
Integrity Constraints Checking In Deductive Databases

Antoni OlivC
Universitat Politecnica de Catalunya

Facultat d’Informatica
Pau Gargallo 5

E 08028 Barcelona - Catalonia

Abstract

We propose a new method for integrity
checking in deductive databases. The
method augments a database with a set of
transition and internal events rules,which
explicitly define the insertions and deletions
induced by a database update. Standard
SLDNF resolution can then be used to
check satisfaction of integrity constraints.
The method has the full power of the
methods developed so far, and its
implementation in Prolog does not require
any meta-interpreter. A second main
advantage is that it deals with both static
anddynamicintegrityconstraints,providing
a simple and uniform approach in which
both classes of integrity constraints can be
defined and efficiently enforced.

1. Introduction

Deductivedatabasesgeneralizerelational databases by
including not only facts and integrity constraints, but
also deductive rules. Using these rules, new facts may
be derived from facts explicitly stored. Deductive
database systems include a query processing system
that provide the users with an uniform interface, in
which they can write queries requesting stored and/or
derived facts.

An integrity constraint is a condition that a database
is required to satisfy at any time. In adeductivedatabase,
integrity constraints may refer to stored and derived
facts and, thus, their evaluation may involve the
deductive rules that define the derived facts.

The simplest solution to integrity checking would be
to evaluate each constraint whenever the database is
updated. However, it is usually too costly and highly
redundant, since it does not take advantage of the fact

Proceedings of the 17th International
Conference on Very Large Data Bases

513

that the database satisfies the constraints prior to the
update. To avoid such redundancy, all practical methods
assume that the database is consistent prior to the
update and, then, given a particular update, they derive
simplified conditions of the constraints such that, if the
database satisfies the simplified conditions, it is
guaranteed that thedatabase will be consistent after the
update.

There exists a large cumulative effort in the field of
integrity checking. The methods that have been
developed so far differ in the kind of databases
considered (forexample,relational or deductive), in the
kind of integrity constraints they allow and enforce, in
the kind of updates they consider (for example only
single insertions or deletions of facts, or complex
updates) and, of course, in the particular approach taken
by each method.

The first methods were developed in the context of
relational databases [26,3.22,12,21]. Nicolas and
Yazdanian [23] studied for the first time the problems
involved in integrity checking for deductive databases.
Given that an integrity constraint may refer to derived
facts, it may well happen that an update needs to
activatesomedeductiverules.Thisposesnewproblems
that were surveyed by the authors. It isalso noteworthy
their distinction between state (or static) and transition
integrity constraints. The former are to be satisfied in
any state of the database, while the latter constraint the
possible evolution from one state to another.

Lloyd and Topor [18,19,20] developed the first
practical method for integrity checking in deductive
databases. They assume that the database (including
integrity constraints) before and after any updates is
range-restricted.Updatesconsideredareinsertionsand
deletions ofclauses (both facts and deductive rules) and
sets of such insertions and deletions.

Kowalski, Sadri and Soper [15,25] proposed a
Consistency method for checking integrity constraints
in deductive databases. The method also assumes that
the database is range-restricted, and allows single and
multiple insertions or deletions of database clauses. It

Barcelona, September, 1991

uses a proof procedure that allows reasoning forwards
from the updates, which has the effect of focussing
attention only on the parts of the database and the
constraints that are affected by the updates, The proof
procedure extends SLDNF by allowing forward
reasoning as well as backward reasoning, incorporating
additional inference rules for reasoning about implicit
deletions caused by changes to the database, and
incorporating a generalised resolution step.

Bry, Decker and Manthey [4,5] developed a method
that separates constraints enforcement into two phases:
generation and evaluation. In the generation phase,
which is done at compile time, update constraints are
generated for each update, independently from any
access to the facts of the database. In the evaluation
phase, when a transaction occurs, update constraints
are evaluated, and the transaction is rejected if they are
not satisfied.

Das and Williams [9] have recently proposed a path
finding method for integrity checking in deductive
databases. The method has many points in common
with the Consistency method, but it differs in the way
in which computes induced updates. The method can be
implemented efficiently in Prolog by taking full
advantage of Prolog’s computation mechanism, but it
requires the use of a meta-interpreter.

We propose here a new method for integrity checking
in deductive databases, which we call the Internal
Events method, The method is a particular application
to deductive databases of an approach that we developed
[24] for the design of information systems from
deductiveconceptual models, The method augments a
databasewithasetofrules,calledtransition and internal
events rules, which explicitly define the insertions and
deletions induced by a database update. Standard
SLDNFresolutioncan thenbeusedtochecksatisfaction
of integrity constraints, The method has the full power
of the methodsdeveloped so far, and its implementation
in aPrologsystem does not require any meta-interpreter.
Asecondmainadvantageisthatitdealswithbothstatic
andtransitionintegrityconstraints,providingauniform
approach in which both classes of integrity constraints
can be defined and enforced.

The paper is organized as follows. The next section
defines basic concepts of deductive databases, and
presents an example (taken from [151) that will be used
throughout thepaper. Section 3 defines the key concept
of internal event, and presents a method for deriving
transition and internal events rules. Section 4 discusses
the application of these rules for integrity constraint
checking when the database is updated. Updates
considered are single insertion or deletion of database
clauses (including integrity constraints) or sets of them.

