
CMD: A Multidimensional Declustering Method for
Parallel Database Systems * e

Jianzhong Li t Jaideep Srivastava Doron Rotem $

Computer Science Department
4-192 EECS Building
200 Union Street S. E.
Universit?r of Minnesota
Minneap&s; MN 55455

Abstract

I/O parallelism appears to be a promising approach to
achieving high performance in parallel database sys-
tems. In such systems, it is essential to decluster
database files into fragments and spread them across
multiple disks so that the DBMS software can exploit
the I/O bandwidth reading and writing the diiks in
parallel. In this paper, we consider the problem of
declustering multidimensional data on a parallel disk
system. Since the multidimensional range que-q is the
main work-horse for applications accessing such data,
our aim is to provide efficient support for it. A new
declustering method for parallel disk systems, called
coordinate modulo distribution (CMD), is proposed.
Our analysis shows that the method achieves optimum
parallelism for a very high percentage of range queries
on multidimensional data, if the distribution of data
on each dimension is stationary. We have derived the

*Supported in part by National Science Foundation Grant
No. IRI-9110584.

iOn leave from HeiIongjiang University, P. FL China.
*Computer Science F&search Dept., Lawrence Berkeley Lab.,

and the Department of Marketing and Quantitative Studies, San
Jose State University, San Jose, California.

Permission to copy without fee all or part of this material is
grantedprovided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear,
and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or
to republish, requires a fee and/or special permisJIon from
the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

exact conditions under which optimality is achieved.
Also provided are the worst and average case bounds
on multidimensional range query performance. Exper-
imental results show that the method achieves near
optimum performance in almost all cases even when
the stationarity assumption does not hold. Details of
the parallel algorithms for range query processing and
data maintenance are also provided.

1 Introduction

In a database processing environment, the fact that
disk I/O is the main bottleneck has been a consen-
sus according to researchers. In recent years, the in-
crease in processor speed has been very rapid. The
performance of disks has also improved but at a much
lower rate, resulting in a significant mismatch between
the processor performance and I/O performance, es-
pecially in parallel computer systems. It is highly un-
likely that the performance of individual disk units
will improve significantly in the near future. Thus, we
need to consider how to exploit multiple disk systems
[13]. Th’ p bl rs ro em is usually addressed today by data
declustering. Declustering a database file involves dis-
tributing the data in the database file among multiple
disks. One of the key reasons for using declustering
in parallel database systems is to enable the DBMS
software to exploit the I/O bandwidth for reading and
writing multiple disks in parallel. In general, increas-
ing the degree of declustering reduces the response
time for an individual query and increases the over-
all throughput of systems.

Declustering has its origins in the concept of horizon-
tal partitioning initially developed as a distribution

mechanism for distributed DBMS [19]. Since then, the
declustering problem has received extensive attention
[l, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17,
181. In recent years, many researchers have,concen-
trated on declustering techniques for parallel database
machines. Three kinds of declustering methods have
been applied in well known parallel database machines,
namely round-robin [20], hashed declustering [21] and
range-partition declustering [22].

Most of the research on declustering cited above con-
centrates on declustering the data in a database file
using the values of a single attribute or a few key at-
tributes so that operations applied on the partition-
ing attribute can be performed very efficiently. How-
ever, these storage structures would not be able to ef:
ficiently support queries that involve non-partitioning
attributes, especially range queries. Thus, multidi-
mensional declustering methods need additional re-
search. However, only a little attention has been f+
cused on this area so far.

In 1982, Du and Sobolewski proposed a heuristic data
allocation method, called Disk Module [l], which has
been explored by many researchers [2, 3, 4, 5, 61.
The method considered the multidimensional access
method, but was restricted to static files and-partial-
match queries only.

In 1987, Wu and Burkhard proposed a dynamic file al-
location method [7], called M-cycle allocation scheme,
which was the first to adapt dynamic hash files to
process range queries in parallel disk systems. The
method initially partitions the key-space into regions
and allocates the regions among multiple disks. In
each disk the data is organized by hashing, with a
chain for each region. When the storage utilization fac-
tor exceeds a threshold, a region is split and all regions
are reallocated. In the M-cycle method, the dynamic
region splitting and reallocation incur the transmis-
sion of a lot of data among the multiple disks. Ad-
ditionally, the hashing chain can not efficiently sup
port range queries, as the grid file structure does. The
cost of retrieval strongly depends on the data distri-
bution. When data is nonuniformly distributed the
performance of the method degrades significantly.

In 1990, Hua and Lee presented an adaptive placement
scheme which distributes data of a relation baaed on
the grid file structure [18]. However, thii method con-
siders the balance only in terms of the datapvolume
without distributing the neighbour grid blocks on dif-
ferent disks, so that the disk accessing concurrency can
not be sufficiently achieved.

In this paper, we consider the problem of decluster-

ing multidimensional (i.e. multi-attribute) data on a
parallel disk system such that arbitrary range queries
on it can be efficient. Our motivation comes from
the introduction of database technology to a number
of new data-intensive applications that exhibit multi-
dimensionality, viz. scientific data, marketing data,
population data, image data, etc. Our approach di-
rectly addresses the following characteristics of such
data:

1. Multidimensionality is a dominant feature in such
data. This makes multidimensional data structures,
such as grid file, quad tree, or k-d tree, attractive op
tions.

2. In many such applications the data distribution is
fairly stationary, i.e. even though the database itself
changes, the distribution from which the values are
drawn remains almost fixed.

3. A high percentage of the data usage is for large-scale
analyses, making the multi-dimensional range query
the principal workhorse. Thus efficient support for this
type of query becomes of paramount importance.

