
Optimizing Boolean Expressions
in Object Bases

Alfons Kemper* Guido Moerkotte+ Michael Steinbrunn*

l LehrstuhI fiir Informatik III
RWTH Aachen
Ahornstr&e 55
W-5100 Aachen
Germany

+FakuItSt fiir Informatik
Universitgt Karlsruhe
Am Fasanengarten
W-7500 Karlsruhe
Germany

kemper
steinbrunnQinformatik.rwth-aachen.de moer@ira.uka.de

Abstract 1 Introduction

In this paper we address the problem of optimizing
the evaluation of boolean expressions in the context
of object-oriented data modelling. We develop a new
heuristic for optimizing the evaluation sequence of
boolean expressions based on selectivity and cost esti-
mates of the terms constituting the boolean expres-
sion. The quality and efficiency of the heuristic is
evaluated based on a quantitative analysis which com-
pares our heuristic with the optimal, but infeasible al-
gorithm and other known methods. The heuristic is
based on the selectivity and evaluation-cost estimates
of the terms of which the boolean expression is com-
posed. Deriving these inputs of the heuristics, i.e.,
the selectivity and cost estimates, is then addressed.
We use an adaptation of well-known sampling for es
timating the selectivity of terms. The cost estima-
tion is much more complex than in the relational con-
text due to the possibility of invoking functions within
a boolean expression. We develop the decapsulation
method that derives cost estimates by analysing the
implementation of (encapsulated) functions.

Permission to copy without fee all or part of this material is
grantedprovided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

Object-oriented database systems are emerging as the
next-generation database technology-especially for
new applications, e.g., mechanical CAD/CAM. How-
ever, despite the increased functionality compared to
relational systems, the object-oriented technology will
only be widely accepted in the “non-standard” data-
base application domain if it yields the needed per-
formance since engineers are in general not willing to
trade performance for functionality. Of course, the
large body of knowledge of optimization techniques
that was gathered over the last 15 years in, e.g., the
relational area, provides a good starting point for op-
timizing object-oriented database systems. But lastly,
only those optimization techniques that are specifically
tailored for the object-oriented model will yield-the
much-needed-drastic performance improvements.

In this paper we describe one (further) piece in the
mosaic of performance enhancement techniques that
we incorporated in our experimental object base sys-
tem GOM [KMSOb]: the optimization of boolean ex-
pressions. The use of complex boolean expressions
is not restricted to declarative queries; they are also
frequently encountered in the realization of methods
within object-oriented databases. The need for opti-
mizing methods in object bases has been motivated
by [GM88, LD91]. Thus, optimizing the evaluation of
boolean expressions seems worthwhile from the stand-
point of declarative query optimization as well as
method optimization.

Our approach exploits knowledge from different ar-
eas and customizes these known concepts to the needs
of the object-oriented data model(s). This paper de-
scribes the adaptation and synthesis of three formerly
isolated areas related to the optimization of boolean
expressions:

79

optimization algorithms: There exist optimization
algorithms for boolean expressions which where
developed mainly in the areas of compiler con-
struction and operations research. An algorithm
guaranteeing the optimal result has a terrible run
time behaviour and is of no use for expressions
with more than four or five variables. This is
the reason why several heuristics have been de-
veloped to approximate the optimum with better
run time performance. Within this paper we in-
troduce a new algorithm for optimizing boolean
expressions which performs both, in run time and
outcome, better than the best known approxima-
tion. All algorithms for optimizing boolean ex-
pressions need two equally important inputs: sel-
ectivity estimates and cost estimates.

selectivity estimation: In order to determine the
selectivity of the boolean terms we adapt the sam-
pling methods developed in the relational context
for our purpose.

cost estimation: In order to generate a (near-) op-
timal evaluation sequence the optimization algo-
rithm needs to determine the evaluation cost of
boolean terms. In the context of object-oriented
databases the boolean expression will generally
contain function invocations. For the cost estima-
tion of functions we develop the socalled decapsu-
lation that inspects the function implementation
in order to estimate the costs in terms of physical
I/O-cost. This estimate can then be enhanced by
sampling the actual execution costs of the func-
tions under consideration during the usage of the
object base.

Each of these three issues is dealt with in a spearate
section of the paper; there we cite (and briefly analyse)
the related work. The interplay of these three concepts
is shown schematically as follows:

Based on randomly generated boolean expressions
with a varying number of variables, we provide an
evaluation of the heuristics based on the efficiency (in
terms of runtime) of the algorithm and the quality of
the generated result. It turns out that our heuristic
is very close to the optimal algorithm in those cases
where the optimal result could be generated within
reasonable time.

Bearing
InDiameter, OutDiameter, Length, Geometry, Weight,
Lubricants, Ma&PM, Price, OperatingLife,
LubricantPossible

AntiFrictionBearing
Tolerance, C, CO, Encapsulation, StatCoefficient,
DynCoefficient

SleeveBearing
Material, Clearance, EmergencyLubrication

HydrostaticBearing
LubricationPressure, LubGrooveNr

HydrodynamicBearing
MinRPM, InitialMaxLoad

Figure 1: Type Hierarchy of “Bearing”

The remainder of this paper is organized as fol-
lows. In the next section we motivate the optimiza
tion method by way of a “real” mechanical engineer-
ing example. Then, in Section 3, we describe our new
heuristic for optimizing boolean expressions. In Sec-
tion 4.1 we review and adapt existing techniques for
selectivity estimation. In Section 4.2 we develop the
decapsulation, a new approach for estimating the cost
of encapsulated functions based on code analysis. In
Section 5, the virtues of this new algorithm is evalu-
ated based on a quantitative analysis. Section 6 con-
cludes this paper with an assessment of the achieved
optimization.

