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Abstract 1 Introduction 

In this paper we address the problem of optimizing 
the evaluation of boolean expressions in the context 
of object-oriented data modelling. We develop a new 
heuristic for optimizing the evaluation sequence of 
boolean expressions based on selectivity and cost esti- 
mates of the terms constituting the boolean expres- 
sion. The quality and efficiency of the heuristic is 
evaluated based on a quantitative analysis which com- 
pares our heuristic with the optimal, but infeasible al- 
gorithm and other known methods. The heuristic is 
based on the selectivity and evaluation-cost estimates 
of the terms of which the boolean expression is com- 
posed. Deriving these inputs of the heuristics, i.e., 
the selectivity and cost estimates, is then addressed. 
We use an adaptation of well-known sampling for es 
timating the selectivity of terms. The cost estima- 
tion is much more complex than in the relational con- 
text due to the possibility of invoking functions within 
a boolean expression. We develop the decapsulation 
method that derives cost estimates by analysing the 
implementation of (encapsulated) functions. 
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Object-oriented database systems are emerging as the 
next-generation database technology-especially for 
new applications, e.g., mechanical CAD/CAM. How- 
ever, despite the increased functionality compared to 
relational systems, the object-oriented technology will 
only be widely accepted in the “non-standard” data- 
base application domain if it yields the needed per- 
formance since engineers are in general not willing to 
trade performance for functionality. Of course, the 
large body of knowledge of optimization techniques 
that was gathered over the last 15 years in, e.g., the 
relational area, provides a good starting point for op- 
timizing object-oriented database systems. But lastly, 
only those optimization techniques that are specifically 
tailored for the object-oriented model will yield-the 
much-needed-drastic performance improvements. 

In this paper we describe one (further) piece in the 
mosaic of performance enhancement techniques that 
we incorporated in our experimental object base sys- 
tem GOM [KMSOb]: the optimization of boolean ex- 
pressions. The use of complex boolean expressions 
is not restricted to declarative queries; they are also 
frequently encountered in the realization of methods 
within object-oriented databases. The need for opti- 
mizing methods in object bases has been motivated 
by [GM88, LD91]. Thus, optimizing the evaluation of 
boolean expressions seems worthwhile from the stand- 
point of declarative query optimization as well as 
method optimization. 

Our approach exploits knowledge from different ar- 
eas and customizes these known concepts to the needs 
of the object-oriented data model(s). This paper de- 
scribes the adaptation and synthesis of three formerly 
isolated areas related to the optimization of boolean 
expressions: 
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optimization algorithms: There exist optimization 
algorithms for boolean expressions which where 
developed mainly in the areas of compiler con- 
struction and operations research. An algorithm 
guaranteeing the optimal result has a terrible run 
time behaviour and is of no use for expressions 
with more than four or five variables. This is 
the reason why several heuristics have been de- 
veloped to approximate the optimum with better 
run time performance. Within this paper we in- 
troduce a new algorithm for optimizing boolean 
expressions which performs both, in run time and 
outcome, better than the best known approxima- 
tion. All algorithms for optimizing boolean ex- 
pressions need two equally important inputs: sel- 
ectivity estimates and cost estimates. 

selectivity estimation: In order to determine the 
selectivity of the boolean terms we adapt the sam- 
pling methods developed in the relational context 
for our purpose. 

cost estimation: In order to generate a (near-) op- 
timal evaluation sequence the optimization algo- 
rithm needs to determine the evaluation cost of 
boolean terms. In the context of object-oriented 
databases the boolean expression will generally 
contain function invocations. For the cost estima- 
tion of functions we develop the socalled decapsu- 
lation that inspects the function implementation 
in order to estimate the costs in terms of physical 
I/O-cost. This estimate can then be enhanced by 
sampling the actual execution costs of the func- 
tions under consideration during the usage of the 
object base. 

Each of these three issues is dealt with in a spearate 
section of the paper; there we cite (and briefly analyse) 
the related work. The interplay of these three concepts 
is shown schematically as follows: 

Based on randomly generated boolean expressions 
with a varying number of variables, we provide an 
evaluation of the heuristics based on the efficiency (in 
terms of runtime) of the algorithm and the quality of 
the generated result. It turns out that our heuristic 
is very close to the optimal algorithm in those cases 
where the optimal result could be generated within 
reasonable time. 

Bearing 
InDiameter, OutDiameter, Length, Geometry, Weight, 
Lubricants, Ma&PM, Price, OperatingLife, 
LubricantPossible 

AntiFrictionBearing 
Tolerance, C, CO, Encapsulation, StatCoefficient, 
DynCoefficient 

SleeveBearing 
Material, Clearance, EmergencyLubrication 

HydrostaticBearing 
LubricationPressure, LubGrooveNr 

HydrodynamicBearing 
MinRPM, InitialMaxLoad 

Figure 1: Type Hierarchy of “Bearing” 

The remainder of this paper is organized as fol- 
lows. In the next section we motivate the optimiza 
tion method by way of a “real” mechanical engineer- 
ing example. Then, in Section 3, we describe our new 
heuristic for optimizing boolean expressions. In Sec- 
tion 4.1 we review and adapt existing techniques for 
selectivity estimation. In Section 4.2 we develop the 
decapsulation, a new approach for estimating the cost 
of encapsulated functions based on code analysis. In 
Section 5, the virtues of this new algorithm is evalu- 
ated based on a quantitative analysis. Section 6 con- 
cludes this paper with an assessment of the achieved 
optimization. 

