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Abstract 

In most database systems, the values of many impor- 
tant run-time parameters of the system, the data, or 
the query are unknown at query optimization time. 
Parametric query optimization attempts to identify 
several execution plans, each one of which is optimal 
for a subset of all possible values of the run-time pa- 
rameters. We present a general formulation of this 
problem and study it primarily for the buffer size pa- 
rameter. We adopt randomized algorithms as the main 
approach to this style of optimization and enhance 
them with a sideways information passing feature that 
increases their effectiveness in the new task. Experi- 
mental results of these enhanced algorithms show that 
they optimize queries for large numbers of buffer sizes 
in the same time needed by their conventional versions 
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for a single buffer size, without much sacrifice in the 
output quality. 

1 Introduction 

Relational query optimization is an expensive process, 
primarily because the number of alternative access 
plans for a query grows at least exponentially with the 
number of relations participating in the query. The 
application of several useful heuristics eliminates some 
alternatives that are likely to be suboptimal [SAC+79], 
but it does not change the combinatorial nature of the 
problem. In the future, database systems will need to 
optimize queries over much larger sets of alternative 
plans. The traditional, heuristically pruning, almost 
exhaustive query optimization algorithms are inade- 
quate to fulfill the increased requirements, and new 
algorithms need to be developed. 

One of the primary reasons for the increase in the 
number of alternative plans is that optimization will 
be required for many different values of important 
run-time parameters whose actual values are unknown 
at optimization time. To avoid the above, current 
database systems make certain assumptions about the 
database contents (e.g., value distribution in relation 
attributes), the physical schema (e.g., index types), 
the values of the system parameters (e.g., number of 
available buffers), and the values of the query con- 
stants. Some of these assumptions, however, may be 
violated at run time: the database contents and the 
physical schema change incessantly [ML86], the mul- 
tiprogramming level of the system and the resource 
needs of concurrently running queries cannot be pre- 
dicted, and queries may be executed with different 
bindings for their constants, e.g., a selection within a 
for-loop in a query embedded in a C program or calls 
to recursive rules in deductive databases. When these 
optimization-time assumptions are violated at execu- 
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tion time, m-optimization is needed or performance 
suffers. 

Motivated by the above, we have studied the prob- 
lem of optimizing queries for all possible values of run- 
time parameters that are unknown at optimization 
time (a task that we call Parametric Query Optimira- 
tion), so that the need for re-optimization is reduced. 
This study has also been motivated by recent results on 
flexible buffer allocation [NFSSl, FNSSl]. It has been 
shown that in deciding how many buffers to allocate to 
a query, taking run-time conditions into account leads 
to improvement in system performance (e.g., through- 
put). The reported improvement has been obtained 
based on fixed plans that assume a specific number 
of allocated buffers. Further improvement in perfor- 
mance is expected if a plan is not fixed and can be cho- 
sen to match the actual number of allocated buffers. 

In principle, the optimal plan generated by para- 
metric query optimization may be different. for each 
distinct value combination of all the possible run-time 
parameters. In practice, however, the total cost of 
generating all these plans would be prohibitive. A dif- 
ferent approach would seek to produce distinct plans 
for values of a selected subset of run-time parameters 
in less time. It is this approach that we study in this 
paper, where we focus on the number of buffer pages 
allocated to a query (the bufler sire) as the unknown 
parameter. We propose the use of randomized algo 
rithms to address the tremendous increase in the num- 
ber of alternative plans. Such algorithms have been 
successfully applied to various combinatorial optimiza- 
tion problems in the past, including the optimization 
of queries with many joins. We adapt three such al- 
gorithms (Simulated Annealing (SA) [KGV83, IW87], 
Iterative Improvement (II) [NSSSS, SG88], and Two 
Phase Optimization (2PO) [IK90, IK91]) for paramet- 
ric query optimization of select-project-join queries, 
and present experimental results that show the effec- 
tiveness of the devised adaptations. 

Several projects have considered supporting multi- 
ple plans for a query. The earliest significant work in 
this area is by Graefe and Ward [GW89]. They dis- 
cuss the implementation of dynamic query plans in the 
Volcano optimizer generator [GM91]. These are plans 
that include a choose-plan operator, which chooses 
among multiple available conventional plans given the 
values of certain run-time parameters. The proposal is 
for choose-plan operators to be introduced in all places 
of a plan where the choice of subplans underneath is 
sensitive to the values of these parameters. This work 
introduces many important concepts related to para- 
metric query optimization but does not include a com- 
plete search strategy to identify the dynamic plans and 
the places where the choose-plan operators should be 

placed. 
The XPRS project proposes to select at run-time a 

parallel plan from a set of plans based on buffer al- 
locations [SKP088]. T wo different optimization algo 
rithms have been proposed for this task. In an ear- 
lier reference [SKP088], a ‘binary-search’ approach is 
advocated, where a query is first optimized for the 
smallest (m) and the largest (M) possible buffer size; 
if the two obtained plans are far from optimal for the 
buffer size for which they were not chosen, the query 
is optimized again for the midpoint between m and M 
and the process is repeated. The disadvantage of this 
approach is that the amount of time spent in query 
optimization grows linearly with the number of buffer 
sizes for which the query is optimized, which may be 
prohibitive. Also, as it has been pointed out elsewhere 
as well [GW89], this approach may work for one or 
two parameters, but would not scale up. In a more 
recent reference [HS91], the assumption is made that 
the buffer size is greater than the minimum required 
for efficient execution of hash-join. Based on that as- 
sumption, experimental evidence is provided that the 
optimal plan is in general insensitive to buffer size. 
Hence, an enhanced version of a conventional query 
optimizer for a fixed buffer size is proposed. The en- 
hancements deal with some special cases where the 
insensitivity claim does not hold, and consist of essen- 
tially introducing choose-plan operators [GW89]. 

