A Taxonomy and Performance Model of
Data Skew Effects in Parallel Joins

Christopher B. Walton

Alfred G. Dale

Roy M. Jenevein

Department of Computer Sciences
University of Texas at Austin

Abstract

Recent work on parallel joins and data skew
has concentrated on algorithm design without
considering the causes and characteristics of
data skew itself. Existing analytic models of
skew do not contain enough information to
fully describe data skew in parallel implemen-
tations. Because the assumptions made about
the nature of skew vary between authors, it is
almost impossible to make valid comparisons
of parallel algorithms. In this paper, a taxon-
omy of skew effects is developed, and a new
performance model is introduced. The model
is used to compare the performance of two par-
allel join algorithms.

1 Introduction

As databases expand and hardware becomes less ex-
pensive, research interest in parallel architectures and
algorithms for relational processing has increased.
Most research has focused on shared-nothing architec-
tures[Stonebraker 86]. These systems consist of compu-
tational nodes with CPU, memory and secondary stor-
age; nodes communicate exclusively by message pass-
ing. Because there is no single resource that must be
shared by all nodes, it is possible to construct very
large systems. Notable projects include GAMMA [De-
Witt 88], Bubba[Copeland 88], Teradata[Teradata 83],
and several varieties of hypercube{Frieder 90}.

There has been considerable interest in parallel joins.
Specific algorithms have been proposed in [Kitsure-
gawa 83, Gerber 86, Baru 87], while more general anal-
yses and comparisons are presented in [Richardson 87,
Boral 88, Lakshimi 88, Hu 89, Schneider 89,90]. Nearly
all of this work makes uniformity assumptions: tuples
are uniformly distributed to nodes at every stage of the
join, and all join key values occur with equal frequency.
Under these ideal conditions, parallel join algorithms
are quite scalable [DeWitt 86. Gerher 87]. That is, sys-

Proceedings of the 17th Intemnational
Conference on Very Large Data Bases

tem performance is roughly proportional to the number
of nodes.

However, there is considerable evidence that data
skew — the non-uniform distribution of tuples and key
values - exists[Christodoulakis 83, Montgomery 83,
Lynch 88]. The few published analyses of of joins in
the presence of data skew, such as [Lakshimi 88, 89] in-
dicate that data skew can curtail scalability. Recently,
several parallel joins algorithms that are designed to
minimize data skew have been proposed{Omiecinski 89,
Wolf 89,90).

However, because existing models of data skew are
inadequate, it is very difficult to make meaningful com-
parisons or evaluations of of these new algorithms.
Present models are deficient in two ways: they do
not recognize that data skew is a heterogeneous phe-
nomenon, and they do not incorporate enough infor-
mation to fully describe skewed data distributions in
parallel systems.

This paper addresses both of these shortcomings,
and demonstrates how an improved model of data skew
can be used to evaluate algorithm performance. It is
organized as follows: Section 2 introduces a taxonomy
of data skew effects, and uses it to classify previous
work on data skew. Section 3 examines shortcomings
in previous models of data skew. A new model, the vec-
tor relative partition model, is introduced. Next, Sec-
tion 4 explains how to use the vector relative partition
model to analyze algorithm performance. In section 5,
as an illustration of the model and the method, the
GAMMA Hybrid Hash{DeWitt 90], and the Scheduling
Hash [Wolf 90] parallel join algorithms are examined.
Section 6 discusses the results of this analysis. Finally,
Section 7 offers some conclusions.

2 Classifying Data Skew Effects

The term ”data skew” encompasses several related but
distincet effects. In order to accurately evaluate the per-
formance of parallel join algorithms in the presence of
skew, one must take these differences into account. The

537

Barcelona, September, 1991

most fundamental distinction is that between intrinsic
skew and partition skew.

Intrinsic skew occurs when attribute values are not
distributed uniformly. Hence, it can also be called ai-
tribute value skew (AVS). It is a property of the data
and does not vary between join algorithm implementa-
tions. AVS may occur on both single and multiple node
systems. A join of two relations with AVS may have a
greater join selectivity and therefore a larger join prod-
uct, compared to a join of two uniformly distributed
relations with the same cardinality. There is no way a
parallel implementation can avoid this extra workload.
Rather, the challenge in algorithm design is to balance
the workload between nodes when AVS occurs.

Partition skew occurs on parallel implementations
when the workload is not balanced between nodes. Par-
tition skew can occur only on multiple node systems,
and its effects vary between implementations. In par-
ticular, some types of partition skew can occur even
when the input data are uniformly distributed. Parti-
tion skew is described in more detail in section 2.2

2.1 Relationship between Intrinsic and
Partition Skew

When a parallel join algorithm is applied to relations
with intrinsic skew, the distribution of tuples between
nodes is not a simple partition of the intrinsic distribu.
tion. The actual distribution of tuples is determined by
the interaction of several factors:

e Characteristics of the parallel join implementation,
including the hash function(s) or other mechanism
used to partition input relations.

e The join query, especially selection predicates.
¢ Intrinsic skew (if any) in the input relations.

In other words, even if there is a simple function that
characterizes AVS in the relation as a whole, this func-
tion is of little use in predicting partition skew and
algorithm performance. Because of the fine (tuple-
level) granularity at which both data and implemen-
tation must be modeled, predicting partition skew as a
function of intrinsic skew is very difficult

A complete representation of AVS requires enumer-
ating all pairs (v, n) where v is the join key value and n
is the number of tuples with that key value. Since this
is too much information to deal with analytically, one
must approximate AVS by a function f(v) such that
n & f(v).