2 Examples and 
Evaluation Costs 

To illustrate and motivate the concepts presented in 
this paper, we will introduce two examples. The 
first one, derived from a (real-life) engineering appli- 
cation, consists of the definition of the type “Bearing” 
with subtypes “AntifrictionBearing” and “SleeveBear- 
ing”; the latter being further specialized into “Hydro- 
StaticBearing” and “HydrodynamicBearing” (cf. Fig- 
ure 1); they are supposed to be included in a database 
of ISO’ standard parts to support engineers during the 
process of construction. 

The following expression might be used to test 
whether a particular bearing bx is suitable for the in- 
tended purpose. Please note that it consists of ten con- 
ditions, so a slightly more complex expression of this 
kind is beyond any attempt of “manual” optimization; 
even with today’s computing power it is not possible 
to obtain the optimal solution within reasonable time 
limits, as we shall see in Section 3. 

‘International Organization for Standardization 
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Bearing GraphicsObject 
iA-- Lubricant 

ad3 

lnDi*m.: 10 
cmtDi*m.: 26 

idsI Name: Orease 
Viscosity: 
M*xTemp: . . 

.- 
N.me: PTFE 

c sur*.ce: 
Hlrdne..: 

Figure 2: Sample Object Base (some attributes omit- 
ted) 

bz.InDiameter = 10 h bz.OutDiameter = 30 A 
bz.Length 2 7 A bz.Length 5 10 A 
bs.MaxRPM > 15000 A 
bs.OperatingLife 2 10 A 

( bz.Price 5 7.50 V 

ord( bz.Tolerance.Class) 1 
AverageTolerance(ext(AntifrictionBearing))) A 

(bz.Encapsulation V bs.LubricantPossible( “Grease”)) 

The expression checks whether the bearing has certain 
sizes and stands at least 15000RPM. Further, there is 
a limit for the price as long as the precision is less than 
average, the bearing should last at least ten years and 
lubrication can be provided either by grease or by en- 
capsulation with life-lubrication. The items shown in 
Figure 2 constitute a few objects in our sample object 
base. The objects idg and id7 denote set objects that 
contain all the lubricants suitable for the particular 
bearing. 

Please note that both the definition of our sample 
bearing database as well as the above predicate consti- 
tute extreme simplifications. But even so, it is evident 
that complex boolean expressions with more than five 
conditions are not uncommon in this kind of applica, 
tion. Furthermore, the selectivities as well as the costs 
for evaluating the conditions can differ considerably. 

=I 
=2 

=3 
=4 
“5 
=6 
27 

InDiameter = 10 
OutDiameter = 30 
Length 2 7 
Length < 10 
MaxRPM 2 15000 
Price 5 7.50 
Tolerance.Class 2 

AverageTolerance(. .) 
OperatingLife 2 10 
Encapsulation 
T,uhricantPnssihld “Gre.mc”‘) 

1 0.04 
1 0.02 
1 0.94 
1 0.17 
1 0.28 
1 0.13 

1802 0.11 
2 0.81 
1 0.40 

12 l-l R.5 

Table 1: Costs and Probabilities of the Conditions in 
the Sample Expression 

Therefore, the first problem to be solved is the gen- 
eration of an evaluation plan that takes the different 
costs and selectivities into account. The second prob- 
lem is answering the question “How can these data 
possibly be obtained?“. The human reader “sees” at 
once that the condition “ord( bz.Tolerance.Class) 1 
AverageTolerance(ext(AntifrictionBearing))” is quite 
costly (it involve8 iteration over a set) and that the 
likelihood of “bz.MaxRPM 1 15000” is high (a bear- 
ing of this size does usually reach this limit). A formal 
analysis of this idea is deferred to Section 4.1 and 4.2. 

Let us investigate this example a bit more thor- 
oughly. Defining one cost unit as a dereferentiation 
operation (i.e., one object access), each of the condi- 
tions can be assigned the appropriate probability and 
cost (cf. Table 1). It is assumed that the object base 
contains about 900 “AntifrictionBearing” objects and 
each bearing may be lubricated by about ten different 
lubricants.2 A poor evaluation plan that tests each 
condition and computes the result in a second step in- 
duces a cost of 1823 units. In programming languages 
like PASCAL, this is the usual evaluation procedure. As 
we shall see later, a more sophisticated plan causes av- 
erage cost of only 1.25 units. This is due to the fact 
that condition8 xi and 22 are very cheap to evaluate, 
but provide with probabilities of 0.04 and 0.02, respec- 
tively, a very high 8electivity.3 

Admittedly, this expression is not too hard to opti- 
mize. Even simple strategies, such as “skip remaining 
conditions as 8oon as the result is determined,” are 
close to the optimum; programming languages like C 
or Modula-2 apply this method. But even so, the user 
has to analyse the expression to determine the correct 
(i.e., the least expensive) order, a task that is error- 
prone and therefore better left to the optimizer. 

