
A Taxonomy and Performance Model of
Data Skew Effects in Parallel Joins

Christopher B. Walton Alfred G. Dale Roy M. Jenevein
Department of Computer Sciences

University of Texas at Austin

Abstract
Recent work on parallel joins and data skew
has concentrated on algorithm design without
considering the causes and chara.cteristics of
data. skew itself. Existming ana.lyt,ic models of
skew do not cont.ain enough informat,ion to
fully describe data skew in parallel implemen-
tations. Because the assumptions made about
the nature of skew vary between authors, it is
almost impossible to make valid comparisons
of parallel algorithms. In t,his paper, a taxon-
omy of skew effects is developed, and a. new
performance model is introduced. The model
is used to compare the performance of two par-
allel join algorithms.

1 Introduction

As databases expand and ha.rdwa.re becomes less ex-
pensive, research interest in parallel architect.ures and
algorithms for relational processing has increased.
Most research has focused on shared-nothing architec-
tures[Stonebraker 861. These systems consist of compu-
tational nodes with CPU, memory and secondary st,or-
age; nodes communicate exclusively by message pass-
ing. Because t.here is no single I’PSOIII’CC t.hat. mllst he
shared by all nodes, it is possible to construct very
large systems. Notable projects include GAMMA [De-
Witt 881, Bubba[Copeland 881, Teradata(Teradat.a. 831,
and several varieties of hypercube[Frieder 901.

There has been considerable interest in parallel joins.
Specific algorit,hms have been proposed in [Kitsure-
gawa 83, Gerber 86, Baru 871, while more general anal-
yses and comparisons are presented in [Richardson 87.
Bora.1 88, Lakshimi 88, Hu 89, Schneider 89,901. Nea.rl!
a.11 of this work makes zrniforrnily nssumptions: t,uples
are uniformly distributed to nodes at every stage of the
join, and all join key values occur with equal frequency.
Under these ideal condit.ions, parallel join algorithms
are quite s&able [DeWitt 86, Gerber 871. That, is, sys-

Proceedinga of the 17th International
Conferam on Very Large Data Bases

tern performance is roughly proportional to the number
of nodes.

However, there is considerable evidence that data
skew - the non-uniform distribution of tuples and key
values - exists[Christodoulakis 83, Montgomery 83,
Lynch 881. The few published analyses of of joins in
t)he presence of data skew, such as [Lakshimi 88, 891 in-
dicat,e that data skew can curtail scalability. Recently,
several parallel joins algorithms that are designed to
minimize data skew have been proposed[Omiecinski 89,
Wolf 89,901.

However, because existing models of data skew are
inadequate, it is very difficult to make meaningful com-
parisons or evaluations of of these new algorithms.
Present models are deficient in two ways: they do
not recognize that data skew is a heterogeneous phe-
nomenon, and they do not incorporate enough infor-
mation to fully describe skewed data distributions in
parallel systems.

This paper addresses both of these shortcomings,
and demonstra,tes how an improved model of data skew
can be used to evaluate algorithm performance. It is
organized as follows: Section 2 introduces a taxonomy
of data skew effects, and uses it to classify previous
work on data skew. Section 3 examines shortcomings
in previous models of data skew. A new model, the vec-
t,or relative pa.rtition model, is introduced. Next, Sec-
tion 4 expla.ins how to use the vector relative partition
model to ana.lyze algorit#hm performance. In section 5,
as an illustration of the model and the method, the
GAMMA Hybrid Hash[DeWitt 901, and the Scheduling
Hash [Wolf 901 parallel join algorithms are examined.
Sect,ion 6 discusses the results of this analysis. Finally,
Section 7 offers some conclusions.

2 Classifying Data Skew Effects

The term “data skew” encompasses several related but
distinct effects. In order to accurately evaluate the per-
formance of parallel join algorithms in the presence of
skew, one must take these differences into account. The

537
Barcelona, September. 1991

most fundamental distinction is that between intrinsic
skew and partition skew.

Intrinsic skew occurs when a.ttribute values are not
distributed uniformly. Hence, it can also be called ai-
iribuit value skew (AVS). It is a property of the data
and does not vary between join algorithm implementa-
tions. AVS may occur on both single and multiple node
systems. A join of two relations with AVS may have a
greater join selectivity and therefore a larger join prod-
uct, compared to a join of two uniformly dist.ribut,ed
relations with the same cardinality. There is no way a
parallel implementation can avoid this extra workload.
Rather, the challenge in algorithm design is to balance
the workload between nodes when AVS occurs.

Partition skew occurs on parallel implement.at,ions
when the workload is not balanced between nodes. Par-
tition skew can occur only on multiple node syst,ems,
and its effects vary between implementations. In par-
ticular, some types of partition skew can occur even
when the input data are uniformly distributed. Parti-
tion skew is described in more detail in section 2.2

2.1 Relationship between Intrinsic and
Partition Skew

When a parallel join algorithm is applied to relations
with intrinsic skew, the distribution of tuples between
nodes is not a simple partition of the intrinsic distribu-
tion. The actual distribution of tuples is det,ermined by
the int,eraction of several fa.ct,ors:

Characteristics of the parallel join implement,ation,
including the hash function(s) or other mecha,nism
used to partition input relations.

The join query, especially selection predicates.

Intrinsic skew (if any) in the input relations.