The multidimensional declustering problem discussed
in the paper can be defined as follows. Given a multi-
dimensional file and a multidisk system with M simul-
taneously accessible disks, how to distribute the data in
the file among the M disks so that the mazimum disk
accessing concurrency is achieved for range queries.

A new multidimensional declustering method, called
coordinate module declustering (CMD for short), is
proposed in this paper. Given a d-dimensional file,
there must be a d-dimensional space, of which the
file is a subset. The CMD method partitions the
d-dimensional space into M subsets, where M is the
number of disks. Thus, the file is also divided into
M subfiles. Each subspace is uniquely assinged to
a disk and the subfile in the subspace is allocated
to the same disk. By a mapping, the subspace on
each disk is compressed into a d-dimensional hyper-
rectangle such that the grid file, which is very efficient
for range queries, can be used to organize the subfile
on a single disk. This method has following advantages
over other declustering methods:

1. Since data declustering is based on all dimensions,
database operations that involve any of the partition-
ing dimensions can be performed very efficiently.

2. The method can efficiently support range queries
due to the advantages of the grid file structure.

3. Since the method is balanced in terms of data vol-
ume, and neighbouring regions are on different disks,

4

maximum disk accessing concurrency can be achieved.

4. The grid block split and merge are localized to
a single disk so that data transmission among disks
during data maintenance is avoided. Thus, the method
reduces the cost of insertion and deletion.

5. The retrieval cost of the method is independent of
the data distribution.

6. The method is balanced for files with stationary
data distribution, and thus expensive data rebalanc-
ing is usually not needed. Experimental results show
that the method works well even for databases without
stationary data distributions.

It should be noted that the CMD method may some-
times become unbalanced so that expensive rebalanc-
ing is needed in an environment where data distri-
bution is not stationary and extremely skewed. Our
ongoing research focuses on methods to dynamically
adapt the partition of the data space with a small
amount of data transmission among disks, so that the
method can work well also on extremely skewed data.
The CMD method has been used in a statistical and
scientific database management system which is being
developed in Heilongjiang University of China.

This paper is organized as follows. The terminology
and background is introduced in the next section. The
CMD method is described in section 3. In section 4,
we present the conditions under which the method is
optimal and show the performance analysis. The data
organization on a single disk and algorithms for im-
plementing the data maintenance and processing range
queries are given in sections 5 and 6. The expeiimental
results are given in section 7. We conclude the paper
in section 8. Due to the space limitations, proofs of all
lemmas and theorems have been omitted. They are
available in [23].

2 Terminology and Background

Let Di (1 5 i < d) be an ordered set. A record is an
ordered d-tuple (rr, rz, rd) E D1 x D2 x . . . x Da. Di
is defined to be the domain of the ph attribute, and
ri is the value of the ph attribute of the record. A
d-dimensional file is a non-empty set of records.

There are two classes of operations on a file. One is
data maintenance, i.e. operations such as insertion,
deletion and update. The other is information re-
trieval operations to retrieve the set of records that
match a user’s query. Let F be a d-dimensional file.
There are three common information retrieval opera-

tions on F, the ezact-match query, the partial-match
query and the range query. The range query is denoted
by

Q= Wl,W>[~2,~2h ..-,Wd,~d)).

The answer to the range query Q is

A(Q) = {(rl,rd) E F 1 Li 5 ri < Vi, 1 < i 5 d}.

The exact-match query is

Q = ([%I = 011, [m = ad, [a = ad]),

where ai’s are constants. The answer to the exact-
match query Q is a record (rr, r2, fd) in F with
ri - - ai for 1 5 i 5 d.

The partial-match query is defined as

Q = ([til = aill, [xi2 = aia] , --, [Zir = ai,]),

where, k < d. The answer to the partial-match query
&is
A(Q) = {(rl, rd) E F 1 rjl = ail, rik = ajk}.

Note that the exact-match query and the partial-
match query can be treated as special cases of the
range query.

Now, we introduce some concrete cost measures. For
a given query Q, let costi denote the number of
accesses to disk i for processing query Q, 1 5 i 5
M. We w rsp(Q) = MAXl<i<M(costi(Q)) a~
the measure of the response time 07 the query Q. The
total number of disk accesses to process the query Q is
~049) = L<~<M co&(Q). The optimal response
time for the query Q by distributing data over M disks
is then [cost(Q)/M], where the number of processors
is greater than or equal to M.

We have assumed that any processor can access any
disk in unit disk access time. In practice this assump
tion is satisfied by crossbar interconnection networks.

For ease of illustration, we assume that all files con-
sidered in the following sections are subsets of the unit
space S = [0 , l)d, d 2 2. However, one should note
that the CMD method is not limited to the space S.

In the following sections, these notations will be used:

F: d-dimensional file with pre-known data distribu-
tion.

M > 1: Number of disks in the multidisk system.

S: d-dimensional unit data space.

n: Parameter of data space partitioning.

Iki: The th interval of the kih dimension.

3 CMD Declustering Method

First, we consider the partition of S. The partition
rule of S is that all partitions of S contain the same
volume of data in F. The rule can be approximately
followed by properly dividing each dimension of S ac-
cording to the stationary data distribution of F,. Based
on the data distribution, F can be coverted to a uni-
formly distributed file by a hashing approach. Thus,
we can discuss the CMD method with the assump
tion of F being uniformly distributed in S. Clearly,
the method and the results in this paper is not lim-
ited to the uniform distribution. For databases with-
out stationary data distributions, the partitions may
in pathological cases become unbalanced and need re-
balancing. The experimental results in section 7 show
that in practice the method works quite well even on
random files without rebalancing.