2Basically, most of this information is derived from a bearing 
manufacturer’s catalogue. 

3Conditions tl to 110 are not stochastically independent, 
so the probability of the conjunction cannot be computed by 
multiplying the probabilities of tl to 210. 
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In the second, more abstract example, the optimal 
evaluation strategy is far less obvious (21, t2 and 23 
are assumed to be stochastically independent): 

f(x) = KEyV 2123 v 2122 
q%fyy 

Straightforward evaluation costs 4.3 units, the optimal 
evaluation on the average only 3.14 units, a reduction 
of more than 25% although neither probabilities nor 
costs show extreme variation. The evaluation plan and 
the generating algorithm that leads to the minimal av- 
erage cost is presented in the next section (Figure 3). 

3 Algorithms for Optimizing 
Boolean Expressions 

In order to be able to perform optimizations in the first 
place, we must assume that all conditions are side- 
effect free, so the optimizer can rearrange the eval- 
uation order or may even choose not to evaluate a 
condition. As side-effect free functions neither modify 
non-local data nor invoke other functions that do, the 
validity of this assumption can be checked automat- 
ically. Conditions that do comprise side-effects must 
be excluded from the optimization process, but the re- 
maining, side-effect free ones open up a vast number 
of possible evaluation strategies. An algorithm that 
computes the optimal solution has been published by 
Reinwald and Soland [RS66], although in a different 
context. Other algorithms have a lower computational 
complexity, but do not necessarily yield the optimal 
result. Continue partitioning until one of the subsets with 

the lowest lower bound contains only one element. 
This is the optimal tree. 

3.1 Optimal Evaluation Strategy and 
Approximations 

This algorithm, published by Reinwald and Soland 
[RS66], guarantees the optimal evaluation plan for a 
boolean expression. The underlying principle, the so- 
called limi-led-en@ decision table, has been discussed 
in early papers, e.g., [Po165, GR73]. Their original 
purpose is the formalization of rule sets and their ap- 
propriate actions. Table 2 shows a sample decision 
table. 

In the first step of this algorithm, (n - 0)’ = n possi- 
bilities are to be considered, in the second step (n- 1)2 
possibilities, and in the k-th step (n - k + 1)2(‘-1) pos- 
sible extensions are considered. It is evident, that this 
algorithm, although yielding the optimal solution, is of 
no great practical value, because for more than about 
five conditions the resulting run time is intolerable. 
This view is also backed by benchmarks that we car- 
ried out to assess the qualities of different optimization 
algorithms (cf. Section 5). 

These decision tables are transformed to decision To reduce the computational complexity, Ganapa- 
trees that consist of different actions as their leaves and thy and Rajamaran [GR73] published an algorithm 
the conditions of the rules as their inner nodes. A path that makes use of a heuristic to determine the order 
through the tree involves testing the condition that is of evaluation. The basic idea is to take the informa- 
attached to the current node and determining the next tion content (according to Shannon’s well-known for- 
step, depending on the outcome. After testing the last mula) of a condition as a measure for its importance 

Conditions 11 Rule 1 1 Rule 2 1 Rule 3 1 

Cl 
c2 

Yes No No 
- Yes No 

Action 1 Action 3 Action 2 

Table 2: Sample Decision Table 

rule (i.e., the last inner node), the leaf determines the 
action to be carried out. 

The evaluation of boolean expressions is just a spe- 
cial case, the conditions being the variables and the 
actions the two possible values of the expression (“0” 
and “1”). The minterms can be viewed as the rules. 

The optimal algorithm is a “Branch and Bound 
Strategy” of the kind that was introduced in the con- 
text of the “Travelling Salesman” problem. It can be 
sketched as follows (with n conditions zr, . . . , z,)- 
details can be derived from [RS66]: 

Start with all decision trees that are equivalent to 
the given decision table 

Partition the set into n subsets that contain trees 
that test xi first 

Estimate a lower bound for the evaluation cost for 
each subset. 

The subset with the lowest lower bound is cho 
sen and sub-partitioned into (n - 1)” subsets that 
test;cj (jE{l,..., i-I,i+l,..., n})first. 

Pick the subset with the lowest lower bound from 
the (n - 1) + (n - 1)2 “leaf” subsets, etc. 
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with respect to the outcome of the boolean expres 
sion. These figures are related to the cost for evalu- 
ation to decide which condition is to be tested next. 
The result is an algorithm that performs on the aver- 
age slightly inferior to our algorithm that is presented 
in the next subsection, but with about 30% higher 
running time. There also exist other approximative 
algorithms, which turned out to behave not as well as 
our algorithm-they were even inferior to [GR73]. 

3.2 Our Algorithm, Based on the 
Boolean Difference Calculus 

Our algorithm is based on a heuristic that applies the 
boolean difference calculus [Sch89] to determine the 
order in which conditions shall be tested. A decision, 
once made, is never reverted (i.e., no backtracking), so 
the algorithm is of much lower computational complex- 
ity compared to the optimal algorithm. Even though 
the result is not guaranteed to be optimal, it is, how- 
ever, still very close (less than 5% worse in almost all 
cases) to the optimum. 