The Starburst project has also considered incorpo- 
rating a second optimization phase that chooses plans 
at run-time [HP88]. To the best of our knowledge, 
however, no technique has been developed to find those 
plans. Also, Cornell and Yu [CY89] use an integer 
programming model to optimize queries in a transac- 
tion environment and their buffer allocations simulta- 
neously. Nonetheless, as their concern is different from 
ours, still only one plan is produced per query, and that 
plan is susceptible to changes in the environment. 

Our work differs from all the proposals mentioned 
above in several aspects. First, we present a general 
framework for parametric query optimization that is 
applicable to arbitrary parameters and not only buffer 
size. (In that respect, the work of Graefe and Ward 
is general as well [GW89].) Second, we develop com- 
plete parametric query optimization algorithms that 
produce multiple plans as output. These algorithms 
are not based on any assumptions like those made in 
the XPRS project [HS91], so they are much more gen- 
erally applicable. Third, the experimental results of 
these algorithms on the buffer size parameter show 
that generality is not achieved at the expense of effi- 
ciency or output quality. Hence, we expect that these 
algorithms can easily be incorporated in the systems 
mentioned above, without jeopardizing their perfor- 
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mance goals. 
This paper is organized as follows. Section 2 gives 

preliminary descriptions on SA, II, and 2P0. Section 3 
introduces a general framework for parametric query 
optimization and provides experimental evidence for 
the need of obtaining multiple plans for different run- 
time values of the buffer size parameter. Section 4 
presents the family of algorithms that we have devel- 
oped and discusses several of their characteristics. Sec- 
tion 5 contains the results of several experiments with 
these algorithms, showing their effectiveness with re- 
spect to both running time and output quality. Fi- 
nally, Section 6 summarizes our overall approach and 
presents some directions for future work. 

2 Randomized Algorithms for 
Conventional Query Opti- 
mizat ion 

In this section, we briefly describe randomized algo- 
rithms as they have been applied to conventional, non- 
parametric query optimization. This is a necessary 
basis for the description of the parametric query opti- 
mization algorithms in the following sections. 

Each solution to a combinatorial optimization prob- 
lem can be thought of as a state in a space, i.e., a node 
in a graph, that includes all such solutions. Each state 
has a cost defined by some problem-specific cost func- 
tion. The goal of an optimization algorithm is to find 
a state with the globally minimum cost. Randomized 
algorithms perform mndom walks in the state space 
via a series of moves. The states that can be reached 
in one move from a state S are called the neighbors of 
S. A move is called uphill (downhill) if the cost of the 
source state is lower (higher) than the cost of the desti- 
nation state. A state is a local minimum if, in all paths 
starting at that state, every downhill move comes af- 
ter at least one uphill move. It is a global minimum 
if it has the lowest cost among all states. It is on a 
plateau if it has no lower cost neighbor and yet it can 
reach lower cost states without uphill moves. Using 
the above terminology, we briefly outline three ran- 
domized optimization algorithms that have been used 
for query optimization [IW87, SG88, IK90, IK91]. 

First, Iterative Improvement (II) performs a large 
number of local optimizations. A local optimization 
starts at a random state and improves the solution by 
repeatedly accepting random downhill moves until it 
reaches a local minimum. Its output at the end is the 
least cost local minimum that has been visited. 

Second, Simulated Annealing (SA) starts at a ran- 
dom state and proceeds by random moves, which if 

uphill, are only accepted with certain probability. As 
time progresses this probability gradually decreases 
until it becomes zero, which signifies the termination 
of the algorithm. The output of the algorithm as used 
in practice is again the least cost state that has been 
visited. 

Third, Two Phase Optimization (2PO) is divided 
into two phases. In the first phase, II is run for a 
small period of time, i.e., a few local optimizations. 
The output of that phase is the initial state of the next 
phase, where SA is run with very low initial probability 
for uphill moves. 

When the above generic optimization algorithms are 
applied to query optimization, three parameters need 
to be specified: the state space, the neighbors of each 
state, and the cost function. Each state in query og 
timization corresponds to an access plan (or simply 
plan) of the query to be optimized. By performing 
selections and projections as early as possible and ex- 
cluding unnecessary cross products [SAC+79], a plan 
can be represented as a join processing tree, i.e., a tree 
whose leaves are base relations, internal nodes are join 
operators, and edges indicate the flow of data. If all 
internal nodes of such a tree have at least one leaf as 
a child, then the tree is called deep. Otherwise, it is 
called bushy. In this study, we deal with the plan space 
that includes both deep and bushy trees. 

