
Parametric Query Optimization

Yannis E. Ioannidis*
Computer Sciences Department

University of Wisconsin
Madison, WI 53706
yannis@cs.wisc.edu

Abstract

In most database systems, the values of many impor-
tant run-time parameters of the system, the data, or
the query are unknown at query optimization time.
Parametric query optimization attempts to identify
several execution plans, each one of which is optimal
for a subset of all possible values of the run-time pa-
rameters. We present a general formulation of this
problem and study it primarily for the buffer size pa-
rameter. We adopt randomized algorithms as the main
approach to this style of optimization and enhance
them with a sideways information passing feature that
increases their effectiveness in the new task. Experi-
mental results of these enhanced algorithms show that
they optimize queries for large numbers of buffer sizes
in the same time needed by their conventional versions

l PartiaIIy supported by NSF under PYI Grant IRI-9157368
and by grams from DEC, HP, and AT&T.

t Supported by a University of Maryland Dissertation Fellow-
ship and by NSF under Grants IRE8719458 and IRI-9109755.

tsupported by a Korean Government Overseas Scholarship
and by NSF under Grant IRI-9057573.

~PartiaIly supported by NSF under Grants IRI-8719458 and
IRI-9057573 (PYI Award), by AFOSR under Grant AFOSR-8%
0303, by grants from DEC, IBM aud Bellcore, and by the Uni-
versity of Maryland Iustitute for Advanced Computer Studies.

Permission to copy without fee all or part of this material is
gmnttdpmvicfed that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Very Lurge Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

Raymond T. Ngt
Kyuseok Shim’
Timos K. Sellis

Computer Science Department
University of Maryland
College Park, MD 20742

{rng,shim,timos}@cs.umd.edu

for a single buffer size, without much sacrifice in the
output quality.

1 Introduction

Relational query optimization is an expensive process,
primarily because the number of alternative access
plans for a query grows at least exponentially with the
number of relations participating in the query. The
application of several useful heuristics eliminates some
alternatives that are likely to be suboptimal [SAC+79],
but it does not change the combinatorial nature of the
problem. In the future, database systems will need to
optimize queries over much larger sets of alternative
plans. The traditional, heuristically pruning, almost
exhaustive query optimization algorithms are inade-
quate to fulfill the increased requirements, and new
algorithms need to be developed.

One of the primary reasons for the increase in the
number of alternative plans is that optimization will
be required for many different values of important
run-time parameters whose actual values are unknown
at optimization time. To avoid the above, current
database systems make certain assumptions about the
database contents (e.g., value distribution in relation
attributes), the physical schema (e.g., index types),
the values of the system parameters (e.g., number of
available buffers), and the values of the query con-
stants. Some of these assumptions, however, may be
violated at run time: the database contents and the
physical schema change incessantly [ML86], the mul-
tiprogramming level of the system and the resource
needs of concurrently running queries cannot be pre-
dicted, and queries may be executed with different
bindings for their constants, e.g., a selection within a
for-loop in a query embedded in a C program or calls
to recursive rules in deductive databases. When these
optimization-time assumptions are violated at execu-

103

tion time, m-optimization is needed or performance
suffers.

Motivated by the above, we have studied the prob-
lem of optimizing queries for all possible values of run-
time parameters that are unknown at optimization
time (a task that we call Parametric Query Optimira-
tion), so that the need for re-optimization is reduced.
This study has also been motivated by recent results on
flexible buffer allocation [NFSSl, FNSSl]. It has been
shown that in deciding how many buffers to allocate to
a query, taking run-time conditions into account leads
to improvement in system performance (e.g., through-
put). The reported improvement has been obtained
based on fixed plans that assume a specific number
of allocated buffers. Further improvement in perfor-
mance is expected if a plan is not fixed and can be cho-
sen to match the actual number of allocated buffers.

In principle, the optimal plan generated by para-
metric query optimization may be different. for each
distinct value combination of all the possible run-time
parameters. In practice, however, the total cost of
generating all these plans would be prohibitive. A dif-
ferent approach would seek to produce distinct plans
for values of a selected subset of run-time parameters
in less time. It is this approach that we study in this
paper, where we focus on the number of buffer pages
allocated to a query (the bufler sire) as the unknown
parameter. We propose the use of randomized algo
rithms to address the tremendous increase in the num-
ber of alternative plans. Such algorithms have been
successfully applied to various combinatorial optimiza-
tion problems in the past, including the optimization
of queries with many joins. We adapt three such al-
gorithms (Simulated Annealing (SA) [KGV83, IW87],
Iterative Improvement (II) [NSSSS, SG88], and Two
Phase Optimization (2PO) [IK90, IK91]) for paramet-
ric query optimization of select-project-join queries,
and present experimental results that show the effec-
tiveness of the devised adaptations.

Several projects have considered supporting multi-
ple plans for a query. The earliest significant work in
this area is by Graefe and Ward [GW89]. They dis-
cuss the implementation of dynamic query plans in the
Volcano optimizer generator [GM91]. These are plans
that include a choose-plan operator, which chooses
among multiple available conventional plans given the
values of certain run-time parameters. The proposal is
for choose-plan operators to be introduced in all places
of a plan where the choice of subplans underneath is
sensitive to the values of these parameters. This work
introduces many important concepts related to para-
metric query optimization but does not include a com-
plete search strategy to identify the dynamic plans and
the places where the choose-plan operators should be