In other words, even if there is a simple function that
characterizes AVS in the relation as a whole, this func-
tion is of little use in predicting partition skew and
algorithm performance. Because of the fine (tuple-
level) granularity at which both data and implemen-
tation must be modeled, predict.ing pa.rt,it.ion skew a.s a
function of intrinsic skew is very difficult,

A complete representation of AVS requires enumer-
ating all pairs (v, n) where TV is the join key value and n
is the number of tuples with that key value. Since this
is too much information to deal with analytically, one
must approximate AVS by a function f(u) such that,
n R f(v).

Finding the number of tuples requires a. summation
of f(v), In the single node case, t#his is R st.raight.for-
ward summation over all 2). But the mult~iple node case
requires summing f(v) over some arbitrary subset of

v, determindd by the hash functions and other com-
ponents of the algorithm. Since hash functions tend
to “scatter” tuples ivith similar key values over many
hash buckets, this summation is much more difficult to
evaluate.

2.2 Types of Partition Skew

There a.re several types of partition skew, depending on
where in the join algorithm the load imbalance occurs.
Parallel join algorithms may be divided into four stages:

1. Tuples are retrieved from disk.

2. selection and projection predicates are applied.

3. tuples are partitioned and redistributed.

4. partitions a.re joined on each node.

Partition skew may occur at each stage. Thus, four
types of skew may be observed:

Tuple Placement Skew (TPS) The initial distri-
but.ion of tuples varies between partitions. For exam-
ple, tuples may be partitioned by clustering attribute,
in user specified ranges.

Selectivity Skew (SS) This occurs when the selec-
t,ivity of selection predicates varies between nodes. A
selection predicate that includes a range selection on
the partitioning attribute is an obvious example.

Redistribution Skew (RS) Redistribution skew oc-
curs when there is a mismatch between the distribu-
tion of join key values in a relation and the distribution
expected by the redistribution mechanism (typically a
hash function).

Join Product Skew (JPS) Join Product Skew oc-
curs when the join selectivity at each node differs. It
is a property of a pair of relations. As such, it is not
manifested until the relations are joined.

At this point, it is instructive to use this taxonomy
to review some of the previous work on data skew in
pa.rallel joins. It can be seen that various authors make
a va.riety of assumptions about the nature of data skew:

l limited experiments on the effects of AVS have
been performed on the GAMMA database ma-
chines[Schneider 89,901. The input relations con-
sist,ed of synt’hetic data with a normal distribution
of join key values. These tests explicitly assume
that, TPS and SS a.re absent. From the published
descriptions, it is impossible to evaluate RS and
JPS . __ -.

F%ceedmgs of the 17th International
Confern on Veq Large Data Bases

538
Barcelona, September, 1991

l

a

l

3

Wolf, Dias, and Yu propose and avalua.te skew re-
sistant sort-merge join algorithms [Wolf 891 aad
hash-based join algorithms [Wolf 901. In both of
these cases, AVS is tnodeled by a Zipf distribu-
tion. As with the GAMMA tests, it is assumed
that neither TPS nor SS are present. However, in
[Wolf 901, RS and JPS are (implicitly) considered.

Analytic studies by Lakshimi and Yu [Lak-
shimi 88,893 consider the effects of TPS.

Algorithms developed by Baru and Frieder
[Baru 87,89, Frieder 901, exploit the hypercube
communications architecture to perform dynamic
data redistribution before joins, preventing RS.
The design of the algorithm does not address SS
or JPS. An assumption that join inputs are fully
memory resident implies that TPS is absent.

Modeling Data Skew in Par-
allel Joins

To date, analytic work on data skew has used what
might be termed scalar models. The multicomputer
systetn on which the join is performed and the input
relations are described by scalar quantities, such are
cardinality and memory size. These sca,lar parameters
are adequate to model a single node system or a parallel
system with no data skew.

To model partition skew, such models a.re supple-
mented with additional scalar quantities that describe
some type of data skew; however t,his approach requires
ma.king restrictive assumption about t,he way tuples are
distributed between nodes.

While scalar models can demonstrate the adverse af-
fects of dat,a skew on performance and scalability, they
cannot, describe all possible ways t,hat data. could be
partit#ioned between nodes. A completlely general de-
scription requires one va.ria.ble for each node. In other
words, skew must be expressed as a vector qua.ntity.
Such a model is presented in the next section.

3.1 The Vector Relative Partition
Model

The vector relat,ive partition model ret,a.ins the scalar
quantities that, describe the system and the da.ta as
whole, such as cardinality, and augments them with a
skew vector of node-specific coefficients. For example,
the number of tuples a,t each node is specified in t,erms
of the average number of t(uples per node, and a vect,or
element, that specifies the per node cardinalit,y relative
to this average. This representCation separates t,he size
of a relation frotn its dist,ribut.ion. Also, there is a single
normalization constraint for each skew vector.

3.2 Operational Definition of Skew Vec-
tors

The parameters of the vector relative partition model
are defined in terms of tuple counts at various points of
a join. Let N be the number of nodes. The following
counts are required:

Ml(i,R) the number of tuples in relation R initially
stored on node a.

M2(i,R) the number of tuples in relation R remaining
on node i after local selection.

M3(i,R) the number of tuples in relation R on node i
aft.er redistribution.

M4(i,R,S) the size of the local join product on i be-
tween relations R and S.

Given these counts, skew vectors may defined as in the
following sections:

3.2.1 Tuple Placement skew

The mean partition size KR is the average number of
tuples initially stored at each node.