2 Examples and
Evaluation Costs

To illustrate and motivate the concepts presented in
this paper, we will introduce two examples. The
first one, derived from a (real-life) engineering appli-
cation, consists of the definition of the type “Bearing”
with subtypes “AntifrictionBearing” and “SleeveBear-
ing”; the latter being further specialized into “Hydro-
StaticBearing” and “HydrodynamicBearing” (cf. Fig-
ure 1); they are supposed to be included in a database
of ISO’ standard parts to support engineers during the
process of construction.

The following expression might be used to test
whether a particular bearing bx is suitable for the in-
tended purpose. Please note that it consists of ten con-
ditions, so a slightly more complex expression of this
kind is beyond any attempt of “manual” optimization;
even with today’s computing power it is not possible
to obtain the optimal solution within reasonable time
limits, as we shall see in Section 3.

‘International Organization for Standardization

80

Bearing GraphicsObject
iA-- Lubricant

ad3

lnDi*m.: 10
cmtDi*m.: 26

idsI Name: Orease
Viscosity:
M*xTemp: . .

.-
N.me: PTFE

c sur*.ce:
Hlrdne..:

Figure 2: Sample Object Base (some attributes omit-
ted)

bz.InDiameter = 10 h bz.OutDiameter = 30 A
bz.Length 2 7 A bz.Length 5 10 A
bs.MaxRPM > 15000 A
bs.OperatingLife 2 10 A

(bz.Price 5 7.50 V

ord(bz.Tolerance.Class) 1
AverageTolerance(ext(AntifrictionBearing))) A

(bz.Encapsulation V bs.LubricantPossible(“Grease”))

The expression checks whether the bearing has certain
sizes and stands at least 15000RPM. Further, there is
a limit for the price as long as the precision is less than
average, the bearing should last at least ten years and
lubrication can be provided either by grease or by en-
capsulation with life-lubrication. The items shown in
Figure 2 constitute a few objects in our sample object
base. The objects idg and id7 denote set objects that
contain all the lubricants suitable for the particular
bearing.

Please note that both the definition of our sample
bearing database as well as the above predicate consti-
tute extreme simplifications. But even so, it is evident
that complex boolean expressions with more than five
conditions are not uncommon in this kind of applica,
tion. Furthermore, the selectivities as well as the costs
for evaluating the conditions can differ considerably.

=I
=2

=3
=4
“5
=6
27

InDiameter = 10
OutDiameter = 30
Length 2 7
Length < 10
MaxRPM 2 15000
Price 5 7.50
Tolerance.Class 2

AverageTolerance(. .)
OperatingLife 2 10
Encapsulation
T,uhricantPnssihld “Gre.mc”‘)

1 0.04
1 0.02
1 0.94
1 0.17
1 0.28
1 0.13

1802 0.11
2 0.81
1 0.40

12 l-l R.5

Table 1: Costs and Probabilities of the Conditions in
the Sample Expression

Therefore, the first problem to be solved is the gen-
eration of an evaluation plan that takes the different
costs and selectivities into account. The second prob-
lem is answering the question “How can these data
possibly be obtained?“. The human reader “sees” at
once that the condition “ord(bz.Tolerance.Class) 1
AverageTolerance(ext(AntifrictionBearing))” is quite
costly (it involve8 iteration over a set) and that the
likelihood of “bz.MaxRPM 1 15000” is high (a bear-
ing of this size does usually reach this limit). A formal
analysis of this idea is deferred to Section 4.1 and 4.2.

Let us investigate this example a bit more thor-
oughly. Defining one cost unit as a dereferentiation
operation (i.e., one object access), each of the condi-
tions can be assigned the appropriate probability and
cost (cf. Table 1). It is assumed that the object base
contains about 900 “AntifrictionBearing” objects and
each bearing may be lubricated by about ten different
lubricants.2 A poor evaluation plan that tests each
condition and computes the result in a second step in-
duces a cost of 1823 units. In programming languages
like PASCAL, this is the usual evaluation procedure. As
we shall see later, a more sophisticated plan causes av-
erage cost of only 1.25 units. This is due to the fact
that condition8 xi and 22 are very cheap to evaluate,
but provide with probabilities of 0.04 and 0.02, respec-
tively, a very high 8electivity.3

Admittedly, this expression is not too hard to opti-
mize. Even simple strategies, such as “skip remaining
conditions as 8oon as the result is determined,” are
close to the optimum; programming languages like C
or Modula-2 apply this method. But even so, the user
has to analyse the expression to determine the correct
(i.e., the least expensive) order, a task that is error-
prone and therefore better left to the optimizer.

2Basically, most of this information is derived from a bearing
manufacturer’s catalogue.

3Conditions tl to 110 are not stochastically independent,
so the probability of the conjunction cannot be computed by
multiplying the probabilities of tl to 210.

81

In the second, more abstract example, the optimal
evaluation strategy is far less obvious (21, t2 and 23
are assumed to be stochastically independent):

f(x) = KEyV 2123 v 2122
q%fyy

Straightforward evaluation costs 4.3 units, the optimal
evaluation on the average only 3.14 units, a reduction
of more than 25% although neither probabilities nor
costs show extreme variation. The evaluation plan and
the generating algorithm that leads to the minimal av-
erage cost is presented in the next section (Figure 3).