3.2.1 Basic Idea 

The basic idea is trying to find the condition with the 
best achievement/cost ratio for testing. The boolean 
difference calculus provides a heuristic that enables us 
to compare conditions on this basis: the boolean dif- 
ference. Analogously to the notion of the differential, 
the boolean difference A,, f is defined as: 

def 
A=,f(21,...,2i-l,ti+l,...,~~) = 

f(Zl,..., Xi-l, Xi = O,xi+lr . . .Y x72) $ (1) 

f(Zl,..., Xi-l, Xi = l,Zi+i, . . . ) 2n) 

From now on, we shall use x as a shorthand for a vector 
like(xr,..., xn); in the examples, the value of n should 
be clear from the context. 

The probability of the boolean difference being true 
is a measure of the influence of the condition ti on 
the result of the expression, similarly to the gradient 
of a continous function. The higher the gradient, the 
higher the “leverage” of the variable xi with respect to 
the function’s value. The same principle applies to the 
boolean difference: The higher the probability p(Ali f) 
of Azi f being true, the higher the influence of the vari- 
able zi on the value of the original boolean formula f. 

Note the two extremes that may, intuitively, illus- 
trate the approach of our heuristics. If a variable xi 
is irrelevant for an expression f(x), then Azi f(x) 3 0 
and, of course, p(A,,f (x)) = 0. If xi alone deter- 
mines the result, Azi f(x) 3 1 and, consequently, 
P(Azif(x>) = 1. 

As a trivial example consider the expression f(z) = 
~1x2 V ZIG that can be reduced to f(x) = x1; thus, 
the value of 12 is irrelevant whereas the value of x1 
determines the value of f(x). According to the defini- 
tion (l), AZ1f(x) = ((Oxc,VOE) $ (lx2Vlz)) = (0 $ 
1) = 1, and Az,f(x) = ((xi0 V x11) $ (x11 v x10)) = 
(zi $ zi) = 0, confirming that 12 is indeed irrelevant 
and xi alone important. 

The following example shows the application of the 
boolean difference in order to determine the influence 
of an expression’s variable values on the result. 

Example: Consider the expression f(x) = ~lx2~3V 

x4. The boolean difference for 21 is: 

&f(x) = (0X2X3 v X4) f (1X2X3 v X4) 

= X4 f X2X3 v X4 

= %(X223 v X4) v X4(X2X3 v X4) 

= X2X3q 

On the other hand, the boolean difference for x4 is: 

&f(x) = (tlt223 v 0) $ (2122x3 v 1) 

= X1X2X3 $1 

= X1X2X3 A 1 V X1X2X3 A 0 
= X1X2X3 

= ZiV~V~ 

If we assume that the probability for being true is l/2 
for all variables ti (and all xi are independent), we get 

&L,f(x)) = (W)3 = l/8 

whereas 

p(A,, f (x)) = 1 - 2/16 = 7/8. 

Thus, the boolean difference confirms what is already 
clear from “close observation:” The value of x4 has 
a much greater impact on the result of the expres- 
sion f(x) thaneither oneofxl, x2 or 2s (as Azpf(x) = 
xixsZ, and AzJf(z) = xixzq). cl 

3.2.2 The Algorithm 

Our algorithm develops the evaluation plan for an ex- 
pression by exploiting the boolean difference heuris- 
tic. For each variable (condition) xi of the expression, 
si = P(Azif)/ cos x is computed. The variable with f( i> 
the highest value of si (i.e., the highest influence on 
the result of the expression) is selected for the first 
test. The algorithm is then applied recursively to the 
functions of the false- and true-branches of the first 
test, i.e., to fi,=o and fzi=l. The complete algorithm 
runs as follows (let R be the number of conditions, f 
the expression to be evaluated): 
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1. Ifn = 0, there is nothing to evaluate. If n = 1, 
test 21. Otherwise, proceed to Step 2. 

2. For each variable zi, determine 

where p(X) denotes the probability for X being 
true, and c(xi) denotes the cost for testing xi. 

3. Choose xi with si = max 
j=l,...,n 

{sj} as the variable 

to be tested first (next). 

4. Set xi := 0 and xi := 1 and apply this algorithm 
to the resulting two functions (with n - 1 condi- 
tions) recursively. 

The question arises, how the numerator of the fraction 
in Step 2 can be obtained efficiently. In order to com- 
pute the boolean difference A=,f(z) for a variable xi, 
we assume that the truth table of f(x) is available 
as input. The truth table is the most general way to 
specify f(z) as well as the probability of each vari- 
able, because no assumptions about their stochastical 
independence are necessary: the probability can be 
specified for the entire minterm, not just for a single 
variable. 