Finding the number of tuples requires a summation
of f(v). In the single node case, this is a straightfor-
ward summation over all v. But the multiple node case
requires summing f(v) over some arbitrary subset of

Procecdings of the 17th Intemational
Conference on Very Large Data Bases

v, determined by the hash functions and other com-
ponents of the algorithm. Since hash functions tend
to "scatter” tuples with similar key values over many
hash buckets, this summation is much more difficult to
evaluate.

2.2 Types of Partition Skew

There are several types of partition skew, depending on
where in the join algorithm the load imbalance occurs.
Parallel join algorithms may be divided into four stages:

1. Tuples are retrieved from disk.
selection and projection predicates are applied.

tuples are partitioned and redistributed.

mow ®

partitions are joined on each node.

Partition skew may occur at each stage. Thus, four
types of skew may be observed:

Tuple Placement Skew (TPS) The initial distri-
bution of tuples varies between partitions. For exam.
ple, tuples may be partitioned by clustering attribute,
in user specified ranges.

Selectivity Skew (SS) This occurs when the selec-
tivity of selection predicates varies between nodes. A
selection predicate that includes a range selection on
the partitioning attribute is an obvious example.

Redistribution Skew (RS) Redistribution skew oc-
curs when there is a mismatch between the distribu-
tion of join key values in a relation and the distribution
expected by the redistribution mechanism (typically a
hash function).

Join Product Skew (JPS) Join Product Skew oc-
curs when the join selectivity at each node differs. It
is a property of a pair of relations. As such, it is not
manifested until the relations are joined.

At this point, it is instructive to use this taxonomy
to review some of the previous work on data skew in
parallel joins. It can be seen that various authors make
a variety of assumptions about the nature of data skew:

o limited experiments on the effects of AVS have
been performed on the GAMMA database ma-
chines[Schneider 89,90]. The input relations con-
sisted of synthetic data with a normal distribution
of join key values. These tests explicitly assume
that TPS and SS are absent. From the published

descriptions, it is impossible to evaluate RS and
JPS.”

538

Barcelona, September, 1991

o Wolf, Dias, and Yu propose and evaluate skew re-
sistant sort-merge join algorithms [Wolf 89] and
hash-based join algorithms [Wolf 90]. In both of
these cases, AVS is modeled by a Zipf distribu-
tion. As with the GAMMA tests, it is assumed
that neither TPS nor SS are present, However, in
[Wolf 90], RS and JPS are (implicitly) considered.

o Analytic studies by Lakshimi and Yu [Lak-
shimi 88,89] consider the effects of TPS.

e Algorithms developed by Baru and Frieder
[Baru 87,89, Frieder 90], exploit the hypercube
communications architecture to perform dynamic
data redistribution before joins, preventing RS.
The design of the algorithm does not address SS
or JPS. An assumption that join inputs are fully
memory resident implies that TPS is absent.

3 Modeling Data Skew in Par-
allel Joins

To date, analytic work on data skew has used what
might be termed scalar models. The multicomputer
system on which the join is performed and the input
relations are described by scalar quantities, such are
cardinality and memory size. These scalar parameters
are adequate to model a single node system or a parallel
system with no data skew.

To model partition skew, such models are supple-
mented with additional scalar quantities that describe
some type of data skew; however this approach requires
making restrictive assumption about the way tuples are
distributed between nodes.

While scalar models can demonstrate the adverse af-
fects of data skew on performance and scalability, they
cannot describe all possible ways that data could be
partitioned between nodes. A completely general de-
scription requires one variable for each node. In other
words, skew must be expressed as a wecior quantity.
Such a model is presented in the next section.

The
Model

The vector relative partition model retains the scalar
quantities that describe the system and the data as
whole, such as cardinality, and augments them with a
skew vector of node-specific coefficients. For example,
the number of tuples at each node is specified in terms
of the average number of tuples per node, and a vector
element that specifies the per node cardinality relative
to this average. This representation separates the size
of arelation from its distribution. Also, there is a single
normalization constraint for each skew vector.

3.1

Vector Relative

Partition

Proceedings of the 17th Intenational
Conference on Very Large Data Bases

3.2 Operational Definition of Skew Vec-
tors

The parameters of the vector relative partition model
are defined in terms of tuple counts at various points of
a join. Let N be the number of nodes. The following
counts are required:

M1(i,R) the number of tuples in relation R initially
stored on node i.

M2(i,R) the number of tuples in relation R remaining
on node i after local selection.

M3(i,R) the number of tuples in relation R on node i
after redistribution.

M4(i,R,S) the size of the local join product on i be-
tween relations R and S.

Given these counts, skew vectors may defined as in the
following sections:

3.2.1 Tuple Placement skew

The mean partition size KT is the average number of
tuples initially stored at each node.