3 Algorithms for Optimizing
Boolean Expressions

In order to be able to perform optimizations in the first
place, we must assume that all conditions are side-
effect free, so the optimizer can rearrange the eval-
uation order or may even choose not to evaluate a
condition. As side-effect free functions neither modify
non-local data nor invoke other functions that do, the
validity of this assumption can be checked automat-
ically. Conditions that do comprise side-effects must
be excluded from the optimization process, but the re-
maining, side-effect free ones open up a vast number
of possible evaluation strategies. An algorithm that
computes the optimal solution has been published by
Reinwald and Soland [RS66], although in a different
context. Other algorithms have a lower computational
complexity, but do not necessarily yield the optimal
result. Continue partitioning until one of the subsets with

the lowest lower bound contains only one element.
This is the optimal tree.

3.1 Optimal Evaluation Strategy and
Approximations

This algorithm, published by Reinwald and Soland
[RS66], guarantees the optimal evaluation plan for a
boolean expression. The underlying principle, the so-
called limi-led-en@ decision table, has been discussed
in early papers, e.g., [Po165, GR73]. Their original
purpose is the formalization of rule sets and their ap-
propriate actions. Table 2 shows a sample decision
table.

In the first step of this algorithm, (n - 0)’ = n possi-
bilities are to be considered, in the second step (n- 1)2
possibilities, and in the k-th step (n - k + 1)2(‘-1) pos-
sible extensions are considered. It is evident, that this
algorithm, although yielding the optimal solution, is of
no great practical value, because for more than about
five conditions the resulting run time is intolerable.
This view is also backed by benchmarks that we car-
ried out to assess the qualities of different optimization
algorithms (cf. Section 5).

These decision tables are transformed to decision To reduce the computational complexity, Ganapa-
trees that consist of different actions as their leaves and thy and Rajamaran [GR73] published an algorithm
the conditions of the rules as their inner nodes. A path that makes use of a heuristic to determine the order
through the tree involves testing the condition that is of evaluation. The basic idea is to take the informa-
attached to the current node and determining the next tion content (according to Shannon’s well-known for-
step, depending on the outcome. After testing the last mula) of a condition as a measure for its importance

Conditions 11 Rule 1 1 Rule 2 1 Rule 3 1

Cl
c2

Yes No No
- Yes No

Action 1 Action 3 Action 2

Table 2: Sample Decision Table

rule (i.e., the last inner node), the leaf determines the
action to be carried out.

The evaluation of boolean expressions is just a spe-
cial case, the conditions being the variables and the
actions the two possible values of the expression (“0”
and “1”). The minterms can be viewed as the rules.

The optimal algorithm is a “Branch and Bound
Strategy” of the kind that was introduced in the con-
text of the “Travelling Salesman” problem. It can be
sketched as follows (with n conditions zr, . . . , z,)-
details can be derived from [RS66]:

Start with all decision trees that are equivalent to
the given decision table

Partition the set into n subsets that contain trees
that test xi first

Estimate a lower bound for the evaluation cost for
each subset.

The subset with the lowest lower bound is cho
sen and sub-partitioned into (n - 1)” subsets that
test;cj (jE{l,..., i-I,i+l,..., n})first.

Pick the subset with the lowest lower bound from
the (n - 1) + (n - 1)2 “leaf” subsets, etc.

82

with respect to the outcome of the boolean expres
sion. These figures are related to the cost for evalu-
ation to decide which condition is to be tested next.
The result is an algorithm that performs on the aver-
age slightly inferior to our algorithm that is presented
in the next subsection, but with about 30% higher
running time. There also exist other approximative
algorithms, which turned out to behave not as well as
our algorithm-they were even inferior to [GR73].

3.2 Our Algorithm, Based on the
Boolean Difference Calculus

Our algorithm is based on a heuristic that applies the
boolean difference calculus [Sch89] to determine the
order in which conditions shall be tested. A decision,
once made, is never reverted (i.e., no backtracking), so
the algorithm is of much lower computational complex-
ity compared to the optimal algorithm. Even though
the result is not guaranteed to be optimal, it is, how-
ever, still very close (less than 5% worse in almost all
cases) to the optimum.

3.2.1 Basic Idea

The basic idea is trying to find the condition with the
best achievement/cost ratio for testing. The boolean
difference calculus provides a heuristic that enables us
to compare conditions on this basis: the boolean dif-
ference. Analogously to the notion of the differential,
the boolean difference A,, f is defined as:

def
A=,f(21,...,2i-l,ti+l,...,~~) =

f(Zl,..., Xi-l, Xi = O,xi+lr . . .Y x72) $ (1)

f(Zl,..., Xi-l, Xi = l,Zi+i, . . .) 2n)

From now on, we shall use x as a shorthand for a vector
like(xr,..., xn); in the examples, the value of n should
be clear from the context.

The probability of the boolean difference being true
is a measure of the influence of the condition ti on
the result of the expression, similarly to the gradient
of a continous function. The higher the gradient, the
higher the “leverage” of the variable xi with respect to
the function’s value. The same principle applies to the
boolean difference: The higher the probability p(Ali f)
of Azi f being true, the higher the influence of the vari-
able zi on the value of the original boolean formula f.

Note the two extremes that may, intuitively, illus-
trate the approach of our heuristics. If a variable xi
is irrelevant for an expression f(x), then Azi f(x) 3 0
and, of course, p(A,,f (x)) = 0. If xi alone deter-
mines the result, Azi f(x) 3 1 and, consequently,
P(Azif(x>) = 1.