We shall illustrate the algorithm and the actual 
computation of the boolean difference on the basis of 
our example from Section 2 (repeated here for conve- 
nience): 

I cost 
-- 

f(x)= x~x3V2123Vz122 =1 2.0 

--T= 
"2 0.8 
23 1.5 

The truth table that serves as the input to our algo- 
rithm looks as follows: 

According to the definition of 
ence (l), 

AL 0.09 
0.06 
0.21 
0.14 
0.09 
0.06 
0.21 
0.14 

the boolean differ- 

AtJ(x2,~3) = f(O,~2,~3) 9 f(l,x2,~3) 

holds. For 22 = 0 and x3 = 0, this term yields 
AzJ(f.40) = f(O,O,O) $ f(O,O,l); p(t2 = 0 A 23 = 
0) = ~(0, 0, O)+p(O, 0,l) = 0.18.4 Filling in all possible 
values for 22 and 23, we get 

‘p(O,O, 0) denotes the probability p(zl = OAz2 = Oh13 = 0) 

22 =3 1 A,,f(=) 1 ~$2) 
0 01 1 ) 0.18 
0 1 1 0.12 
1 0 

I 
0 

I 
0.42 

11 1 0.28 

and p(A=,f(+)) = 0.18+0.12+0.28 = 0.58. Similarly, 
for A&(x) and A&(x): 

10 
1 

11 I 0 I 
0.30 
0.20 : Y ) i 1 ::ii: 

Finally, we derive p(A=,f(x)) = 0.58, p(A,,f(x)) = 
0.3 and p(A&(x)) = 0.65 from the tables above. Now 
the gain/cost ratios si, 52 and ss can be computed as 
Sl = 0.58/2.0 = 0.29, s2 = 0.3/0.8 = 0.375 and sa = 
0.65/1.5 = 0.433. Thus, the first condition that will be 
tested in our decision tree is x3. The same procedure 
is now applied to the false- and true-branch of the first 
test, i.e., the functions f=(z) = TV ~122 = TV 22 
and fz2,(z) = cl V 21x2 = xl. The true-branch con- 
sists of only one condition, namely 11, that has to 
be tested in the next step and that finally determines 
the result of f(x). The false-branch f~, however, 
must be handled analogously to the complete expres- 
sion f(x). &,f%dx> = (fzdao) $ h+d)) = 
(f(O,xz,O) $ f(0,22,1>>, and for 22 the boolean dif- 

ference is &,fdx) = (f&&xl) $ fdl,~)) = 
(fm4~1) $ f&4 1,x1)): 

That yields si = 0.1812.0 = 0.09 and s:! = 0.3010.8 = 
0.375. Thus, if x3 = 0, the variable 22 is tested next. 
If 2s = 0 and 22 = 1, then f(x) = 1; otherwise, a third 
test (the last remaining variable, xi) is necessary to 
determine the result. 

Finally, the optimization has led to the decision tree 
shown in Figure 3, the output of our algorithm. It 
turns out that this tree constitutes (in this particu- 
lar case) the optimal evaluation procedure. Its aver- 
age cost can be calculated as costtotal = cost root + 
p(false-branch) . cost(false-branch) + p(tme-branch) . 
cost(true-branch), where the expression p( branch) in- 
dicates the probability for traversing the particular 
branch and cost( branch) the cost for doing so. For the 
tree in Figure 3, the average evaluation cost cost total = 
c(x3)+(1 -P(23)).(C(x2)+(1-P(xs)) .C(Xl)) +p(x3). 
c(x1) = 3.14. 0 
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Figure 3: Result of the Optimization of the Expression 
qzv 21x3 v XIX2 

4 Cost and Selectivity 
Estimation 

By now, we have not yet addressed the problem of 
obtaining the input data necessary for the algorithm 
to work on. These input data consist of the conditions’ 
selectivities (probability for being false) and evaluation 
costs. 

4.1 Selectivity Estimates 

In the context of query optimization in relational da 
tabases, strategies for the estimation of selectivities 
have been thoroughly investigated. In principle, there 
are two approaches: parametric and nonparametric 
methods. In the former, the distribution is presumed 
known, only the parameters have to be extracted from 
the database. In contrast, nonparametric methods es- 
timate the distribution itself. A third possibility is 
sampling. It may be used by itself as an estimation 
strategy, but can also be applied to the other two. In 
the case of parametric methods this means that the 
parameters are estimated using samples rather than 
by scanning the entire database. But also with non- 
parametric methods, where a profile of the database is 
being maintained, this profile can as well be based on 
samples. Using sampling as a selectivity estimator by 
itself means that for each expression the samples have 
to be taken anew, because no information about the 
database is kept. 

4.1.1 Parametric Methods 

Parametric methods assume a certain distribution and 
determine the parameters, such as average, variance 
and so on. One of the oldest examples, the estima 
tion strategy in System R [SAC+79], is parametric: it 
presumes uniform distribution and stochastically inde- 
pendent conditions. Both assumptions constitute vast 

simplifications, and the techniques have been greatly 
enhanced in e.g., [Dem80, Chr83, Fed84, Lyn88]. 

4.1.2 Nonparametric Methods 

In nonparametric methods, some kind of profile of the 
database is maintained, which allows estimation with- 
out actually knowing anything about the distribution. 
The simplest strategy is the so-called (equal-width) his- 
togram. The domain is subdivided into a number of in- 
tervals with equal size (buckets); each of them contains 
the number of values that fall into the appropriate in- 
terval. To overcome certain limitations of equal-width 
histograms, Piatetsky-Shapiro and Connell habe pro- 
posed equal-height histograms [PSC84], where the esti- 
mation error solely depends on the number of buckets. 
Approaches for the selectivity estimation of conditions 
that are not stochastically independent utilize multi- 
dimensional histograms [KK85, MD88]. 