The neighbors of a state, which is a join processing 
tree (i.e., a plan), are determined by a set of transfor- 
mation rules. Each neighbor is the result of applying 
one of these rules to some internal nodes of the origi- 
nal plan once, replacing them by some new nodes, and 
usually leaving the rest of the nodes of the plan un- 
changed. There are several sets of transformation rules 
from which one could choose. With A, B, and C being 
arbitrary join processing formulas, the ones adopted 
in this study are described below [IK90, IK91]: 

(1) Method choice: A Wmethod, B + A W,,thodj B 
(2) Commutativity: A W B - B W A 
(3) Associativity: (A W B) W C u A W (B W C) 
(4) Left ezchange: (A W B) W C + (A W C) W B 
(5) Right exchange: A W (B W C) + B W (A W C) 

Rule (1) changes the join method of a join, e.g., from 
nested-loops to merge-scan. 

Finally, the cost of every plan is usually a combina- 
tion of the I/O and cpu cost of the plan. The above 
algorithms have been successfully applied to con- 
ventional, non-parametric query optimization [SG88, 
IK90, IK91], which assumes a certain number of 
buffers bc for a given query, and produces a single plan 
that is optimal for bc. 2P0 has been shown to be the 
dominant algorithm for a wide range of values of bc. 
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The main reason for this is that, in all cases, the shape 
of the cost function of the plan space forms a ‘well’. 
That is, some small percentage of local minima in the 
space have high cost but most of them have low cost, 
and the connection cost’ between local minima is still 
relatively low compared to the cost range in the whole 
space. 2P0 takes advantage of the first fact in its 
II-phase to reach the ‘well’-bottom quickly and then 
takes advantage of the second fact in its SA-phase to 
explore the ‘well’-bottom without climbing over very 
high hills. 

3 Problem Formulation and 
Justification 

3.1 Problem Formulation 

Throughout this paper, we use S to denote the set of 
all plans that can be used to answer a given query. We 
also use Z to denote the vector of all those parameters 
whose values are assumed to remain unchanged be- 
tween optimization and run time. Each plan s in S has 
an associated cost c(s,Z). The goal of any conventional 
optimization algorithm is to find the plan SO in S that 
satisfies the condition c(so,?) = min{c(s,Z) 1 s E S}. 
In reality, many parameters that are part of 7 in the 
above formulation do not remain constant between op- 
timization and execution time. Hence, if we use F to 
denote the parameters that can change, the cost of a 
plan s is more appropriately written as c(s,p,Z). The 
task of parametric query optimization is to optimize 
the cost for all possible values of the fi vector. More 
formally, a plan function s() is of the form s() : P + S, 
where P denotes the domain of F. In the sequel, we 
use the notation So to denote the set of all such plan 
functions. Parametric query optimization finds the op- 
timal plan function in SO, i.e. the one that generates 
as output the optimal plan for any vector of values of Tj 
that may be given as input; given the vector of actual 
values of F at run-time, the plan function returns the 
plan that should be used by the query processor. In 
general, for every plan function s(), 7 can be parti- 
tioned so that, for all &, & in the same partition, the 
plans s(&) and s(&) are identical. These partitions 
are called image partitions. Having defined these nota- 
tions, we introduce below two equivalent formulations 

‘Roughly, the connection cost is the height (cost) of the hills 
that need to be climbed up to reach one local minimum from 
another. 

of parametric query optimization. 
Formulation A There are 171 separate optimization 
problems, each one identical to the traditional, non- 
parametric case with a different F vector: 

VP E ?r find SO E S s.t. 
c(so,RZ) = min{c(s,p,Z) 1 s E S}. 

Formulation B There is a single optimization prob- 
lem over plan functions: 

Find SO() E So s.t. V@ E P 

c(so(F),F,~) = min{c(s(ij),ir,~> I 4 E s()l- 

Example 1 Suppose parametric query optimization 
is applied to two parameters: buffer size and 
the kind of index available for a certain rela- 
tion. Let the buffer size values of interest be 
in the range B=[2,151] and the set of possi- 
ble indices be I = {no-indez,clustered-Btree, 
non-clustered-Btree}. The domain P is the cross 
product B x I and p = (15, no-index) is one of the 450 
possible vectors of values defined in the domain. Under 
Formulation A, there are 450 different, non-parametric 
query optimization problems that must be solved. The 
optimal plan function can be obtained by integrating 
all the plans found in those optimizations. Under For- 
mulation B, there is a single optimization problem, 
whose solution is the optimal plan function. 0 

In principle, the two formulations are equivalent. In 
practice, while Formulation A is simpler to conceptu- 
alize, Formulation B is more efficient to process. 

3.2 Justification for Using Parametric 
Query Optimization 

One may argue that the conventional approach of op- 
timizing for a single vector PO produces a plan that is 
(close to) optimal for all vectors F E P. We present ex- 
perimental results to show that, at least for the buffer 
size parameter, the above is not the case, therefore 
justifying the use of parametric query optimization. 