As a trivial example consider the expression f(z) =
~1x2 V ZIG that can be reduced to f(x) = x1; thus,
the value of 12 is irrelevant whereas the value of x1
determines the value of f(x). According to the defini-
tion (l), AZ1f(x) = ((Oxc,VOE) $ (lx2Vlz)) = (0 $
1) = 1, and Az,f(x) = ((xi0 V x11) $ (x11 v x10)) =
(zi $ zi) = 0, confirming that 12 is indeed irrelevant
and xi alone important.

The following example shows the application of the
boolean difference in order to determine the influence
of an expression’s variable values on the result.

Example: Consider the expression f(x) = ~lx2~3V

x4. The boolean difference for 21 is:

&f(x) = (0X2X3 v X4) f (1X2X3 v X4)

= X4 f X2X3 v X4

= %(X223 v X4) v X4(X2X3 v X4)

= X2X3q

On the other hand, the boolean difference for x4 is:

&f(x) = (tlt223 v 0) $ (2122x3 v 1)

= X1X2X3 $1

= X1X2X3 A 1 V X1X2X3 A 0
= X1X2X3

= ZiV~V~

If we assume that the probability for being true is l/2
for all variables ti (and all xi are independent), we get

&L,f(x)) = (W)3 = l/8

whereas

p(A,, f (x)) = 1 - 2/16 = 7/8.

Thus, the boolean difference confirms what is already
clear from “close observation:” The value of x4 has
a much greater impact on the result of the expres-
sion f(x) thaneither oneofxl, x2 or 2s (as Azpf(x) =
xixsZ, and AzJf(z) = xixzq). cl

3.2.2 The Algorithm

Our algorithm develops the evaluation plan for an ex-
pression by exploiting the boolean difference heuris-
tic. For each variable (condition) xi of the expression,
si = P(Azif)/ cos x is computed. The variable with f(i>
the highest value of si (i.e., the highest influence on
the result of the expression) is selected for the first
test. The algorithm is then applied recursively to the
functions of the false- and true-branches of the first
test, i.e., to fi,=o and fzi=l. The complete algorithm
runs as follows (let R be the number of conditions, f
the expression to be evaluated):

83

1. Ifn = 0, there is nothing to evaluate. If n = 1,
test 21. Otherwise, proceed to Step 2.

2. For each variable zi, determine

where p(X) denotes the probability for X being
true, and c(xi) denotes the cost for testing xi.

3. Choose xi with si = max
j=l,...,n

{sj} as the variable

to be tested first (next).

4. Set xi := 0 and xi := 1 and apply this algorithm
to the resulting two functions (with n - 1 condi-
tions) recursively.

The question arises, how the numerator of the fraction
in Step 2 can be obtained efficiently. In order to com-
pute the boolean difference A=,f(z) for a variable xi,
we assume that the truth table of f(x) is available
as input. The truth table is the most general way to
specify f(z) as well as the probability of each vari-
able, because no assumptions about their stochastical
independence are necessary: the probability can be
specified for the entire minterm, not just for a single
variable.

We shall illustrate the algorithm and the actual
computation of the boolean difference on the basis of
our example from Section 2 (repeated here for conve-
nience):

I cost
--

f(x)= x~x3V2123Vz122 =1 2.0

--T=
"2 0.8
23 1.5

The truth table that serves as the input to our algo-
rithm looks as follows:

According to the definition of
ence (l),

AL 0.09
0.06
0.21
0.14
0.09
0.06
0.21
0.14

the boolean differ-

AtJ(x2,~3) = f(O,~2,~3) 9 f(l,x2,~3)

holds. For 22 = 0 and x3 = 0, this term yields
AzJ(f.40) = f(O,O,O) $ f(O,O,l); p(t2 = 0 A 23 =
0) = ~(0, 0, O)+p(O, 0,l) = 0.18.4 Filling in all possible
values for 22 and 23, we get

‘p(O,O, 0) denotes the probability p(zl = OAz2 = Oh13 = 0)

22 =3 1 A,,f(=) 1 ~$2)
0 01 1) 0.18
0 1 1 0.12
1 0

I
0

I
0.42

11 1 0.28

and p(A=,f(+)) = 0.18+0.12+0.28 = 0.58. Similarly,
for A&(x) and A&(x):

10
1

11 I 0 I
0.30
0.20 : Y) i 1 ::ii:

Finally, we derive p(A=,f(x)) = 0.58, p(A,,f(x)) =
0.3 and p(A&(x)) = 0.65 from the tables above. Now
the gain/cost ratios si, 52 and ss can be computed as
Sl = 0.58/2.0 = 0.29, s2 = 0.3/0.8 = 0.375 and sa =
0.65/1.5 = 0.433. Thus, the first condition that will be
tested in our decision tree is x3. The same procedure
is now applied to the false- and true-branch of the first
test, i.e., the functions f=(z) = TV ~122 = TV 22
and fz2,(z) = cl V 21x2 = xl. The true-branch con-
sists of only one condition, namely 11, that has to
be tested in the next step and that finally determines
the result of f(x). The false-branch f~, however,
must be handled analogously to the complete expres-
sion f(x). &,f%dx> = (fzdao) $ h+d)) =
(f(O,xz,O) $ f(0,22,1>>, and for 22 the boolean dif-

ference is &,fdx) = (f&&xl) $ fdl,~)) =
(fm4~1) $ f&4 1,x1)):

That yields si = 0.1812.0 = 0.09 and s:! = 0.3010.8 =
0.375. Thus, if x3 = 0, the variable 22 is tested next.
If 2s = 0 and 22 = 1, then f(x) = 1; otherwise, a third
test (the last remaining variable, xi) is necessary to
determine the result.