The TPS skew vector Tr expresses the number of tu-
ples at each node as a multiple of KR. That is:

(2)

3.2.2 Selectivity Skew

The relation selectivity ~5~ is the fraction of tuples in
relation R that remain after local selection:

csR = &&m(‘,R)
i

Recall that NKR is the initial cardinality, and
Ci M2(i, R) is the cardinality after selection. The local
selec2ivity is the selectivity observed at a specific node.
The selectivity skew vector expresses local selectivity
a.5 8. multiple of the relation selectivity bR:

SP
1 M2(i, R)

t 3 pMl(i,R) (4)

Fkuwdingx of the 17th International
conference on Very Large Data Bases

539

3.2.3 Redistribution Skew

The redistribution skew vector RR indicates what frac-
tion of the the relation R is placed on each node after
the redistribution phase:

M3(i, R)
RP E xi M3(i, R) =

M3(i, R)
&RN I@ (5)

3.2.4 Join Product Skew

The join selectivity is the ratio of the join output car-
dinality to the product of the cardinalities of the input
relations.

P
-RS E xi M4(i, R, S)

xi M2(;, R) xi M2(i, s)
(6)

The JPS skew vector describes the ratio of output car-
dinality and the product of the cardinalit,ies of t.he input
partitions in terms of the join selectivity:

J?s = M4(i, R, S)
I - NBRSM3(i, R)M3(i, S)

(7)

The fa.ctor of N in the denominator is required for nor-
malization. While there are N join partitions, the prod-
uct of the whole relations is N2 times larger than the
product of the (join input) partitions.

4 Using the Model

The vector relative partition model ca.n be used in t,wo
ways. If tuple counts from actual or simulated joins
are known, they can be used to quantify partition dat,a
skew. A second approach is t(o use measured or esti-
mated values of the skew vectors to estimate algorithm
response time. Such estimates could be used in query
optimizat,ion or to evaluate design alternatives for new
algorithms. Response time calculation are explained in
the next section.

4.1 Calculating Response Time

The following procedure is used to calculate the re-
sponse time for a single join.

Decompose each algorithm int*o phases. All nodes
must finish a. phase before any node can start t,he
next phase. That is, synchronizat.ion barriers be-
tween phases are identified.

Within each phase, identify the processing steps,
and determine the resource (CPU, disk or commu-
nications) used.

Ca.lculate t,he number of triples involved in each
step, based on data characteristics and t,he skew
vectors.

Proceedings of the 17th International
Conference on Very Large Data Bases

4.

5.

For each step, calculate the processing time for
tha.t step from the number of tuplea. Add the pro-
cessing time to the total processing time for the
resource used at that step.

When all steps have been examined, determine the
most heavily used resource (bottleneck) for each
node. The processing time for that resource de-
termines the response time for that node. The re-
sponse time for the phase is the response time of
the slowest node.

6. Response time for the algorithm is the sum of the
response times for each phase.

In step 4 of the above procedure, the number of disk
and communications I/O operations must be calculated
from the number of tuples. It is assumed that tuples are
not split across messages or disk tracks. For notational
convenience, we define the function 0 as the number of
I/O operations required to process n tuples of length L
wit,h a buffer size of b:

(8)

4.2 System and Data Characteristics

Before proceeding to a. detailed analysis of the two algo-
rithms, we describe the system and data characteristics
assumed in this study. This description will also serve
to introduce our notation. Most parameter values are
based on the JoinABprime test case of the Wisconsin
benchmark[Dewitt 90]< They are summarized in Ta-
ble 1:

arameter value
, IJSll Lner cardinality lo6

J]Rlj outer cardinality lo7
LS S-t&e length 208
LR 1 R-Tuple length 1 208
& I selectivity I 1.0

D 1 disk track 1 8 Kb-
m I message I8Kb

(U 1 mem. utilization 0.9

Ta.ble 1: syst,em and data characteristics

The processing times for various operations are listed
in Table 2

540
Barcelona, September, 1991

tdisk 1 read/write a disk page 1 20 msec
thath 1 hash tuple 1 3 psec
t send 1 send message / 5 msec

tprobc 1 probe hash table 1 6 psec
I t,,,, I receive message I 5 msec I

tjofn join output tuple 40 psec
tjilter selection 15 psec
twhedule scheduling step 2 msec

Table 2: operation times

5 Comparing Parallel Join Al-
gorit hms

This section presents detailed ana.lyses of the GAMMA
Hybrid Hash [DeWit,t 90, Schneider 891 a.lgorit.hm and
the IBM Scheduling Hash algorithm[Wolf SO]. The
analysis of each algorithm phase is present,ed in a t,ab-
ular format. For example, Table 3 describes the first
phase of the Hybrid Hash algorithm. The first column
describes the processing step. The second column spec-
ifies the number of tuples processed: this may be less
than the number of tuples st,ored on the node. If a
given skew type affects that step, t,hen the correspond-
ing skew vector appears in the second column. The last’
two columns give the resource (CPU, disk, communica-
tions) used, and the processing time for the step.

5.1 Analysis of the GAMMA Hybrid
Hash

The Hybrid Hash algorithm has three phases. They
are:

1. Partition the smaller (S) relation into B buckets.
Concurrently build a hash table with tuples in the
Arst bucket SO.

2. Partition the larger relation (R) int.0 buck&s. Tu-
ples in the first bucket, Rc are iised t,o prohe t.be
Se hash table const,ruct,ed in the first phase. At
the end of this phase, the results of SO W Ro are
written to disk.

3. For all the remaining buckets, retrieve each bucket,
join tuples, and store results.

5.1.1 Phase I: Hash Partition S-relation

Table 3 describes the hash partition phase. In the first
two steps, TfKs tuples are processed. In st,ep (3),
T~KSS~&s t,uples remain aft.er local selection. In step
(4) Rf is t,he fraction of S t,uples assigned t,o node i.
It follows that 1 - Rf of the tuplas on node i must be
moved.