Section 5 extends the method to transition integrity
constraints, In section 6 we compare our method with
some of the methods presented above. Finally, in section
7 we present our conclusions. We assume the reader is
familiar with logic programming.

2. Deductive databases

A deductive database D consists of three finite sets:
a set F of facts, a set R of deductive rules, and a set I of
integrity constraints. Arelationaldatabaseisadeductive
database without deductive rules. A fact is a ground
atom. The set of facts is called the extensional database,
and the set of deductive rules is called the intensional
database.

We assume that database predicates are either base or
derived. A base predicateappearsonly in theextensional
database and (eventually) in the body of deductive
rules. A derivedpredicateappearsonly in the intensional
database. Every database can be defined in this form
[2,71.

Our database example contains four base predicates:

Cit(x) x is a citizen
Ew(x) x is an employee
Wx) x is a registered alien
W4 x has criminal record
and a derived predicate:
Mx) x has the right of residence

2.1 Deductive rules

A deductive rule is a formula of the form:
A t L,A...AL, withn)l

where A is an atom denoting the conclusion, and the L,
,,.,, L,, are literals representing conditions. Each Li is
either an atom or a negated atom. Any variables in A, L,
,..., L0 are assumed to be universally quantified over the
whole formula. The terms in the conclusion must be
distinct variables, and the terms in the conditions must
be variables or constants.

As usual [5,9,25], we require that thedatabase before
and after any updates is allowed, that is any variable that
occurs in a deductive rule has an occurrence in a
positive condition of the rule. This ensures that all
negative conditions can be fully instantiated before
they are evaluated by the “negation as failure” rule.

In the example, we assume the database has the
following deductive rules, defining predicate RX

DR. 1 IO(x) t Ra(x) A 7 Cr(x)
DR.2 Rr(x) c Cit(x)

Proceedings of the 17th International
Conference on Very Large Data Bases

514
Barcelona, September, 1991

2.2 Integrity constraints

An integrity constraint is a closed first-order formula
that the database is required to satisfy. We deal with
constraints that have the form of a denial:

c- L, A *,. A Lan with n&l
where the L, are literais and variables are assumed to be
universally quantified over the whole formula. More
general constraints can be transformed into this form as
described in [171. For the sake of uniformity, we (as in
[9,13]) associate to each integrity constraint an
inconsistency predicate Icn, with or without terms, and
thus it has the same form as the deductive rules. We call
them integrity rules.

The above are called static integrity constraints,
since they must be satisified in any state of the database.
Constraints involving two or more database states,
which are called transition integrity constraints, will be
considered in section 5.

In the example, the database contains the constraint:
ICI(X) +- Emp(x) A 7 Rr(x)
stating that employees must have the right of residence.

3. Transition and internal events rules

We now define the concept of internal events, a key
concept in our method. We also explain how to derive
the transition and internal events rules for a given
database. These rules depend only on the deductive
rules and integrity constraints of the databaTe. They are
independent from the base facts stored in the database,
and from any particular update. In a later section, we
willdiscusstheuseoftheserules for integrity constraints
enforcement.

3.1 Internal events

Let D be a database, U an update and D’ the updated
database. We say that U induces a transition from D (the
current state) to D’ (the new, updated state). We assume
for the moment that U consists of an unspecified set of
base facts to be inserted and/ or deleted.

Due to the deductive rules, U may induce other
updates on some derived predicates. Let Pbe a derived
predicate in D, and let P’ denote the same predicate
evaluated in D’. Assuming that a fact P(K) holds in D,
whereKisavectorofconstants, twocasesarepossible:
a.1. P’(K) also holds in D’ (both P(K) and P’(K) are
true).
a.2. P’(K) does not hold in D’ (P(K) is true but P’(K) is
false).
and assuming that P’(K) holds in D’, two cases are also
possible:

b.1 P(K)alsoholdsinD(bothP(K)andP’(K)aretrue).
b.2. P(K) does not hold in D (P’(K) is true but P(K) is
false).

In case a.2 we say that a deletion internal event
occurs in the transition, and we denote it by 6P(K). In
case b.2 we say that occurs an insertion internal event,
and denote it by LP(K). Thus, for example, cRr(Mary)
denotes an insertion internal event corresponding to
predicate Rr: Rr(Mary) is true after the update and was
false before.

Formally, we associate to each base, derived or
inconsistency predicate P an insertion internal events
predicate tP and a deletion internal events predicate 6P,
defined as:
(1) Vx(tP(x) i-9 p’(x) A -P(x))
(2) Vx@P(x) (3 P(x) A -;p’(x))
where x is a vector of variables. From the above, we
have:
(3) vX(pl(X) +b (P(X) A s(X)) V p(X))
(4) vX(+(X) 6-b (-P(X) A e(X)) V B(X))

If P is a base predicate, then LP facts and 6P facts
represent insertions and deletions of base facts,
respectively. Therefore, weassume from now on that U
consists of an unspecified set of insertion and/or
deletion internal events of base predicates. A concrete
example could be U = (Sit(John), GCr(Alan)),
consisting of an insertion and a deletion. Note that by
(1) and (2) above, we require:
(5) Vx(tP(x) + -P(x)) and
(6) W@‘(x) -+ P(x))

also to hold for base predicates.
If P is an inconsistency predicate, then t.P facts that

occur during the transition will correspond to violations
of its integrity constraint. Thus if a given transition
induces, for example, a fact ~Icl(Alan) this will mean
that such transition leads to a violation of integrity
constraint ICI for Alan. Note that, for inconsistency
predicates, SP facts cannot happen in any transition,
since we assume that the database is consistent before
the update and, thus, P(x) is always false.