Now, we present the partition method. We divide
each dimension of S into nM intervals, each of length
l/nM:

[0, l/nM), [l/nM, 2/nM), . . . , [(nM - l)/nM, 1).

The intervals on each dimension are numbered from 0
to nM - 1. The gh interval of the kth -dimension is
denoted by Iki = [i/nM , (i + l)/nM), for 0 < i 5
nM - 1. We define the coordinate of the interval Iki to
be i. Hereafter, we use [IkiT hki) to represent-interval
Ihi. Consider tW0 intervals Iki, and Iki,. If jr < &,
then every point in interval Ii;i, is less than every point
in interval Ihi,,.

Thus, S is divided into (nM)d regions, where a region
is the cross product of d intervals, eg:

[hi,, hli,) X [hia, hia) X *-- X [idid, hdir),

where, 0 s it 2 nM - 1, 1 < k 5 d. We define the
coordinate of the region above to be (ir, is, id). In
the rest of the paper, we use capital letters X, Y, . . .
to represent the coordinates of regions in S and x, y,
. . . to represent the coordinates of the records in F or
the points in S.

Now, we give an illustrative 2diiensional example to
convey the idea of the partitions of S. Let S = [0, 1)2,
M = 4 and n = 2. Thus nM = 8, i.e. each dimension
is divided into 8 intervals with length 0.125 each. The
partitions of S are shown in Fig. 1. The coordinate of
the region [0.125, 0.25) x [0.125, 0.25) is (1, !).

Next, we discuss the data distribution method which
allocates the regions of S among M disks. The alloca-

tion function, denoted by CMD, is as follows:

CMD(X1 ,..., Xd) = (X, + . . . + Xd) mod M.

The region (Xl, X2, Xd) is assigned to disk
CMD(Xl, X2, Xd), where the M disks are num-
bered 0, 1, M - 1. The allocation of the 64 regions
of S among 4 disks is shown in Fig. 1. For example,
the region (6, 6) is assigned to disk 0.

Now we show that the CMD method is balanced,
where balance is defined as follows:

Definition 1. Two regions RI and R2 in S are
neighbows if R1 = (Xl, Xi, Xd) and R2 =
(Xl, e*e, Xi + 1, .+., xd) for some i, 1 5 i < d.

Definition 2. An allocation method is balanced if the
same number of regions is assigned to each disk and
any two neighbouring regions are on different disks.

Theorem 1. The CMD method is balanced.

Proof. Given in [23].

7

6

5

4

3

2

1

0

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
0 12 3 4 5 6 7

Fig. 1. The partition and allocation of
S = [0, 1) x [0, 1) among 4 disks
withM=4andn=2.

4 Performance Analysis

Definition 4. Let Q = ([LI, VI), [Lz, Ls), m-s,
[&j, ud)) be a range query. The length of Q on di-
mension i is the number of the intervals intersecting
[Li, Vi) on dimension i.

If the hyper-rectangle required by Q intersects a region
R of S, we assume that all of R must be accessed in

6

response to Q. We can let n in the partition of S be
large enough so that all the data in each region can be
put into one diik page. Considering that the page of a
disk is the basic access unit of the disk, our assumption
is meaningful.

Definition 5. A declustering method is optimal for
a query if a maximum of [P/M] regions need to be
accessed on any one of the given M disks to examine
the P regions in response to the query.

Theorem 2. The CMD method is optimal for all
range queries whose length on some dimension is equal
to kM where k 1 1.

Proof. Given in [23].

For range queries that do not specify some partitioning
attributes, the ranges of the queries on the missing at-
tributes are the complete domains of these attributes,
i.e., [0, 1). For example, a range query that misses
the first attribute can be represented as Q=([O, l),
b52, u21, ***, [Ld, ud)). Since each dimension Of s,

i.e., domain of an attribute, is divided into nM in-
tervals, a range query that misses some partitioning
attributes has length nM on these dimensions. Thus,
we have the following corollary.

Corollary 1. The CMD method is optimal for all
range queries that miss some partitioning attributes.

In the following let (L, U) be a set of adjacent intervals
on a dimension of S whose coordinates are L, L +
1, ‘..) u.

Lemma 1. Let Q be a range query which needs to
examine hyper-rectangle A = ~id,~(Li, Li + Zi - l),
whereO<LisnM-liandl<Zi<Mforl<isd.
If Ii, <_ li, 5 * * - 5 Iid, where lib E (11, Id) for
1 < k 5 d, Q is required to access at most nti’, liL
regions on each disk.

Proof. Given in [23].

Lemma 2. Let

A= X$l(Li, Li + kiM + fi - l),

Al = (L1, Li+kiM-l)x(x$z(Li, Li+kiM+Zi-l)),

AI = (A - & At) n RI for 2 5 12 d where,

RI = (x;;‘,(Lt, Lt + ktM + It - 1))‘~

(LI, Lr + klM - 1) x

<XL+, (L, Lt+hM+& - l)),

&+I = xid,l(Li + kiM, Li + kiM + 4 - I),

where, 0 5 Li 5 nM - kiM - li, 0 < li < M ad

0 5 ki 5 n for 1 < i 5 d. A is a hyper-rectangle in
S, all Ai’s are hyper-rectangles in S for 1 5 i 5 d + 1
and have the following properties:

1. A = &iAi.

2. The length of Ai on dimension i is ki M (1 < i 5 d).

3. AinAt = 0 if i # t for 1 2 i, t 5 d + 1, where 0
is empty set.

Proof. Given in [23].

It is obvious that any range query, which does not sat-
isfied the condition of theorem 2, can be represented by
A = ([Ll/nM, (LI +klM +h)lnM), [-h/nM, (~52 +
kzM + h)/nM), [L&M, (Ld -t kdM -t ld)hM)),
where, 0 2 Li < nM - kiM - li and 1 < Ii < M for
llisd.