placed.
The XPRS project proposes to select at run-time a

parallel plan from a set of plans based on buffer al-
locations [SKP088]. T wo different optimization algo
rithms have been proposed for this task. In an ear-
lier reference [SKP088], a ‘binary-search’ approach is
advocated, where a query is first optimized for the
smallest (m) and the largest (M) possible buffer size;
if the two obtained plans are far from optimal for the
buffer size for which they were not chosen, the query
is optimized again for the midpoint between m and M
and the process is repeated. The disadvantage of this
approach is that the amount of time spent in query
optimization grows linearly with the number of buffer
sizes for which the query is optimized, which may be
prohibitive. Also, as it has been pointed out elsewhere
as well [GW89], this approach may work for one or
two parameters, but would not scale up. In a more
recent reference [HS91], the assumption is made that
the buffer size is greater than the minimum required
for efficient execution of hash-join. Based on that as-
sumption, experimental evidence is provided that the
optimal plan is in general insensitive to buffer size.
Hence, an enhanced version of a conventional query
optimizer for a fixed buffer size is proposed. The en-
hancements deal with some special cases where the
insensitivity claim does not hold, and consist of essen-
tially introducing choose-plan operators [GW89].

The Starburst project has also considered incorpo-
rating a second optimization phase that chooses plans
at run-time [HP88]. To the best of our knowledge,
however, no technique has been developed to find those
plans. Also, Cornell and Yu [CY89] use an integer
programming model to optimize queries in a transac-
tion environment and their buffer allocations simulta-
neously. Nonetheless, as their concern is different from
ours, still only one plan is produced per query, and that
plan is susceptible to changes in the environment.

Our work differs from all the proposals mentioned
above in several aspects. First, we present a general
framework for parametric query optimization that is
applicable to arbitrary parameters and not only buffer
size. (In that respect, the work of Graefe and Ward
is general as well [GW89].) Second, we develop com-
plete parametric query optimization algorithms that
produce multiple plans as output. These algorithms
are not based on any assumptions like those made in
the XPRS project [HS91], so they are much more gen-
erally applicable. Third, the experimental results of
these algorithms on the buffer size parameter show
that generality is not achieved at the expense of effi-
ciency or output quality. Hence, we expect that these
algorithms can easily be incorporated in the systems
mentioned above, without jeopardizing their perfor-

104

mance goals.
This paper is organized as follows. Section 2 gives

preliminary descriptions on SA, II, and 2P0. Section 3
introduces a general framework for parametric query
optimization and provides experimental evidence for
the need of obtaining multiple plans for different run-
time values of the buffer size parameter. Section 4
presents the family of algorithms that we have devel-
oped and discusses several of their characteristics. Sec-
tion 5 contains the results of several experiments with
these algorithms, showing their effectiveness with re-
spect to both running time and output quality. Fi-
nally, Section 6 summarizes our overall approach and
presents some directions for future work.

2 Randomized Algorithms for
Conventional Query Opti-
mizat ion

In this section, we briefly describe randomized algo-
rithms as they have been applied to conventional, non-
parametric query optimization. This is a necessary
basis for the description of the parametric query opti-
mization algorithms in the following sections.

Each solution to a combinatorial optimization prob-
lem can be thought of as a state in a space, i.e., a node
in a graph, that includes all such solutions. Each state
has a cost defined by some problem-specific cost func-
tion. The goal of an optimization algorithm is to find
a state with the globally minimum cost. Randomized
algorithms perform mndom walks in the state space
via a series of moves. The states that can be reached
in one move from a state S are called the neighbors of
S. A move is called uphill (downhill) if the cost of the
source state is lower (higher) than the cost of the desti-
nation state. A state is a local minimum if, in all paths
starting at that state, every downhill move comes af-
ter at least one uphill move. It is a global minimum
if it has the lowest cost among all states. It is on a
plateau if it has no lower cost neighbor and yet it can
reach lower cost states without uphill moves. Using
the above terminology, we briefly outline three ran-
domized optimization algorithms that have been used
for query optimization [IW87, SG88, IK90, IK91].

First, Iterative Improvement (II) performs a large
number of local optimizations. A local optimization
starts at a random state and improves the solution by
repeatedly accepting random downhill moves until it
reaches a local minimum. Its output at the end is the
least cost local minimum that has been visited.

Second, Simulated Annealing (SA) starts at a ran-
dom state and proceeds by random moves, which if

uphill, are only accepted with certain probability. As
time progresses this probability gradually decreases
until it becomes zero, which signifies the termination
of the algorithm. The output of the algorithm as used
in practice is again the least cost state that has been
visited.

Third, Two Phase Optimization (2PO) is divided
into two phases. In the first phase, II is run for a
small period of time, i.e., a few local optimizations.
The output of that phase is the initial state of the next
phase, where SA is run with very low initial probability
for uphill moves.

When the above generic optimization algorithms are
applied to query optimization, three parameters need
to be specified: the state space, the neighbors of each
state, and the cost function. Each state in query og
timization corresponds to an access plan (or simply
plan) of the query to be optimized. By performing
selections and projections as early as possible and ex-
cluding unnecessary cross products [SAC+79], a plan
can be represented as a join processing tree, i.e., a tree
whose leaves are base relations, internal nodes are join
operators, and edges indicate the flow of data. If all
internal nodes of such a tree have at least one leaf as
a child, then the tree is called deep. Otherwise, it is
called bushy. In this study, we deal with the plan space
that includes both deep and bushy trees.