3.2 Transition rules

Let us take a derived or inconsistency predicate P of
the database. The definition of P consists of the rules in
the database having P in the conclusion. Assume that
there are m (m&l) such rules. For notation’s sake, we
rename the conclusions of the m rules by PI,..., Pm,
change the implication by an equivalence and add the
set of clauses:

Pt P, i = l...m

Proceedings of the 17th International
Conference on Very Large Data Bases

515 Barcelona, September, 1991

In the example, rules DR.1 and DR.2, which define
predicate Rr, will be rewritten as:
DR.1’ Rqx) t) Ra(x) A -I O(x)
DR.2’ Rr&x) t) Cit(x)
DR.1.1 Mx) 4-- q(x)
DR.1.2 Mx) + Q(x)

Given a rule P,(x) t) L, A .., A Ln. we will denote by
U(PJ the conjunction of the literals in the body having
a vector of variables y such that x 51 y, and denote by
E(P,) the conjunction of the literals in the body having
some variable which is not in x. Thus,in the above rules,
we will have U(Rr,) = Ra(x) A 7 Cr(x), E(Rr,) = 0,
U(Rr,) = Cit(x) and E(Rr,) = 0.

Consider now one of the rules P,(x) t) L, A . . . A Lo.
When the rule is to be evaluated in the updated state its
form is P’,(x) t) L’, A ,,, A L’., Now if we replace each
literal in the body by its equivalent definition in terms
of the current state (before update) and the internal
events, we get a new rule, called a transition rule, which
defines predicate P’, (new state) in terms of current state
predicates and internal events.

More precisely, if Llj is a positive literal Q’,(x,) we
apply (3) and replace it by:

(Qj(Xj> A 1 K!j(Xj>) V 'Q'(xJ
and if L’. is a negative literal -Q’,(x) we apply (4) and
replace it by:

(<j(Xi> A 1 'Qj(x,)) V GQj(Xi)
It will be easier to refer to the resulting expressions if we
denote by:

o(L’,) = (Q,(x) A - 6Q.b.))
(+ (X.) A 7 14,(X$)

N(L’,) f IQ(:) ’
= &,(x,)

With this notation we then have:

(7) p’,(x) c-) 7 [O&J v N&‘J
l-1

After distributing A over v, we get an equivalent set
of transition rules, each of them with the general
form :

(8) P',, (4 -7 KW'$I JW'J for j = 1,...,2”
PI

where n is the number of literals in the Pi rule, and

(9) P’, (x) t P’,Jx) j = l,..., 2”
In the above set of rules (8) it will be useful to assume ,

that the rule corresponding to j = 1 is:

(10) p’,,, (X) f3 o(L’,) A . . . A o(L’,)

The transition rules corresponding to the database
example are:
T.1
T.2

w,,,(X) t- b(X) A 7 &l(X) A <r(X) A ‘1 Lcr(X)
R&(X) C b(X) A - t&l(X) A &h(X)

T.3 R+,>(x) c a(x) A *r(x) A 7 OCR
T.4 R.r’,,,(x) C l&(x) A xr(x)

T.5 R?,*,(x) c tit(x) A 7 Kit(x)
T.6 Rr’,(x) t LCit(x)
T.7 Icl’,,,(x) c Emp(x) A 7 GEmp(x) A +r(x) A

-I Wx)
T.8 Icl’,,(x) t Emp(x) A - GEmp(x) A &r(x)
T.9 Icl’,$x) c tEmp(x) A -&f~) A -L&(X)

T.10 Icl’,,(x) e- LEmp(x)h 6Rr(x)

Each of the above rules has aclear intuitive meaning.
Thus, for example, T.1 states that x has the right of
residence in the new state (RfJx)), if x was a registered
alien in the old state @a(x)), and this fact has not been
deleted in the transition (-, GRa(x)), and x did not have
a criminal record in the old state (<r(x)), and a
criminal record for x has not been inserted during the
transition (Xr(x)). Recall that, by (9) and DR 1.1,
Rr’(x) t Rr’, ,(x).

3.3 Insertion internal events rules

Let P be a derived predicate. Insertion internal events
for P were defined in (1) as:

vX($(X) t-3 p(X) A -P(X))

If there are m rules for predicate P, then P’(x) c) P’,(x)
v ,.. v P’,(x), and replacing P’(x) we obtain the set of
rules: t.P(x) c P’,(x) A lP(x) with i = 1 . . . m
and replacing again P’,(x) by its equivalent definition
given in (9) we get:
(11) p(X) t p’&X) A -P(X)

for i = 1 . . . m and j = 1 . . . 2”
Rules (11) above are called insertion internal events

rules of predicate P. They allow us to deduce which tP
facts (induced insertions) happen in a transition. If P is
an inconsistency predicate, LP facts correspond to
violations of an integrity constraint, and the rules (11)
define how we can derive them in terms of the current
state and other internal events.

We can remove some of these rules and, in some
cases, we can simplify them, Thus, it is easy to prove
that for any i, the rule corresponding to j = 1 cannot
producet.P facts, since in this case P,,(x) + P(x). We
can then reduce the set (11) to:
(11’) lP(X) t p’,&X) A VP(X)

for i = 1 .,, m and j = 2 . . . 2”
If P is an inconsistency predicate we can remove in

(11’) the literal -P(x) since we assume that
P(x) is false, for all x, in the current state.