Theorem 3. Let Q be the range query A as above.
CMD method is optimal for Q if (l/B + lid/M) > 1,
where B = n,“,: lij, lil 5 li3 5 + * * 5 lia, and lik E
(11, -.., Id)-

Proof. We partition A, the hyper-rectangle required
by Q, into d + 1 sets as in lemma 2. Let Pi be the
number of regions in Ai for 1 5 i 5 d. By the
properties 1 and 3 in lemma 2, the number of re-
gions required by Q is P = Ci”=‘,’ Pi. From the prop-
erty 2 in lemma 2 and theorem 2, there are at most
[pi/Ml = Pi/M g re ions of Ai on any one of the M
diks for 1 2 i 5 d. Clearly, Pd+l = nf=, Zi = B x lid.
Since l/B + Zi,/M > 1, i.e. B(l - Zi,/M) < 1,
[Pd+l/Ml = [B X lid/Ml = [B-B(l-lid/M)1 = B.
By lemma 1, there are at most B regions of Ad+1 on
any disk. In summary, there are at most

(f:P,IM)+B = (kPi/M)+ rPd+lIMI
id id

d+l

= [C pi/Ml = [P/MI

i=l

regions of A on any one of the M disks. Therefore,
CMD is optimal for Q. Q.E.D.

The theorems 4 and 5 below show the worst and av-
erage case bounds, respectively, on the performance of
the CMD method.

Theorem 4. For any range query Q required to ex-
amine P regions, at most [P/Ml + (M - l)d-’ - 1
regions are accessed per disk in response to Q.

Proof. Let Q be required to examine hyper-rectangle
A= Xid,l(Li,Li+kiM+Zi-l), where05 Li 5 nM-
kiM - li and 0 5 Zi < M. If there is some i (1 2 i 5 d)

7

such that Ii = 0, then by theorem 2, the number of re-
gions accessed per disk is [P/M]. Let 0 < li < M for
1 5 i 5 d. We partition A into the same d + 1 hyper-
rectangles as in lemma 2, Al, AS, + - . , Ad+1 . Let Pi
be the number of regions in Ai for 1 5 i 5 d + 1.
Thus P = CfL’,’ Pi. By lemma 1, there are at most
B = nfzi li, regions in &+I on any disk. By theorem
2, there are at most Pi/M regions in Ai on any disk for
1 _< i 5 d. Thus, the number of regions accessed per
disk in response to Q is at most B + C$:, Pi/M.
Since [P/M] = EL1 E/M + rPd+l/M],
B + Cf.-l E/M = P=/Ml + B - fpd+l/Ml.

Since B 5 (M - l)d-’ and [Pd+r/Ml 1 1, B +
Cf=, Pi/M 5 [P/M] + (M - l)d-’ - 1, i.e., the num-
ber of regions accessed per disk in response to Q is at
most [P/M] + (M - l)d-’ - 1. Q.E.D.

Lemma 3. Assuming each value in { 1, 2, , .., nM)
is equally possible, the probability of any range query
being optimal is greater than

p=l-
nM*-(n-l)M-2

nM2

Proof. Let A be the number of points in an interval of
any dimension, which can be the start or end points of
ranges of range queries on the dimension. The number
of ranges with length 1 on any dimension is the sum
of the number of ranges in each interval of the nM
intervals, that is nM(l + 2 + . . e + A) = v.
The number of ranges with length k (2 5 k 2 nM) on
any dimension is the sum of the number of ranges with
length k in every k adjacent intervals (k-intervals for
short) of the nM-k+l k-intervals, that is A*(nM-k+
1). Thus, the total number of ranges on any dimension
is

R iota1 =
A(A + 1)nM

2
+ F(nM - k + 1)A2

k=2

=
AnM(AnM + 1)

0
L

Hence, the total number of range queries is

For any dimension, the number of ranges with length
kM (1 5 k 5 n) is the sum of the number of ranges
with length kM (1 5 k 5 n) starting from the ith
interval for 0 5 i 5 (n - 1) M. The sum of the number
of ranges, starting from the Oth interval, of length M,
2M, nM, is nA*.. Similarly, the sums starting from

the intervals ZM + 1, 1M + 2, (I + 1)M are each
(n - 1 - l)A*. This holds for 0 5 1 5 n - 2. Thus,
the total number of ranges with length kM on any
dimension is

n-2

&u = nA2 + xM(n-I-1)A2
I=0

=
2nA2 + Mn(n - l)A*

r)
Y

The number of ranges with length # EM on any di-
mension iS Rtotal - RkM, i.e

A2(n2M2 + nM - n2M - 2n) + AnM
2.

The number of range queries with all lengthes # kM
on all dimension is

(

A2(n2M2 + nM - n2M - 2n) + AnM d
Q;M = 2 >-

Thus, the total number of range queries with at least
one range of length kM on some dimension is

Qkzu = Qtotal - Q:,w =
(

AnM(AnM + 1) d
2 >-

-(

A2(n2M2 + nM - n2M - 2n) + AnM d
2 >-

Let P(A) = e. Then,

p *
= d’rnm P(A) = 1 -

nM2-(n-l)M-2
nM*

is the probability of a range query having a range of
length kM on some dimension. Since the set of range
queries with at least one range of length kM on some
dimension is a strict subset of the set of all optimal
range queries on S, the probability of a range query
being optimal is greater than p. Q.E.D.

Clearly, we can make p large enough by properly select-
ing n. The above result shows that the performance
of the CMD method improves with increased dimen-
sionality of the data.

