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Abstract 

We propose a new method for integrity 
checking in deductive databases. The 
method augments a database with a set of 
transition and internal events rules,which 
explicitly define the insertions and deletions 
induced by a database update. Standard 
SLDNF resolution can then be used to 
check satisfaction of integrity constraints. 
The method has the full power of the 
methods developed so far, and its 
implementation in Prolog does not require 
any meta-interpreter. A second main 
advantage is that it deals with both static 
anddynamicintegrityconstraints,providing 
a simple and uniform approach in which 
both classes of integrity constraints can be 
defined and efficiently enforced. 

1. Introduction 

Deductivedatabasesgeneralizerelational databases by 
including not only facts and integrity constraints, but 
also deductive rules. Using these rules, new facts may 
be derived from facts explicitly stored. Deductive 
database systems include a query processing system 
that provide the users with an uniform interface, in 
which they can write queries requesting stored and/or 
derived facts. 

An integrity constraint is a condition that a database 
is required to satisfy at any time. In adeductivedatabase, 
integrity constraints may refer to stored and derived 
facts and, thus, their evaluation may involve the 
deductive rules that define the derived facts. 

The simplest solution to integrity checking would be 
to evaluate each constraint whenever the database is 
updated. However, it is usually too costly and highly 
redundant, since it does not take advantage of the fact 
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that the database satisfies the constraints prior to the 
update. To avoid such redundancy, all practical methods 
assume that the database is consistent prior to the 
update and, then, given a particular update, they derive 
simplified conditions of the constraints such that, if the 
database satisfies the simplified conditions, it is 
guaranteed that thedatabase will be consistent after the 
update. 

There exists a large cumulative effort in the field of 
integrity checking. The methods that have been 
developed so far differ in the kind of databases 
considered (forexample,relational or deductive), in the 
kind of integrity constraints they allow and enforce, in 
the kind of updates they consider (for example only 
single insertions or deletions of facts, or complex 
updates) and, of course, in the particular approach taken 
by each method. 

The first methods were developed in the context of 
relational databases [26,3.22,12,21]. Nicolas and 
Yazdanian [23] studied for the first time the problems 
involved in integrity checking for deductive databases. 
Given that an integrity constraint may refer to derived 
facts, it may well happen that an update needs to 
activatesomedeductiverules.Thisposesnewproblems 
that were surveyed by the authors. It isalso noteworthy 
their distinction between state (or static) and transition 
integrity constraints. The former are to be satisfied in 
any state of the database, while the latter constraint the 
possible evolution from one state to another. 

Lloyd and Topor [18,19,20] developed the first 
practical method for integrity checking in deductive 
databases. They assume that the database (including 
integrity constraints) before and after any updates is 
range-restricted.Updatesconsideredareinsertionsand 
deletions ofclauses (both facts and deductive rules) and 
sets of such insertions and deletions. 

Kowalski, Sadri and Soper [15,25] proposed a 
Consistency method for checking integrity constraints 
in deductive databases. The method also assumes that 
the database is range-restricted, and allows single and 
multiple insertions or deletions of database clauses. It 

Barcelona, September, 1991 



uses a proof procedure that allows reasoning forwards 
from the updates, which has the effect of focussing 
attention only on the parts of the database and the 
constraints that are affected by the updates, The proof 
procedure extends SLDNF by allowing forward 
reasoning as well as backward reasoning, incorporating 
additional inference rules for reasoning about implicit 
deletions caused by changes to the database, and 
incorporating a generalised resolution step. 

Bry, Decker and Manthey [4,5] developed a method 
that separates constraints enforcement into two phases: 
generation and evaluation. In the generation phase, 
which is done at compile time, update constraints are 
generated for each update, independently from any 
access to the facts of the database. In the evaluation 
phase, when a transaction occurs, update constraints 
are evaluated, and the transaction is rejected if they are 
not satisfied. 

Das and Williams [9] have recently proposed a path 
finding method for integrity checking in deductive 
databases. The method has many points in common 
with the Consistency method, but it differs in the way 
in which computes induced updates. The method can be 
implemented efficiently in Prolog by taking full 
advantage of Prolog’s computation mechanism, but it 
requires the use of a meta-interpreter. 

We propose here a new method for integrity checking 
in deductive databases, which we call the Internal 
Events method, The method is a particular application 
to deductive databases of an approach that we developed 
[24] for the design of information systems from 
deductiveconceptual models, The method augments a 
databasewithasetofrules,calledtransition and internal 
events rules, which explicitly define the insertions and 
deletions induced by a database update. Standard 
SLDNFresolutioncan thenbeusedtochecksatisfaction 
of integrity constraints, The method has the full power 
of the methodsdeveloped so far, and its implementation 
in aPrologsystem does not require any meta-interpreter. 
Asecondmainadvantageisthatitdealswithbothstatic 
andtransitionintegrityconstraints,providingauniform 
approach in which both classes of integrity constraints 
can be defined and enforced. 