Proceedings of the 17th International
Conference on Very Large Data Bases

516
Barcelona, September. 1991

In [24a]we prove two interesting simplifications,
that can be applied to rules in (11’) for which the
transition rule corresponding to P’,.(x) has some literal
N(L’,) in U(P’$ with U(PJ# 0. in this case, we can
remove predicate Pi from P and the rule becomes:
(12) @p(x) c P’JX) A -P,(x) A *.* A ‘P,.,(X) A

-P,+,(X) A .., A -‘P,(X)

In the example, the insertion internal events rules are:
Il..,3 l&(x) t Rr’,Jx) A err, j = 2...4
14 tir(x) c Rr’&JX) A yRr,(x)
IS...7 ~Icl(x) t Icl’,,(x) j = 2...4

The intuitive meaning of these rules is also clear.
Take, for example, 1.3. It states that the right of
residence of x is inserted during a transition (m(x)) if
x has this right in the new state by rule Rr’, ,(T.4) and
x did not have this right in the old state by de Rr, (DR
.2’). Note that rule T.4 states that x has the right of
residence in the new state if x is inserted as a registered
alien during the transition @a(x)) and his criminal
record is deleted @O(x)).

3.4 Deletion internal events rules

Let P be a derived predicate. Deletion internal events
were defined in (2) as:
vX(&P(X) c) P(X) A +(X))

If there are m rules for predicate P, we then have:
6P(X) C P,(X) A +(X) for i = 1 .., m
and replacing P’(x) by its equivalent definition P’(x) c)
p’,(x) v . . . v P’,(x) we obtain:
(16) 6P(X) C P,(X) A -P’,(X) A . . . A -‘P’,(X)

A ,., A -P’,(x) for i = 1 ,.. m
Replacing now, in each of these rules, P’,(x) by its

equivalent definition given in (9) and after a number of
simple transformations described in [24a], we get the
set of rules:
For i = 1 ,., m

If U(P,) = L, A . . . A Lp
For j = l...q

(17) &P(X) C L, A .a. A Lj.1 A (Wj<Xj>l ‘Qj<x,>l
A, Lj+l A.*. A “g yy) A

-‘P,(X) A ,.. A -T IT, X A

‘p’i+l(X) A... A -P’,(X)

where the first option is taken if Lj = Q,(x,) is
positive and the second if negative

If E(P,) = L,,+1 A a.. A Ln

For j = q+l...n
(1’) ‘P(X) C- U(p,)A L,, A 1” ALj., A [‘Q,(x,>“Q,(x,)I

A L.,, A... A Ln A

yE(P’, J A . . .

+,(Xj A . . .

A -‘E(P’,,n) A

A +i.,(X)‘A

+,+I(X) A... A +,(X)

Proceedings of the 17th International
Conference on Very Large Data Bases

517

where the first option is taken if L, = Qj(x,) is
positive and the second if negative

Rules (17) and (18) are called deletion internal
events rules of predicate P. They allow us to deduce
whichSPfacts(induceddeletions)happeninatransition.
In the example, these rules are:
D. l GRr(x) t &a(x) A <r(x) A err’,
D.2 &b(X) t b(X) A LCr(X) A +f,(x)

D.3 t&(x) t Kit (x) A -W,(X)

Note again the meaning of these rules. For example,
D. 1 defines that the right of residence of x is deleted
during a transition (SRr(x)) if x is deleted as a registered
alien @a(x)), and x did not have a criminal record in
theold state (<r(x)), and x has not that right in the new
state according to Rr’,.

3.5 The augmented database

Let D be a database. We call augmented darabase, or
A(D), the database consisting of D, its transition rules
and its internal events rules. In the next section we will
discuss the important role of A(D) in our method for
integrity constraints enforcement. But before closing
this section, we want to comment on the properties of
A(D) with respect to those of D. In particular, given that
our method is based on SLDNF-resolution, we are
interested in the syntactic properties related to the
completeness of SLDNF-resolution.

SLDNF-resolution is incomplete, in general, but
there are large classes of logic programs (databases)
and goals for which it is complete (or have been
conjectured complete). Thus, Clark [8] proved
completeness for hierarchical and allowed databases.
Cavedon and Lloyd [6] showed completeness for
databases and goals which are allowed, strict and
stratified, and Kunen [16] for databases and goals
which are allowed, strict and call-consistent. More
recently, Decker and Cavedon [l l] have proved
completeness for databases and goals which are call-
consistent, even and recursively covered (a
generalization of allowed).

It is easy to show (see [24a]) the following
relationships between the properties of D and those of
A(D):

a) If D is hierarchical (resp.,call-consistent) then A(D)
is also hierarchical (resp., call-consistent)
b) If D is stratified then A(D) is call-consistent.
c) If D u (t Icn(x)) is strict (resp., even) then A(D) u
(c tIcn(x)) is also strict (resp., even). (the meaning
of the goals will become clear in the next section).
d) If D is allowed then A(D) is also allowed.

Barcelona, September, 1991

Therefore, if the properties of D are such that SLDNF-
resolution iscomplete,accordingtotheabovementioned
completeness results, then it will also be complete for
A(D).

goals cGEmp(Alan) and c R1’&4lar1) arenot included).

t kl(x)

1 I (IS)
4. Integrity constraints enforcement

The transition and internal events rules described
above can be used directly to verify that a transaction
does not produce inconsistencies.