KR = -]%J-ZMI(LR) (1)

The TPS skew vector Tf expresses the number of tu-
ples at each node as a multiple of K&, That is:

M1(, R)

s =

(2)

3.2.2 Selectivity Skew

The relation selectivity &® is the fraction of tuples in
relation R that remain after local selection:

1
AR = e 1
¢ = =g E,- M2(i, R) (3)

Recall that NKP® is the initial cardinality, and
S°i M2(i, R) is the cardinality after selection. The local
selectivily is the selectivity observed at a specific node.
The selectivity skew vector expresses local selectivity
as a multiple of the relation selectivity &®:

(4)

539

Barcelona, September, 1991

3.2.3 Redistribution Skew

The redistribution skew vector RF indicates what frac-
tion of the the relation R is placed on each node after
the redistribution phase:

M3(i,R) _ M3(i,R)

R =
R =S50 B = aANKE

(8)

3.2.4 Join Product Skew

The join selectivity is the ratio of the join output car-
dinality to the product of the cardinalities of the input
relations.

_ S M4G,R.S)
T L M5 RYY, M2(i, S)

The JPS skew vector describes the ratio of output car-
dinality and the product of the cardinalities of the input
partitions in terms of the join selectivity:

MA4(i, R, §) -
NAFS M3(i, R)M3(3, 9)

The factor of N in the denominator is required for nor-
malization. While there are N join partitions, the prod-
uct of the whole relations is N? times larger than the
product of the (join input) partitions.

4 TUsing the Model

The vector relative partition model can be used in two
ways. If tuple counts from actual or simulated joins
are known, they can be used to quantify partition data
skew. A second approach is to use measured or esti-
mated values of the skew vectors to estimate algorithm
response time. Such estimates could be used in query
optimization or to evaluate design alternatives for new
algorithms. Response time calculation are explained in
the next section.

pRS

(6)

RS

i

4'1

The following procedure is used to calculate the re-
sponse time for a single join.

Calculating Response Time

1. Decompose each algorithm into phases. All nodes
must finish a phase hefore any node can start the
next phase. That is, synchronization barriers be-
tween phases are identified.

2. Within each phase, identify the processing steps,
and determine the resource (CPU, disk or commu-
nications) used.

3. Calculate the number of tuples involved in each
step, based on data characteristics and the skew
vectors,

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

4. For each step, calculate the processing time for
that step from the number of tuples. Add the pro-
cessing time to the total processing time for the
resource used at that step.

5. When all steps have been examined, determine the
most heavily used resource (bottleneck) for each
node. The processing time for that resource de-
termines the response time for that node. The re-
sponse time for the phase is the response time of
the slowest node.

6. Response time for the algorithm is the sum of the
response times for each phase.

In step 4 of the above procedure, the number of disk
and communications I/O operations must be calculated
from the number of tuples. It is assumed that tuples are
not split across messages or disk tracks. For notational
convenience, we define the function © as the number of
1/0 operations required to process n tuples of length L
with a buffer size of b:

O(n,b, L) = [(8)

6/1]]

4.2 System and Data Characteristics

Before proceeding to a detailed analysis of the two algo-
rithms, we describe the system and data characteristics
assumed .in this study. This description will also serve
to introduce our notation. Most parameter values are
based on the JoinA Bprime test case of the Wisconsin
benchmark(Dewitt 90]. They are summarized in Ta-
ble 1:

parameter value
S|| | inner cardinality | 10°
R | outer cardinality | 107
L> | S-tuple length 208
L% | R-Tuple length 208
& selectivity 1.0
5™ | join selectivity 10~7
M memory capacity | 8 Mb
N number of nodes 32
D disk track 8 Kb
m message 8 Kb
U mem. utilization | 0.9

Table 1: system and data characteristics

The processing times for various operations are listed
in Table 2

540

Barcelona, September, 1991

Taisk read/write a disk page | 20 msec
thash hash tuple 3 pusec
tsend send message 5 msec
torobe probe hash table 6 usec
trecy receive message 5 msec
tioin Join output tuple 40 usec
tyilter selection 15 usec
tschedule | 8cheduling step 2 masec

Table 2: operation times
5 Comparing Parallel Join Al-
gorithms

This section presents detailed analyses of the GAMMA
Hybrid Hash [DeWitt 90, Schneider 89] algorithm and
the IBM Scheduling Hash algorithm[Wolf 90]. The
analysis of each algorithm phase is presented in a tab-
ular format. For example, Table 3 describes the first
phase of the Hybrid Hash algorithm. The first column
describes the processing step. The second column spec-
ifies the number of tuples processed; this may be less
than the number of tuples stored on the node. If a
given skew type affects that step, then the correspond-
ing skew vector appears in the second column. The last
two columns give the resource {(CPU, disk, communica-
tions) used, and the processing time for the step.

5.1 Analysis of the GAMMA Hybrid
Hash

The Hybrid Hash algorithm has three phases,
are:

They

1. Partition the smaller (S) relation into B buckets.
Concurrently build a hash table with tuples in the
first bucket Sp.

2. Partition the larger relation (R) into buckets. Tu-
ples in the first bucket, Ry are used to probe the
Sq hash table constructed in the first phase. At
the end of this phase, the results of 5o M Ry are
written to disk.

3. For all the remaining buckets, retrieve each bucket,
join tuples, and store results.

5.1.1 Phase I: Hash Partition S-relation

Table 3 describes the hash partition phase. In the first
two steps, T7 K5 tuples are processed. In step (3),
TS K5S7&5 tuples remain after local selection. Tn step
(4) RY is the fraction of § tuples assigned to node i.
It follows that 1 — RY of the tuples on node i must be
moved.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

In step (5), the number of tuples received at a node
is the sum of tuples sent from all other nodes. The
number of tuples sent from node j to node i (i # j)
is T K98§& R, After redistribution (step 6), the
number of tuples at node i is simply RF&SNKS. If
B is the number of hash buckets, 1/B of the S-tuples

are retained in memory, and the rest are saved on disk
(step 6).