The paper is organized as follows. The next section 
defines basic concepts of deductive databases, and 
presents an example (taken from [ 151) that will be used 
throughout thepaper. Section 3 defines the key concept 
of internal event, and presents a method for deriving 
transition and internal events rules. Section 4 discusses 
the application of these rules for integrity constraint 
checking when the database is updated. Updates 
considered are single insertion or deletion of database 
clauses (including integrity constraints) or sets of them. 

Section 5 extends the method to transition integrity 
constraints, In section 6 we compare our method with 
some of the methods presented above. Finally, in section 
7 we present our conclusions. We assume the reader is 
familiar with logic programming. 

2. Deductive databases 

A deductive database D consists of three finite sets: 
a set F of facts, a set R of deductive rules, and a set I of 
integrity constraints. Arelationaldatabaseisadeductive 
database without deductive rules. A fact is a ground 
atom. The set of facts is called the extensional database, 
and the set of deductive rules is called the intensional 
database. 

We assume that database predicates are either base or 
derived. A base predicateappearsonly in theextensional 
database and (eventually) in the body of deductive 
rules. A derivedpredicateappearsonly in the intensional 
database. Every database can be defined in this form 
[2,71. 

Our database example contains four base predicates: 

Cit(x) x is a citizen 
Ew(x) x is an employee 
Wx) x is a registered alien 
W4 x has criminal record 
and a derived predicate: 
Mx) x has the right of residence 

2.1 Deductive rules 

A deductive rule is a formula of the form: 
A t L,A...AL, withn)l 

where A is an atom denoting the conclusion, and the L, 
,,.,, L,, are literals representing conditions. Each Li is 
either an atom or a negated atom. Any variables in A, L, 
,..., L0 are assumed to be universally quantified over the 
whole formula. The terms in the conclusion must be 
distinct variables, and the terms in the conditions must 
be variables or constants. 

As usual [5,9,25], we require that thedatabase before 
and after any updates is allowed, that is any variable that 
occurs in a deductive rule has an occurrence in a 
positive condition of the rule. This ensures that all 
negative conditions can be fully instantiated before 
they are evaluated by the “negation as failure” rule. 

In the example, we assume the database has the 
following deductive rules, defining predicate RX 

DR. 1 IO(x) t Ra(x) A 7 Cr(x) 
DR.2 Rr(x) c Cit(x) 
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2.2 Integrity constraints 

An integrity constraint is a closed first-order formula 
that the database is required to satisfy. We deal with 
constraints that have the form of a denial: 

c- L, A *,. A Lan with n&l 
where the L, are literais and variables are assumed to be 
universally quantified over the whole formula. More 
general constraints can be transformed into this form as 
described in [ 171. For the sake of uniformity, we (as in 
[9,13]) associate to each integrity constraint an 
inconsistency predicate Icn, with or without terms, and 
thus it has the same form as the deductive rules. We call 
them integrity rules. 

The above are called static integrity constraints, 
since they must be satisified in any state of the database. 
Constraints involving two or more database states, 
which are called transition integrity constraints, will be 
considered in section 5. 

In the example, the database contains the constraint: 
ICI(X) +- Emp(x) A 7 Rr(x) 
stating that employees must have the right of residence. 

3. Transition and internal events rules 

We now define the concept of internal events, a key 
concept in our method. We also explain how to derive 
the transition and internal events rules for a given 
database. These rules depend only on the deductive 
rules and integrity constraints of the databaTe. They are 
independent from the base facts stored in the database, 
and from any particular update. In a later section, we 
willdiscusstheuseoftheserules for integrity constraints 
enforcement. 

3.1 Internal events 

Let D be a database, U an update and D’ the updated 
database. We say that U induces a transition from D (the 
current state) to D’ (the new, updated state). We assume 
for the moment that U consists of an unspecified set of 
base facts to be inserted and/ or deleted. 

Due to the deductive rules, U may induce other 
updates on some derived predicates. Let Pbe a derived 
predicate in D, and let P’ denote the same predicate 
evaluated in D’. Assuming that a fact P(K) holds in D, 
whereKisavectorofconstants, twocasesarepossible: 
a.1. P’(K) also holds in D’ (both P(K) and P’(K) are 
true). 
a.2. P’(K) does not hold in D’ (P(K) is true but P’(K) is 
false). 
and assuming that P’(K) holds in D’, two cases are also 
possible: 

b.1 P(K)alsoholdsinD(bothP(K)andP’(K)aretrue). 
b.2. P(K) does not hold in D (P’(K) is true but P(K) is 
false). 