Throughout this paper, we use so(b) to denote the 
(approximately optimal) plan produced by 2P0 for 
b buffers. Furthermore, for notational simplification, 
we drop the vector ? of parameters that remain con- 
stant between optimization time and run time, and use 
c(s~(bo), b) to denote the cost of the plan that is opti- 
mal for bo buffers when executed in the presence of b 
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buffers. If the difference between the costs c(se(be), 6) 
and c(se(b), b) were generally small, parametric query 
optimization for the buffer size parameter would not 
be needed. Figure 1 shows that this difference can be 
quite high as buffer size changes. The x-axis is the 

relative cost 
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Figure 1: Relative costs of plans sc(2),s0(20), and 
ss(150). 

buffer size b which varies from 2 to 150 pages. The 
y-axis is the ratio c(so(bo), b)/c(so(b), b), which we call 
relative co& of so(bo) with b buffers. Since by defi- 
nition the cost c(so(b), b) is very close to the actual 
minimum for buffer size b, the closer the relative cost 
is to 1, the higher the quality of so(bo) is. Throughout 
this paper, the notion of relative cost is used to judge 
the quality of plans and plan functions. 

Figure 1 includes three typical curves for plans 
so(bo) with bo = 2,20, and 150. These curves are ob- 
tained by running ten 20-join queries five times each 
and show the average relative cost over all queries of 
the average over the five runs. The specifics of how the 
queries and corresponding data sets are generated are 
given in Section 5.1. In each case, the same general be- 
havior is observed. For buffer sizes close to bo, the rel- 
ative cost is close to 1. As the buffer size moves away 
from bo, however, the relative cost increases signifi- 
cantly. Part of the reason why this pattern is formed 
is that when there is a sufficient number of buffers, the 
costs of hash-joins are lower than those for merge-scans 
and nested-loops, but when buffers are scarce, the con- 
verse is true [Sha86]. Thus, as the buffer size grows, 
the optimal plan for that size tends to include more 
and more hash-joins and fewer and fewer merge-scans 
and nested-loops. The optimal ordering of the joins is 
affected by the value of b as well. Consequently, based 
on the results of Figure 1, parametric query optimiza- 
tion appears to be necessary for efficient processing of 

queries at all buffer sizes. 

4 Randomized Algorithms for 
Parametric Query Optimiza- 
tion 

4.1 Basic Algorithm 

Consider a range [bmin, b,,,] of buffer sizes. Applying 
Formulation B of parametric query optimization for 
the buffer size parameter (and ignoring the vector E of 
constants) results in the following problem: 

Find SO() E So s.t. trb,i, < b 5 b,,, 
c(so(b),b) = min{c(s(b),b) I SO E +I. 

Let R be any randomized algorithm of the type de- 
scribed in Section 2 (II, SA, and 2P0 are simply three 
examples). Instead of using R to optimize a given 
query separately for each buffer size bmin 5 b 5 b,,,, 
which would be the case under Formulation A, we pro- 
ceed concurrently for all buffer sizes. Abstractly, for 
each buffer size b, there is one co-routine R[b] that runs 
R on the conventional plan space (denoted by G[b12) 
to identify the optimal plan for the given query when b 
buffers are available. These co-routines have synchro- 
nization points. When the running co-routine reaches 
one of these points, it releases control to another co 
routine that is randomly chosen among those still run- 
ning. In our study, the synchronization points of R[b] 
have been chosen to be right in-between attempted 
moves3 (from the current plan to one of its neighbors) 
in R. After the active co-routine R[b] attempts a move 
to a neighbor of its current plan (successfully or not), 
another co-routine gains control to attempt a move to 
a neighbor of its own current plan. 

4.2 Sideways Information Passing 

The above concurrent version of the optimization does 
not offer many advantages compared to a serial opti- 
mization for each buffer size separately, because essen- 
tially there is no communication among the co-routines 

2The graph structure of G[b] is the one described in Section 2 
and is identical for all values of b, but the node costs may differ. 
That is why we distinguish each graph by the index b. 

3For every algorithm R, the success of an attempt to move 
from plan s to plan t depends on the cost difference between the 
plans and the specific characteristics of R. 
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(as in Formulation A). We enhance the above co- 
routines with the ability to share information. Specif- 
ically, let s() be the current plan function defined by 
the current plans of the individual co-routines. When 
the active co-routine R[b] attempts to move from plan 
s(b) to a neighbor t of s(b) in G[b], it communicates 
and sends t to a preselected subset of the remaining 
co-routines. The co-routines in this preselected set are 
called friends of R[b]. Each recipient R[b’j of t com- 
pares c(t, b’) with c(s(b’), b’) (which is the cost of its 
current plan), and then decides on whether to move to 
t or not in exactly the same way as if t and s(b’) were 
neighbors in G[b’]. We use the term sideways informa- 
tion passing to refer to this exchange of plans between 
co-routine friends. 