Finally, the optimization has led to the decision tree
shown in Figure 3, the output of our algorithm. It
turns out that this tree constitutes (in this particu-
lar case) the optimal evaluation procedure. Its aver-
age cost can be calculated as costtotal = cost root +
p(false-branch) . cost(false-branch) + p(tme-branch) .
cost(true-branch), where the expression p(branch) in-
dicates the probability for traversing the particular
branch and cost(branch) the cost for doing so. For the
tree in Figure 3, the average evaluation cost cost total =
c(x3)+(1 -P(23)).(C(x2)+(1-P(xs)) .C(Xl)) +p(x3).
c(x1) = 3.14. 0

84

Figure 3: Result of the Optimization of the Expression
qzv 21x3 v XIX2

4 Cost and Selectivity
Estimation

By now, we have not yet addressed the problem of
obtaining the input data necessary for the algorithm
to work on. These input data consist of the conditions’
selectivities (probability for being false) and evaluation
costs.

4.1 Selectivity Estimates

In the context of query optimization in relational da
tabases, strategies for the estimation of selectivities
have been thoroughly investigated. In principle, there
are two approaches: parametric and nonparametric
methods. In the former, the distribution is presumed
known, only the parameters have to be extracted from
the database. In contrast, nonparametric methods es-
timate the distribution itself. A third possibility is
sampling. It may be used by itself as an estimation
strategy, but can also be applied to the other two. In
the case of parametric methods this means that the
parameters are estimated using samples rather than
by scanning the entire database. But also with non-
parametric methods, where a profile of the database is
being maintained, this profile can as well be based on
samples. Using sampling as a selectivity estimator by
itself means that for each expression the samples have
to be taken anew, because no information about the
database is kept.

4.1.1 Parametric Methods

Parametric methods assume a certain distribution and
determine the parameters, such as average, variance
and so on. One of the oldest examples, the estima
tion strategy in System R [SAC+79], is parametric: it
presumes uniform distribution and stochastically inde-
pendent conditions. Both assumptions constitute vast

simplifications, and the techniques have been greatly
enhanced in e.g., [Dem80, Chr83, Fed84, Lyn88].

4.1.2 Nonparametric Methods

In nonparametric methods, some kind of profile of the
database is maintained, which allows estimation with-
out actually knowing anything about the distribution.
The simplest strategy is the so-called (equal-width) his-
togram. The domain is subdivided into a number of in-
tervals with equal size (buckets); each of them contains
the number of values that fall into the appropriate in-
terval. To overcome certain limitations of equal-width
histograms, Piatetsky-Shapiro and Connell habe pro-
posed equal-height histograms [PSC84], where the esti-
mation error solely depends on the number of buckets.
Approaches for the selectivity estimation of conditions
that are not stochastically independent utilize multi-
dimensional histograms [KK85, MD88].

4.1.3 sampling

Because the cost for a selectivity estimator can be
quite high, the question arises whether a sample of
the database is sufficient for determining the param-
eters in parametric estimators or the profile (his-
togram) in nonparametric estimators. Both [PSC84]
and [MD881 suggest the use of sampIing to avoid scan-
ning the entire database, which proved to be a very
cost-effective technique. In addition, Lipton et al. pro-
pose in [LNSSO] an algorithm with an adaptive be-
haviour that shows that sampling by itself can be a
very efficient strategy for selectivity estimation.

4.2 Decapsulation based
Cost Estimation

The second part of the optimization algorithm’s input
consists of evaluation cost estimates. In relational da-
tabase systems, only atomic conditions have to be con-
sidered. In object bases, however, it is quite common
to have function invocations as part of conditions, thus
it is indispensable to design a scheme that permits the
cost estimation of complex conditions, i.e., functions.
There are two ways to achieve this: First, one may
look “into” the function definition and decompose it
into atomic operations. Second, the function remains
a “black box,” but its invocation behaviour, i.e., the
expenses, are recorded and used as a basis for the cost
estimate of the future. These two possibilities are now
discussed in turn.

The cost for evaluating atomic conditions is easy
to estimate: all necessary informations, like the num-
ber of dereferentiations, object types involved, etc. are

85

readily available. If a condition consists of an opera-
tion invocation, these informations are hidden behind
the operation’s interface. In order to look behind the
scenes, the encapsulation has to be broken. The pro-
cess of decomposing the implementation of a function
is called decapsulation. This is the same basic idea
that is being pursued in the revelation project [GM88].
Decapsulation opens many paths to optimization in
object bases, where the mostly procedural approach
makes algebraic optimization difficult. First steps in
this direction were made by Kemper, Kilger and Mo-
erkotte in [KKMSl], where decapsulation is applied
to determine accessed attributes in the context of
function materialization, and by Dewitt and Lieuwen
in [LD91] in their work about loop optimization.

To estimate the cost for evaluating a function, it
is necessary to use an adequate cost model. In Sec-
tion 4.2.1 we provide a simple model that counts each
dereferentiation (object access) as one cost unit. Ba
sically, this means that we assume a zero buffer and
use the number of object accesses as the cost measure.
The cost function C is used to extract this information
from the implementation of the function.