The neighbors of a state, which is a join processing
tree (i.e., a plan), are determined by a set of transfor-
mation rules. Each neighbor is the result of applying
one of these rules to some internal nodes of the origi-
nal plan once, replacing them by some new nodes, and
usually leaving the rest of the nodes of the plan un-
changed. There are several sets of transformation rules
from which one could choose. With A, B, and C being
arbitrary join processing formulas, the ones adopted
in this study are described below [IK90, IK91]:

(1) Method choice: A Wmethod, B + A W,,thodj B
(2) Commutativity: A W B - B W A
(3) Associativity: (A W B) W C u A W (B W C)
(4) Left ezchange: (A W B) W C + (A W C) W B
(5) Right exchange: A W (B W C) + B W (A W C)

Rule (1) changes the join method of a join, e.g., from
nested-loops to merge-scan.

Finally, the cost of every plan is usually a combina-
tion of the I/O and cpu cost of the plan. The above
algorithms have been successfully applied to con-
ventional, non-parametric query optimization [SG88,
IK90, IK91], which assumes a certain number of
buffers bc for a given query, and produces a single plan
that is optimal for bc. 2P0 has been shown to be the
dominant algorithm for a wide range of values of bc.

105

The main reason for this is that, in all cases, the shape
of the cost function of the plan space forms a ‘well’.
That is, some small percentage of local minima in the
space have high cost but most of them have low cost,
and the connection cost’ between local minima is still
relatively low compared to the cost range in the whole
space. 2P0 takes advantage of the first fact in its
II-phase to reach the ‘well’-bottom quickly and then
takes advantage of the second fact in its SA-phase to
explore the ‘well’-bottom without climbing over very
high hills.

3 Problem Formulation and
Justification

3.1 Problem Formulation

Throughout this paper, we use S to denote the set of
all plans that can be used to answer a given query. We
also use Z to denote the vector of all those parameters
whose values are assumed to remain unchanged be-
tween optimization and run time. Each plan s in S has
an associated cost c(s,Z). The goal of any conventional
optimization algorithm is to find the plan SO in S that
satisfies the condition c(so,?) = min{c(s,Z) 1 s E S}.
In reality, many parameters that are part of 7 in the
above formulation do not remain constant between op-
timization and execution time. Hence, if we use F to
denote the parameters that can change, the cost of a
plan s is more appropriately written as c(s,p,Z). The
task of parametric query optimization is to optimize
the cost for all possible values of the fi vector. More
formally, a plan function s() is of the form s() : P + S,
where P denotes the domain of F. In the sequel, we
use the notation So to denote the set of all such plan
functions. Parametric query optimization finds the op-
timal plan function in SO, i.e. the one that generates
as output the optimal plan for any vector of values of Tj
that may be given as input; given the vector of actual
values of F at run-time, the plan function returns the
plan that should be used by the query processor. In
general, for every plan function s(), 7 can be parti-
tioned so that, for all &, & in the same partition, the
plans s(&) and s(&) are identical. These partitions
are called image partitions. Having defined these nota-
tions, we introduce below two equivalent formulations

‘Roughly, the connection cost is the height (cost) of the hills
that need to be climbed up to reach one local minimum from
another.

of parametric query optimization.
Formulation A There are 171 separate optimization
problems, each one identical to the traditional, non-
parametric case with a different F vector:

VP E ?r find SO E S s.t.
c(so,RZ) = min{c(s,p,Z) 1 s E S}.

Formulation B There is a single optimization prob-
lem over plan functions:

Find SO() E So s.t. V@ E P

c(so(F),F,~) = min{c(s(ij),ir,~> I 4 E s()l-

Example 1 Suppose parametric query optimization
is applied to two parameters: buffer size and
the kind of index available for a certain rela-
tion. Let the buffer size values of interest be
in the range B=[2,151] and the set of possi-
ble indices be I = {no-indez,clustered-Btree,
non-clustered-Btree}. The domain P is the cross
product B x I and p = (15, no-index) is one of the 450
possible vectors of values defined in the domain. Under
Formulation A, there are 450 different, non-parametric
query optimization problems that must be solved. The
optimal plan function can be obtained by integrating
all the plans found in those optimizations. Under For-
mulation B, there is a single optimization problem,
whose solution is the optimal plan function. 0

In principle, the two formulations are equivalent. In
practice, while Formulation A is simpler to conceptu-
alize, Formulation B is more efficient to process.

3.2 Justification for Using Parametric
Query Optimization

One may argue that the conventional approach of op-
timizing for a single vector PO produces a plan that is
(close to) optimal for all vectors F E P. We present ex-
perimental results to show that, at least for the buffer
size parameter, the above is not the case, therefore
justifying the use of parametric query optimization.

Throughout this paper, we use so(b) to denote the
(approximately optimal) plan produced by 2P0 for
b buffers. Furthermore, for notational simplification,
we drop the vector ? of parameters that remain con-
stant between optimization time and run time, and use
c(s~(bo), b) to denote the cost of the plan that is opti-
mal for bo buffers when executed in the presence of b

106

buffers. If the difference between the costs c(se(be), 6)
and c(se(b), b) were generally small, parametric query
optimization for the buffer size parameter would not
be needed. Figure 1 shows that this difference can be
quite high as buffer size changes. The x-axis is the

relative cost

of j

so(150)
3.

2-J / .___________----_---__ .-.----So<2)

-I / : ‘...

2.2 ,J

i
:"

1. \ 7'

i ,L

,.I
b f-2

1. ; :' ,-

._ \

-------- __.--.----~-- s ($20,
r- ..- .

LO! : ’ r’ I
0 .50 IdO 140

-hffcx size

Figure 1: Relative costs of plans sc(2),s0(20), and
ss(150).

buffer size b which varies from 2 to 150 pages. The
y-axis is the ratio c(so(bo), b)/c(so(b), b), which we call
relative co& of so(bo) with b buffers. Since by defi-
nition the cost c(so(b), b) is very close to the actual
minimum for buffer size b, the closer the relative cost
is to 1, the higher the quality of so(bo) is. Throughout
this paper, the notion of relative cost is used to judge
the quality of plans and plan functions.