4.1.3 sampling 

Because the cost for a selectivity estimator can be 
quite high, the question arises whether a sample of 
the database is sufficient for determining the param- 
eters in parametric estimators or the profile (his- 
togram) in nonparametric estimators. Both [PSC84] 
and [MD881 suggest the use of sampIing to avoid scan- 
ning the entire database, which proved to be a very 
cost-effective technique. In addition, Lipton et al. pro- 
pose in [LNSSO] an algorithm with an adaptive be- 
haviour that shows that sampling by itself can be a 
very efficient strategy for selectivity estimation. 

4.2 Decapsulation based 
Cost Estimation 

The second part of the optimization algorithm’s input 
consists of evaluation cost estimates. In relational da- 
tabase systems, only atomic conditions have to be con- 
sidered. In object bases, however, it is quite common 
to have function invocations as part of conditions, thus 
it is indispensable to design a scheme that permits the 
cost estimation of complex conditions, i.e., functions. 
There are two ways to achieve this: First, one may 
look “into” the function definition and decompose it 
into atomic operations. Second, the function remains 
a “black box,” but its invocation behaviour, i.e., the 
expenses, are recorded and used as a basis for the cost 
estimate of the future. These two possibilities are now 
discussed in turn. 

The cost for evaluating atomic conditions is easy 
to estimate: all necessary informations, like the num- 
ber of dereferentiations, object types involved, etc. are 
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readily available. If a condition consists of an opera- 
tion invocation, these informations are hidden behind 
the operation’s interface. In order to look behind the 
scenes, the encapsulation has to be broken. The pro- 
cess of decomposing the implementation of a function 
is called decapsulation. This is the same basic idea 
that is being pursued in the revelation project [GM88]. 
Decapsulation opens many paths to optimization in 
object bases, where the mostly procedural approach 
makes algebraic optimization difficult. First steps in 
this direction were made by Kemper, Kilger and Mo- 
erkotte in [KKMSl], where decapsulation is applied 
to determine accessed attributes in the context of 
function materialization, and by Dewitt and Lieuwen 
in [LD91] in their work about loop optimization. 

To estimate the cost for evaluating a function, it 
is necessary to use an adequate cost model. In Sec- 
tion 4.2.1 we provide a simple model that counts each 
dereferentiation (object access) as one cost unit. Ba 
sically, this means that we assume a zero buffer and 
use the number of object accesses as the cost measure. 
The cost function C is used to extract this information 
from the implementation of the function. 

4.2.1 Zero Buffer 

The dereferentiation count, and thus the cost estima 
tion, is performed by the cost function C, that anal- 
yses the implementation of a function and extracts 
the necessary information. The only expression that 
can possibly cause expenses are so-called path expres- 
sions [KMSOa]. Path expressions are defined as fol- 
lows: 

Definition (Path Expressions) Let to, . . . , t, be 
object types. An expression to.Al.. . . .A, is a path 
expression iff for all i, with 1 5 i 5 n, one of the 
following conditions holds: 

1. ti-1 is a tuple type with attribute Ai of type ti 

2. ti-1 is a tuple type with attribute Ai of the set 
type t: = {ti} with “pseudo” attn’butes elementj 
of type ti, where 1 5 i 5 IAil 

where the “pseudo” attributes denote set elements. 
On the basis of path expressions, the definition 

of the extraction function (both for expressions and 
statements) runs: 

Definition (Cost Function) Let v be a variable, 
e an expression, A an attribute, s a statement and 
f(Pl,..* ,pn) a (type associated OF free) function with 

5Nested sets are excluded in this definition, but can be easily 
added. 

Eqwessions: 

C(v) := 0 
C(e.A) := C(e)+ 1 

C(e.f@l, ,h)) := C(e) + C(j) + C@l) + + C(P,) 
C(elOe2) := c(el) + c(e2) 

C(j) := C(body) 

(provided j is defined as 

~(PI 8.. . >PS) body;) 

Statements: 

C(u := e) := C(e) 

C(q := q) := C(q) + C(c2) 

C(s1; 82) := C(s1)+C(s,) 

C(if e then $1 else $2) := c(e) + p .C(SI) + 4. C(Q) 
p is the probability for 

condition e being true; q = (1 - p) 
floop(e, 3) 

C(foreacb v in e do s) := 
c 

(C(u := e.element,) + C(s)) 

i-1 

C(while e do s) := C(e) + wloop(e, 3) (C(s) + C(e)) 

C(return e) := C(e) 

Table 3: Cost function C 

declare AverageTolerance: {Bearing} - float; 

define AverageTolerance(BearingSet) is 
begin 

var bx: Bearing; 
sum, size: float; 

sum := 0; size := 0; 
foreach bx in BearingSet do 
begin 

sum := sum + ord(bx.Tolerance.Class); 
size := size + 1; 

end; 

return(sum/size); 
end define AverageTolerance; 

Figure 4: Free Operation “AverageTolerance” 

parameters p1, . . . , p,. The cost function C is then 
defined as in Table 3; floop is the number of foreach- 
iterations, and wloop the number of while-iterations. 