Let D be a database, A(D) the augmented database,
and T a transaction consisting of a set of base internal
events. If T leads to an inconsistency then some of the
IIcj facts will be true in the transition. Using the SLDNF
proof procedure, T violates integrity constraint Icj if
the goal c tIcj(x) succeeds from input set A(D) u T.
If every branch of the SLDNF-search space for A(D)
u T u {c tIcj(x)) is a failure branch, then T does not
violate Icj.

Thus, our method for integrity constraints
enforcement is entirely based on the use of standard
SLDNF resolution. We take as input set A(D) u T and,
for each integrity constraint Icj, (cLIcj(x)) aqgoal.
Transaction T leads to an inconsistent database state if
there is a refutation for some of the above goals.
Otherwise, T can be accepted, and the database is then
updated. Note that in our method the database is updated
after verification of constraint satisfaction.

In what follows we illustrate the method and comment
some implementation details with an example.

4.1 Insertion or deletion of base facts t +r’,(Alan)

Assume that a transaction T consists either of an
insertion or deletion of a single base fact, and let us
denoteitby T= (tQ(K)) or T= (&Q(K)),respectively,
with Q being a base predicate and K a vector of
constants. We say that L.Q(K) or 6Q(K) are the input
internal events given or produced by the update. Recall
that by (4) and (5) we require verifying that the database
does not contain (if insertion), or contains (if deletion)
Q(K) prior to the inconsistency analysis. The following
example shows the application of our method.

Example 4.1~3
Assume the database has the following facts:

F. 1. Emp(Alan)
F.2. Ra(AIan)
and let the transaction be the insertion of Cr(Alan),
which we denote by:
T. LCr(Alan)
The following refutation shows that T violates Ic 1, with
x = Alan (the subsidiary trees showing the failure of

c IclJx)
I

2 I (T.8)

t Emp(x) A 7 GEmp(x) A m
I

3 I (D.2)

c Ra(x) A-A -k’,(x) A Emp(x) A -) GEmp(x)
I

4 I (‘-I’, x=Alan)

c Ra(Alan) A %r’,(Alan) A Emp(Alan)h
-GEmDo

5 I (dEmp(Alan) fails)

t Pa(Alan\ A TRr’,(Alan) A Emp(Alan)
I

6 I (F.2)

c -Rr’,(AIan) h Em&&&
I

7 I (F.1)

8 ; (cRr’,(Alan) fails)

;I

Some obvious simplifications in the transition and
internal events rules may reduce the search space. For
example, we may combine rules I.5 and T.8 into a
single rule:

tk 1 (x) c Emp(x) A 7 amp(x) A &Rr(x)
thus reducing in one step the derivations.

Note that in the third step we have selected literal
GRr(x) instead of Emp(x) or 7 GEmp(x). Given that in
most real databases the number of facts is likely to be
muchgreaterthanthenumberofintemaleventsproduced
in a transition, it seems convenient to use the strategy of
selecting first the internal events (once fully instantiated
if they are negative).

Proceedings of the 17th International
Conference on Very Large Data Bases

518
Barcelona, September, 1991

4.2 OtIwr updates

Our method can also be applied with complex updates,
such as
- Insertion or deletion of qualified base facts.
- Insertion or deletion of deductive rules.
- Insertion or deletion of integrity constraints.
- Transaction with multiple updates

In [24a] we explain the details of the method in these
cases, and show its application with examples.

5. Transition integrity constraints

Up to now, we have only dealt with static integrity
constraints. Our method, however, can also handle
transition integrity constraints. A transition integrity
constraint is a closed first-order formula that database
transitions are required to satisfy. We only consider
here transitions between two successive states.
Transition integrity constraints in deductive databases

were formalized for the first time by Nicolas and
Yazdanian [23]. Their approach consists in extending
the database with new relations (predicates), called
“actionrelations”. Three action relations are associated
with each relation R in the database, one for each of the
three operations: update, deletion and insertion. They
are denoted UPD-R, DEL-R and ENT-R, respectively.

If R is a n-ary relation, then UPD-R is a 2n-ary
relation. The meaning of a tuple:

ca l,...and,*... &>E UPD-R
is that the tuple cai,...,aI1xR is being updated in a
transition and the new value is ca’l,...a’n>. The use of
the UPD-R action relation in the formalization of
transition constraints can be illustrated by means of the
following example (taken from [23]).
TIC: Let FS(p,s) be a relation giving the family status
s of a person p and let VALT(s,sl) be a relation giving
the valid transitions in family status (such as
VALT(single,manied)). The constraint that changes is
family status must be valid can be defined:
Vp,s,p’,s’ (UPD-PAS@,s,p’,s’) A p = p’ A s # s’ +
V~‘W,s’N

Once the transition constraints have been formalized
in this way, they can be enforced using any method
applicable to static constraints, provided the method
computes adequately the induced updates.

