a domain instead of 
an atomic value, the definition of a relation is changed to 
the following way. 

Definition 3.2: A relation (or table) T based on D,, D,,... 
D, is defined as T c G, x G, x . . . x G, x CL where Gi is 
a set of all the probability distributions on the power set 
ofadomainDiandCL= (<b,p>Ib,pE [O,l]r\b<p) 

Each Gi corresponds to a domain whose element can be 
interpreted as a set of pairs of a focal element and its 
basic probability for some basic probability assignment 
m. In the set CL3, a pair of values c b, p > represents the 
confidence level in every htple in a relation T. 
Specifically, b represents the belief value for the 
corresponding tuple, while p is the plausibility value. 

A relation can be viewed as a table with rows and 
columns, where each column corresponds to an attribute 
and each row corresponds to a tuple which represents a 
data object. Let a heading represent a set of attributes 
and a body be a set of tuples in a table. With a tuple t, 
let A(t) represent the finite, non empty set of attributes 

3 CL will be used also as a system attribute name which every 
table has. 
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Figure 1: Job-Applicants TAppticmrs 

relevant to the tuple t not including CL. Also, with a 
table T, let A(Z) represent the set of attributes of T except 
CL and D(T) be a function which associates each 
attribute in A(T) with the corresponding domain. 

With this definition of a relation (table), an imprecise 
and uncertain attribute value can be stored in each cell of 
a table. Let’s suppose that we have a table TApplicMtr in 
Figure 1 which contains information about part-time job 
applicants to some company4. The attribute “STATUS” 
indicates the status of an applicant in a college. The 
attribute “RECOMME.” shows how strongly each applicant 
is recommended, with 5 for the highest and 1 for the 
lowest. Note that some of the values in the column CL 
are values other than [l ; 11, since we don’t have full 
belief in these tuples. A probability value in a cell is 
omitted when it is 1, for the notational simplicity. The 
status of Tom is either senior or graduate, and his grade 
in finance is A. His grade in art is known to be A with 
probability value 0.5. As you see in this example, we 
introduced two levels of uncertainty. One is for an 
attribute value, while the other is for a tuple. In most 
cases, the uncertainty value of a tuple (CL) comes from 
the credibility of the source. In the next section, we will 
discuss about how to evaluate queries in this database 
model. 

4. Generalized Relational Algebra 

4.1. Select 

4.1.1. principle 

Generally, a select operation extracts from a table the 
tuples whose specified attributes values satisfy a given 
condition, and returns them as a new table. A select 
operation when applied to a table T with a condition B is 
denoted by T where (B). A condition B can be either an 
atomic condition, or a compound condition constructed 
from an atomic condition by logical connectives 
(conjunction, disjunction, negation). An atomic 

4 This example is not very realistic, but just for the purpose of 
exposition of the concepts. A similar example is found in [Lee 
921. 

condition B is a simple comparison which has the form a 
8 a’ or a 8 c where a E A(T), a’ E A(T), (D(T))(a) = 
@@))(a’), c c (D(~))(u)~ and 0 is a simple comparison 
operator =, f, <, >, I, 2. In this paper, we will show 
how to handle simple queries of the form a 0 a’ as well 
as simple queries of the form a 8 c and compound 
queries. 

Since a probability distribution on the power set of a 
domain (basic probability assignment) is used for data 
representation, it is natural to use Be1 and Pls functions 
to evaluate how a tuple satisfies a given condition. 
Informally, T where (B) returns a table which has the 
same contents of the table T except in the CL column. 
The values of CL (confidence level) in the resulting table 
reflect the support level of each tuple for the given 
condition B. In order to give a formal definition of a 
select operation in our model, first we need to define one 
auxiliary function which is about the Boolean 
combination of Be1 and Pls values. Then, we will try to 
formalize the selection operation of the form a 8 c, a 8 
a’, and compound queries in sequence. First of all, let’s 
define a function which computes the pair of Be1 and Pls 
values of the conjunction and disjunction of two events. 