Example: The following example illustrates the ap- 
plication of the decapsulation strategy with the cost es- 
timator C to the function AverageTolerance (Figure 4). 

1. C(sum := 0; size :=0)=0+0=0 

2. C(foreach . . .) 
ilOOP 

= 
CC 

C(bx := BearingSet.elementi) + 
i=l 

C(sum := sum + ord(bx.Tolerance.Cla)) + 

C(size := size + 1) 
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= '3(1+ (0 + 2) + 0) = 3 * floop 
i=l 

1.0s 

“floop” can be estimated as the cardinality of the 
“iterated” set, unless there exists a return state- 
ment within the body of the loop. In this case, 
“floop” has to be adapted according to the probabil- 
ity that this return statement is executed. In our 
case, the loop iterates always through the entire set, 
so floop = IBearingSet], and, thus, the cost estimate 
is 3 . IBearingSet]. Cl 

Analogously to “floopt,, “wloop” denotes an esti- 
mate for the number of loop iterations of a while loop. 
However, it is usually not possible to get accurate fig- 
ures just by considering the loop condition, because 
the probability changes within the body of the loop. 

4.2.2 Infinite Buffer 

If the object buffer is capable of storing a significant 
fraction of an transaction’s working set, the zero buffer 
model will overestimate the actual cost. Looking at 
today’s main memory sizes, the notion of an infinite 
buffer is not as far from reality as it looks at first 
glance. To simulate its behaviour, the dataflow of a 
function has to be traced, using a technique similar to 
dataflow analysis in the field of compiler construction 
(cf. e.g., [ASUSS]). Specifically, all paths that may be 
traversed during the execution of an operation must be 
collected in order to detect multiple traversals of the 
same path. This set of traversed paths serves as the ba 
sis for the cost estimate. A cost model that is founded 
on this idea is currently under development [KMS92]. 

4.2.3 Sampling 

Sampling, the other approach mentioned above, is just 
the opposite of decapsulation. It treats all conditions 
as black boxes and merely monitors their behaviour 
over time. The monitor records thus derived can be 
viewed as samples, and as the number of samples that 
have to be taken to ensure a certain accuracy does not 
depend on the cardinality of the set being sampled, 
the precision can be determined in advance, i.e., at 
compile time. The compiler allocates enough memory 
for the demanded number of samples, and with each 
run new statistics are collected. 

Sampling and decapsulation should be combined: 
The cost function provides a rough estimate that 
serves as a starting point, which is backed by more 
and more samples taken from actual program runs. 
As soon as enough samples are taken to ensure the 
desired accuracy, the decapsulation derived data can 
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Figure 5: Comparison with the algorithm in [GR73] 

be dropped and the optimizer may rely solely on the 
samples. 

A major advantage of this approach is the adaptive 
behaviour of the estimation. To capture the implica, 
tions of index structures, the cost model for the decap- 
sulation appoach has to be modified, and the programs 
that rely on the decapsulation derived data have to be 
recompiled. On the other hand, with sampling the 
effects of a new index structure become immediately 
apparent, and the optimizer can generate new evalua- 
tion strategies. 

5 Quantitative Analysis 

In order to assess the quality of our optimization algo- 
rithm, we carried out many tests; Figures 5-11 show 
some typical results. The underlying conditions com- 
mon to each one are: 

l Uniform or exponential distribution of costs (in 
the interval [0, 1001) and probabilities. 

l Test expressions were derived by randomly filling 
in truth tables. 

l Each test comprises 2500 optimized evaluation 
plans. 

The diagram in Figure 5 shows the difference between 
our algorithm and the one proposed in [GR73]. For 
varying numbers of variables (2-5) we compare the 
percentage costs of the evaluation plans generated by 
the two heuristics with respect to the optimal evalua 
tion plan which is normalized to 1. In addition to the 
average cost ratio, we show the standard deviation as 
errorbars. We see that our algorithm computes slightly 
lower evaluation plans, and the standard deviation of 
the factor to the optimum is better, too. 
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Figure 6: Quality of the Heuristic 
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Figure 7: Run Time of the Heuristic and of the Opti- 
mal Algorithm 

The second diagram (Figure 6) shows how well our 
optimization algorithm performs, compared with a 
strategy that evaluates the conditions in arbitrary or- 
der and stops as soon as the result is certain-this 
resembles the method that is used in C. The results 
for optimizing the evaluation of expressions with five 
variables are depicted. More than 95% of the evalua, 
tion plans yielded by the heuristic have average costs 
of less than 7% worse than the average cost of the 
optimal plan. 

In Figure 7, the running times of the optimal algo- 
rithm, the heuristic from [GR73] and our heuristic are 
compared. All algorithms are implemented in LISP, the 
figures are derived from benchmarks on a Sun SPARC- 
station l+ (12.5 MIPS) with 40MB of main memory. 
It is evident that the generation of evaluation plans 
with the optimal algorithm is hardly feasible, even for 
few conditions, due to the super-exponential running 
time: Extrapolation for six conditions yields about 
23.7 hours, and for seven conditions about 1522 years. 