Pmceedmgs of the 17th International
Gmfema~~ on Very Large Data Bases

In ste.p (5), the number of tuples received at a node
is t,he sum of tuples sent from all other nodes. The
number of tuples sent from node j’ to node i (i # j)
is T~liSS~oSR~. After redistribution (step 6), the
number of tuples at node i is simply Rf@NKS. If
B is the number of hash buckets, l/B of the S-tuples
are retained in memory, and the rest are saved on disk
(step 6).

5.1.2 Phase II: Hash Partition R-relation

In phase II, The R relation (the larger relation) is par-
titioned, and tuples in the the first bucket are joined.
The processing and analysis of the first six steps is iden-
tical to that described for phase I. The only difference
het,ween Table 3 and the first 6 steps in Table 4 is in
t,he superscript,s t#hat designate relations.

Steps (7) to (9) of Table 4 show the costs required
to process the hash bucket held in memory. There are
bRNKR R-tuples in the entire system; RP@NKR tu-
ples are assigned to node i. Since only one bucket is
joined in phase II, only l/B of these tuples are pro-
cessed, In st,ep (7), the in-memory hash table of S-
t~uples that wa.s built during phase I is probed with the
R-tuples. In steps (8) and (9), l/B of the join output is
formed and written to disk. The cardinality of the join
is the product of the size of the inputs (Rf@NKS for
the S-relation and Rp&RNKR for the S-relation), and
t,be join selectivity. Recalling section 3.2.4, the local
join selectivity for t,he part,ition at node i is JfsNpRS.

5.1.3 Phase III: Join Phase

During phase III, buckets that were written to disk dur-
ing the first two phases are retrieved and joined. Since
one bucket is processed in phases I and II, (B - 1)/B
of all tuples are processed in phase III. Thus, the cost
expressions in Table 5 all contain a (B-1)/B term. Ta-
hle 5 describes the costs of the join phase when there
is no bucket overflow. Overflow is discussed in the next
section.

In step (l), S-tuples are retrieved from disk. There
are cisNKs tuples on all nodes, with RfirSNKS tu-
pies on node i. Note that the cost is the same as
sbep (6) in Table 3 (storing the buckets). In step (2))
the S-triples are loaded into a hash table. There are
Rp6RNKR R-tuples on node i. In step (3), R-tuples
are retrieved from disk; this cost is the same as step
(6) in Table 4 (storing R-buckets). Step (4) shows the
costs of probing the hash table with R-tuples. ‘I’uples
a,re joined in st,ep (5). Again, the cardinality of the
join out,put is t,he product of the input cardinalities
(S;&‘KS and SFoRNKR) and the join selectivity
(JFSNbRS). Step (6) h s ows the cost of saving the join

541
Barcelona. September, 1591

Table 3: phase I of Hybrid Hash: partition S-relation

step number of resource processing
tuples processed (n) used time

1 to 6 similar to phase I

7. probe ARPN&RI;R
B 8 CPU ntprobe

8. join +R~N&RI{SR;N&SI(R JRSN~RS CPU ntjoin

9. save $R,RN~RI\'SR~N&SICRJPS~VBRS disk @(n, D, Uoin) tdisk

Table 4: Phase II of Hybrid Hash: partition H-relation

step number of resource processing
tuples processed (n) used time

1. fetch S 9 RfN&S]i’S disk O(n, Dt Ls) tdiak

2. hash S EzARSN@I{S

3. fetch R ~R~N~~JVP

CPU ntharh

disk @(n, D, LR) tdirk

4. probe R &AARPN&RI(R
B 1 CPU ntprobe

5. join WRILPN&RI{RRSN& I{ J
B 1 I

S S, PSN~RS CPU nt. * ,otn

6. store J$~R;N@I{RR~NE~SI{S JRSN~RS disk @(VI, D, Qoin)tdi,k
I

Table 5: Phase III of Hybrid Hash: perform join

output. (LJOi, = LR + LS - Lk8V).

5.1.4 Bucket Overflow in GAMMA Hybrid
Hash

During the hash partition phases, tuples are read from
disk, filtered, hashed and possibly dispatched to an-
other node. No memory is required except buffers
for disk and communicat,ions I/O. Beca.use memory re-
quirements are limited and not influenced by da.t.a. car-
dinality or distribution, it may be assumed that, over-
flow does not occur.

The hash join phase is different because all S-tuples
must be held in an in-memory hash table in order to
perform the join. Thus, t.he algorithm is vulnerable t,o
overflow a.t this point.

FWceedmgs of the 17th International
Conferezna on Very Large Data Bases

As described in [Schneider 891, the GAMMA Hybrid
Ha,sh parallel join algorithm employs recursive hashing
to resolve hash bucket overflow. When the hash table
fills all available memory before the current bucket is
completely processed, the initial hash function ho is
replaced with a new hash function hl. The new hash
function is applied to the tuples in the hash table, with
the result that a fraction p of the tuples are moved to
an overflow file. Thereafter, any remaining tuples are
hashed with hi.