5.1.2 Phase II: Hash Partition R-relation

In phase II, The R relation (the larger relation) is par-
titioned, and tuples in the the first bucket are joined.
The processing and analysis of the first six steps is iden-
tical to that described for phase I. The only difference
hetween Table 3 and the first 6 steps in Table 4 is in
the superscripts that designate relations.

Steps (7) to (9) of Table 4 show the costs required
to process the hash bucket held in memory. There are
&R N KR R-tuples in the entire system; RR&AN KR tu-
ples are assigned to node ¢. Since only one bucket is
joined in phase II, only 1/B of these tuples are pro-
cessed. In step (7), the in-memory hash table of S-
tuples that was built during phase I is probed with the
R-tuples. In steps (8) and (9), 1/B of the join output is
formed and written to disk. The cardinality of the join
is the product of the size of the inputs (Rf&°NKS for
the S-relation and RE&RN KR for the S-relation), and
the join selectivity. Recalling section 3.2.4, the local
join selectivity for the partition at node i is JRS N pfS.

5.1.3 Phase III: Join Phase

During phase III, buckets that were written to disk dur-
ing the first two phases are retrieved and joined. Since
one bucket is processed in phases I and II, (B — 1)/B
of all tuples are processed in phase III. Thus, the cost
expressions in Table 5 all contain a (B—1)/B term. Ta-
hle & describes the costs of the join phase when there
is no bucket overflow. Overflow is discussed in the next
section.

In step (1), S-tuples are retrieved from disk. There
are &S NK5 tuples on all nodes, with R7¢SNKS tu-
ples on node i. Note that the cost is the same as
step (6) in Table 3 (storing the buckets). In step (2),
the S-tuples are loaded into a hash table. There are
RE&RN KR R-tuples on node i. In step (3), R-tuples
are retrieved from disk; this cost is the same as step
(6) in Table 4 (storing R-buckets). Step (4) shows the
costs of probing the hash table with R-tuples. Tuples
are joined in step (5). Again, the cardinality of the
join output is the product of the input cardinalities
(SFaSNKS and SEGRNKR) and the join selectivity
(JRSNRS). Step (6) shows the cost of saving the join

541

Barcelona, September, 1991

step number of resource processing
tuples processed (n) used time
1. retrieve T{KS disk O(n, D, L) tdisk
2. filter T;SKS CPU ndyiiter
3. hash T{ K874 CPU Nthash
4. send TSKSSfa’(1~Rf) | comm | ©(n,m,L5)t,ena
5.receive | RY Zfﬁ T{K$874° | comm. | ©(n,m, L5 treco
6. store ESARFNGSKS disk O(n, D, L% taisk
Table 3: phase I of Hybrid Hash: partition S-relation
step number of resource processing
tuples processed (n) used time
1to6 similar to phase I
7. probe %R?N&RKR CPU Nprobe
8.join | 4RENGRKSRINGSKRIFSNRS | CPU nt; oin
9.save | ARRNGREKSRINGSKRIFSNERS | disk | O(n, D, L/*") taisn
Table 4: Phase II of Hybrid Hash: partition R-relation
step number of resource processing
tuples processed (n) used time
1. fetch S EZLRINGSKS disk ©(n, D, L) taisk
2. hash S E-ARFNGSKS CPU nthash
3. fetch R EzlRNaRKR disk O(n, D, LR) tais
4. probe R B-ARRNGRKR CPU Nprobe
5. join EZARANGRKRRINASKSIFSNGRS | CPU nt;oin
6. store EAARRNGRKRRINGSKSIRSNGRS | disk | ©(n, D, L%) tais

Table 5: Phase III of Hybrid Hash: perform join

output. (LF9" = LR 4 LS — LFev),

5.1.4 Bucket Overflow in GAMMA Hybrid
Hash

During the hash partition phases, tuples are read from
disk, filtered, hashed and possibly dispatched to an-
other node. No memory is required except buffers
for disk and communications /0. Because memory re-
quirements are limited and not influenced by data car-
dinality or distribution, it may be assumed that over-
flow does not occur.

The hash join phase is different because all S-tuples
must be held in an in-memory hash table in order to
perform the join. Thus, the algorithm is vulnerable to
overflow at this point.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

As described in [Schneider 89], the GAMMA Hybrid
Hash parallel join algorithm employs recursive hashing
to resolve hash bucket overflow. When the hash table
fills all available memory before the current bucket is
completely processed, the initial hash function Ay is
replaced with a new hash function h;. The new hash
function is applied to the tuples in the hash table, with
the result that a fraction p of the tuples are moved to

an overflow file. Thereafter, any remaining tuples are
hashed with h,.