Consider the image partition of the current plan 
function s() to which b belongs. Let b- and b+ be 
the minimum and maximum buffer size of that im- 
age partition, respectively. Given the natural total 
order that exists on buffer sizes, we have chosen the 
friends of R[b] to be all the co-routines R[b’] where 
b- - k 5 b’ _< b+ + k, for some k > 0. Thus, there is 
sideways information passing from the co-routine R[b] 
to the co-routines associated with buffer sizes that are 
similar to b. The value of k determines the depth of 
the sideways information passing. If k = 0, no in- 
formation is shared among the co-routines that have 
different current plans. In that case, the algorithm can 
be thought of as a smart implementation of Formula- 
tion A (separate optimizations for each buffer size), be- 
cause this allows co-routines of buffer sizes in the same 
image partition to exchange information, as they are 
always friends. This information, however, is in some 
sense trivial since it is always a plan that is a neighbor 
of the current plan of the recipient co-routine. Thus, 
in terms of graph traversal, this algorithm is identical 
to the non-parametric case. In that sense, in the rest 
of the paper, we refer to the case of k = 0 as featuring 
no sideways information passing. If k = co, the active 
co-routine sends its candidate new plan to all other 
co-routines, so there is complete information passing. 
Other values of k represent intermediate situations. 
This concurrent version of the optimization algorithm 
R that employs sideways information passing at depth 
k is denoted by sipR(k). 

To be more concrete on how sideways information 
passing works, we present in Figure 2 pseudo-code for 
sipR(k), as it traverses a single random path. The 
code fully captures SA (and the second phase of 2PO), 

procedure sipR( k) 
begin 
B := {b I bmin I b L L,, }; 
s := random plan in S; 
foreach b E B do s(b) := s; 
while B # 0 do 

begin 
b := random buffer size in B; 
t := neighborR[b](s(b)); 
foreach b- - k 5 b’ 5 bf + k do 

begin 
compare&moveR[b’](s(b’), t); 
ifmovedR[b’] then B := B u {b’}; 
end 

ifnFishedR[b] then B := B - {b}; 

end 

Figure 2: Algorithm sipR(k). 

whereas it captures a single local optimization of II 
(and the first phase of 2PO). For II, the code shown is 
executed as many times as it is necessary to perform 
local optimizations, and then some postprocessing in- 
tegrates the results of these local optimizations. The 
code in Figure 2 captures the concurrent execution of 
all c&routines together by showing at all times which 
one is active. For that, it uses the following notation 
for parts of these co-routines: neighborR(b] is the part 
of R[b] that accepts a plan as input and returns one 
of its neighbors as output based on the R algorithm; 
finishedR[b] is a predicate indicating whether R[b] has 
finished or not; compare&moveR[b] takes two plans 
s(b) and t as input, calculates their costs for buffer 
size b, and then decides whether or not to move from 
s(b) to t based on the R algorithm; and movedR[b] 
is a predicate indicating whether the comparison in 
compare&moveR resulted in a successful move. Note 
that the foreach-loop within the while-loop captures 
the sideways information passing. Having k = 0 in 
this line essentially eliminates this feature, as only co- 
routines for buffer sizes within the same image parti- 
tion are allowed to share information. 

Example 2 Suppose at the beginning of the current 
iteration of the while-loop, there are 3 image parti- 
tions for the buffer sizes from 13 to 16. As illustrated 
in Figure 3, Si is the plan in the image partition for 
13, Sz the one for 14 and 15, and Sz the one for 16. 
Suppose the random buffer size chosen in this itera- 
tion is b = 14. Given S2 as input, suppose that the 
routine neighborR[14] returns the plan S4 which uses 
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Figure 3: Illustration for Example 2. 

a merge-scan, instead of a nested-loop, for the join be- 
tween relations RI and Rz. Furthermore, let k be 1, for 
the scenario described in Figure 3. Then the routines 
compare&moveR[b’] are invoked for b’ = 13,14,15,16. 
Let us assume for this example that S4 is a cheaper 
plan than Si and Sz for buffer sizes 13 and 14 respec- 
tively, but that it is not as good as Sz and Ss for buffer 
sizes 15 and 16 respectively. Consequently, at the end 
of this iteration, there are 3 image partitions: S, for 
buffer sizes 13 and 14, Sz for buffer size 15, and Ss for 
16. 

If there is no sideways information passing, i.e., k = 
0, then compare&moveR[b’] will only be invoked for 
b’ = 14,15. Consequently, Si, S4, Ss and Ss will be 
the plans for buffer sizes 13, 14, 15 and 16 respectively. 

cl 

As shown in Figure 2, the depth k of sideways in- 
formation passing is measured in terms of buffer sizes. 
We have also experimented with a different algorithm, 
where the depth k is measured in terms of the im- 
age partitions of the current plan function. Let these 
partitions be identified by their distance (measured in 
number of partitions) from the lowest buffer size and 
let r[b] be the image partition where b belongs. This 
algorithm can be seen as a modification of the origi- 
nal sipR algorithm where the foreach-loop that imple- 

ments the sideways information passing becomes 

foreacb b’ s.t. r[b] - k 5 r[b’] 5 r[b] + k do . 

To distinguish between the two versions of the algo- 
rithms, we use sip% (for ‘s’ize) to denote the original 
one and sipRr (for ‘r’ange) to denote the modified one. 