Let range query Q = ([Lr/nM, (LI +hM+ll)/nM),
[Lz/nM, (Lz + k2M + h)/nM), [Ld/nM, (Ld +

kdM + &i)/nM)) be required to examine P regions,
where 0 5 Li < nM - kiM - li and 0 < li < M.
Assuming Ii’s are independently and uniformly dis-
tributed in (0, 1, M - l}, we have the following
theorem.

8

Theorem 5. In response to the range query Q, at
most

[P/M, + (1 - p)((M - 1)d-‘/2d-’ - 1)

regions are accessed per disk on the average.

Proof. If Q is optimal, the number of regions accessed
per disk is [P/Ml. Let Q be not optimal. We partition
A into the same d + 1 hyper-rectangles as in lemma 2,
AI, -42, v-e, Ad+l. Let Pi be the number of regions in
Ai for 1 5 i < d + 1. Thus P = cfzi Pi and Pd+r =
nf=, Zi. By lemma 1, there are at most B = ntzt Ii,
regions in Ad+1 on any disk. From theorem 2, there are
at most Pi/M regions in Ai on any disk for 1 5 i 5 d.
Since li is independently and uniformly distributed in
{O, 1, **-, M - 1) for 1 5 i 5 d, the average value
of li is (M - 1)/2. Thus the average value-of B is
(M - l)d-1/2d-‘. Therefore, the number of regions
accessed per disk in case of Q being not optimal is
at most (M - l)d-‘/2d-1 + Cf=, Pi/M. Considering
that the probability of Q being optimal is greater than
p and the probability of Q being not optimal is less
than 1 -p, the number of regions accessed per disk in
response to Q is at most

acost = p[P/M,+(l-p)((M-l)d-‘/2d-1+~Pi/M)
i=l

on the average. Since

[P/Ml = f: Pi/M + [Pd+l/M]
kl

= f: Pi/M + [(fi ii)/Ml)
id i=l

(M - l)d-1/2d-1 + &Pi/M =
0

= [P/M, + (“,!!“;’ [P/M, + kPi,M
i=l

= [P/Ml + (M - l)d-‘/2d-’ - [(fi li)/M, .
i=l

Since li = (M - 1)/2 for 1 < i 5 d on the average,
[(nf=l &)/Ml = [(M - l)d/(2dM)1 2 1. Thus,

acost < [P/M, + (1 -p)((M - l)d-‘/2d-1 - 1).

Q.E.D.

Theorems 4 and 5 give two very loose upper bounds.
The actual performance of the CMD method is much

better. For example, in the case of 2 and 3 dimensions
the worst case upper bounds are M/4 and M2/16,
respectively. It should noted that range queries are
usually required to examine a very big subspace of S,
i.e. P in theorems 4 and 5 is very large. Thus [P/M],
the optimai number of disk accesses, is much greater
than (M - l)d-l - 1 or (1 -p)((M - l)d-‘/2d-1 - 1).
And hence, the CMD method is nearly optimal for
any range query.

5 Organizing Data on Single
Disk

In the following discussion, Fi and Si are used to rep-
resent the subfile of file F and the subspace of space
S on diik i, respectively, for 0 2 i 2 M - 1.

In this section, we will solve the problem of how to
organize the subfile Fi on disk i such that data main-
tenance and range queries can be efficiently supported.
We are going to use the grid file structure to organize
the subfile Fi in subspace Si on disk i, since this has
been shown to have superior performance for multiat-
tribute range queries on single disk systems. In the
CMD method, Si is not a hyper-rectangle so that Fi
is very skewed in [0, l)d. Thus, the grid file method
cannot be directly used to organize Fi in Si. Using
the example in Fig. 1, Fig. 2 shows the distribution
of the subspace Sc of [0, 1)2 on disk 0. In Fig. 2, Oi’s
are the regions in S assigned to disk 0.

7 1 04 I 012
6 I I 1 06 I I I 014 I __

OS “16
4 02 010

Fig. 2. The distribution of
SO in [0, 1)2 on disk 0.

We use a coordinate transformation function on Si to
map Si into a d-dimensional rectangle, [0, l)d-l x

[O, l/M) for 0 < i 5 M - 1. Let (zi,zz, . . . , zd) E S.
Since zd must be in an interval on dimension d of S,
there must exist integers k and I and a real number a,
whereO<k<n-1,0<15M-landO<acl/nM,
such that Z,j = (kM + Z)/nM + a. The coordinate

transformation function, denoted by CTF, is defined
a3

CTF(tl, 22, zd) = (21, 22, ~-1, k/nM+a).

Fig. 3 illustrates the result of CTF mapping Sc into
[0, 1) x [0, l/4), where S = [0, l)‘, M = 4 and n = 2.

Let CTF(Si) be the image of Si under CTF in-the rest
of the paper. Theorem 6 below shows that CTF(Si)
is a d-dimensional rectangle and theorem 7 shows that
CTF is a one to one and onto function.

1 02 04 06 OS 010 012 014 016

0 01 OS 011 013 015 03 07 09

01234567

Fig. 3. The result of CFT mapping
SO into [0, 1) x [0, l/4).

Theorem 6. For 0 5 i 5 M - 1, CTF(Si) =
[0, l)d-’ x [0, l/M).

Proof. Given in [23].

Theorem 7. CTF is a one to one and onto function
from Si to [0, l)d-’ x [0, l/M) for 0 5 i < M - 1.

Proof. Given in [23].

In the following discussion, we use numbers of the form
kM+l to represent the coordinates of the intervals and
use the cross product of intervals to represent regions,
where 0 5 k < n and 0 2 1 < M. For example, R =
x;‘=l[(ktM + It)/nM, (ktM + Zt + l)/nM) represents
region R = (kl M + II, k2M + 12, k,jM + Id).