If the hash table overflows again, a new hash function
hq is applied to remove 2p of the tuples. In general, the
hash function hg removes Gp of the tuples from the
hash table. (the published descriptions of the GAMMA
Hybrid Hash do not cover the case where G > 1/p).
Let F be the number of tuples in the bucket. When

542

Barcelona, September, 1991

all tuples in the bucket have been read, the hash table
contains (1 — Gp)F tuples. If the capacity of the hash
table is C (= UM/L?), then:

C>(1-Gp)F = G= [F'C] (9)

Fp
The initial iteration of the recursive hash algorithm
requires GC hash calculations, and @(GpF, D, L®) disk
writes to store S-tuples to the overflow file. Once pro-
cessing of the S tuples is complete, the last hash func-
tion hg is used to determine which R tuples are written
to the overflow file. We assume that the hash functions
partition the R file in the same proportions as the S-file.
Let:

RENGRKR
RN&K*®

Then O(YGpF, D, LR) disk writes are needed to write
R-tuples to the overflow file. No extra hash calculations
are required

After the join output tuples for the current hash ta-
ble are written to disk, the overflow files are read into
memory and a new hash table is constructed. If over-
flow occurs again, the above procedure is applied re-
cursively, Overflow can occur in both the second and
third phases of Hybrid hash. We assume that the sec-
ond phase always processes 1/B of all tuples. In the
third phase, it is assumed that all the overflowing tu-
ples are concentrated in one bucket. F, the number of
tuples in that bucket, is:

Y = (10)

F= %—lRdeNK”' ~(B-2)C

(11)
5.2 Analysis of the Scheduling Hash Al-
gorithm

The Scheduling Hash algorithm has four phases:

1. scan both relations and determine the number of
tuples in each hash partition.

2. collect partition size information at one node and
load balance the assignment of partitions to pro-
cessors. Return the assignments to all processors.

3. Read tuples again and assemble each partitions at
its join site.
4. perform a hash join of each partition.

We define By and B,, the number of coarse and fine
hash partitions respectively, as follows:

_ &K

B, = 2 = UM

N

(12)

Proceedings of the 17th International
Conference on Very Large Data Bases

5.2.1 Phase I: Scan Phase

The scan phase collects information on how many tu-
ples hash into each partition. Table 6 shows the pro-
cessing steps for this phase. The S-relation is processed
first: tuples are read from disk (step 1), local selection
is applied (step 2), both coarse and fine hash keys are
computed (step 3), and the selected tuples are writ-
ten back to disk (step 4). R-tuples are processed in a
similar manner in steps (5) to (8).

5.2.2 Phase II: Scheduling

The scheduling phase begins by counting the number of
tuples on each node that hash into each hash partition.
These counts are then collected at a single site. If the
message traffic follows a logical binary tree pattern, re-
sults from all nodes can be collected in logy N message
hops. Since the CPU cost of adding the counts from
two nodes is negligible, the cost of collecting partition
counts can be estimated as:

log, NO(B B;, m, L") (tyend + treey) (13)
Where L% is the number of bytes required to store
the tuple counts for a single hash partition.

Next, the actual scheduling is performed. This re-
quires subdividing the join into a number of tasks and
assigning tasks to nodes. According to [Wolf 90], the
time complexity of the scheduling is dominated by sev-
eral sorts of these tasks. If we assume that the number
of tasks is on the order of the number of partitions, then
the CPU cost of the scheduling phase can be estimated
as:

B By (logy By Bz + loga N)tlchedulc (14)

Where t,chedule is a proportionality constant for the
scheduling algorithm(s).

Since it cannot be assumed that the interconnection
network has a broadcast capability, transmitting the
final assignment of tasks to the processors requires as
much time as collecting the counts (see equation 13).

5.2.3 Phase III: Redistribution

Modeling redistribution skew in an algorithm that per-
forms load balancing is problematic. If the load bal-
ancing were perfect, then RS and JPS would not ex-
ist. This is not a realistic assumption, nor is it plausi-
ble to assume the load balancing has no effect. Here,
the effects of load balancing are approximated by ”flat-
tening” the skew vectors T; and JfS so that all ele-
ments of the vectors are between 90% and 110% of the
mean value (for that vector). This approach captures

543

Barcelona, September, 1991

number of

step resouice processing
tuples processed (n) used time

l.read S T{KS disk | ©(n, D, L% taisk

2. filter S TS KS CPU nifiter

3. hash S 2T KSS7 &S CPU Nihash

4. store S T{KSs{a’ disk | ©(n,D, L) taisk

5. read R TRKR disk O(n, D, LAY tgisk

6. filter R TRKR CPU ntyitter

T.hash R | 2TRKRSRGR CPU nthash

8. store R TRKRSR&R disk | ©(n, D, LR) tgi

Table 6: Phase I of Scheduling Hash: scan
step number of resource processing
tuples processed (n) used time

1.read S T{KSSfas disk Q(n, D, L) taisk
2.send S MATSKSSias comm | ©(n,m,L5)t,enq
3. receive S | RF4SNKS ~ %,-Tf KS87aS comm | O(n,m,L5)trecy
4. store S R&SNKS disk | ©(n, D, L) tuisx
5.read R TRRRSRGR disk O(n, D, LR) tgisk
6.send R MATRKRSRAR comm | O(n,m, L®)t,en4 |
7. receive R | RRGANKR - LTREKRSRGR | comm | ©(n,m, LR)tyeey
8. store R RRGANKR disk O(n, D, L) tgisk

Table 7: Phase III of Scheduling Hash: redistribution

the assumption that load balancing in Scheduling Hash
greatly reduces RS and JPS, but does not competely
eliminate them.