Figure 1 includes three typical curves for plans
so(bo) with bo = 2,20, and 150. These curves are ob-
tained by running ten 20-join queries five times each
and show the average relative cost over all queries of
the average over the five runs. The specifics of how the
queries and corresponding data sets are generated are
given in Section 5.1. In each case, the same general be-
havior is observed. For buffer sizes close to bo, the rel-
ative cost is close to 1. As the buffer size moves away
from bo, however, the relative cost increases signifi-
cantly. Part of the reason why this pattern is formed
is that when there is a sufficient number of buffers, the
costs of hash-joins are lower than those for merge-scans
and nested-loops, but when buffers are scarce, the con-
verse is true [Sha86]. Thus, as the buffer size grows,
the optimal plan for that size tends to include more
and more hash-joins and fewer and fewer merge-scans
and nested-loops. The optimal ordering of the joins is
affected by the value of b as well. Consequently, based
on the results of Figure 1, parametric query optimiza-
tion appears to be necessary for efficient processing of

queries at all buffer sizes.

4 Randomized Algorithms for
Parametric Query Optimiza-
tion

4.1 Basic Algorithm

Consider a range [bmin, b,,,] of buffer sizes. Applying
Formulation B of parametric query optimization for
the buffer size parameter (and ignoring the vector E of
constants) results in the following problem:

Find SO() E So s.t. trb,i, < b 5 b,,,
c(so(b),b) = min{c(s(b),b) I SO E +I.

Let R be any randomized algorithm of the type de-
scribed in Section 2 (II, SA, and 2P0 are simply three
examples). Instead of using R to optimize a given
query separately for each buffer size bmin 5 b 5 b,,,,
which would be the case under Formulation A, we pro-
ceed concurrently for all buffer sizes. Abstractly, for
each buffer size b, there is one co-routine R[b] that runs
R on the conventional plan space (denoted by G[b12)
to identify the optimal plan for the given query when b
buffers are available. These co-routines have synchro-
nization points. When the running co-routine reaches
one of these points, it releases control to another co
routine that is randomly chosen among those still run-
ning. In our study, the synchronization points of R[b]
have been chosen to be right in-between attempted
moves3 (from the current plan to one of its neighbors)
in R. After the active co-routine R[b] attempts a move
to a neighbor of its current plan (successfully or not),
another co-routine gains control to attempt a move to
a neighbor of its own current plan.

4.2 Sideways Information Passing

The above concurrent version of the optimization does
not offer many advantages compared to a serial opti-
mization for each buffer size separately, because essen-
tially there is no communication among the co-routines

2The graph structure of G[b] is the one described in Section 2
and is identical for all values of b, but the node costs may differ.
That is why we distinguish each graph by the index b.

3For every algorithm R, the success of an attempt to move
from plan s to plan t depends on the cost difference between the
plans and the specific characteristics of R.

107

(as in Formulation A). We enhance the above co-
routines with the ability to share information. Specif-
ically, let s() be the current plan function defined by
the current plans of the individual co-routines. When
the active co-routine R[b] attempts to move from plan
s(b) to a neighbor t of s(b) in G[b], it communicates
and sends t to a preselected subset of the remaining
co-routines. The co-routines in this preselected set are
called friends of R[b]. Each recipient R[b’j of t com-
pares c(t, b’) with c(s(b’), b’) (which is the cost of its
current plan), and then decides on whether to move to
t or not in exactly the same way as if t and s(b’) were
neighbors in G[b’]. We use the term sideways informa-
tion passing to refer to this exchange of plans between
co-routine friends.

Consider the image partition of the current plan
function s() to which b belongs. Let b- and b+ be
the minimum and maximum buffer size of that im-
age partition, respectively. Given the natural total
order that exists on buffer sizes, we have chosen the
friends of R[b] to be all the co-routines R[b’] where
b- - k 5 b’ _< b+ + k, for some k > 0. Thus, there is
sideways information passing from the co-routine R[b]
to the co-routines associated with buffer sizes that are
similar to b. The value of k determines the depth of
the sideways information passing. If k = 0, no in-
formation is shared among the co-routines that have
different current plans. In that case, the algorithm can
be thought of as a smart implementation of Formula-
tion A (separate optimizations for each buffer size), be-
cause this allows co-routines of buffer sizes in the same
image partition to exchange information, as they are
always friends. This information, however, is in some
sense trivial since it is always a plan that is a neighbor
of the current plan of the recipient co-routine. Thus,
in terms of graph traversal, this algorithm is identical
to the non-parametric case. In that sense, in the rest
of the paper, we refer to the case of k = 0 as featuring
no sideways information passing. If k = co, the active
co-routine sends its candidate new plan to all other
co-routines, so there is complete information passing.
Other values of k represent intermediate situations.
This concurrent version of the optimization algorithm
R that employs sideways information passing at depth
k is denoted by sipR(k).