4.2.1 Zero Buffer

The dereferentiation count, and thus the cost estima
tion, is performed by the cost function C, that anal-
yses the implementation of a function and extracts
the necessary information. The only expression that
can possibly cause expenses are so-called path expres-
sions [KMSOa]. Path expressions are defined as fol-
lows:

Definition (Path Expressions) Let to, . . . , t, be
object types. An expression to.Al.. . . .A, is a path
expression iff for all i, with 1 5 i 5 n, one of the
following conditions holds:

1. ti-1 is a tuple type with attribute Ai of type ti

2. ti-1 is a tuple type with attribute Ai of the set
type t: = {ti} with “pseudo” attn’butes elementj
of type ti, where 1 5 i 5 IAil

where the “pseudo” attributes denote set elements.
On the basis of path expressions, the definition

of the extraction function (both for expressions and
statements) runs:

Definition (Cost Function) Let v be a variable,
e an expression, A an attribute, s a statement and
f(Pl,..* ,pn) a (type associated OF free) function with

5Nested sets are excluded in this definition, but can be easily
added.

Eqwessions:

C(v) := 0
C(e.A) := C(e)+ 1

C(e.f@l, ,h)) := C(e) + C(j) + C@l) + + C(P,)
C(elOe2) := c(el) + c(e2)

C(j) := C(body)

(provided j is defined as

~(PI 8.. . >PS) body;)

Statements:

C(u := e) := C(e)

C(q := q) := C(q) + C(c2)

C(s1; 82) := C(s1)+C(s,)

C(if e then $1 else $2) := c(e) + p .C(SI) + 4. C(Q)
p is the probability for

condition e being true; q = (1 - p)
floop(e, 3)

C(foreacb v in e do s) :=
c

(C(u := e.element,) + C(s))

i-1

C(while e do s) := C(e) + wloop(e, 3) (C(s) + C(e))

C(return e) := C(e)

Table 3: Cost function C

declare AverageTolerance: {Bearing} - float;

define AverageTolerance(BearingSet) is
begin

var bx: Bearing;
sum, size: float;

sum := 0; size := 0;
foreach bx in BearingSet do
begin

sum := sum + ord(bx.Tolerance.Class);
size := size + 1;

end;

return(sum/size);
end define AverageTolerance;

Figure 4: Free Operation “AverageTolerance”

parameters p1, . . . , p,. The cost function C is then
defined as in Table 3; floop is the number of foreach-
iterations, and wloop the number of while-iterations.

Example: The following example illustrates the ap-
plication of the decapsulation strategy with the cost es-
timator C to the function AverageTolerance (Figure 4).

1. C(sum := 0; size :=0)=0+0=0

2. C(foreach . . .)
ilOOP

=
CC

C(bx := BearingSet.elementi) +
i=l

C(sum := sum + ord(bx.Tolerance.Cla)) +

C(size := size + 1)

86

= '3(1+ (0 + 2) + 0) = 3 * floop
i=l

1.0s

“floop” can be estimated as the cardinality of the
“iterated” set, unless there exists a return state-
ment within the body of the loop. In this case,
“floop” has to be adapted according to the probabil-
ity that this return statement is executed. In our
case, the loop iterates always through the entire set,
so floop = IBearingSet], and, thus, the cost estimate
is 3 . IBearingSet]. Cl

Analogously to “floopt,, “wloop” denotes an esti-
mate for the number of loop iterations of a while loop.
However, it is usually not possible to get accurate fig-
ures just by considering the loop condition, because
the probability changes within the body of the loop.

4.2.2 Infinite Buffer

If the object buffer is capable of storing a significant
fraction of an transaction’s working set, the zero buffer
model will overestimate the actual cost. Looking at
today’s main memory sizes, the notion of an infinite
buffer is not as far from reality as it looks at first
glance. To simulate its behaviour, the dataflow of a
function has to be traced, using a technique similar to
dataflow analysis in the field of compiler construction
(cf. e.g., [ASUSS]). Specifically, all paths that may be
traversed during the execution of an operation must be
collected in order to detect multiple traversals of the
same path. This set of traversed paths serves as the ba
sis for the cost estimate. A cost model that is founded
on this idea is currently under development [KMS92].

4.2.3 Sampling

Sampling, the other approach mentioned above, is just
the opposite of decapsulation. It treats all conditions
as black boxes and merely monitors their behaviour
over time. The monitor records thus derived can be
viewed as samples, and as the number of samples that
have to be taken to ensure a certain accuracy does not
depend on the cardinality of the set being sampled,
the precision can be determined in advance, i.e., at
compile time. The compiler allocates enough memory
for the demanded number of samples, and with each
run new statistics are collected.

Sampling and decapsulation should be combined:
The cost function provides a rough estimate that
serves as a starting point, which is backed by more
and more samples taken from actual program runs.
As soon as enough samples are taken to ensure the
desired accuracy, the decapsulation derived data can

E
i

1.05

z 1.04

B
-0
p! 1.03
x

i 1.02

t
8 1 .Ol

Figure 5: Comparison with the algorithm in [GR73]

be dropped and the optimizer may rely solely on the
samples.

A major advantage of this approach is the adaptive
behaviour of the estimation. To capture the implica,
tions of index structures, the cost model for the decap-
sulation appoach has to be modified, and the programs
that rely on the decapsulation derived data have to be
recompiled. On the other hand, with sampling the
effects of a new index structure become immediately
apparent, and the optimizer can generate new evalua-
tion strategies.

5 Quantitative Analysis

In order to assess the quality of our optimization algo-
rithm, we carried out many tests; Figures 5-11 show
some typical results. The underlying conditions com-
mon to each one are:

l Uniform or exponential distribution of costs (in
the interval [0, 1001) and probabilities.

l Test expressions were derived by randomly filling
in truth tables.

l Each test comprises 2500 optimized evaluation
plans.