In our method, both input and induced updates of a
predicate P are represented explicitly, by means of the
LP and 6P predicates. This suggests that, for us, a
transition constraint is a condition c L, A ,,, AL,
(withn)l)Iikeastatlcconstraint,butwhereliteralscan
be not only database predicates, but also internal events
predicates. Database predicates in the condition have to

Proceedings of the 17th International
Conference on Very Large Data Bases

519

be evahated in the current state of the database, and not
in the state after the update. This implies that we don’t
have to transform transition constraints, as we had to for
static constraints, and that the associated transition
constraint predicate will have the nature of an internal
event. Therefore, in our method a transition constraint
Ticn is a rule with the following general form:
tTicn c L,A . ..hLn with nb 1
We give below the definition of the above transition
constraint example in our formalization.
(TIC) tTic 6- SFS(p,s) A tFS(p,sl) A ?VALT(s,sl)

Enforcement of a transition constraint is not different
from the static case. A transaction T will violate a
transition integrity constraint Ticj if the goal t
tTicj(x) succeeds from input set A(D) u T. If every
branch of the SLDNF-search space for A(D) uTu {t
tTicj(x)J is a failure branch, then T does not violate
Ticj. The following example shows the application of
the method in this case.

Example 5.a
Assume the database contains the following facts:

F. 1 Cit(Alan)
F.2 Emp(Alan)
and the transition constraint (The right of residence of
an employee can not be deleted):
TIC. 1 rTicl(x) t Emp(x) A GRr(x)
Let the transaction be the deletion of Cit(Alan), that is:
T. GCit(Alan)
The following refutation shows that the transaction
violates the constraint, with x = Alan.

t- tTicl(x)
I
I (TIC. 1)
I

e- Ewtx) A GRr(x)

/ (D.3)

t m A d,(X) A Emp(x)

; (T, x = Alan)
I

t W,(Alan) A EmD(Alan)

; (F.2, x = Alan)
I

t +r’,(Alan)

It c +r’,(Alan) fails)

Barcelona. September, 1991

6. Comparison with other methods

In this section we compare in detail our approach to
integrity checking in deductive databases with the
approaches taken by some of the methods mentioned in
the Introduction. All of these methods deal with the
same class of databases, static integrity constraints an
updates as ours. However, they don’t handle transition
integrity constraints.

6.1 The Consistency method [15,25]

The Consistency method has inspired our strategy in
integrity constraints enforcement (Section 4). The
distinction we make between the database and its
transition and internal events rules allow us to use the
standard SLDNF procedure. Without this distinction,
the Consistency method needs to extend SLDNF by:
- Allowing forward reasoning as well as backward
reasoning
- Incorporating additional inference rules for reasoning
about deletions caused by changes to the database, and
- Incorporating a general&d resolution step, which is
needed for reasoning forward from negation as failure.

The significance of this difference can be made
apparent by means of a simple example. We use the
database example given in Section 2, and the facts and
transaction given in example 4.1 .a.

The following search space illustrates the violation
of IC. 1 in the updated database.

Cr(Alan)

1lcR)

NO-KW~~))

2 I (IC.1)

t Emp(Alan)

3 I (F.l)
I
[I

The fist step of the above refutation uses an inference
rule (R) that allows reasoning as follows:

(R) because in the updated database
Cr(Alan) holds and we have

Rr(x) e Ra(x) and NOT(Cr(x))
and we have no other way of proving Rr(Alan) and
Rr(Alan) was provable in the database
then Rr is deleted

Proceedings of the 17th International
Conference on Very Large Data Bases

520

Thus NOT(Rr(Alan)) is provable in the updated
database.
The second step isan “extended” resolution of clauses:

-ad
t Empx) and NOT-

on the underlined literals.The resolventis t Emp(Alan).
The last step is a standard SLDNF step.

Comparing this solution with ours (given in example
4.l.a) we note several differences. The first, minor,
difference is in the top clause used in both methods. In
ourmethod thetopclauseisthegoal (t tIcl(x)), while
in the Consistency method the top clause is the update
(Cr(Alan)) . The Consistency method could also choose
the constraint as top clause, but then the search space
would be somewhat larger, because it would not take
advantage of the assumption that the constraint was
satisfied before the update [25]. In our method we don’t
take c Icl(x) as top clause, but t tIcl(x), which
means that we only search for violations of Ic 1 produced
in the transition.

The major difference we see lies in the inference rule
(R) required in the Consistency method for reasoning
about implicit deletions. Its implementation in Prolog
systems requires a mela-interpreter, which may causea
significant overhead. In our method we achieve the
samereasoning capabilities, while still remaining in the
SLDNF framework. It is interesting to observe how we
infer that Rr(Alan) has been implicitly deleted. Rule
D.2 (used in step 3) states that GR.r(Alan) if Ra(Alan)
and ~Cr(Alan) and -&‘&Alan). Given that tCr(Alan) is
the input internal event, step 4 reduces the goal to
Ra(Alan) and +r’,(Alan). Ra(Alan) is fact F.2 in the
database and, thus, step 6 reduces again the goal to
yRr’,(Alan), which succeeds in step 8, because
Rr’,(Alan) fails (Cit(Alan) and Kit(Alan) are not
provable).

Finally, we note that our search space includes a step
5 to check that Emp(Alan) has not been deleted in the
transition. There is not asimilar step in the Consistency
method. The reason for this lies in the fact that we have
a single search space for each transaction, independent
of the updates induced in it, while in the Consistency
method there is a search space for each update in the
transaction. In this particular case, if the transaction
were:
Insert Cr(Alan)
Delete Emp(Alan)

no violation of the constraint would occur. This makes
our search space somewhat larger for simple
transactions. However, if we know the transaction
types in advance we can do some preparatory work at
compile time, which can restrict significantly the search
space.