Definition 4.1: For independent events E, and E2 where 
Bel(E,) = b,, Pls(E,) = p,. and Bel(EJ = b,, Pls(E,) = pz, 
the pairs of Be1 and Pls values of the conjunction and 
disjunction of the events E, and E2 are defined by a 
function 6 as following: 

[Bel(E, A E,) ; Pls(E, A E,)] 

= W+ ; pII, [b, ; p,l, 0,~) = [b, * b, ; pl * PJ 

[Be&E, v E2) ; WE, v E&l = 6([b, ; p,l, [b, ; pJ, 0, v> 
= [l - (1 -b,) * (1 -b,) ; 1 - (1 -pl) *(l -/+)I 

Let’s call the resulting pair from 6([b, ; pJ. [b, ; pJ, 0, 
A) as the conjunctive combination of [b, ; pl] and [b2 ; 

Pzl- The disjunctive combination is defined in the 
similar way. Note that the assumption about 
independent events causes the third parameter in the 

5 Note that imprecise queries are allowed in the select 
operation. 
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NAME STATUS GRADEINFINANCE GRADEINART GPA RECO-MME. CL 
Tom [SE,GR] A a,os>, <&OS> [2.5-3) {3,41 [O ; l] 
Jane <GR,o.b,<SE, 0.3> <A,0.3>,<B,0.4>,<C,0.3> a,O.2>,<~,0.3>,<~,0.5> 2.5 2 [0.49; 0.491 

Fitwe 2: Lpplrcantr where(~~~ms = (GR)) 

Figure 3: TAppticmrr ~~~F~(GRADEINFINANCE=GRADEINART) 

NAME STATUS GRADENFINANCE GRADEmART GPA RECOMME. CL 

Tom (SE, GR) A cA,0.5>,<?&0.5s (2.5-3) (3.4) [I ; l] 
David FR t&C) no (2.7-3.0) I4951 [0.7 ; l] 
Bob (so, Ju) <{B,C],0.5>,a,O.5> <[B,C),O.6>,<C,O.4> <(2.7-3),0.5>,<(2.5-3.3),0.5> 5 [0.5 ; l] 

F&we 4: TApplicau where ((RECOMME.= (3,4,5])/\(GPA= {2.5 - 3.1))) 

function 6 to be zero. The more general form of the 
function 6 introduced in bee 921 is 6([6, ; p,], [b, ; p,], 
p, 4 and Wb, ; PJ. P2 ; ~~1, p, VI where p is a 
dependent factor (correladon in the statistical terms) 
between two events E, and E2. Here, the independence 
assumption is just for the purpose of exposition. 
Whenever information about the dependency factor is 
available, we can use the general form at any time. 

As a table is a set of tuples, before we can give a 
definition of a select operation, we need to define some 
function which is working on the tuple level with a given 
condition. Let’s consider the case where a condition is 
atomic and of the form a 0 c. 

Definition 4.2: For any tuple t in a table T, and a 
condition B which is a simple equality comparison 
between a and c where a E A(T), c c (D(T))(a), the 
function cp which takes a tuple t and a condition B and 
returns a pair of Be1 and Pls values is defined as 

cp(t, a = c) = G(r.CL, [ Bel(c IX) ; Pls(c IX) 1, 0, A) 

where X is a random variable for the basic probability 
assignment which t.u is based on. 

The resulting pair of Be1 and Pls values is the 
conjunctive combination of the CL value of a tuple t and 
the pair of Be1 and Pls values of an event c based on the 
basic probability assignment which the attribute value t.u 
represents. We assume that the independence relation 
holds in this definition. This assumption is reasonable, 

since we distinguish between an attribute level 
uncertainty and a tuple level uncertainty which usually 
reflects the degree of confidence of the information 
source. Note that this definition is different from the one 
in [Lee 921 where we implicitly assumed that every CL 
value in a base table is [l ; 11. We dropped that 
assumption in this paper. Here, we only show the 
equality comparison case. Extending the definition to 
the other non equality comparison cases is 
straightforward by converting the non equality 
comparison in terms of the equality comparison. For 
more information on the other comparison cases such as 
f, <, >, I, 2, refer to [Lee 921. Now, we are ready to 
show how to handle a tuple with an atomic condition of 
the form a 8 a’. 

Definition 4.3: For any tuple t in a table T, and a 
condition B which is the simple comparison between ui 
ad Uj where ui E A(T), uj E A(T), (‘(T))(ui) = (o(-r)>(uj), 
the function cp which takes a tuple t and a condition B 
and returns a pair of Be1 and Pls values is defined as 

cp(t, ui 8 uj) = G&CL, [Bel(X, 8 Xi), Pls(Xi 8 X,)], 0, A) 

where 0 is a simple comparison operator and Xi, Xj are 
the random variables for the basic probability 
assignments which r.u,, t.uj are based on, respectively. 

This definition is based on the conjunctive combination 
of two pairs of Be1 and Pls values, and the independence 
assumption. 
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NOW, we show how to handle a compound condition 
consisting of logical connectives (negation, conjunction, 
disjunction). 