If the hash table overflows again, a new hash function
hz is applied to remove 2p of the tuples. In general, the
hash function hG removes Gp of the tuples from the
hash table. (the published descriptions of the GAMMA
Hybrid Hash do not cover the case where G > l/p).
Let F be the number of tuples in the bucket. When

542
Barcelona. September, 1991

all tuples in the bucket have been rea.d, the hash t,able
contains (1 - Gp)F tuples. If the capa.city of the hash
table is C (= UM/LS), then:

C>(l-Gp)F ==+ G= g
I I

(9)

The initial itera,tion of the recursive hash algorithm
requires GC hash calculations, and O(GpF, D, L’) disk
writes to store S-tuples to the overflow file. Once pro-
cessing of the S tuples is complete, the last hash func-
tion ho is used to determine which R tuples are written
to the overflow file. We assume that the hash functions
partition the R file in the same proportions as the S-file.
Let:

(10)

Then O(YGpF, D, LR) disk writes are needed to write
R-tuples to the overflow file. No extra hash calculations
are required

After the join output tuples for the current, ha.sh t.a-
ble are written to disk, the overflow files are read into
memory and a new hash ta.ble is construct,ed. If over-
flow occurs again, the a.bove procedure is applied re-
cursively. Overflow can occur in both the second and
third phases of Hybrid hash. We assume that the sec-
ond phase always processes l/B of all tuples. In the
third phase, it, is assumed t,hat all t.he ovedlowing t.w

ples are concent,rated in one bucket. F, t.he number of
tuples in that bucket, is:

5.2

The

1.

Analysis of the Scheduling Hash Al-
gorithm

Scheduling Hash algorithm ha.s four phases:

scan both relations and determine the number of
tuples in each hash partition.

collect partition size information a.t one node and
load balance the assignment, of pa.rtitions t’o pro-
cessors. Return the assignment.s to all processors.

Read tuples again and assemble each partitions at
its join site.

perform a hash join of each partition.

We define B1 and B2, the number of coarse and fine
hash part,it,ions respectively, a.8 follows:

BI
iiSKS

EN B25-
UM

Pmceedmgs of the 17th International
Conference on Very Large Data Bases

5.2.1 Phase I: Scan Phase

The scan phase collects information on how many tu-
pies hash into each partition. Table 6 shows the pro-
cessing steps for this phase. The S-relation is processed
first: tuples are read from disk (step l), local selection
is applied (step 2), both coarse and fine hash keys are
computed (step 3), and the selected tuples are writ-
ten ba.ck to disk (step 4). R-tuples are processed in a
similar manner in steps (5) to (8).

5.2.2 Phase II: Scheduling

The scheduling phase begins by counting the number of
tuples on each node that hash into each hash partition.
These counts are then collected at a single site. If the
message traffic follows a logical binary tree pattern, re-
sults from all nodes can be collected in log,N message
hops. Since the CPU cost of adding the counts from
two nodes is negligible, the cost of collecting partition
counts can be estimated as:

log2NO(Bl Bz, 1% Lcount)(bend -t- heu) (13)

Where Lcount is the number of bytes required to store
the tuple counts for a single hash partition.

Next, the actual scheduling is performed. This re-
quires subdividing the join into a number of tasks and
a.ssigning tasks t.o nodes. According to [Wolf 001, the
t,ime complexity of the scheduling is dominated by sev-
eral sorts of these tasks. If we assume that the number
of tasks is on the order of the number of partitions, then
the CPU cost of the scheduling phase can be estimated
Ci.3:

Bl B2 (log,&& + lo&N) hwdulr (14)

Where taehedu/e is a proportionality constant for the
scheduling algorithm(s).

Since it cannot be assumed that the interconnection
network has a broadcast capability, transmitting the
final assignment of tasks to the processors requires as
much time as collecting the counts (see equation 13).

5.2.3 Phase III: Redistribution

Modeling redistribution skew in an algorithm that per-
forms load balancing is problematic. If the load bal-
ancing were perfect, then RS and JPS would not ex-
ist. This is not a realistic assumption, nor is it plausi-
ble to assume the load balancing has no effect. Here,
the effects of 1oa.d balancing are approximated by “flat-
tening” the skew vectors Ti and Jps so that all ele-
ments of the vectors are between 90% and 110% of the
mean value (for that vector). This approach captures

543
Barcelona. September. 1991

7,hash R i i 2TRKRSRbR CPU ntho,h

8. store R T?I<RS%-$R I t disk @(n, D, LR) idirk

Table 6: Phase I of Scheduling Ha.sh: scan

step number of resource processing
tuples processed (n) used time

1. read S T$ I<sS?&s t I disk O(n) D, Ls) tdirk

2. send S tiT$I(SS!&S
N 1 z comm @(% m, Ls) trend

3. receive S R~c%~~VIC~ - ~T~li’sS~&s comm @(n, m, Ls) Gee,

4. store S R+iPNKS t disk @(n, D, Ls) tdirk

5. read R @I<‘R sP&R t ‘ disk @(nt D, LR) tdirk

6. send R N-‘T$I(RsF~R
N 1 t comm @(n, m, LR) tscnd

7 receive R. R~~Y~NI<~ - 1TpKRSP6,R , ‘? N ’ comm O(w m, LR) tvecu

8. store R RP&RNI(R I disk @(% D, LR) tdisk

Table 7: Phase III of Scheduling Hash: redistribution

the assumption that load balancing in Scheduling Hash
greatly reduces RS a.nd JPS, but does not, competely
eliminate them.

The first step of the redist,ribut)ion phase is t,o fet#ch
S-tuples from disk (step I), followed by transmission of
data to join sites. In step (2), each part#ition is assigned
to one of the N nodes with equal probability, so w of
the tuples stored on each node will require relocation.
The number of tuples received at each node is the final
popula,tion less the number of tuples t,hat are already
stored at their join site (step 3). In st,ep (4), tuples a.re
returned to disk. Processing of the R-relation in steps
(5) to (8) is similar. Co&s are summarized in Table 7
5.2.4 Phase IV: Join

The join phase is very similar to that of the Hybrid
Hash. Not only are steps t.he same (see Treble 5), but
the esprpssions for t,lle 1lUmh~r of’ tllplrs ill? tllr. Si\lllc,

except, t.hat, there is no (B-1)/B Wm. That is. t.lln join
pha.se of t,he Scheduling Hash processes a.ll R l>uc.ket.s,

Proceed&s of the 17th International
Conference on Very Large Daa Bases

while the join phase of the Hybrid Hash processes B - 1
buckets. It is assumed that overflow does not occur in
the Scheduling Hash.