Barcelona, September, 1991

6.2 The method of Bry, Decker and Manthey [4J]

This method distinguishes clearly two phases in
integrity checking:
- a generation phase, in which “update constraints” are
derived for every possible update.
- an evaluation phase, in which the update constraints
are evaluated.

Update constraints are derived at compile time,
involving only the rules and not the facts of the database.
There is a set of update constraints for every update. Let
Ubeaground single-factupdatepositive (insertion)or
negative (deletion). Due to the deductive rules, U may
induce other updates. However, in the generation phase
the methodonly computes the potential updates induced
by U. A literal L is a potential update induced by U iff
LdirectlydependsonU(throughadeductiverule)oron
a literal that is a potential update induced by U. If, for
example, the database contains the deductive rules:
R.1 R(x) + WLY) A Q(Y)
R.2 S(x) c R(x) A 1 T(x)
then the potential updates induced by P(A,B) are R(A)
and S(A), and the potential updates induced by Q(A)
are R(x) and S(x). Every induced update is an instance
of a potential update, depending on the facts stored in
the database, but there may be potential updates no
instance of which is an induced update.

Now, let L be an update or an induced update, and C
be a constraint that may be violated by L. Bry et al.
apply Nicolas’method [22] toderive simplified instances
s(C) of C, such that if s(C) are satisfied in the updated
database so will be C. If, for example, Cl is Vx [-R(x)
v V(x)] and the update is R(A) then s(C1) is V(A). But
if C2 is 3x [S(x)) and the update is +(A) then s(C2) =
C2, and no simplification is possible.

The general form of an update constraint for a literal
L is the universal closure of the formula:

delta(U,L) 4 new(U,s(C))
where:
- U denotes an update
- C is a constraint relevant to L
- s(C) is a simplified instance of C
- delta is a me&predicate such that delta(U,L) holds if
L is satisfied in the updated database, but not before.
- new is a meta-predicate such that new(U,F) holds if F
holds in the updated database.

Given an update U, the updated database will satisfy
all integrity constraints iff they are satisfied prior to the
update, and every update constraint for U or for a
potential update induced by U is satisfied after the
update. These updateconstraints are evaluated when an
update occurs. Implementation of the predicates delta
and new in Prolog can be made easily by means of meta-

interpreters.
We see three noteworthy differences beteween this

method and the method proposed here. First, as said
before, we do not require a meta-interpreter, The “delta”
predicate corresponds to our internal events rules, and
we use SLDNF resolution to evaluate the “new”
predicate. Second, this method may do some redundant
work in the evaluation of update constraints. Thus, in
rules R. 1 and R.2 above, with the update Q(A), if both
R(x) and S(x) are relevant for some constraints, then an
update constraint will evaluate delta(Q(A),R(x)),
computing all induced updates of predicate R, and
anotherupdateconstraintwillevaluatedelta(Q(A),S(x)),
computing all induced updates of predicate S, which in
fact requires recomputing the former induced updates.
In our method, we define tS(x) in terms of tR(x), thus
avoiding this redundancy.

Finally, the advantage of the method of Bry et al. lies
in its distinction beteween the two phases. It would be
interesting to explore this distinction in our method. A
possible idea could be to generate, at compile time, a
reduced set of transition and internal events rules for a
given update. The concept of potential induced update
could be used to restrict the search space.

7. Conclusions

In this paper, we have presented a method for checking
integrityconstraintsindeductivedatabases,Themethod
deals with range-re&icu?ddatabases and with integrity
constraints in denial form. Updates considered are
insertion or deletion of a base fact, qualified base facts,
deductive rules and integrity constraints. Transaction
with multiple updates are also allowed.

The method augments the database with a set of
transition and internal events rules. These rules play an
important role in integrity constraints enforcement,
since they define explicitly the induced updates caused
by a database update. We can then use the standard
SLDNF procedure to check consistency and, in this
way, the method can be implemented directly in
Prolog. However other methods could be used as well.
Some optimization techniques [7] can be easily
incorporated into our method.

The main cost implied by our method is the space
required to store the transition and internal events rules.
The cost may only be important in databases with a
largenumberofdeductiventlesandintegrityconstraints.
In most practical databases, however, this number is
small as compared to the number of base facts stored
and, thus, the cost should not be significant.

Proceedings of the 17th International
Conference on Very Large Data Bases

521 Barcelona. September, 1991

The gain is the time saved in checking integrity
constraints satisfaction, since our method does not
require a meta-interpreter. We find here again the
classical tradeoff between space and time.

On the other hand, our method also handles tmnsi tion
integrity constraints, which extend the range of
constraints a database may be subjected to. These
constraints have received little attention in the past,
probably because efficient methods for their
enforcement were not available. We believe that our
method provides a simple and elegant approach to the
enforcement of transition integrity constraints, which is
as efficient as for static constraints.

Acknowledgment

I wish to thank D. Costal, J.A. Pastor, C. Quer, M.R.
Sancho, T. Sales, J. Sistac, E. Teniente and T. Urpf for
their comments and suggestions on an earlier draft of
this paper. This work has been supported by the CICYT
PRONTIC program, project TIC 680.

References

1. Apt,K.R.; Blair, H.A.; Walker,A. “Towards a theory
of declarative knowledge”. In MinkerJ. (Ed.)
“Foundations of deductive databases and logic
programming”, Morgan Kaufmann Pub., 1988,
pp. 89- 148.