Definition 4.4: For any tuple t in a table T, and 
conditions B,, B, which are two events with a 
dependency factor p, and the compound comparisons 
between ai and uj, or between ai and ck where a, E A(T), 
Uj E A(T), (D(r)>(ui> = (~(~,>(ui>, ck c (‘(~“)>(ui>, then 
function cp is defined as 

cp(t,lB,) = [l - pls; 1 - bell, where [be/; p/s] = cp(t, B,) 
cpk @, A B,)) = 6(W, (BJ>, tic (B2>), pv 4 
cpk (B, v B,N = &W, (B,N> cpk (B,)), p, “1. 

Note that we dropped the independence assumption 
between two events in the function 6. Think about the 
following compound event : disease = {d,) v disease # 
( d1 1. The independence assumption will underestimate 
the resulting CL value in this example. If the 
information about p is available, the function 6 will 
adjust the CL value properly. [Lee 921 shows how to 
adjust the CL value with p and how to handle the case 
that the information about p is not available. Before 
giving the definition of a select operation, let’s define 
one more auxiliary function. 

Definition 4.5: For any tuple t and a pair of Be1 and Pls 
values [bel ; p/s], the function r which takes t and [be/ ; 
p/s] returns a new tuple t’ where 

(Vb) bc Acn [ t.b = t’.b A t’.CL = [be1 ; pls] 1. 

In other words, the function r replaces the CL value in 
a tuple t by a new CL value. Now, we are ready to give 
a formal definition of a select operation. 

Definition 4.6: For a table T and a simple or compound 
condition B, a select operation T where (B) is defined as 

T where (B) = 1 r(t, cpk BD t E T A Prhrerhold(qNf, @)I 

where fk?.daOld is the system predicate defining the 
threshold values. 

The purpose of the predicate Pthrarhld is filtering out 
tuples with very low CL values, since we don’t want to 
keep every possible tuples. For example, we don’t want 
to keep tuples with [0 ; 0] as a CL value. In this paper, 
we will set the Pls value to be greater than 0 as a 
threshold value for the purpose of examples. Formally, 
P thresj&4rb : PI) = P ’ 0. 

4.1.2. examples 

Based on the table TApplicrurlr in Figure 1, suppose we 
have the following queries: 

Figure 5 : Table TI Figure 6 : Table T, 

Figure 7 : TI times T, 

l Find all the applicants whose status is graduate. In our 
language, this query is formulated as TApplicMtr where 
(STATUS = (GR]). The resulting table is in Figure 2. 

l Find all the applicants whose grade in finance is equal 
to the grade in art. This query is represented as 
TL4ppliC- where (GRADE IN FINANCE = Game IN ART). 
The result is shown in Figure 3. 

. Find all the applicants whose level of recommendation 
is in {3,4, 5) and whose GPA is between 2.5 and 3.1. 
The result of this query TMpri,, where ((RECOMME. = 
(3,4,5))~ (GPA= (2.5 - 3.11)) is shown in Figure4. 

4.2. Cartesian Product, Join, and Intersect 

Let T,, T2 are ordinary relations on the Cartesian 
product of the sets of the probability distributions on the 
power sets of domains of the respective attributes. Then, 
the Cartesian product of two tables T,, T, is defined in 
the usual way. 

Definition 4.7: For any two tables T,, T, the Cartesian 
product of T,, T, is defined as 

TI times T2 = ( t I A(t) = A(T,) u A(T,) 
* @I),, E *I (‘da E A(n) [ f.u = t,*” 
* @‘$a E R &),. A(R) [ t.” = 9 
A t.CL = G(t,.CL, t2.CL, 0, A)]]). 

Consider the following two tables T1 and T2 from 
Figure 5 and Figure 6. Then, their Cartesian product is 
given by TI times T2 in Figure 7. The Cartesian product 
is carried out in the usual way except the column CL. 
The value of CL in a tuple of the resulting table is the 
conjunctive combination of the CL values from the 
corresponding tuples in the table TI and T2. 

Next, we define the join of two tables indirectly 
through the Cartesian operation and select operation. 

Definition 4.8: For any two tables T1 and T,, let {A,, A,, 
. . . , Ak} = A(T,) n A(T,), and Ai be Ai in T,,, where 1 I 
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Figure 8 : Tl join T2 

i 5 k and 1 I m I 2. Then, the equi-join of T, and T2 is 
defined as 

Tl join Tz = (T, times TJ 
where (Alcn) = A,cR) A . . . A A,(T’) = A,cn)). 