6 Performance Results

A scalar model is used to generate skewed data distri-
butions in these calculations. Skew is expressed as a
scalar parameter Q: Let X be a skew vector, (one of
T, S, R, J). Then

Qx”
NmCZXi(Xi)

c xi i
(15)

In other words, one node has Q times as much data
as the others. The remaining tuples are divided evenly
among t,he other nodes.

I’nless st,at)ed ot.herwise, skew is only in the inner
relation (,I;, t,hc smaller relation). Published measure-
ment,s of partition skew are quite limited; there is some

544
Barcelona, September, 1991

evidence[Walton 901 that Q values may be in the range
of2 to 3.

It should be emphasized that the vector relative par-
tition model can represent arbit,rary data dist,ribut,ions,
and the above distribution was selected as a ma.tter
of convenience. Also, while in general several types of
partition skew may occur simultaneously, each type will
be considered in isolation to expose its effects on join
performance.

The results presented here will concentrat,e on t.uple
placement skew (TPS), and redistribution skew (RS).
In this test case, there is no selectivity skew because
no tuples are eliminated by local selection. That is,
selectivity is uniformly 100%. Join product skew (JPS)
also has little effect on either algorithm due to-the small
cardinality of the join output. For the cases present,ecl
here, the computation is disk-hound.

response time (set)

1500
b
L

1000
k

,Q, .Q.. (. 1, ,Q, ” ” ” 0 s

j”:IQ
1.0 2.0 3.0 4.0 5.0

Figure 1: TPS comparison

Figure 1 compa.res t,he performance of Hybrid Hash
and Scheduling Hash in the presence of TPS. For all
values of t,he skew parameter, Hybrid Hash (line H) has
better response time. Scheduling hash (line S) reads the
data twice, once for the scheduling phase, and again for
redistribution; Hybrid Hash reads t’he dat,a once. As R
result,, Hybrid Hash requires less disk T/O even in the
uniform case a.nd is less sensitive to TT’S (since fewer
steps are affected by it.).

The behavior of the two algorithms in face of re-
distribution skew, shown in Figure 2, is more int,erest-
ing. Hybrid hash (line HR) has better performance
at low Q values, while Scheduling Hash (line SR) is
faster at higher Q va.lues. In Hyhrid Hash, RS can
cause overflow, but the load ba.lancing in Scheduling
Hash prevents overflow. As redistribution skew be-
comes more pronounced, t,he overhead of reading tu-
ples twice and performing load-balancing becomes less
costly than processing bucket overflow. Also note the
modest effect of join product skew (line HJ) on the
response time of Hybrid Hash.

Figure 3 shows the effects of memory size on response
time when redistribution skew (RS) is present, in t,he

Fkceedmga of the 17th International
Gmferenec on Very Large Data Bases

response time (set)

HR
SR

HJ

1.0 2.0 3.0 4.0 5.00

Figure 2: RS comparison

inner relation. Line Hl shows the response time for
Hybrid Hash with uniform data distribution (Q = 1).
Lines H2 and H3 show response time for Hybrid Hash
with Q values of 2 and 3 respectively. Line S3 shows
the response time for Scheduling Hash with Q = 3.

As line Hl shows, even in the uniform case, increas-
ing memory improves response time in Hybrid Hash.
As available memory increases, a greater fraction of the
relations can be allocated to the first bucket and joined
during the second phase. This reduces the number of
tuples that must be saved on disk and reread during
t,he third phase. If there is enough memory, only one
hash bucket, is required, and phase III is eliminated.

Redistribution skew effects response time in two
ways. First, it increases the number of tuples that
are processed at some nodes. Furthermore, hash ta-
ble overflow becomes more likely, leading to additional
CPU and disk costs from the recursive hash procedure.

The interact,ion between t’he Hybrid Hash algo-
rit.hm’s memory sensitive behavior and the the recursive
hash procedure explains the small increase in response
time for the H3 case when M GZ 7Mb. This is the point
where all tuples can fit into one bucket (note the drop
in response time for Hl). However, in the H3 case, this
t.ransit,ion has t,he effect of concentrating all the over-
flowing t,uples in a single bucket, instea.d of splitting
them between two buckets, The greater excess of tuples
leads to more iterations of the recursive hash algorithm,
increasing the disk workload. That is, a greater portion
of the t.uples on the Q-node must be written to overflow
files and read back several times before they are finally
insert,ecl in t,he hash table. In contrast, Scheduling Hash
(line S3) is virtually unaffected by memory size.

The sensit,ivity of Hybrid Hash to memory size is also
shown in Figure 4, which shows normalized speedup.
The normalized speedup, 3, is defined as ir/N1~,
where 11 is the response time for one node case and
tN is the response time for the N node case. An 9
value of 1 indica.tes linear speedup.

545

That is, doubling N halves the response time. Fig-
ure 4 covers the same cases as Figure 3. Be-
cause increasing N increases memory, superlinear
speedups (3 > 1) occur. Increasing aggregate
memory reduces disk I/O, which directly affects
response time, as the computation is disk bound.
These effects can be seen most clearly in the uni-
form case (Hl), where the abrupt changes in 9 at
N = 12 and N = 23 reflect cha.nges in the number
of buckets from 3 to 2 to 1.