The first step of the redistribution phase is to fetch
S-tuples from disk (step 1}, followed by transmission of
data to join sites. In step (2), each partition is assigned
to one of the N nodes with equal probability, so %—54 of
the tuples stored on each node will require relocation.
The number of tuples received at each node is the final
population less the number of tuples that are already
stored at their join site (step 3). In step (4), tuples are
returned to disk. Processing of the R-relation in steps
(5) to (8) is similar. Costs are summarized in Table 7
5.2.4 Phase IV: Join

The join phase is very similar to that of the Hybrid
Hash. Not only are steps the same (see Table 5}, but
the expressions for the number of tuples are the same,
except that there isno (B—1)/B term. That is, the join
phase of the Scheduling Hash processes all B buckets,

Proceedings of the 17th International
Conference on Very Large Data Bases

while the join phase of the Hybrid Hash processes B—1
buckets. It is assumed that overflow does not occur in
the Scheduling Hash.

6 Performance Results

A scalar model is used to generate skewed data distri-
butions in these calculations. Skew is expressed as a
scalar parameter Q: Let X be a skew vector, (one of
T, 8, R, J). Then

- Nmazi(Xi)
B YIP.¢

In other words, one node has @ times as much data
as the others. The remaining tuples are divided evenly
among the other nodes.

Unless stated otherwise, skew is only in the inner
relation (S, the smaller relation). Published measure-
ments of partition skew are quite limited; there is some

@x (15)

544

Barcelona, September, 1991

evidence[Walton 90] that @ values may be in the range
of 2 to 3.

It should be emphasized that the vector relative par-
tition model can represent arbitrary data distributions,
and the above distribution was selected as a matter
of convenience. Also, while in general several types of
partition skew may occur simultaneously, each type will
be considered in isolation to expose its effects on join
performance.

The results presented here will concentrate on tuple
placement skew (TPS), and redistribution skew (RS).
In this test case, there is no selectivity skew because
no tuples are eliminated by local selection. That is,
selectivity is uniformly 100%. Join product skew (JPS)
also has little effect on either algorithm due to.the small
cardinality of the join output, For the cases presented
here, the computation is disk-hound.

response time (sec)

1500
1000 g=...... @ o © ©S
C
500 |
C;———-——B-ﬁ 5 o o H
0 C L] 1 { R ! . |) Q
10 2.0 3'0 4'0 5‘0

Figure 1: TPS comparison

Figure 1 compares the performance of Hybrid Hash
and Scheduling Hash in the presence of TPS. For all
values of the skew parameter, Hybrid Hash (line H) has
better response time. Scheduling hash (line 8) reads the
data twice, once for the scheduling phase, and again for
redistribution; Hybrid Hash reads the data once. As a
result, Hybrid Hash requires less disk I/O even in the
uniform case and is less sensitive to TPS (since fewer
steps are affected by it).

The behavior of the two algorithms in face of re-
distribution skew, shown in Figure 2, is more interest-
ing. Hybrid hash (line HR) has better performance
at low @ values, while Scheduling Hash (line SR) is
faster at higher Q values. In Hybrid Hash, RS can
cause overflow, but the load balancing in Schednling
Hash prevents overflow., As redistribution skew be-
comes more pronounced, the overhead of reading tu-
ples twice and performing load-balancing becomes less
costly than processing bucket overflow. Also note the
modest effect of join product skew (line HJ) on the
response time of Hybrid Hash.

Figure 3 shows the effects of memory size on response
time when redistribution skew (RS) is present in the

Proceedings of the 17th International
Conference on Very Large Data Bases

response time (sec)

1500 -
. HR
1000 0_“,‘ © SR
500 |
0 T S R
10 20 30 40 5.00

Figure 2: RS comparison

inner relation. Line H1 shows the response time for
Hybrid Hash with uniform data distribution (Q = 1).
Lines H2 and H3 show response time for Hybrid Hash
with @ values of 2 and 3 respectively. Line S3 shows
the response time for Scheduling Hash with @ = 3.

As line H1 shows, even in the uniform case, increas-
ing memory improves response time in Hybrid Hash.
As available memory increases, a greater fraction of the
relations can be allocated to the first bucket and joined
during the second phase. This reduces the number of
tuples that must be saved on disk and reread during
the third phase. If there is enough memory, only one
hash bucket is required, and phase III is eliminated.

Redistribution skew effects response time in two
ways. First, it increases the number of tuples that
are processed at some nodes. Furthermore, hash ta-
ble overflow becomes more likely, leading to additional
CPU and disk costs from the recursive hash procedure.

The interaction hetween the Hybrid Hash algo-
rithm's memory sensitive behavior and the the recursive
hash procedure explains the small increase in response
time for the H3 case when M ~ TMb. This is the point
where all tuples can fit into one bucket (note the drop
in response time for H1). However, in the H3 case, this
transition has the effect of concentrating all the over-
flowing tuples in a single bucket, instead of splitting
them between two buckets, The greater excess of tuples
leads to more iterations of the recursive hash algorithm,
increasing the disk workload. That is, a greater portion
of the tuples on the Q-node must be written to overflow
files and read back several times before they are finally
inserted in the hash table. In contrast, Scheduling Hash
(line §3) is virtually unaffected by memory size.

The sensitivity of Hybrid Hash to memory size is also
shown in Figure 4, which shows normalized speedup.
The normalized speedup, §, is defined as t,/Nty,
where t; is the response time for one node case and
tx is the response time for the N node case. An $
value of 1 indicates linear speedup.