The table T, join T, in Figure 8 is an example of the 
join operation based on the definition above where X, in 
the CL column represents the random variable that an 
attribute value m is based on in the table. Note that the 
computation of attribute CL is the conjunctive 
combination of the CL values of the Cartesian product 
operation T, times T, from Figure 7 and the CL values 
from the select operation. 

Next, we define the intersect operation similar to the 
regular intersect operation. The resulting table only 
consists of the common tuples belonging to both input 
tables, but the CL values of the resulting table is the 
conjunctive combination of the CL values of the 
corresponding tuples in both tables. 

Definition 4.9: For any two tables T, and T, where A(T)) 
= A(T,), the intersect of Tl and T, is defined as 

Tl intersect T2 = ( t I A(t) = A(T,) 

A @t,),, E Tl @t2)12 E R OW, EA(TIJ 1 t, .u = f2.a 
A t.a = t,.a A t.CL = &t,.CL, t,.CL, 0, A)]}. 

Let table T3 be defined as in Figure 9, then T, intersect 
T, is represented as in Figure 10. 

4.3. Projection and Union - Redundancy 

If two tuples have the same values in every attribute 
except the attribute CL, these tuples are called 
redundant. Since the projection operation throws away 
some attributes in a table, some tuples in the resulting 
table might be redundant When the operation union is 
applied to tables, redundancy may be introduced in the 
resulting table, too. The extended definitions of 
projection and union are quite similar to the regular 

~A, 1 A, ) A, 1 CL 

Figure 11 : T, Figure 12 : T4 [A,] 

projection and union, except how to handle the 
redundancy. If two tuples are redundant in the resulting 
table, we combine these two tuples into one with new CL 
values which is disjunctively combined CL values from 
the original tuples. 

Before presenting the definition of an extended 
projection, let’s define a function SumCL which 
computes the CL value from a set of redundant tuples 
where the CL value is the disjunctive combination of all 
the CL values of the tuples. 

Definition 4.10: Let C be a collection of sets of 
compatible tuples. Then a function SumCL : C + [O,l] x 
[O,l] is defined as 

Su.mCL(T u (t)) = if T = { ) /* T is empty *I 
then t.CL 
else &CL, SumCL(T), 0, v). 

The function SumCL is used to compute the CL value 
for a tuple which replaces redundant tuples. Now, the 
definition of extended projection is given as follows. 

Definition 4.11: For a non-empty table T and a set S of 
attributes where S # 0 and S c A(T), let rr be a partition 
of a table T such as 

x = { t t 1 @O,., T (Va)oE,[r.a = ?‘.a] ) I t E T ). 

Let n be denoted as [T’, . . . . rpl] with n = IA. Then, the 
projection of T onto S is defined as 

nS] = &{ t I A(t) = S A t.CL = SumCL(T’) 

A (W),., +(Va)= Es[f.a = t’.a]). 

The partition x: of a table T is a collection of sets of 
redundant tuples when the table is projected on a set of 
attributes S. The resulting table from the extended 
projection consists of tuples with the new combined CL 
value from each set of redundant tuples. Let’s look at an 
example, T4 [AJ in Figure 12, where T4 is shown in 
Figure 11. 

Now, the definition of an extended union operation is 
following. 

Figure 9 : Table T, Figure 10: T, intersect T3 
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Definition 4.12: For any two tables T1 and T2 where 
A(T,) = A(T,), the union of Tl and T2 is defined as 

T, union T, = 

It 1 A(f) = AV,) * @+I,, E Tl@& E nWa>a EAcTIj [ t,.a = 
t,.a A t.a = t,.a A t.CL = G(t,.CL, t,.CL, 0, v)]) 

u It lAft)=A(T,)r\t~ T, 

A +J~,),, E nKva), EAcTl)[f,.a = pl 1 
u (t IA(t) = A(T,) A t E T2 

A -@,I,, E nE(va>, E Acn,[‘,.a = t,.al I 

When TI and T2 have a duplicate tuple, T, union T2 
includes this tuple with disjunctively combined CL value 
from the corresponding CL values of tuples in T, and T2. 
The set of these tuples constitutes the first set in the 
definition of Tl union T,, . The other two sets represent 
the non-duplicate tuples from T, and T2. Let’s look at an 
example, T2 union T, in Figure 14. 

4.4. Some Comments on the Extended Relational 
Algebra 

The extended version of relational algebra is a 
generalization of the conventional relational algebra. 
When we have an atomic value for all the attribute 
values and [ 1 ; l] for all the CL values in every table, the 
resulting database becomes a conventional one. We can 
easily prove that the conventional relational operators 
are just special cases of the relational operators defined 
above, except Join. Because Join is defined using 
Cartesian product and Select operation in the different 
way from the conventional one, it cannot be reduced to 
the conventional one directly. 