To be more concrete on how sideways information
passing works, we present in Figure 2 pseudo-code for
sipR(k), as it traverses a single random path. The
code fully captures SA (and the second phase of 2PO),

procedure sipR(k)
begin
B := {b I bmin I b L L,, };
s := random plan in S;
foreach b E B do s(b) := s;
while B # 0 do

begin
b := random buffer size in B;
t := neighborR[b](s(b));
foreach b- - k 5 b’ 5 bf + k do

begin
compare&moveR[b’](s(b’), t);
ifmovedR[b’] then B := B u {b’};
end

ifnFishedR[b] then B := B - {b};

end

Figure 2: Algorithm sipR(k).

whereas it captures a single local optimization of II
(and the first phase of 2PO). For II, the code shown is
executed as many times as it is necessary to perform
local optimizations, and then some postprocessing in-
tegrates the results of these local optimizations. The
code in Figure 2 captures the concurrent execution of
all c&routines together by showing at all times which
one is active. For that, it uses the following notation
for parts of these co-routines: neighborR(b] is the part
of R[b] that accepts a plan as input and returns one
of its neighbors as output based on the R algorithm;
finishedR[b] is a predicate indicating whether R[b] has
finished or not; compare&moveR[b] takes two plans
s(b) and t as input, calculates their costs for buffer
size b, and then decides whether or not to move from
s(b) to t based on the R algorithm; and movedR[b]
is a predicate indicating whether the comparison in
compare&moveR resulted in a successful move. Note
that the foreach-loop within the while-loop captures
the sideways information passing. Having k = 0 in
this line essentially eliminates this feature, as only co-
routines for buffer sizes within the same image parti-
tion are allowed to share information.

Example 2 Suppose at the beginning of the current
iteration of the while-loop, there are 3 image parti-
tions for the buffer sizes from 13 to 16. As illustrated
in Figure 3, Si is the plan in the image partition for
13, Sz the one for 14 and 15, and Sz the one for 16.
Suppose the random buffer size chosen in this itera-
tion is b = 14. Given S2 as input, suppose that the
routine neighborR[14] returns the plan S4 which uses

108

W31 N141

Rl
NL

/\
R2 R3

plans1
Rl R2 Rl R2 /\

R3 R2

NL NL

/\

R3

/\

R3
Rl

NL

plan s2 I plan s2 plan s3

b=14
neighbarR

MS
/\

R3

Rl R2
plan s4

plan s4 plan s4 plan s2 plan s3

Figure 3: Illustration for Example 2.

a merge-scan, instead of a nested-loop, for the join be-
tween relations RI and Rz. Furthermore, let k be 1, for
the scenario described in Figure 3. Then the routines
compare&moveR[b’] are invoked for b’ = 13,14,15,16.
Let us assume for this example that S4 is a cheaper
plan than Si and Sz for buffer sizes 13 and 14 respec-
tively, but that it is not as good as Sz and Ss for buffer
sizes 15 and 16 respectively. Consequently, at the end
of this iteration, there are 3 image partitions: S, for
buffer sizes 13 and 14, Sz for buffer size 15, and Ss for
16.

If there is no sideways information passing, i.e., k =
0, then compare&moveR[b’] will only be invoked for
b’ = 14,15. Consequently, Si, S4, Ss and Ss will be
the plans for buffer sizes 13, 14, 15 and 16 respectively.

cl

As shown in Figure 2, the depth k of sideways in-
formation passing is measured in terms of buffer sizes.
We have also experimented with a different algorithm,
where the depth k is measured in terms of the im-
age partitions of the current plan function. Let these
partitions be identified by their distance (measured in
number of partitions) from the lowest buffer size and
let r[b] be the image partition where b belongs. This
algorithm can be seen as a modification of the origi-
nal sipR algorithm where the foreach-loop that imple-

ments the sideways information passing becomes

foreacb b’ s.t. r[b] - k 5 r[b’] 5 r[b] + k do .

To distinguish between the two versions of the algo-
rithms, we use sip% (for ‘s’ize) to denote the original
one and sipRr (for ‘r’ange) to denote the modified one.

4.3 Plan Space Abstraction

Any analysis of the performance and behavior of ran-
domized algorithms requires that the three problem
specific parameters mentioned in Section 2 be speci-
fied. When sipR does not incorporate any nontrivial
sideways information passing (k = 0), it is equivalent
to running R separately for each buffer size b in exactly
the same way as in conventional query optimization.
With sideways information passing, however, the no-
tion of neighbors becomes more complicated (although
the set of plans and the cost function remain the same
for each c&routine). This is due to the communica-
tion of plans occurring among friends. The current
plan s(b) of R[b] may be replaced by an arbitrary plan
t when a friend attempts to move to t, even if s(b) and
t are not neighbors in G[b].

In order to model R[b] with sideways information
passing as a regular randomized algorithm always
moving between neighbors, we construct below a new

109

graph c[b] that can be used as the abstract space
on which R[b] is executed, following the conventional
steps of R and without any communication with any
other co-routines. For every node s in G[b], there is a
set of nodes {(s, s’) 1 s’ E S} in G*[b], i.e., s generates
as many nodes as there are plans in S. Plans s and s’
are called the primary and secondary plan of a node
(s, s’), respectively. Th e ‘n ui 1 t t ion behind the above is
that s signifies the current plan of R[b] while s’ signi-
fies the current plan of a friend of R[b]. The edges of
G*[a] are defined as follows. First, any pair of nodes
with the same primary plan are directly connected by
a type-l edge, i.e., all nodes with the same primary
plan form a clique. Second, if t and u are neighbors in
G[b], then for all s there is a type-2 edge between (s, t)
and (u, u) in G’ [b]. Figure 4 shows a simple example of
how the above graph abstraction is constructed from
a conventional plan space*. Note that, because of the
cliques formed by type-l edges, starting from any node
in G*[b], it is possible to move to some node with an
arbitrary primary plan in at most two moves. Finally,
the cost of a node (s, s’) in G*[b] is equal to c(s, a) for
all s’, which implies that each aforementioned clique
forms a plateau.

I

1
f
Y VF-2

WI Wbl

Figure 4: Constructing the graph abstraction G’[b]
from the conventional plan space G[b].