545

Barcelona, September, 1991

That is, doubling NV halves the response time. Fig-
ure 4 covers the same cases as Figure 3. Be-
cause increasing N increases memory, superlinear
speedups ($ > 1) occur. Increasing aggregate
memory reduces disk I/O, which directly affects
response time, as the computation is disk bound.
These effects can be seen most clearly in the uni-
form case (H1), where the abrupt changes in S at
N =12 and N = 23 reflect changes in the number
of buckets from 3 to 2 to 1.

response time (sec)

For the skew cases, H2 and H3, speedups are
initially sublinear: by definition, skew (and over-
flow) cannot occur for N = 1, but the number of
excess tuples is greatest when N = 2. As N in-
creases, more memory becomes available and the
effects of overflow are mitigated. Eventually, su-
perlinear speedups are achieved.

Note the “staircasing” in H2 and H3. As N in-
creases, the amount of memory available per tuple
increases, so that fewer iterations of the recursive
hash are required.

A
1000 -
| o0 oS3
500 -
- H3
i H2
- H1
0 1 1 1 I 1 1 1 L b e L 1] i 1 l ; M
0 AMb 8Mb 12Mb 16Mb

Figure 3: response time vs. memory capacity with RS

normalized speedup

1\
3.0 ~

- o

b ‘U—H Hl
2.5

C © H2
2.0
15

r A H3
1.0 ;-o ------------- g "G O @ o S3
0.5 f

P-
0'0 | .] L I 1] 1 1 N I R I L 1 L L; N

0 16 32 48 64

Figure 4: normalized speedup with redistribution skew

Proceedings of the 17th International
Conference on Very Large Data Bases

Barcelona, September, 1991
546

Because the fraction of tuples that can be written to
overflow files can take on only a few distinct values,
changes in normalized speedup are quantized. Addi-
tional memory will not change the number of tuples
written to the overflow file until the increase is great
enough to decrease the value of Gp. (see the discussion
of recursive hash in section 5.1.4). Because the H3 case
has more severe redistribution skew, the increment of
memory required to change response time (speedup) is
larger than case H2. In contrast, Scheduling Hash is
little affected by variations in memory and shows linear
speedup.

The last two figures show examples of the differences
between skew in the inner and outer relation. Figure 5
shows effects of TPS on Scheduling Hash. The inter-
action of skew in the inner and outer relations may be
characterized as additive: any given step is affected by
TPS in exactly one of the two relations. The greatest
degradation in response time occurs when hoth rela-
tions have skew (line SB). Skew in the outer relation
(line SO), which is 10 times larger than the inner rela-
tion, has nearly as much impact. Skew in the smaller
inner relation (line SI) has a smaller effect. Finally,
note that Hybrid Hash with skew in both relations (line
HB) still has a better response time than any of the
Scheduling Hash cases,

Figure 6 shows the effects of redistribution skew on
Hybrid Hash. RS in the outer relation only (line HO)
has little effect. It causes imbalances in the amount
of communications and disk I/Q during the second and
third phases, but it does not cause overflow. Skew in the
inner relation (line HI) has a much more proncunced
effect, which indicates that overflow effects are respon-
sible for most of the performance loss due to RS, If skew
for the two relations are centered on different nodes, the
effects are about the same as skew -on the inner relation
only. (line HD)

The worst case occurs when skew for both relations
is centered on the same node (line HB). Unlike TPS,
the interaction between skew in the inner and outer
relations has a multiplicative nature. Redistribution
skew in R amplifies the costs of overflow: skew in the
outer relation causes the recursive algorithm to read
and write an increased number of tuples each time it is
applied.

For this particular query, Hybrid Hash seems to have
better performance: it is faster in the uniform case, and
with TPS. For RS, Hybrid Hash has a better perfor-
mance except for for substantial skew.

However, a realistic evaluation would require much
more information about the data and query characteris-
tics, especially the extent of partition skew. Even with-
out explicit load balancing, AVS need not result in par-
tition skew. For example, there is some evidence that

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

response time (sec)

3000

2000

1000

0

1.0

2.0
Figure 5: Scheduling Hash with TPS

response time (sec)

3.0 4.0

3000 HB
2000
1000 -4 HI
HD
0 i alindin alivalin o)
1.0 2.0 3.0 4.0 5.0

Figure 6: Hybrid Hash with RS

the redistribution scheme in GAMMA Hybrid Hash
provides good load-balancing. Joins of normally dis-
tributed data, with very pronounced AVS, were re-
ported in [Schneider 89,90]; but our approximate anal-
ysis suggests a @ values of only about 1.1 for RS.

7 Conclusions

The primary goals of this paper have been to explain
shortcoming in previous models of data skew in parallel
joins, and to show the advantages of the vector relative
partition model. The results presented here illustrate
some of the ways the model can be used to examine the
effects of partition skew on join performance. Several
conclusions can be reached from our work thus far:

¢ Skew is a heterogeneous phenomenon. In particu-
lar, there is a fundamental difference between in-
trinsic and partition skew. The relationship be-
tween the two is complex. A simple characteriza-
tion of intrinsic skew is of little use in predicting
partition skew.,

e There are several types of partition skew, and
their affects on algorithm performance differ. Also,
sensitivity to partition skew varies between algo-
rithms.

547

Barcelons, September, 1991

¢ In Hybrid Hash, overflow has a profound effect on
response time, and accounts for most of the per-
formance degradation due to redistribution skew.