Theorem 8. If R = xfcl[(ktM + &)/nM, (ktM +
It + l)/nM) E Si for 0 2 i 5 M - 1, then

CTF(R)
= x::,‘[(ktM + Z,)/nM, (k&f + It + l)/nM)

x[kd/nM, (kd + l)/nM) = R1 E CTF(Si).

Proof. Given in [23].

Clearly, R is a region in Si and RI is a region in
CTF(Si). Theorems 7 and 8 tell us that the regions in
Si are in one to one correspondence with the regions
in CTF(Si).

Based on theorems 6,7 and 8, we can use the grid file
structure to organize CTF(Fi) in space CTF(Si) on
disk i for 0 < i < M - 1, and design an effective and
efficient range query processing algorithm.

6 Data Maintenace and Range
Query Processing

First, we discuss the data maintenance operations,
i.e. insertion, deletion and update. Given a record
+1, 22, --*, zd), ah data maintenance operations can
be processed using the following 4 steps.

1. Determine the coordinate of the region in
which r lies;

2. Determine the disk number i of the disk on
which r is, using the CMD function;

3. COmpUte (yl, vd) = CTF(Z1, Zd)j

4. usiqic (91, Y2, --a, yd) as input, process the
data maintenance operation on disk i using
the data maintenance algorithm of the grid file
structure.

Since each dimension of S is divided into nM in-
tervals of equal length each, the coordinate of the
region to which the record ~(21, 22, zd) be-
longs is (Xi, X2, Xd), where Xi = [zi x nMJ.
With the region coordinate determined, the disk num-
ber i of the disk on which the record r resides is
(x1+x2$...+&) mod M.

Note that we only use CTF(q, 2d) = (~1, gd)
to determine the location in which record (ti , zd)
is. The actually stored data is still (21, 21). This
can avoid the inverse mapping from (yi, yd) to
(21, td).

Now we describe the algorithm for range query pro
c=ing. Let Q = WI, VI), [L2, V2>, [Ld, ud)) be

a range query, where Li and Vi are in [0, 1). The op
eration Will retUrn a set of records, {r(zr, 22 , 2d)
] Listi<Ui forlsi5d).

The first step of the algorithm is to determine the set
of regions that must be examined. From the range
[L,, Urn) for 1 5 m 5 d, the set of intervals related
to Q on dimension m, denoted by I”, can be obtained
as follows:

AJa = {Lkm I Lnk, (-)L, Urn) # 01,

where, I&,,, is interval k, on dimension m. The set
of regions that must be examined is

R = {Xk,lh, 1 Imk, E I,, 1 I m I d},

which can be represented by region coordinates

R= {(XI, x2, a-*> xd) 1 (x;,,kc,) E R’}.

10

The second step of the algorithm is to divide the set
R into M subsets using the CMD function such that
each subset only contains regions that are assigned to
the same disk. The subset of regions assigned to disk
i, &, can be computed as follows:

Ri = {(Xl, --*, Xd) E R 1 (Xl +- . .+X,i) mod M = i}.

The third step of the algorithm is to get the set of re-
gions which need to be examined on disk i by theorem
8,

cTF(&) = {(yt, yd) 1 3(x1, xd) E &

such that CTF(XL, X,j) =

(KY yd))*

Since CTF(&) may not be a hyper-rectangle in
CTF(Si), it perhaps can not be represented as a sin-
gle range query in CTF(Si). The fourth step of the
algorithm is to transform CTF(&) into batched range
queries since cTF((&, ..,, xd)) = (yl, yd) is
one and only one region in CTF(Si), by theorems 6, 7
and 8, we simply transfer each region in CTF(&) into
a range query in CTF(Si). Thus, the batched range
queries on disk i are

Finally, process all range queries in Qi on disk i, for
O<i<M-1.

The algorithm can be summarized as follows:

RANGE-QUERY

INPUT: Q = ([LI, VI), [Lz, uz), [Ld, ud)).

OUTPUT: A = (r(z1, 22, fd) 1 Lj < Xj <
Uj for 0 5 j 5 d}

METHOD:

1. For 1 5 m 5 d, compute

I m = {Imk, 1 Imk, n[Lm, urn) # 0);

2. Compute

R= {(XI, X2, xd) I LX, E 1, for 1 5 m I 4;

3. For 0 5 i 5 M - 1, compute

R-i = {(Xl, a*-, xd) 1 (xl-k.-.+&) mod %f =i};

4. For 0 5 i < M - 1, compute

CTf’(Ri) = {(YI, Y2r yd)};

5. For 0 < i 2 M - 1, compute

Qi =
(0

Z&j s), [Z&, 9)) 1

(K, a*-, yd) E CTf’(Ri)}.

6. For 0 5 i 5 M - 1, if Qi # 0 process the
batched queries Qi on disk i according to the
given grid file retrieving policy and return the
(IPSWW in Ai;

7. Return A = UE,‘Ai.

In a multiprocessor system with at least M processors,
all the Qi’s in step 6 can be processed concurrently.
Using buffering techniques in step 6, the batched Qi
can be efficiently processed by retrieving the related
directory and data only once.

‘7 Simulation Results

To examine the CMD method in practice, we imple-
mented the data maintenance and range query pro
cessing algorithms. The simulation runs of the algo
rithms described below had the following objectives:

1. Estimation of the degree of balance.

2. Estimation of the performance of range query pro-
cessing.

The simulations were performed on a Cdimensional
data space.