2. Bancilhon,F.; Ramakrishnan,R. “An amateur’s
introduction to recursive query processing
strategies”. Proc. ACM SIGMOD Int. Conf. on
Management of data. Washington DC., May
1986, pp. 16-52.

3. Bernstein,P.A.;Blaustein,B.;Clarke,E. “Fast
maintenance of integrity assertions using
redundant aggregate data”. Proc. of the 6th. Intl.
Conf. on Very Large Data Bases, October 1980,
pp. 126-136

4. Bry,F.;Decker,H, “Pr&erver l’integrite dune base de
donntes deductive: une methode et son
implementation”. In Compte-rendu des 4Bmes
Joum6es Base de Dorm&s Avanc&s, Mai 1988,
BCnodet, France (in french).

5. Bry,F.;Decker,H.;Manthey,R. “A uniform approach
to constraint satisfaction and constraint
satisftibility in deductive databases”. Proc. of
Extending Database Technology, Venice (1988),
pp. 488-505.

6. Cavedon,L.;Lloyd,J.W. “Acompleteness theorem for
SLDNF-Resolution”. TR 87/9, Dept. of Comp.
SC., University of Melbourne, Australia, 1987.

7. Chakravarthy,U.S.;Grant,J.;MinkerJ. “Foundations
of semantic query optimization for deductive
databases”. In MinkerJ. (Ed.) “Foundations of
deductive databases and logic programming”,
Morgan Kaufmann Pub., 1988, pp. 243-273.

8. Clark,K.L. “Negation as failure”. In Gallaire, H.;
Minker,J. (Ed.%), “Logic and data bases”, Plenum
Press, New York, pp. 293-322.

9. Das,S.;Williams,H. “A path finding method for
constraint checking in deductive databases”. Data
& Knowledge Engineering, 1989, No.4, pp. 223-
244.

10. Decker,H. “Integrity enforcement on deductive
databases”, In Kerschberg, L.(Ed.) Proc. of the
first Int. Conf. on Expert Database Systems,
Charleston, South Caroliona (April 1986), pp.
27 l-285.

11. Decker,H.;Cavedon,L. “Generalizing syntactic
properties which ensure the completeness of
SLDNF-resolution”, ECRC IR-KB-52, Nov.
1989.

12. Henschen,L.; McCune,W.; Naqvi,S. “Compiling
constraint-checking programs from first-order
formulas”, In Ga.llaire,H.; Minker,J. Nicolas,J-
M. (Eds.),“Advances in Database theory”, Vo1.2,
1984, pp. 145-170.

13. Kowalski,R. “Logic for data description”. In
Gallaire,H.;MinkerJ. @Is.) “Logic and Data
Bases”, Plenum Press, New York, 1978, pp. 77-
103.

14. Kowalski,R, “Logic for problem solving”. North-
Holland, 1979.

15. Kowalski,R.; Sadri,F.; Soper,P, “Integrity checking
in deductivedatabases”. Proc. of the 13th. VLDB
Conference, Brighton 1987, pp. 61-69.

16. Kunen,K, “Signed data dependencies in logic
programs”. TR 719, Comp. SC, Dept., Univ.
Wisconsin, 1987.

17. Lloyd,J.W.:Topor,R.W. “Making Prolog more
expressive”. J. Logic Programming, 1984, No.3,
pp. 225-240.

18. Lloyd,J.W.; Topor, R.W. “A basis for deductive
database systems”. J. Logic Programming, 1985,
No. 2, pp. 93-109.

19. Lloyd,J.W.;Topor,R.W. “A basis for- deductive
database systems II”. J. Logic Programming, 1986,
No, 1, pp. 55-67.

20. Lloyd,J.W.;Sonenberg,E.A.;ToporR.W. “Integrity
constraint checking in stratified databases”. J.
Logic Programming, 1987, No.4, pp. 33 l-343.

2 1. McCune,W .;Henschen,L. “Maintaining state
constraints in relational datbases: A proof theoretic
basis”, JAM, Vol. 36, No. 1, January 1989,
pp. 46-68.

Proceedings of the 17th International
Conference on Very Large Data Bases 522

Barcelona, September, 1991

22. NicolasJ.M. “Logic for improving integrity checking
in relational data bases”. Acta Informatica 1982,
18,3, pp. 227-253.

23. NicolasJ.M.;Yazdaniann,K. “Integrity checking in
deductive data bases”. In Gallaire, H.; MinkerJ.
(Eds.), “Logic and data bases”, Plenum Press,
1978, New York, pp. 325-344.

24. Olivt,A. “On the design and implementation of
information systems from deductive conceptual
models”. Proc. of the 15th. VLDB, Amsterdam,
1989,~~. 3-11.

24a. Olive, A. “The internal events method for integrity
checking in deductive databases”. Research report,
Univ. Pal. Catalunya, Dept. LSI, March 1990.

25. Sadri,F.; Kowalski,R. “A theorem-proving approach
to database integrity”. In Minker,J. (Ed.)
“Foundations of deductive databases and logic
programming”, Morgan Kaufmann Pub., 1988,
pp. 3 13-362.

26. Stonebraker,M. “Implementation of integrity
constraints and views by query modilication”.
ACM SIGMOD Int. Conf. on Management of
data, 1975, pp. 65-78

Proceedings of the 17th International
Conference on Very Large Data Bases

523
Barcelona, September, 1991