For the skew cases, H2 and H3, speedups are
initially sublinear: by definition, skew (and over-
flow) cannot occur for N = 1, but the number of
excess tuples is grea.test when N = 2. As N in-
creases, more memory becomes available and the
effects of overflow are mitigated. Eventually, su-
perlinear speedups are achieved.

Note the “staircasing” in H2 and H3. As N in-
creases, the amount of memory available per tuple
increases, so that fewer iterations of the recursive
hash a.re required.

response time (set)

A

1000 -

500 -
H3

iif

0, I I I I I, I I I I I I I I I I,M

0 4Mb 8Mb 12Mb 1tiMb

Figure 3: response time vs. memory capacity with RS

normalized speedup

2.5

18 32 48 64

Figure 4: normalized speedup with redistribution skew

Proceedings of the 17th International
Conference on Very Large Data Bases

546
Barcelona. September, 1991

Because the fraction of tuples that can be written to
overflow files can take on only a few distinct values,
changes in normalized speedup a.re qua.ntized. Addi-
tiona.1 memory will not change t,he number of tuples
written to the overflow file unt,il the increa.se is great
enough to decrease the value of Gp. (see t,he discussion
of recursive hash in section 5.1.4). Because the H3 case
has more severe redistribution skew, the increment of
memory required to change response time (speedup) is
larger than case H2. In contrast,, Scheduling Hash is
lit,tle affected by variations in memory and shows linear
speedup.

The last two figures show examples of the differences
between skew in the inner and outer relation. Figure 5
shows effects of TPS on Scheduling Hash. The int,er-
action of skew in the inner and outer relations may be
characterized as additive: any given step is affect,ed by
TPS in exactly one of the two relat*ions. The great.est
degradation in response time occurs when both rela.-
tions have skew (line SB). Skew in the outer relat.ion
(line SO), which is 10 times larger than t,lie inner rela-
tion, has nearly as much impact. Skew in the smaller
inner relation (line SI) has a smaller effect. Finally,
note that Hybrid Hash with skew in both relations (line
HB) still has a better response t,ime than any of t,he
Scheduling Hash cases.

Figure 6 shows the effects of redistribution skew on
Hybrid Hash. RS in the outer relation only (line HO)
has little effect. It causes imbalances in the amount
of communications and disk I/O during the second and
t,hird phases, but it does not cause overflow. Skew in the
inner relation (line HI) has a much more pronounced
effect, which indicates that, overflow effect’s are respon-
sible for most of the performance loss due t,o R.S. If skew
for t,he two relations are centered on different nodes, the
effects are about the same as skew on the inner relation
only. (line HD)

The worst case occurs when skew for both relations
is centered on t)he same node (line HB). Unlike TPS,
t,he intera.ction bet.ween skew in t,he inner and outer
relations has a multiplicative nature. Redist,ribution
skew in R a.mplifies t,he costs of overflow: skew in t.he
outer rela.tion causes the recursive a.lgorithm t,o read
and write an increased number of tuples each time it is
applied.

For this particular query, Hybrid Hash seems to have
hett,er performance: it is faster in the uniform ca.se. and
wit.h TPS. For RS. Hybrid Hash has a het.ter pcrfor-
mance except for for substanbia.l skew.

However, a realistic evaluation would require much
more information about the da.ta and query characteris-
tics, especially the ext,ent of partition skew. Even wit,h-
out explicit. load halancing, AVS need not sesult~ in par-
t,it.ion skew. For exa.mple, there is some evidence that

Pnxculiigs of the 17th International
Conference on Very Large Data Bases

response time (set)

4
SB
so

3000

2000

1000

0
1.0 2.0 3.0 4.0 6.0

Figure 5: Scheduling Hash with TPS

response time (set)

3000

2000
b

1.0 2.0 3.0 4.0 5.0

Figure 6: Hybrid Haah with RS

the redistribution scheme in GAMMA Hybrid Hash
provides good load-balancing. Joins of normally dis-
t.ributed data, with very pronounced AVS, were re-
ported in [Schneider 89,901; but our approximate anal-
ysis suggests a Q values of only about 1.1 for RS.

7 Conclusions

The primary goals of this paper have been to explain
shortcoming in previous models of data skew in parallel
joins, and to show the advantages of the vector relative
part,ition model. The results presented here illustrate
some of the ways the model can be used to examine the
effects of pa.rt,ition skew on join performance. Several
conclusions can be reached from our work thus far:

l Skew is a heterogeneous phenomenon. In particu-
lar, there is a fundamental difference between in-
trinsic and partition skew. The relationship be-
t.ween t.he two is complex. A simple characteriza-
t,ion of int,rinsic skew is of little use in predicting
partition skew.

l There are several types of partition skew, and
their affects on algorithm performance differ. Also,
sensitivity to partition skew varies between algo-
rit.hms.

547

l In Hybrid Hash, overflow hns a. profound effect on mnnce of the GAMMA Database Machine. Technical
response time, and a,ccounts for most. of the per- Report. 708, University of Wisconsin, July 1987.
formance degradation due t,o redistrihut,ion skew. R.-C. Hu and R. Muntz. Removing Skew Eflect in

The vector relative partition model is more compre-
hensive than scalar skew models. Its parameters have a
simple operational definition, and it is a useful tool for
evaluating algorithm performa.nce. We anticipate using
it t.0 explore various anpect.s of date. skw in pa.ra.114
joins. In part,icular, we plan t.0 exa,mine t,lie rela.tion-
ship between skew and scalability.