We claim that running R[b] on the conventional plan
space G[b] under control of sipR(k) with sideways in-
formation passing (lc > 0) is equivalent to running
R[b] on G*[b] with no communication to any other co-

4Strictly speaking, some nodes, such as (t,s) and (t,t), in
Figure 4 are connected by both type-l and type-2 edges. How-
ever, for the purpose of randomized algorithms, it makes no dif-
ference whether two nodes are connected directly once or twice.
The introduction of these two types of edges is merely for the
purpose of presentation.

routines. To see why this is the case, first note that the
random choice of buffer-size/coroutine and the side-
ways information passing (first statement and foreach-
loop in the while-loop of Figure 2, respectively) are the
only parts that need attention. Let s be the current
plan of R[b] and (s, s) be the current node of R[b] in
G’[b] (cf. Figure 4). Choosing a new buffer size b’ in
the first statement of the while-loop of sipR(k), such
that R[b’j is a friend of R[b] based on the value of Ic,
is equivalent to moving from (s,s) to (s, t) in G’[b],
where t is the current plan of R[b’]. Clearly the two
nodes are connected in G*[b] via a type-l edge and
have the same cost, so the move is always legal and is
always successful. Choosing a neighbor u of t in R[b’]
under sipR(k) and sending it to its friend R[b] for a
possible move is equivalent to attempting to follow a
type-2 edge from (s, t) to (u, U) in G*[b]. Therefore,
since c(s,b) = c((s,t),b) and c(v, b) = c((u,u),~), the
two algorithmic abstractions are equivalent.

Based on the above, in the next subsection, we use
all the results derived for each conventional algorithm
R to understand sipR better and draw conclusions
about its behavior. We should note, however, that run-
ning R on G*[b] represents only an abstraction which
if implemented directly, would be extremely expensive
due to the size of G’ [b].

As mentioned in Section 2, one of the key factors
that determine the success or failure of randomized al-
gorithms is whether or not the cost function c forms
a ‘well’ over the plan space. We claim that the G*[b]
graph constructed above forms a very definitive ‘well’,
and therefore, randomized algorithms are expected to
be effective for parametric query optimization. Specif-
ically, let g be a global minimum plan in the conven-
tional plan space G[b]. As mentioned in the previous
subsection, the distance between any node (s, s’) of
the graph and node (g,g) is at most 2. Moreover, the
intermediate node that connects them is of the form
(s, t), where t is a conventional neighbor of g in G[b].
Comparing the costs of the three nodes yields

c((s, s’), b) = c((s, t), b), by construction of the clique,
c((s, t), b) 2 c((g, g), b), as g a global minimum in G[b].

Hence, the only local minima in the new graph G*[b]
are also global minima, and they are all mutually con-
nected. The above implies that a ‘perfect well’ is
formed. Although in practice randomized algorithms
identify approximations to local minima, experiments

110

that we have conducted have verified that they can
effectively exploit the ‘well’-shape [INSS92].

5 Algorithm Behavior

5.1 Experiment Testbed

We implemented all four algorithms sipIIs/r(k) and
sip2POs/r(k) for several values of the depth k and run
several experiments to test their effectiveness for query
optimization. Details about the implementations are
given in the full version of the paper [INSS92]. The
machine used for the experiments was a DECstation
3100. The algorithms were run on tree queries [U1182]
consisting of equality joins only. The size of these
queries, which were generated randomly, ranged from
1 to 20 joins. They were tested with a randomly
generated relation catalog where relation cardinalities
ranged from 1000 to 100000 tuples, and the numbers
of unique values in join columns varied from 10% to
100% of the corresponding relation cardinality’. Each
page of a relation was assumed to contain 16 tuples.
Each relation had four attributes, and was clustered on
one of them. If a relation was not physically sorted on
the clustered attribute, there was a B+-tree or hashing
primary index on that attribute. These three alterna-
tives were equally likely. For each of the other at-
tributes, the probability that it had a secondary index
was l/2, and the choice between a B+-tree and hash-
ing secondary index were again uniformly random. As
for join methods, we used block nested-loops, merge-
scan, and simple and hybrid hash-join [Sha86]. The
query cost was a weighted sum of the cpu time and
the number of I/O accesses. The weight was chosen so
that the cost of one disk read or write corresponded to
3Omsec. The specific cost formulas are given elsewhere
[INSS92]. In what follows, unless otherwise stated, the
results presented for each algorithm are averages of five
runs of the algorithm on each of 10 queries with similar
characteristics. The values of the buffer size parameter
were those in the range [2,70].

For every specific query instance, we first ran 2P0
separately for each buffer size (which resulted in the
(approximately) optimal plan function sc() as de-
scribed in Section 3.2) and obtained its average run-
ning time over all buffer sizes. We then allowed sip11
to run for exactly that amount of time on the query.

‘This was the most varied catalog (catalog ‘relcat3’) that we
used in previous experiments [IK90].

Thus, sip11 used the same amount of time to optimize
a query over a range of buffer sizes, as 2P0 used to
optimize that query for a single buffer size.

5.2 2P0 versus II

We first present results that compare the effective-
ness and performance of sip2PO and sipI1. These re-
sults have consistently indicated that unlike the sit-
uation for conventional query optimization, sip11 is
very competitive with sip2PO. As a representative,
Figure 5 shows the relative costs of the output plan
functions found by sip2POr(l) and sipIIr(1) for five
20-join queries. The figure includes the results of two

relative cost

‘r--\, ‘+&or(l) (locto sets)
~~,~~~~~)

0 10 20 30 40 50 60 70

Figure 5: Output quality of sip2POr(l) and sipIIr(1).

different versions of sip2POr(1) that took around 1000
set and 2200 set, respectively. When compared with
sipIIr(l), which only takes around 150 seconds, the rel-
ative output costs of both versions of sip2POr(l) are
lower by a mere l-4% on the average.