Degree of balance. To observe the degree of the
balance of the CMD method, we created 4 files of 4
dimensional records of random numbers, which were
uniformly distributed in the space S = [0, 1)4 (which
we call uniformly distributed files), and 4 files of 4
dimensional records of random numbers, which were
non-uniformly distributed in S = [0, 1)4 (which we
call non-uniformly distributed files). Using n = 3 and
M = 3, the space S was divided into 6561 regions. The
size of a disk block was 512 bytes. The blocking factor
was 0.75, which means that each disk block must have
approximately 512 x 0.75 = 384 bytes. The sizes of the
uniformly and the non-uniformly distributed files were
the same, i.e. 1000, 10000, 15000 and 20000 records.

Table 1 shows the distribution of the data in the uni-
formly distributed files among 3 disks. Table 2 shows

11

the distribution of the data in the non-uniformly dis-
tributed files among 3 disks.

Table 1 shows that the data in the uniformly dis-
tributed files is equally distributed among disks. Ta-
ble 2 shows that the data in the non-uniformly dis-
tributed files is nearly equally distributed among disks
even without using any rebalancing algorithm.

Number Data Distribution on Disks
of Number of Number of Number of

Records Blocks Blocks Blocks
in Files on Disk 1 on Disk 2 on Disk 3

1000 14 13 14
10000 138 138 137
15000 1 209 I 210 208
20000 1 279 279 279

Table 1. The distribution of the data in
uniformly distributed files
among 3 disks.

Number Data Distribution on Disks
of Number of I Number of I Number of

Table 2. The distribution of the data in
nonuniformly distributed files

among 3 disks.

Performance of range query processing. Toex-
amine the range query processing algorithm of the
CMD method in practice, we generated a file of 20000
Cdimensional records of random numbers, which were
uniformly distributed in the unit space S = [O, 1)4,
and a file of 20000 Cdimensional records of random
numbers, which were non-uniformly distributed in
space S. Using n = 3 and M = 3, the space 4 was di-
vided into 6561 regions. The size of a disk block is 512
bytes. The blocking factor is 0.75. The following 10
range queries were randomly generated and performed
on each file:

1. ([O.OOl, 0.550), [0.021, 0.620),
[0.034, 0.675), 10.256, 0.320));

2. ([O.OOl, 0.890), [0.022, 0.032),
IO.008, 0.567), tO.070, 0.534));

3. ([0.659, O.SSO), tO.661, 0.890),

[0.043, 0.225), [0.030, 0.612));
4. (tO.445, 0.910), [0.347, 0.893),

10.543, O.SOO), [0.337, 0.810));
5. ([0.253, 0.324), [0.400, 0.764),

[0.410, 0.627), IO.067, 0.637));
6. ([0.003, 0.615), [0.028, 0.512),

[0.030, 0.352), [0.511, 0.758));
7. ([O.OOS, 0.870), [0.650, O-700),

[0.260, 0.270), [0.077, 0.601));
8. ([0.340, 0.920), 10.440, 0.870),

[0.507, 0.873), [0.025, 0.671));
9. (tO.012, 0.502), [0.020, 0.883),

[0.570, 0.637), [0.004, 0.128));
10. ([O.lOl, 0.670), [0.003, 0.608),

[0.508, 0.712), [0.031, 0.601)).

Table 3 shows the number of blocks accessed on each
disk for processing the 10 queries for the uniformly
distributed file. Let pi, Pz and P3 be the number of
blocks accessed on disk 1, disk 2 and disk 3 respec-
tively. Clearly, for 1 5 i 5 3, Pi is almost the same as
MAX(Pl, P2, Ps). Thus, the CMD method is almost
optimal for queries on uniformly distributed files.

9 4 4 4
10 36 36 36

Table 3. The performance of the algorithm
of range query processing on
uniformly distributed file,
where, Di = Disk i.

Table 4 shows the numbers of blocks accessed on each
disk for processing the 10 queries on the non-uniformly
distributed file. It was observed that for 1 5 i 5 3,
Pi is nearly the same a~ MAX(Pl, P2, Pa). Thus,
CMD shows very good performance even for queries
on non-uniformly distributed files.

In order to compare the performance of range query
processing of the CMD method with that of the M-
cycle method [7], which is the only other method for
multidimensional range query processing in multidisk
systems, we also implemented the algorithms of the

12

M-cycle method. We used the M-cycle method to dis-
tribute the same two files and performed the same
10 range queries on the two files. Tables 5 and 6
compare the performance of range query processing of
the two methods on uniformly and non-uniformly dis-
tributed files. As we can see from the tables, the CMD
method behaves much better than the M-cycle method
in terms of the total number of blocks accessed, which
is cost = PI + P2 + Ps, and the response time, which
is rsp = MAX(Pl, P2, Ps), for both uniformly and
non-uniformly distributed files.

I
10 I 43 46 1 49

Table 4. The performance of the algorithm
of range query processing on
nonuniformly distributed file, -
where, Di = Disk i.

Range

c

Comparison of cost and response Time
Query cost 1 cost 1 rsp =P

Number M 1 C 1 M 1 C
1 38 30 16 10
2 65 37 24 13
3 35 31 16 11
4 48 43 19 16
5 10 11 4 4
6 77 52 29 18

Table 5. The Comparison of performance of
range query processing on uni-
formly distributed file, where
M=M-cycle and C=CMD.

Range Comparison of cost and response Time
Query cost 1 cost w rsP

Number M I C I M I C

Table 6. The Comparison of performance of
range query processing on non-
uniformly distributed file, where
M=M-cycle and C&MD.