The diagram in Figure 5 shows the difference between
our algorithm and the one proposed in [GR73]. For
varying numbers of variables (2-5) we compare the
percentage costs of the evaluation plans generated by
the two heuristics with respect to the optimal evalua
tion plan which is normalized to 1. In addition to the
average cost ratio, we show the standard deviation as
errorbars. We see that our algorithm computes slightly
lower evaluation plans, and the standard deviation of
the factor to the optimum is better, too.

87

sl
.E
2 tn
E

E n.

+--c- 4-e
I I

0 5
Perdi Error

15 20

Figure 6: Quality of the Heuristic

0.001:
2 3 4

Nu5mber 0~VariaL
8 9 IO

Figure 7: Run Time of the Heuristic and of the Opti-
mal Algorithm

The second diagram (Figure 6) shows how well our
optimization algorithm performs, compared with a
strategy that evaluates the conditions in arbitrary or-
der and stops as soon as the result is certain-this
resembles the method that is used in C. The results
for optimizing the evaluation of expressions with five
variables are depicted. More than 95% of the evalua,
tion plans yielded by the heuristic have average costs
of less than 7% worse than the average cost of the
optimal plan.

In Figure 7, the running times of the optimal algo-
rithm, the heuristic from [GR73] and our heuristic are
compared. All algorithms are implemented in LISP, the
figures are derived from benchmarks on a Sun SPARC-
station l+ (12.5 MIPS) with 40MB of main memory.
It is evident that the generation of evaluation plans
with the optimal algorithm is hardly feasible, even for
few conditions, due to the super-exponential running
time: Extrapolation for six conditions yields about
23.7 hours, and for seven conditions about 1522 years.

Heuristic +-
Optimal Algorithm +- -

Arbitrary Order(C) -a--,

-...
15 - =.. -.._

‘DA.
10 - ‘I).....

‘is.... “C)--....f+....
* I I I I I I 1

"2 3 4
Nu5mber ofjVa&es

8 9 10

Figure 8: Achievements by Optimization: (la) Rela
tive Savings, Uniform Distribution of Costs and Prob-
abilities

We see that the algorithm [GR73] has a running time
of about 30% above our heuristic.

The diagrams in Figure 8 and 10 focus on the ques-
tion of the possible achievements by applying the op-
timization algorithm on boolean expressions with in-
creasing numbers of variables. Unfortunately, because
of the extreme running time, we cannot generate the
optimum for more than five variables as the measure
of comparison. Therefore, in the first diagram in Fig-
ure 8, the achievements are compared against the sum
of the evaluation costs of all conditions (worst case).
Even expressions with ten variables can be evaluated
with average cost of about 20% below worst case,
whereas with arbitrary evaluation order the worst case
is almost reached.

In Figure 8 we observe that the relative savings com-
pared to the worst case decreases with increasing num-
ber of variables-this is not a peculiarity of our heuris
tic but is also true for the optimum. At first glance,
this behaviour may appear astonishing. It is caused
by the fact that a single condition has less impact on
the outcome of a boolean expression as the number
of variables increases. For two-variable expressions it
is more likely that one variable is irrelevant than for
a ten-variable expression that five variables are irrele-
vant. The opposite is true for absolute savings: The
absolute savings diagram (Figure 10) shows that the
difference of optimized cost and worst case cost in-
creases with increasing number of variables, whereas
the arbitrary evaluation strategy yields only a constant
absolute difference.

Note that all distributions in the benchmarks ex-
plained so far (probabilities, costs, truth tables) are
uniform. Figures 9 and 11 depict the relative resp. ab-
solute savings for an exponential distribution of costs

88

2 3 4
Nuher o~Variahs

8 9 10

Figure 9: Achievements by Optimization: (lb) Rel- Figure 11: Achievements by Optimization: (2b) Ab
ative Savings, Exponential Distribution of Costs and solute Savings, Exponential Distribution of Costs and
Probabilities Probabilities

6 Conclusion

In this paper we addressed the problem of optimizing
boolean expressions in object-oriented databases. We
motivated the need for this optimization by way of
a “real” engineering example. There exists a known
algorithm for deriving the optimal evaluation plan;
unfortunately this algorithm exhibits terrible running
times which makes it infeasible for complex boolean
expressions with more than four or five variables.
Therefore, heuristics with (far) lower computational
complexity are required. We developed one such
heuristic which-in a quantitative analysis-proved to
be superior to all other known heuristics in both re-
spects, quality of the generated evaluation plan as well
as performance, i.e., running time. In cases where the
optimal algorithm could still be employed our heuris-
tic proved to generate results comparable to the opti-
mum; for example, the outcome of the heuristic was
within a 5% error range to the optimum in 85% of the
cases and in 99% of the cases within a 10% error range
(for randomly generated boolean expressions with five
variables). The comparatively low execution time of
our heuristic facilitates its utilization not only at com-
pile time but even at run time in order to rearrange
the evaluation plan based on dynamically derived cost
and selectivity estimates.

Aside form developing the heuristics, we had to ad-
dress the problem of estimating these input parameters
to the optimizer, i.e., selectivity and cost estimates of
the terms constituting the boolean expression. For
selectivity estimation we heavily built upon the well-
known relational techniques whereas the cost estima-
tion required a new approach-called decapsulation-
because of the possibility of invoking functions in
boolean expressions in object bases.