4.3 Plan Space Abstraction 

Any analysis of the performance and behavior of ran- 
domized algorithms requires that the three problem 
specific parameters mentioned in Section 2 be speci- 
fied. When sipR does not incorporate any nontrivial 
sideways information passing (k = 0), it is equivalent 
to running R separately for each buffer size b in exactly 
the same way as in conventional query optimization. 
With sideways information passing, however, the no- 
tion of neighbors becomes more complicated (although 
the set of plans and the cost function remain the same 
for each c&routine). This is due to the communica- 
tion of plans occurring among friends. The current 
plan s(b) of R[b] may be replaced by an arbitrary plan 
t when a friend attempts to move to t, even if s(b) and 
t are not neighbors in G[b]. 

In order to model R[b] with sideways information 
passing as a regular randomized algorithm always 
moving between neighbors, we construct below a new 
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graph c[b] that can be used as the abstract space 
on which R[b] is executed, following the conventional 
steps of R and without any communication with any 
other co-routines. For every node s in G[b], there is a 
set of nodes {(s, s’) 1 s’ E S} in G*[b], i.e., s generates 
as many nodes as there are plans in S. Plans s and s’ 
are called the primary and secondary plan of a node 
(s, s’), respectively. Th e ‘n ui 1 t t ion behind the above is 
that s signifies the current plan of R[b] while s’ signi- 
fies the current plan of a friend of R[b]. The edges of 
G*[a] are defined as follows. First, any pair of nodes 
with the same primary plan are directly connected by 
a type-l edge, i.e., all nodes with the same primary 
plan form a clique. Second, if t and u are neighbors in 
G[b], then for all s there is a type-2 edge between (s, t) 
and (u, u) in G’ [b]. Figure 4 shows a simple example of 
how the above graph abstraction is constructed from 
a conventional plan space*. Note that, because of the 
cliques formed by type-l edges, starting from any node 
in G*[b], it is possible to move to some node with an 
arbitrary primary plan in at most two moves. Finally, 
the cost of a node (s, s’) in G*[b] is equal to c(s, a) for 
all s’, which implies that each aforementioned clique 
forms a plateau. 

I 

1 
f 
Y VF-2 

WI Wbl 

Figure 4: Constructing the graph abstraction G’[b] 
from the conventional plan space G[b]. 

We claim that running R[b] on the conventional plan 
space G[b] under control of sipR(k) with sideways in- 
formation passing (lc > 0) is equivalent to running 
R[b] on G*[b] with no communication to any other co- 

4Strictly speaking, some nodes, such as (t,s) and (t,t), in 
Figure 4 are connected by both type-l and type-2 edges. How- 
ever, for the purpose of randomized algorithms, it makes no dif- 
ference whether two nodes are connected directly once or twice. 
The introduction of these two types of edges is merely for the 
purpose of presentation. 

routines. To see why this is the case, first note that the 
random choice of buffer-size/coroutine and the side- 
ways information passing (first statement and foreach- 
loop in the while-loop of Figure 2, respectively) are the 
only parts that need attention. Let s be the current 
plan of R[b] and (s, s) be the current node of R[b] in 
G’[b] (cf. Figure 4). Choosing a new buffer size b’ in 
the first statement of the while-loop of sipR(k), such 
that R[b’j is a friend of R[b] based on the value of Ic, 
is equivalent to moving from (s,s) to (s, t) in G’[b], 
where t is the current plan of R[b’]. Clearly the two 
nodes are connected in G*[b] via a type-l edge and 
have the same cost, so the move is always legal and is 
always successful. Choosing a neighbor u of t in R[b’] 
under sipR(k) and sending it to its friend R[b] for a 
possible move is equivalent to attempting to follow a 
type-2 edge from (s, t) to (u, U) in G*[b]. Therefore, 
since c(s,b) = c((s,t),b) and c(v, b) = c((u,u),~), the 
two algorithmic abstractions are equivalent. 

Based on the above, in the next subsection, we use 
all the results derived for each conventional algorithm 
R to understand sipR better and draw conclusions 
about its behavior. We should note, however, that run- 
ning R on G*[b] represents only an abstraction which 
if implemented directly, would be extremely expensive 
due to the size of G’ [b]. 

As mentioned in Section 2, one of the key factors 
that determine the success or failure of randomized al- 
gorithms is whether or not the cost function c forms 
a ‘well’ over the plan space. We claim that the G*[b] 
graph constructed above forms a very definitive ‘well’, 
and therefore, randomized algorithms are expected to 
be effective for parametric query optimization. Specif- 
ically, let g be a global minimum plan in the conven- 
tional plan space G[b]. As mentioned in the previous 
subsection, the distance between any node (s, s’) of 
the graph and node (g,g) is at most 2. Moreover, the 
intermediate node that connects them is of the form 
(s, t), where t is a conventional neighbor of g in G[b]. 
Comparing the costs of the three nodes yields 

c((s, s’), b) = c((s, t), b), by construction of the clique, 
c((s, t), b) 2 c((g, g), b), as g a global minimum in G[b]. 

Hence, the only local minima in the new graph G*[b] 
are also global minima, and they are all mutually con- 
nected. The above implies that a ‘perfect well’ is 
formed. Although in practice randomized algorithms 
identify approximations to local minima, experiments 
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that we have conducted have verified that they can 
effectively exploit the ‘well’-shape [INSS92]. 