In case a.2 we say that a deletion internal event 
occurs in the transition, and we denote it by 6P(K). In 
case b.2 we say that occurs an insertion internal event, 
and denote it by LP(K). Thus, for example, cRr(Mary) 
denotes an insertion internal event corresponding to 
predicate Rr: Rr(Mary) is true after the update and was 
false before. 

Formally, we associate to each base, derived or 
inconsistency predicate P an insertion internal events 
predicate tP and a deletion internal events predicate 6P, 
defined as: 
(1) Vx(tP(x) i-9 p’(x) A -P(x)) 
(2) Vx@P(x) (3 P(x) A -;p’(x)) 
where x is a vector of variables. From the above, we 
have: 
(3) vX(pl(X) +b (P(X) A s(X)) V p(X)) 
(4) vX(+(X) 6-b (-P(X) A e(X)) V B(X)) 

If P is a base predicate, then LP facts and 6P facts 
represent insertions and deletions of base facts, 
respectively. Therefore, weassume from now on that U 
consists of an unspecified set of insertion and/or 
deletion internal events of base predicates. A concrete 
example could be U = (Sit(John), GCr(Alan)), 
consisting of an insertion and a deletion. Note that by 
(1) and (2) above, we require: 
(5) Vx(tP(x) + -P(x)) and 
(6) W@‘(x) -+ P(x)) 

also to hold for base predicates. 
If P is an inconsistency predicate, then t.P facts that 

occur during the transition will correspond to violations 
of its integrity constraint. Thus if a given transition 
induces, for example, a fact ~Icl(Alan) this will mean 
that such transition leads to a violation of integrity 
constraint ICI for Alan. Note that, for inconsistency 
predicates, SP facts cannot happen in any transition, 
since we assume that the database is consistent before 
the update and, thus, P(x) is always false. 

3.2 Transition rules 

Let us take a derived or inconsistency predicate P of 
the database. The definition of P consists of the rules in 
the database having P in the conclusion. Assume that 
there are m (m&l) such rules. For notation’s sake, we 
rename the conclusions of the m rules by PI,..., Pm, 
change the implication by an equivalence and add the 
set of clauses: 

Pt P, i = l...m 
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In the example, rules DR.1 and DR.2, which define 
predicate Rr, will be rewritten as: 
DR.1’ Rqx) t) Ra(x) A -I O(x) 
DR.2’ Rr&x) t) Cit(x) 
DR.1.1 Mx) 4-- q(x) 
DR.1.2 Mx) + Q(x) 

Given a rule P,(x) t) L, A .., A Ln. we will denote by 
U(PJ the conjunction of the literals in the body having 
a vector of variables y such that x 51 y, and denote by 
E(P,) the conjunction of the literals in the body having 
some variable which is not in x. Thus,in the above rules, 
we will have U(Rr,) = Ra(x) A 7 Cr(x), E(Rr,) = 0, 
U(Rr,) = Cit(x) and E(Rr,) = 0. 

Consider now one of the rules P,(x) t) L, A . . . A Lo. 
When the rule is to be evaluated in the updated state its 
form is P’,(x) t) L’, A ,,, A L’., Now if we replace each 
literal in the body by its equivalent definition in terms 
of the current state (before update) and the internal 
events, we get a new rule, called a transition rule, which 
defines predicate P’, (new state) in terms of current state 
predicates and internal events. 

More precisely, if Llj is a positive literal Q’,(x,) we 
apply (3) and replace it by: 

(Qj(Xj> A 1 K!j(Xj>) V 'Q'(xJ 
and if L’. is a negative literal -Q’,(x) we apply (4) and 
replace it by: 

(<j(Xi> A 1 'Qj(x,)) V GQj(Xi) 
It will be easier to refer to the resulting expressions if we 
denote by: 

o(L’,) = (Q,(x) A - 6Q.b.)) 
(+ (X.) A 7 14,(X$) 

N(L’,) f IQ(:) ’ 
= &,(x,) 

With this notation we then have: 

(7) p’,(x) c-) 7 [O&J v N&‘J 
l-1 

After distributing A over v, we get an equivalent set 
of transition rules, each of them with the general 
form : 

(8) P',, (4 -7 KW'$I JW'J for j = 1,...,2” 
PI 

where n is the number of literals in the Pi rule, and 

(9) P’, (x) t P’,Jx) j = l,..., 2” 
In the above set of rules (8) it will be useful to assume , 

that the rule corresponding to j = 1 is: 

(10) p’,,, (X) f3 o(L’,) A . . . A o(L’,) 

The transition rules corresponding to the database 
example are: 
T.1 
T.2 

w,,,(X) t- b(X) A 7 &l(X) A <r(X) A ‘1 Lcr(X) 
R&(X) C b(X) A - t&l(X) A &h(X) 