The fact that sipIIr compares favorably with
sip2POr is actually not surprising. Recall from the
previous section that G*[b] forms a ‘perfect well’.
Hence, the second phase of sipPP0 is not really nec-
essary. Based on the above, in the remainder of this
paper we concentrate on sip11 only.

5.3 Optimal Depth for Sideways Infor-
mation Passing

To evaluate the effectiveness of sideways information
passing, we compare the performance of sipIIs(k) and
sipIIr(k) for various values of k. Table 1 shows the
average relative costs over the buffer size range [2,70],
of the plan functions found by sipIIs(k) and sipIIr(k),
for k = 0, 1,2,5,10, and 03 (given the same amount

111

of time). The specific results are for 20-join queries,

k 0 1 2 5 10 00
sipIIr(k) 1.67 1.10 1.11 1.17 1.20 1.17
sinIIs(k) 1.67 1.08 1.08 1.08 1.11 1.17

Table 1: Output quality of sipIIr(k) and sipIIs(k).

but similar results were obtained for other queries as
well. As Table 1 shows, the improvement from depth
k = 0 to k = 1 is significant. This demonstrates the
usefulness of sideways information passing and is con-
sistent with the results on the ‘well’-shape of the cost
functions over G*[b] presented in the previous section.

On the other hand, as the depth k increases be-
yond 1, there is a gradual degradation in performance.
This is due to the fact that as the number of plan
cost comparisons increases, the time consumed by such
comparisons more than offsets the benefits of a friend
occasionally finding a lower cost plan. In general, the
larger the difference between the buffer sizes of friends,
the less likely that the comparison between the costs
of their associated plans is beneficial. Throughout this
paper, we refer to this phenomenon as over-comparing.
Indeed, due to over-comparing, our experiments con-
sistently find sipII(l) to be the best among sipII(k) for
all values of k.

Table 1 also serves to compare sipIIs with sipIIr and
identify some differences between them. First, un-
like sipIIr(k), for small values of k > 1, the output
quality of sipIIs(k) is comparable to that of sipIIs(1):
any small value of the depth k is equally optimal for
sipIIs(k). This result is consistent with the fact that
the optimal depth k for sipIIr(k) is 1, for an image
partition of the optimal plan function rarely consists
of more than 5 buffer sizes. Second, for correspond-
ing k values, the output quality of sip&(k) is consis-
tently better than that of sipIIr(k)‘. The reason is
that an image partition of the current plan function
in sipIIr(k) may consist of more than one buffer size,
and thus sipIIr(k) is more prone to the effect of over-
comparing than sipIIs(k). Since sipIIs(1) appears to
be the dominant algorithm for parametric query opti-
mization, we devote our full attention to it in the rest
of the paper.

‘The two algorithms coincide when k=O or k = 00 but behave
differently for intermediate values of k.

5.4 Effect of Query Size and Running
Time

In this subsection, we show the effectiveness of
sipIIs(1) for optimizing queries of various sizes as well
as how this is affected when the time consumed by the
algorithm varies. We present results for queries with
1, 3, 5, 7, 10, and 20 joins. With respect to the run-
ning time of the algorithm, recall that for the results.
presented so far, the amount of time given to sipIIs(1)
was equal to the time needed by 2P0 to optimize a
query for a single buffer size. Let T be that time. The
average values of T for various query sizes is shown in
Table 2. We performed additional experiments where

’ Query Size (Joins) 1 3 5 7 10 20
T (set) 2 14 27 42 62 158

Table 2: Average time given to sipIIs(k) for queries of
different sizes.

the amount of time given to sipIIs(1) was T/3, 2T/3,
T, and 2T. Figure 6 shows the results of the combined

Figure 6: Output quality of sipIIs(1) with varying ex-
perimentation times.

experiments. Specifically, it shows the average over
the buffer size range [2,70] of the relative cost of the
output plan function of sipIIs(1). As expected, more
time gives better results for any query size. The sur-
prising result, however, is that for small queries, even
a time of T/3 is sufficient to produce a plan function
that is within 1% of the optimal (i.e., a relative cost
of 1). As for larger queries, such as 20-join queries,
a time of 2T produces a plan whose average cost is
within 4% of the optimal one. These results are very

112

promising and indicate that, by using sipIIs(l), para-
metric query optimization can be efficiently supported
in current systems. As in applying II to conventional
query optimization, an interesting question that arises
in parametric query optimization is how to determine
the running time of a query optimizer for real appli-
cations. This is an issue that requires further study in
the form of a comprehensive performance evaluation
on sipI1.

6 Conclusions and Future

Work

We have formalized the problem of parametric query
optimization and studied it primarily for the buffer
size parameter. We have adopted randomized algo
rithms as the main approach to this style of optimiza-
tion and have introduced sideways information pass-
ing to increase the effectiveness of these algorithms in
the new task. Extensive experimentation has shown
that these enhanced algorithms optimize queries for
large numbers of buffer sizes in the same time needed
by their conventional versions for a single buffer size,
without much sacrifice in the output quality. These
experiments have also identified sipIIs(1) as the most
effective of the randomized algorithms for a very broad
spectrum of cases.