5 Algorithm Behavior 

5.1 Experiment Testbed 

We implemented all four algorithms sipIIs/r(k) and 
sip2POs/r(k) for several values of the depth k and run 
several experiments to test their effectiveness for query 
optimization. Details about the implementations are 
given in the full version of the paper [INSS92]. The 
machine used for the experiments was a DECstation 
3100. The algorithms were run on tree queries [U1182] 
consisting of equality joins only. The size of these 
queries, which were generated randomly, ranged from 
1 to 20 joins. They were tested with a randomly 
generated relation catalog where relation cardinalities 
ranged from 1000 to 100000 tuples, and the numbers 
of unique values in join columns varied from 10% to 
100% of the corresponding relation cardinality’. Each 
page of a relation was assumed to contain 16 tuples. 
Each relation had four attributes, and was clustered on 
one of them. If a relation was not physically sorted on 
the clustered attribute, there was a B+-tree or hashing 
primary index on that attribute. These three alterna- 
tives were equally likely. For each of the other at- 
tributes, the probability that it had a secondary index 
was l/2, and the choice between a B+-tree and hash- 
ing secondary index were again uniformly random. As 
for join methods, we used block nested-loops, merge- 
scan, and simple and hybrid hash-join [Sha86]. The 
query cost was a weighted sum of the cpu time and 
the number of I/O accesses. The weight was chosen so 
that the cost of one disk read or write corresponded to 
3Omsec. The specific cost formulas are given elsewhere 
[INSS92]. In what follows, unless otherwise stated, the 
results presented for each algorithm are averages of five 
runs of the algorithm on each of 10 queries with similar 
characteristics. The values of the buffer size parameter 
were those in the range [2,70]. 

For every specific query instance, we first ran 2P0 
separately for each buffer size (which resulted in the 
(approximately) optimal plan function sc() as de- 
scribed in Section 3.2) and obtained its average run- 
ning time over all buffer sizes. We then allowed sip11 
to run for exactly that amount of time on the query. 

‘This was the most varied catalog (catalog ‘relcat3’) that we 
used in previous experiments [IK90]. 

Thus, sip11 used the same amount of time to optimize 
a query over a range of buffer sizes, as 2P0 used to 
optimize that query for a single buffer size. 

5.2 2P0 versus II 

We first present results that compare the effective- 
ness and performance of sip2PO and sipI1. These re- 
sults have consistently indicated that unlike the sit- 
uation for conventional query optimization, sip11 is 
very competitive with sip2PO. As a representative, 
Figure 5 shows the relative costs of the output plan 
functions found by sip2POr(l) and sipIIr(1) for five 
20-join queries. The figure includes the results of two 

relative cost 

‘r--\, ‘+&or(l) (locto sets) 
~~,~~~~~) 

0 10 20 30 40 50 60 70 

Figure 5: Output quality of sip2POr(l) and sipIIr(1). 

different versions of sip2POr( 1) that took around 1000 
set and 2200 set, respectively. When compared with 
sipIIr(l), which only takes around 150 seconds, the rel- 
ative output costs of both versions of sip2POr(l) are 
lower by a mere l-4% on the average. 

The fact that sipIIr compares favorably with 
sip2POr is actually not surprising. Recall from the 
previous section that G*[b] forms a ‘perfect well’. 
Hence, the second phase of sipPP0 is not really nec- 
essary. Based on the above, in the remainder of this 
paper we concentrate on sip11 only. 

5.3 Optimal Depth for Sideways Infor- 
mation Passing 

To evaluate the effectiveness of sideways information 
passing, we compare the performance of sipIIs(k) and 
sipIIr(k) for various values of k. Table 1 shows the 
average relative costs over the buffer size range [2,70], 
of the plan functions found by sipIIs(k) and sipIIr(k), 
for k = 0, 1,2,5,10, and 03 (given the same amount 
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of time). The specific results are for 20-join queries, 

k 0 1 2 5 10 00 
sipIIr(k) 1.67 1.10 1.11 1.17 1.20 1.17 
sinIIs(k) 1.67 1.08 1.08 1.08 1.11 1.17 

Table 1: Output quality of sipIIr(k) and sipIIs(k). 

but similar results were obtained for other queries as 
well. As Table 1 shows, the improvement from depth 
k = 0 to k = 1 is significant. This demonstrates the 
usefulness of sideways information passing and is con- 
sistent with the results on the ‘well’-shape of the cost 
functions over G*[b] presented in the previous section. 

On the other hand, as the depth k increases be- 
yond 1, there is a gradual degradation in performance. 
This is due to the fact that as the number of plan 
cost comparisons increases, the time consumed by such 
comparisons more than offsets the benefits of a friend 
occasionally finding a lower cost plan. In general, the 
larger the difference between the buffer sizes of friends, 
the less likely that the comparison between the costs 
of their associated plans is beneficial. Throughout this 
paper, we refer to this phenomenon as over-comparing. 
Indeed, due to over-comparing, our experiments con- 
sistently find sipII(l) to be the best among sipII(k) for 
all values of k. 