The relational operators defined in this paper depend 
on the conjunctive combination and disjunctive 
combination of Be1 and PZs values of two events. The 
Boolean combinations of Be1 and Pls values are affected 
by the dependency relation between the two events. We 
made implicit independence assumption in defining 
relational operators for the simplicity of explanation. 
But, we can relax this condition in various ways. 
According to bee 921, the following inequality relations 
always hold. 

A, A, CL 

g3 g4 cg 

El 

5 l-4 c 

Y3 Y4 ‘h 

d3 d4 ‘d 

Figure 13 : Tz Figure 14 : T2 union T, 

Be/(A) * Be](B) 5 Bel(A A B) 5 min(Bel(A), Bel(B)) 

P/s(A) * P/s(B) s Pls(A A B) 5 min(PIs(A), Pls(B)) 

1 - (1 - Bel(A)) * (1 - Bel(B)) 

1 Bel(A v B) 2 max(Bel(A),Bel(B)) 

1 - (1 - P/s(A)) * (1 - Pls(B)) 

2 Pls(A v B) 2 max(Pls(A), P/s(B)) 

The left-hand side values of the inequalities are used 
for the independent events, while the right-hand side 
values are used for the maximally dependent events. 
Otherwise, the belief of the conjunction of two 
dependent events can be determined by interpolating 
between the independent and the maximally dependent 
cases. When the dependency factor is not available, 
either the independence assumption can be made as in 
many probabilistic approaches, or the lower bound value 
for Bel value and the upper bound value for Pls value 
can be used. These are mostly domain-dependent 
decisions. But, there are some cases we can get that 
information. For example, (TAppL.ccmtr where (STATUS ‘= 

1 GRj >> union (TApplicmrc where (STATUS f {GR})), and 
T Manogers intersect TEvloyees. For the first example, we 
can get the dependency relation from the query itself. 
For the second example, we can utilize the semantics of 
these two tables, since all the managers are also 
employees. The discussion of these problems is beyond 
the scope of this paper. 

Because of the underlying representation (probability 
distribution of the power set of a domain), these 
relational operations have potentially very high time 
complexity. The time complexity of the relational 
operations basically depends on the number of focal 
elements in the data representation. But, when we 
consider that Dempster-Shafer theory is motivated by the 
practical reason that probability distribution is hardly 
available in the real world, when we consider that a basic 
probability assignment in Dempster-Shafer theory is one 
way to represent incomplete probability distribution (in 
the sense of the conference example), when we consider 
that if all focal elements are singleton the corresponding 
Be1 function becomes Bayesian function, the number of 
focal elements in any data is not expected to be high. 
There are many applications where we can constrain the 
maximum number of focal elements to be two6. Since 
there is a trade-off between expressive power (number of 
focal elements) and efficiency, deciding the level of 
expressive power should be a domain-dependent 

6 ‘There are many cases where simple support functions 

(special case of belief function) are enough. Simple support 
function satisfies the following: for any non-empty set A G D, 
m(A) = s, m(D) = 1 - s, m(elsewhere) = 0. 
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decision. For the time complexity analysis and the 
efficient implementation of Dempster-Shafer theory, 
refer to [Shafe87], [Grpon90], [Guan 911. 

5. Summary and Future Work 

Humans are often expected to make decisions for their 
future based on available information that are usually 
incomplete and uncertain in nature. Fuzzy set 
approaches fail to handle stochastic data which are 
typical data representations in many fields. Due to a lot 
of restrictions, probability theory cannot be a practical 
tool in designing database systems. We chose Dempster- 
Shafer theory as a basic tool in our database model 
because of its flexible expressive power and sound 
theoretical foundation. 

In this paper, we have proposed the new definitions of 
BeZ and Pls functions which compute the belief of 
various comparisons between two independent basic 
probability distributions. These new definitions are used 
to define the select operation of the form a 0 a’. Based 
on the relational database model [Lee 921, we have 
defined five relational operations such as Select, 
Intersect, Union, Cartesian product., Projection and Join. 
The time complexity of the relational operators and the 
performance results of our ideas on an experimental 
prototype system will be reported in a forthcoming 
paper. There are several interesting problems for future 
research. One of them is to analyze how the dependency 
factors affect these relational operations and how to 
derive them from the query language and the domain 
knowledge in databases. Another is to find out how we 
formulate integrity constraints and functional 
dependencies in this model. 
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