To the best of our knowledge, the approach pre-
sented in this paper for parametric query optimization
is the first of its kind, since it offers a complete query
optimization algorithm that has a plan function as out-
put and makes no assumptions about any properties of
the plan costs. We believe that incorporating sipIIs(1)
into a query optimizer will significantly enhance the
performance of queries. When a query is ready to be
executed, the database system will know the precise
values of the parameters that were unknown at query
optimization time. It will take a simple table look-up
with the parameter values to identify the appropriate
plan for the execution. The savings in execution cost
of using a plan that is specifically tailored to the ac-
tual parameter values as opposed to one obtained for
typical parameter values could be enormous.

There are several issues that we plan to address in
our future work. First, it would be interesting to devise
ways to make sip11 more efficient, such as by reducing
the number of buffer sizes that are being considered
during optimization. Second, it would be beneficial to

control the number of image partitions of the output
plan function. Preliminary work in this direction indi-
cates that whenever the number of partitions is large,
simple postprocessing steps can reduce that number
considerably, without a significant penalty on the out-
put quality. Third, it would be interesting to adapt the
traditional, dynamic programming algorithm for para-
metric query optimization and to compare it against
sipI1. Although we believe that by its very nature,
the dynamic programming approach will not be ef-
fective for parametric query optimization, this belief
needs further investigation and experimental verifica-
tion. Finally, it would be important to experiment
with large vectors of diverse parameters to understand
the scalability of the proposed algorithms. Preliminary
experiments with the index parameter of some query
relation have shown that sipIIs(1) can obtain output
of good quality in a short amount of time. The results
of these studies will complement those presented in
this paper and shed some new light into how paramet-
ric query optimization should be approached in future
database systems.

References

[CY89]

[FNSSl]

[GM911

[GW89]

[HP881

D. Cornell and P. Yu. Integration of buffer
management and query optimization in re-
lational database environment. In Proc. of
the 15th International VLDB Conference,

pages 247-255, Amsterdam, The Nether-
lands, August 1989.

C. Faloutsos, R. Ng, and T. Sellis. Pre-
dictive load control for flexible buffer al-
location. In Proc. of the 17th Intema-

tional VLDB Conference, pages 265-274,
Barcelona, Spain, August 1991.

G. Graefe and W. McKenna. The volcano
optimizer generator. Technical Report 563,
University of Colorado, Boulder, December
1991.

G. Graefe and K. Ward. Dynamic query
evaluation plans. In Proc. of the 1989

ACM-SIGMOD Conference on the Man-

agement of Data, pages 358-366, Portland,
OR, May 1989.

W. Hasan and H. Pirahesh. Query rewrite
optimization in starburst. Technical Report

113

[HS91]

[IK90]

[IK91]

[INSS92]

[IW87]

[KanSl]

[KGV83]

[ML861

[NFSSl]

RJ 6367, IBM Almaden Research Center,
1988.

W. Hong and M. Stonebraker. Optimiza-
tion of parallel query execution plans in
xprs. In Proc. of the 1st International PDIS
Conference, pages 218-225, Miami, FL, De-
cember 1991.

Y. E. Ioannidis and Y. Kang. Randomized
algorithms for optimizing large join queries.
In Proc. of the 1990 ACM-SIGMOD Con-
ference on the Management of Data, pages
312-321, Atlantic City, NJ, May 1990.

Y. E. Ioannidis and Y. Kang. Left-deep vs.
bushy trees: An analysis of strategy spaces
and its implications for query optimization.
In Proc. of the 1991 ACM-SIGMOD Con-
ference on the Management of Data, pages
168-177, Denver, CO, May 1991.

Y. Ioannidis, R. Ng, K. Shim, and T. Sellis.
Parametric query optimization. Technical
report, Univ. of Wisconsin, Madison and
Univ. of Maryland, College Park, 1992.

Y. E. Ioannidis and E. Wong. Query opti-
mization by simulated annealing. In Proc.
of the 1987 ACM-SIGMOD Conference on
the Management of Data, pages 9-22, San
Francisco, CA, May 1987.

Y. Kang. Randomized Algorithms for

Query Optimization. PhD thesis, Univer-
sity of Wisconsin, Madison, May 1991.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P.
Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598):671-680, May 1983.

L. F. Mackert and G. M. Lohman. R’ vali-
dation and performance evaluation for lo
cal queries. In Proc. of the 1986 ACM-
SIGMOD Conference on the Management
of Data, pages 84-95, Washington, DC,
May 1986.

R. Ng, C. Faloutsos, and T. Sellis. Flexible
buffer allocation based on marginal gains.
In Proc. of the 1991 ACM-SIGMOD Con-
ference on the Management of Data, pages
387-396, Denver, CO, May 1991.

[NSSSS]

[SAC+ 791

[SG88]

[Sha86]

[SKP088]

[U1182]

S. Nahar, S. Sahni, and E. Shragowitz. Sim-
ulated annealing and combinatorial opti-
mization. In Proc. of the 2.3-d Design Au-
tomation Conference, pages 293-299, 1986.

P. G. Selinger, M. M. Astrahan, D. D.
Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational
database management system. In Proceed-
ings of the ACM SIGMOD International
Symposium on Management of Data, pages
23-34, Boston, MA, June 1979.

A. Swami and A. Gupta. Optimization of
large join queries. In Proc. of the 1988
ACM-SIGMOD Conference on the Man-
agement of Data, pages 8-17, Chicago, IL,
June 1988.

L. D. Shapiro. Join processing in database
systems with large main memories. ACM
TODS, 11(3):239-264, September 1986.

M. Stonebraker, R. Katz, D. Patterson,
and J. Ousterhout. The design of xprs. In
Proc. of the 14th International VLDB Con-
ference, pages 318-330, Long Beach, CA,
August 1988.

J. D. Ullman. Principles of Database Sys-
tems. Computer Science Press, Rockville,
MD, 1982.

114