Table 1 also serves to compare sipIIs with sipIIr and 
identify some differences between them. First, un- 
like sipIIr(k), for small values of k > 1, the output 
quality of sipIIs(k) is comparable to that of sipIIs(1): 
any small value of the depth k is equally optimal for 
sipIIs(k). This result is consistent with the fact that 
the optimal depth k for sipIIr(k) is 1, for an image 
partition of the optimal plan function rarely consists 
of more than 5 buffer sizes. Second, for correspond- 
ing k values, the output quality of sip&(k) is consis- 
tently better than that of sipIIr(k)‘. The reason is 
that an image partition of the current plan function 
in sipIIr(k) may consist of more than one buffer size, 
and thus sipIIr(k) is more prone to the effect of over- 
comparing than sipIIs(k). Since sipIIs( 1) appears to 
be the dominant algorithm for parametric query opti- 
mization, we devote our full attention to it in the rest 
of the paper. 

‘The two algorithms coincide when k=O or k = 00 but behave 
differently for intermediate values of k. 

5.4 Effect of Query Size and Running 
Time 

In this subsection, we show the effectiveness of 
sipIIs(1) for optimizing queries of various sizes as well 
as how this is affected when the time consumed by the 
algorithm varies. We present results for queries with 
1, 3, 5, 7, 10, and 20 joins. With respect to the run- 
ning time of the algorithm, recall that for the results. 
presented so far, the amount of time given to sipIIs(1) 
was equal to the time needed by 2P0 to optimize a 
query for a single buffer size. Let T be that time. The 
average values of T for various query sizes is shown in 
Table 2. We performed additional experiments where 

’ Query Size (Joins) 1 3 5 7 10 20 
T (set) 2 14 27 42 62 158 

Table 2: Average time given to sipIIs(k) for queries of 
different sizes. 

the amount of time given to sipIIs(1) was T/3, 2T/3, 
T, and 2T. Figure 6 shows the results of the combined 

Figure 6: Output quality of sipIIs(1) with varying ex- 
perimentation times. 

experiments. Specifically, it shows the average over 
the buffer size range [2,70] of the relative cost of the 
output plan function of sipIIs(1). As expected, more 
time gives better results for any query size. The sur- 
prising result, however, is that for small queries, even 
a time of T/3 is sufficient to produce a plan function 
that is within 1% of the optimal (i.e., a relative cost 
of 1). As for larger queries, such as 20-join queries, 
a time of 2T produces a plan whose average cost is 
within 4% of the optimal one. These results are very 
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promising and indicate that, by using sipIIs(l), para- 
metric query optimization can be efficiently supported 
in current systems. As in applying II to conventional 
query optimization, an interesting question that arises 
in parametric query optimization is how to determine 
the running time of a query optimizer for real appli- 
cations. This is an issue that requires further study in 
the form of a comprehensive performance evaluation 
on sipI1. 

6 Conclusions and Future 

Work 

We have formalized the problem of parametric query 
optimization and studied it primarily for the buffer 
size parameter. We have adopted randomized algo 
rithms as the main approach to this style of optimiza- 
tion and have introduced sideways information pass- 
ing to increase the effectiveness of these algorithms in 
the new task. Extensive experimentation has shown 
that these enhanced algorithms optimize queries for 
large numbers of buffer sizes in the same time needed 
by their conventional versions for a single buffer size, 
without much sacrifice in the output quality. These 
experiments have also identified sipIIs(1) as the most 
effective of the randomized algorithms for a very broad 
spectrum of cases. 

To the best of our knowledge, the approach pre- 
sented in this paper for parametric query optimization 
is the first of its kind, since it offers a complete query 
optimization algorithm that has a plan function as out- 
put and makes no assumptions about any properties of 
the plan costs. We believe that incorporating sipIIs( 1) 
into a query optimizer will significantly enhance the 
performance of queries. When a query is ready to be 
executed, the database system will know the precise 
values of the parameters that were unknown at query 
optimization time. It will take a simple table look-up 
with the parameter values to identify the appropriate 
plan for the execution. The savings in execution cost 
of using a plan that is specifically tailored to the ac- 
tual parameter values as opposed to one obtained for 
typical parameter values could be enormous. 

There are several issues that we plan to address in 
our future work. First, it would be interesting to devise 
ways to make sip11 more efficient, such as by reducing 
the number of buffer sizes that are being considered 
during optimization. Second, it would be beneficial to 

control the number of image partitions of the output 
plan function. Preliminary work in this direction indi- 
cates that whenever the number of partitions is large, 
simple postprocessing steps can reduce that number 
considerably, without a significant penalty on the out- 
put quality. Third, it would be interesting to adapt the 
traditional, dynamic programming algorithm for para- 
metric query optimization and to compare it against 
sipI1. Although we believe that by its very nature, 
the dynamic programming approach will not be ef- 
fective for parametric query optimization, this belief 
needs further investigation and experimental verifica- 
tion. Finally, it would be important to experiment 
with large vectors of diverse parameters to understand 
the scalability of the proposed algorithms. Preliminary 
experiments with the index parameter of some query 
relation have shown that sipIIs(1) can obtain output 
of good quality in a short amount of time. The results 
of these studies will complement those presented in 
this paper and shed some new light into how paramet- 
ric query optimization should be approached in future 
database systems. 
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