8 Conclusions and Future Re-
search

We have presented the CM D multidimensional declus-
tering method for parallel disk systems that is geared
towards providing efllcient performance for multidi-
mensional range queries. Analysis of the method
shows that it achieves optimum performance in almost
all cases. Theorems 4 and 5 and the experimental re-
sults show that the performance of the CMD method
is much better than that of the M-cycle method, which
is the only other existing method for range queries in
multidisk systems. Since data declustering is based on
all dimensions in a symmetric manner, range queries
involving any of the partitioning dimensions can be
performed with equal efficiency. Grid block split
and merge are localized to single disks so that data
transmission across disks during data maintenance is
avoided. Thus, the method reduces the cost of inser-
tion and deletion. The method is balanced for files
with stationary data distribution, and expensive data
rebalancing is not needed. Simulation results show
that the method works well even for files without a
stationary data distribution, and is superior to the M-
cycle method. Bounds for the worst and average case
performance of range queries have been provided, and
parallel algorithms for query processing and update
handling were described.

It should be noted that when the method is used on
very skewed databases, it may become unbalanced so
that some expensive data rebalancing algorithm has

13

to be used. Our ongoing research is addressing the
issue of dynamically adapting the partitioning of the
space. Finally, we are developing parallel algorithms
for relational operations that can take advantage of
the proposed declustering scheme.

Acknowledgement

Thanks to Ms. Sun Wenjun for implementing the
CMD and M-cycle methods on IBM PC/AT computer
and doing all the experiments.

References

1. H. C. Du and J. S. Sobolewski, Disk Allocation for
Product Files on Multiple Disk Systems, ACM Z%ans.
Database Systems, Vol. 7, March 1982, pp. 82-101.

2. M. Y. Chen, Multidisk File Design: An Analysis
of Folding Buckets to Disks, BIT, Vol. 24, 1984, pp.
262-268.

3. M. Y. Chen, A Note on Redundant Disk Modulo Al-
location, Information Processing Letter, Vol. 20, 1985,
pp. 121-123.

4. C. C. Chang and M. Y. Chen, Lower Bounds
of Using Disk Modulo Allocation Method to Allo-
cate Cartesian Product Files in Twc+disk Systems,
In The Proceedings of International Computer Sym-
posium, Tainan, Taiwan, 1986, pp. 770-774.

5. C. C. Chan and L. S. Lian, On Strict Optimal-
ity Property of Allocating Binary Cartesian Product
Files on Multiple Disk Systems, In The Proceedings of
International Conference on Foundation of Data Or-
ganization, Japan, 1985, pp. 104-112.

6. H. C. Du, Disk Allocation Methods for Binary
Cartesian Product Files, BIT, Vol. 26, 1986, pp. 138
147.

7. C. T. Wu and W. A. Burkmard, Associative Search-
ing in Multiple Storage Units, ACM. ‘Ikans. Database
Systems, Vol. 12, No. 1, 1987, pp. 38-64.

8. J. Neievergelt, H. Hinterberger and K. C. Sevcik,
The Grid File: An Adaptable, Symmetric Multikey
File Structure, ACM l’kans. Database Systems, Vol.
9, No. 1, 1984, pp. 38-71.

9. G. Gopeland, W. Alexander, E. Boughter and T.
Keller, Data Placement in Bubba, Proc. ACM SIG-
MOD Conf. on Management of Data, 1988, pp. 99
108.

10. M. Y. Kim, Synchronized Disk Interleaving, IEEE
lkans. on Computers, 35(11), 1986, pp. 978988.

11. M. Livny, S. Khoshafian and H. Boral, Multidisk
Management Algorithms, Proc. ACM SIGMETRICS,
1987, pp. 6477.

12. K. Salem and H. Garcia-Molina, Disk Striping,
IEEE Conf. on Data Engineering, 1986, pp. 336-342.

13. D. Patterson, G. Gibson and R. Katz, A Case for
Redundant Array of Inexpensive disks (RAID), Proc.
ACM SIGMOD Conf. on Management of Data, 1988,
pp. 109-116.

14. C. Faloutsos and D. Metaxas, Declustering Using
Error Correcting Codes, Proc. Symp. on Principles of
Database Systems, 1989, pp. 253-258.

15. M. H. Kim and S. Pramanik, Optimal File Distri-
bution for Partial Match Retrieval, Proc. ACM SIG-
MOD Conf. on Management of Data, 1988, pp. 173
182.

16. S. Pramanik and M. H. Kim, Parallel Processing
of Large Node B-tree, tins. on Computers, 39(9),
1990, pp. 12081212.

17. B. Seeger and P. A. Larson, Multi-Disk B*-tree,
Proc. ACM SIGMOD Conf. on Management of Data,
1991, pp. 436-445.

18. K. A. Hua and C. Lee, An Adaptive Data Place-
ment Scheme For Parallel Database Computer Sys-
tems, Proc. The 16th VLDB Conf. , 1990, pp. 493-
506.

19. D. B,ies and R. Epstein, Evaluation of Distribution
Criteria for Distributed Database Systems, UCB/ERL
Technical Report M78/22, UC Berkeley, May, 1978.

20. Teradata Corporation, DBC/lOlB Data Base
Computer Concepts and Facilities, Teradata Docu-
ment C&2-001-05, Los Angeles, Calif. 1988.

21. M. Kitsuregawa, H. Tam&s and T. Moto-Oka, Ar-
chitecture and Performance of Relational Algebra Ma-
chine GRACE, Proc. of the International Conference
on Parallel Processing, Chicago, 1984.

22. D. J. Dewitt, et al, GAMMA: A High Perfor-
mance Dataflow Database Machine, Proc. of Inter.
Conf on VLDB, 1986, pp. 228237.

23, J. Z. Li, et al, CMD: A Multidimensional Declus-
tering Method for Parallel Database Systems, Uni-
versity of Minnesota, Computer Science Department
Technical Report, December 1991.

14