Heuristic +- 
Optimal Algorithm +- - 

Arbitrary Order(C) -a--, 

-... 
15 - =.. -.._ 

‘DA. 
10 - ‘I)..... 

‘is.... “C)--....f+.... 
* I I I I I I 1 

"2 3 4 
Nu5mber ofjVa&es 

8 9 10 

Figure 8: Achievements by Optimization: (la) Rela 
tive Savings, Uniform Distribution of Costs and Prob- 
abilities 

We see that the algorithm [GR73] has a running time 
of about 30% above our heuristic. 

The diagrams in Figure 8 and 10 focus on the ques- 
tion of the possible achievements by applying the op- 
timization algorithm on boolean expressions with in- 
creasing numbers of variables. Unfortunately, because 
of the extreme running time, we cannot generate the 
optimum for more than five variables as the measure 
of comparison. Therefore, in the first diagram in Fig- 
ure 8, the achievements are compared against the sum 
of the evaluation costs of all conditions (worst case). 
Even expressions with ten variables can be evaluated 
with average cost of about 20% below worst case, 
whereas with arbitrary evaluation order the worst case 
is almost reached. 

In Figure 8 we observe that the relative savings com- 
pared to the worst case decreases with increasing num- 
ber of variables-this is not a peculiarity of our heuris 
tic but is also true for the optimum. At first glance, 
this behaviour may appear astonishing. It is caused 
by the fact that a single condition has less impact on 
the outcome of a boolean expression as the number 
of variables increases. For two-variable expressions it 
is more likely that one variable is irrelevant than for 
a ten-variable expression that five variables are irrele- 
vant. The opposite is true for absolute savings: The 
absolute savings diagram (Figure 10) shows that the 
difference of optimized cost and worst case cost in- 
creases with increasing number of variables, whereas 
the arbitrary evaluation strategy yields only a constant 
absolute difference. 

Note that all distributions in the benchmarks ex- 
plained so far (probabilities, costs, truth tables) are 
uniform. Figures 9 and 11 depict the relative resp. ab- 
solute savings for an exponential distribution of costs 
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6 Conclusion 

In this paper we addressed the problem of optimizing 
boolean expressions in object-oriented databases. We 
motivated the need for this optimization by way of 
a “real” engineering example. There exists a known 
algorithm for deriving the optimal evaluation plan; 
unfortunately this algorithm exhibits terrible running 
times which makes it infeasible for complex boolean 
expressions with more than four or five variables. 
Therefore, heuristics with (far) lower computational 
complexity are required. We developed one such 
heuristic which-in a quantitative analysis-proved to 
be superior to all other known heuristics in both re- 
spects, quality of the generated evaluation plan as well 
as performance, i.e., running time. In cases where the 
optimal algorithm could still be employed our heuris- 
tic proved to generate results comparable to the opti- 
mum; for example, the outcome of the heuristic was 
within a 5% error range to the optimum in 85% of the 
cases and in 99% of the cases within a 10% error range 
(for randomly generated boolean expressions with five 
variables). The comparatively low execution time of 
our heuristic facilitates its utilization not only at com- 
pile time but even at run time in order to rearrange 
the evaluation plan based on dynamically derived cost 
and selectivity estimates. 

Aside form developing the heuristics, we had to ad- 
dress the problem of estimating these input parameters 
to the optimizer, i.e., selectivity and cost estimates of 
the terms constituting the boolean expression. For 
selectivity estimation we heavily built upon the well- 
known relational techniques whereas the cost estima- 
tion required a new approach-called decapsulation- 
because of the possibility of invoking functions in 
boolean expressions in object bases. 

Figure 10: Achievements by Optimization: (2a) Abso- 
lute Savings, Uniform Distribution of Costs and Prob- 
abilities 

and probabilities6 As greater differences of costs and 
probabilities become more likely with this distribution, 
relative as well as absolute savings increase. The more 
the distributions are skewed, the higher is the opti- 
mization potential. On the other hand, we found that 
this potential is minimal if a “one-point” distribution 
(i.e., all costs 50 units, all probabilities 0.5) is used as 
the basis for the benchmarks. 

These results suggest that our optimization scheme 
is especially well suited for applications in object bases, 
where this situation (great differences) is quite com- 
mon (e.g., cost of main memory vs. disk access). We 
can also see that the heuristic performs asymptotically 
as well as the optimum-which, however, cannot be 
determined for more than five variables. 

6Probabiity density function p(z) = &e-h” (costs) 
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The optimization algorithms as well as the decapsu- 
lation method were implemented in LISP. In order to 
perform the quantitative analysis we implemented all 
known heuristics and the optimal algorithm. The anal- 
ysis presented in this paper is based on randomly gen- 
erated boolean expressions and their associated cost 
and selectivity estimates. Currently we are work- 
ing on a quantitative assessment of our optimization 
method based on realistic boolean expressions derived 
from various usage profiles of (mostly) mechanical en- 
gineering applications running on our object base sys- 
tem GOM. 
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