The vector relative partition model is more compre-
hensive than scalar skew models. Its parameters have a
simple operational definition, and it is a useful tool for
evaluating algorithm performance. We anticipate using
it to explore various aspects of data skew in parallel
joins. In particular, we plan tc examine the relation-
ship between skew and scalability.

Acknowledgements Yasushi Kiyoki and Furman
Haddix read early drafts of this paper and provided
many useful comments,

References

Chaitanya K. Baru and Ophir Frieder. Database
operations in a cube-connected multicomputer system.
IEEE Transactions on Computers, C-38(6):920-927,
June 1989,

Chaitanya K. Baru, Ophir Frieder, Dilip Dandlur,
and Mark Segal. Join on a cube: analysis, simula-
tion, and tmplementation. In Database Machines and
Knowledge Base Machines, Kluwer Academic Publish-
ers, 1987,

Haran Boral. Parallelism and data management. 3d
Intl. Conf on Dala and Knowledge Bases, Jerusalem
(1988).

Stavros Christodoulakis. Estimating record selectiv-
ities. Information Sysiems, 8(2):105-115, 1083.

George Copeland, William Alexander, Ellen Baugh-
ter, and Tom Keller. Data placement in bubba. 1988
SIGMOD Proc., Chicago.

David J. DeWitt et al., Gamma - a high performance
backend database machine. 712th VLDB Proc.. Kyoto
(1986)

David J. DeWitt, S. Ghadeharizadeh, and Dono-
van Schneider. A performance analysis of the gamma
database machine. In 1988 SIGMOD Proc., Chicago.

David J. DeWitt et. al., The gamma database ma-
chine project. IEEE Transactions on Knowledge and
Daia Engineering, March 1990.

David J. DeWitt, R. Katz, F. Olken, D. Shapiro,
Michael Stonebraker, and D. Wood, Tmplementation
techniques for main memory database systems. 1984
SIGMOD Proc., Boston.

Ophir Frieder, Multiprocessor algorithms for
relational-datahase operations on hypercube systems.
IEEE Computer, 23(11):13-28. Novembher 1990,

Robert H. Gerber. Dataflow Query Processing using
Multiprocessor Hash-Partitioned Algorithms. Technical
Report 672, University of Wisronsin, Qctober 1986,

Robert T1. Gerber and David 1. DeWitt. The Impact
of Hardware and Software Alternatives on the Perfor-

Proceedings of the 17th Intemnational
Conference on Very Large Data Bases

mance of the GAMMA Database Machine. Technical
Report. 708, University of Wisconsin, July 1987.

R.-C. Hu and R. Muntz. Removing Skew Effect in
Join Operations on Parallel Processors. Technical Re-
port CSD-890027, UCLA, June 1989.

M. Kitsuregawa, M. Nakano, and T. Moto-Oka. Appli-
cation of hash to database machine and its architecture.
New Generation Computing, 1(1), 1983.

M. Seetha Lakshimi and Philip S. Yu. Effect of skew
on join performances in parallel architecture. Symp. on
Databases in Parallel and Distributed Systems Proc.,
Austin (1988)

M. Seetha Lakshimi and Philip S. Yu, Limiting fac-
tors of join performance on parallel processors. Con-
ference on Dala Engineering, Los Angeles (1989).

C. A. Lynch, Selectivity estimation and query op-
timization in large databases with highly skewed dis-
tributions of column values. I14th VLDB Proc., Los
Angeles (1988).

Anthony Y. Montgomery, Daryl J. D’Souza, and
S. B. Lee. The cost of relational algebraic operations
on skewed data: estimates and experiments. In Infor-
maiion Processing 83, Elsiver Science Publishers, Am-
sterdam, 1983.

Edward Omiecinski and Eileen Tien Liu. The
Adaptive-Hash Join Algorithm for a Hypercube Mulli-
computer. Technical Report GIT-1CS-89/48, Georgia
Institute of Technology, December 1989.

James P. Richardson, Hongjun Lu, and Krishna
Mikkilineni. Design and evaluation of parallel pipelined
join algorithms. 1987 SIGMOD Proc., San Francisco.

Donovan A. Schneider. Complex query processing in
multiprocessor database machines. 16th VLDB Proc.,
1990.

Donovan A. Schneider and David J. DeWitt. A per-
formance evaluation of four paralle] join algorithms in a
shared-nothing multiprocessor environment. 1989 SIG-
MOD Proc., Portland, Oregon.

Michael Stonebraker, The case for shared nothing,
Database Engineering, 9(1), March 1986.

DBC/1012 Database Computer Concepts and Facil-
ities. Teradata Corporation, 1983.

Christopher B. Walton, Matt L. Pinsonneaut, and
Furman Haddix, Measurements of Data Skew in Two
Datahases. Technical Report TR-90-32, University of
Texas at Austin, October 1990.

Joel L. Wolf, Daniel M. Dias, and Philip S. Yu, An
Effective Algorithm for Parallelizing Hash Joins in the
Presence of Data Skew. Research Report RC 15510,
IBM Watson Research Center, February 1990.

Joet .. Wolf, Daniel M. Dias, and Philip S. Yu. An
effective algorithm for parallelizing sort merge joins in
the presence of data skew. Databases in Parallel and
Dist. Systems., Los Almitos, CA, (1990).

548

Barcelona, September, 1991