Figure 10: Achievements by Optimization: (2a) Abso-
lute Savings, Uniform Distribution of Costs and Prob-
abilities

and probabilities6 As greater differences of costs and
probabilities become more likely with this distribution,
relative as well as absolute savings increase. The more
the distributions are skewed, the higher is the opti-
mization potential. On the other hand, we found that
this potential is minimal if a “one-point” distribution
(i.e., all costs 50 units, all probabilities 0.5) is used as
the basis for the benchmarks.

These results suggest that our optimization scheme
is especially well suited for applications in object bases,
where this situation (great differences) is quite com-
mon (e.g., cost of main memory vs. disk access). We
can also see that the heuristic performs asymptotically
as well as the optimum-which, however, cannot be
determined for more than five variables.

6Probabiity density function p(z) = &e-h” (costs)

89

The optimization algorithms as well as the decapsu-
lation method were implemented in LISP. In order to
perform the quantitative analysis we implemented all
known heuristics and the optimal algorithm. The anal-
ysis presented in this paper is based on randomly gen-
erated boolean expressions and their associated cost
and selectivity estimates. Currently we are work-
ing on a quantitative assessment of our optimization
method based on realistic boolean expressions derived
from various usage profiles of (mostly) mechanical en-
gineering applications running on our object base sys-
tem GOM.

Acknowledgement This work was partially sup-
ported by the German Research Council DFG under
contracts SFB 346 and Ke 401/6-l.

We thank H. Schreiber for carrying out the imple-
mentation and extensive benchmarking of the various
optimization algorithms.

References

[ASUSS]

[Chr83]

[Dem80]

[Fed841

[GM881

[GR73]

[KK85]

[KKMSl]

A. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-
Wesley, Reading, MA, 1986.

S. Christodoulakis. Estimating record selectiv-
ities. lnformotion Systems, 8(2):105-115, 1983.

R. Demolombe. Estimation of the number of
tuples satisfying a query expressed in predicate
calculus language. In Proc. Internotionol Con-
ference on Very Large Doto Bases, pages 55-63,
1980.

J. Fedorowicz. Database evaluation using mul-
tiple regression techniques. In Proc. of the A CM
SIGMOD International Conference on Monoge-
ment of Data, pages 70-76, 1984.

G. Graefe and D. Maier. Query optimization in
object-oriented database systems: a prospectus.
In K. R. Dittrich, editor, Advances in Object-
Oriented Systems, Lecture Notes in Computer
Science 334, pages 358-363. Springer, 1988.

S. Ganapathy and V. Rajaraman. Information
theory applied to the conversion of decision ta-
bles to computer programs. Communications of

the ACM, 16:532-539, 1973.

N. Kamel and R. King. A model of data dis-
tribution based on texture analysis. In Proc.
of the ACM SIGMOD International Conference
on Management of Data, pages 319-325, 1985.

A. Kemper, C. Kilger, and G. Moerkotte. Func-
tion materialization in object bases. In Proc. of
the ACM SIGMOD Internotionol Conference on
Management of Data, pages 258-268, 1991.

[KMSOa]

[KMSOb]

[KMS92]

[LD91]

[LNSSO]

kn881

[MD881

[Po165]

[PSC84]

[RS66]

A. Kemper and G. Moerkotte. Access support
in object bases. In Proc. of the ACM SIG-
MOD International Conference on Management
of Doto, pages 364-374, 1990.

A. Kemper and G. Moerkotte. Advanced query
processing in object bases using access support
relations. In Proc. of The Conf. on Very Large
Doto Bases (VLDB), pages 290-301, Brisbane,
Australia, Aug 1990.

A. Kemper, G. Moerkotte, and M. Steinbrunn.
Optimizing boolean expressions in object bases.
Technical report, RWTH Aachen, 1992. (in
preparation).

D. F. Lieuwen and D. J. Dewitt. Optimiz-
ing loops in database programming languages.
Computer Sciences Technical Report 1920, Uni-
versity of Wisconsin-Madison, Madison, 1991.

R. J. Lipton, J. F. Naughton, and D. A. Schnei-
der. Practical selectivity estimation through
adaptive sampling. In Proc. of the ACM SIG-
MOD Internotionol Conference on Management
of Data, pages l-11, 1990.

C. Lynch. Selectivity estimation and query op-
timization in large databases with highly skewed
distribution of column values. In Proc. Interno-
tionol Conference on Very Lurge Data Bases,
pages 240-251, 1988.

M. Muralikrishna and D.J. Dewitt. Equi-depth
histograms for estimating selectivity factors for
multi-dimensional queries. In Proc. of the ACM
SIGMOD International Conference on Monoge-
ment of Data, pages 28-36, 1988.

S. L. Pollack. Conversion of limited entry de-
cision tables to computer programs. Communi-
cations of the ACM, 8(11):677-682, 1965.

G. Piatetsky-Shapiro and C. Connell. Accurate
estimation of the number of tuples satisfying a
condition. In Proc. of the ACM SIGMOD Inter-
national Conference on Management of Data,
pages 256-276, 1984.

L. T. Reinwald and R. M. Soland. Conversion
of limited entry decision tables to optimal com-
puter programs I: minimum average processing
time. Journol of the ACM, 13(3):339-358, 1966.

[SAC+791 P. G. Selinger, M. M. Astrahan, D. D. Chamber-
lin, R. A. Lorie, and T. G. Price. Access path
selection in a relational database management
system. In Proc. of the ACM SIGMOD Inter-
notion01 Conference on Management of Doto,
pages 23-34, 1979.

[Sch89] W. G. Schneeweis. Boolean Functions with En-
gineering Applications ond Computer Programs.
Springer, 1989.

90