Join Operations on Parallel Processors. Technical Re-
port CSD-890027, UCLA, June 1989.
M. Kitsuregawa, M. Nakano, and T. Moto-Oka. Appli-
cation of hash to database machine and its architecture.
New Gen,eration Computing, l(l), 1983.

MM. Seet,ha Lakshimi and Philip S. Yu. Effect of skew
on join performances in parallel architecture. Symp. on
Databases in Parallel and Distributed Systems Proc.,

Acknowledgements Yasushi Kiyoki and Furman
Austin (1988)

Ha.ddix read ea.rly draftas of this paper and provided
M. Seetha Lakshimi and Philip S. Yu, Limiting fac-

many useful comments.
tors of join performance on parallel processors. Con-
ference on Data En.gineering, Los Angeles (1989).

R.eferences C. A. Lynch, Selectivity estimation and query op-

Chait#anya I<. Baru and Ophir Frieder. Dat.ahnse t.imizat.ion in large data.bases with highly skewed dis-

operat.ions in a cube-connect,ed multicomput.er system. t.ributions of column va.lues. 14th VLDi3 Proc., Los

IEEE Transactions on Computers, C-38(6):920-927, Angeles (1988).

June 1989. Anthony Y. Montgomery, Daryl J. D’Souza, and

Chaitanya I(. Baru,’ Ophir Frieder, Dilip Dandlur, S. B. Lee. The cost of relational algebraic operations

and Mark Segal. Join on a cube: anw.lysis. simula- on skewed dat.a: estimates and experiments. In Infor-

t.ion, and implement.at,ion. Iii I>nlnhnse Mnr/tine.q ff71d mnlio~t Pr0cessin.g 8.9, Elsiver Science Publishers, Am-

Kn,owledge Bnse Mnchines, Kluwer Academic Puhlish- st,ertlam, 1983.

ers, 1987. Edward Omiecinski and Eileen Tien Liu. The

Haran Bornl. Parallelism and data management,. 3d Adaptive-Hash Join Algorithm for a Hypcrcube Multi-
Intl. Conf. on Dnta and Knowledge Bases, Jerusalem computer. Technical Report GIT-ICS-89/48, Georgia

(1988). Institut,e of Technology, December 1989.

St,avros Christ,odoulakis. Estimating record selectiv- Ja.mes P. Richardson, Hongjun Lu, and Krishna

ities. Injormntion Systems, 8(2):10!&115, 1083. Mikkilineni. Design and evaluation of parallel pipelined

George Copeland, Wil1ia.m Alexander, Ellen Baugh- join algorit,hms. 1987 SIGMOD Proc., San Francisco.

ter, and Tom Keller. Data placement in bubba. I$,?8 Donovan A. Schneider. Complex query processing in

SIGMOD Proc., Chicago. multiprocessor database machines. 16th VLDB Proc.,

David J ~ DeWitt et al., Gamma - a high performance 1990.

backend database machine. 12111. VLDB Proc.. Kyoto Donovan A. Schneider and David J. Dewitt. A per-

(1988) formance evaluation of four parallel join algorithms in a

David J. DeWit8t, S. C~l~adaha.rizadeh, and Dono- sha.recl-not,hing mult,iprocessor environment. 1989 SIG-

van Schneider. A performance analysis of t,he gamma MOD Proc., Port,land, Oregon.

database machine. In 1988 SIGMOD Proc., ChicaR.go. Michael St,onehraker, The case for shared nothing,

Da.vid J. Dewitt ef.. ul., The gamma. clat,abase ma- Dntnbnse Engineering, 9(l), March 1986.

chine project.. IEEE Transactions on lino,ujledge an,d DBC/lO12 Datnbase Computer Concepts and Facil-

Dnfn Engineering, March 1990. ities. Teradata Corporation, 1983.

David J. DeWitt,. R. Kat,z, F. Olken. D. Shapiro. Christopher B. Wa.lton, Matt L. Pinsonneaut, and

Michael Stonehraker, and n. Wood, T1l~plern~nt~nt~ioll Fllrman Hadrlix, Measurements of Data Skew in Two

t’echniqucs for main memory rlat~al~asr systems. I$84 I)crinhnses. Technical Report TR-90-32, University of

SIGMOD Proc., Bost,on. Texas at, Aust.in, October 1990.

Ophir Frieder, Multiprocessor algorithms for #Joel L. Wolf, Daniel M. Dias, and Philip S. Yu, An

relational-dat’ahase opera,tions on hypercube systems. Eflective Algorithm for Parallelizing Hash Joins in the

IEEE Compafcr, 23(11):13-28. November 1990, Presence of Data Skew. Research Report RC 15510,

Robert H. Gerber. Dn!n,flo7~ Qvery Processing crs?ng IBM Wa.t.son Research Center, February 1990.

Mvliiprorfscor Nash-Pnriifio?lrtl .+l/,~~rilhn~,<, Tecllnicnl Joel L. Wolf, Daniel M. Dias, and Philip S. Yu. An

Report 87.2, 1;nivtrsit.g of \I’isronsin. Octoh~r 19,% cffwl iw algorithm for parallelizing sort merge joins in

Rolxrt. TT. C&her and David .J. l)r\\:itt,. 7’hf Iw)lwrf the prwrncc nf data skew. Databases in Parallel and

of Mnrdzoore nnd Soflwore Alt~rnnii~~m on ihe Pfrfor- D~sl. 5’ys/enJ.s., Los Almitos, CA, (1990).

Proceedings of the 17th International
Conference on Vety Large Data Bases

548
Barcelona. September, 1991