T.3 R+,>(x) c a(x) A *r(x) A 7 OCR 
T.4 R.r’,,,(x) C l&(x) A xr(x) 

T.5 R?,*,(x) c tit(x) A 7 Kit(x) 
T.6 Rr’,(x) t LCit(x) 
T.7 Icl’,,,(x) c Emp(x) A 7 GEmp(x) A +r(x) A 

-I Wx) 
T.8 Icl’,,(x) t Emp(x) A - GEmp(x) A &r(x) 
T.9 Icl’,$x) c tEmp(x) A -&f~) A -L&(X) 

T.10 Icl’,,(x) e- LEmp(x)h 6Rr(x) 

Each of the above rules has aclear intuitive meaning. 
Thus, for example, T.1 states that x has the right of 
residence in the new state (RfJx)), if x was a registered 
alien in the old state @a(x)), and this fact has not been 
deleted in the transition (-, GRa(x)), and x did not have 
a criminal record in the old state (<r(x)), and a 
criminal record for x has not been inserted during the 
transition (Xr(x)). Recall that, by (9) and DR 1.1, 
Rr’(x) t Rr’, ,(x). 

3.3 Insertion internal events rules 

Let P be a derived predicate. Insertion internal events 
for P were defined in (1) as: 

vX($(X) t-3 p(X) A -P(X)) 

If there are m rules for predicate P, then P’(x) c) P’,(x) 
v ,.. v P’,(x), and replacing P’(x) we obtain the set of 
rules: t.P(x) c P’,(x) A lP(x) with i = 1 . . . m 
and replacing again P’,(x) by its equivalent definition 
given in (9) we get: 
(11) p(X) t p’&X) A -P(X) 

for i = 1 . . . m and j = 1 . . . 2” 
Rules (11) above are called insertion internal events 

rules of predicate P. They allow us to deduce which tP 
facts (induced insertions) happen in a transition. If P is 
an inconsistency predicate, LP facts correspond to 
violations of an integrity constraint, and the rules (11) 
define how we can derive them in terms of the current 
state and other internal events. 

We can remove some of these rules and, in some 
cases, we can simplify them, Thus, it is easy to prove 
that for any i, the rule corresponding to j = 1 cannot 
producet.P facts, since in this case P,,(x) + P(x). We 
can then reduce the set (11) to: 
(11’) lP(X) t p’,&X) A VP(X) 

for i = 1 .,, m and j = 2 . . . 2” 
If P is an inconsistency predicate we can remove in 

(11’) the literal -P(x) since we assume that 
P(x) is false, for all x, in the current state. 
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In [24a]we prove two interesting simplifications, 
that can be applied to rules in (11’) for which the 
transition rule corresponding to P’,.(x) has some literal 
N(L’,) in U(P’$ with U(PJ# 0. in this case, we can 
remove predicate Pi from P and the rule becomes: 
(12) @p(x) c P’JX) A -P,(x) A *.* A ‘P,.,(X) A 

-P,+,(X) A .., A -‘P,(X) 

In the example, the insertion internal events rules are: 
Il..,3 l&(x) t Rr’,Jx) A err, j = 2...4 
14 tir(x) c Rr’&JX) A yRr,(x) 
IS...7 ~Icl(x) t Icl’,,(x) j = 2...4 

The intuitive meaning of these rules is also clear. 
Take, for example, 1.3. It states that the right of 
residence of x is inserted during a transition (m(x)) if 
x has this right in the new state by rule Rr’, ,(T.4) and 
x did not have this right in the old state by de Rr, (DR 
.2’). Note that rule T.4 states that x has the right of 
residence in the new state if x is inserted as a registered 
alien during the transition @a(x)) and his criminal 
record is deleted @O(x)). 

3.4 Deletion internal events rules 

Let P be a derived predicate. Deletion internal events 
were defined in (2) as: 
vX(&P(X) c) P(X) A +(X)) 

If there are m rules for predicate P, we then have: 
6P(X) C P,(X) A +(X) for i = 1 .., m 
and replacing P’(x) by its equivalent definition P’(x) c) 
p’,(x) v . . . v P’,(x) we obtain: 
(16) 6P(X) C P,(X) A -P’,(X) A . . . A -‘P’,(X) 

A ,., A -P’,(x) for i = 1 ,.. m 
Replacing now, in each of these rules, P’,(x) by its 

equivalent definition given in (9) and after a number of 
simple transformations described in [24a], we get the 
set of rules: 
For i = 1 ,., m 

If U(P,) = L, A . . . A Lp 
For j = l...q 

(17) &P(X) C L, A .a. A Lj.1 A (Wj<Xj>l ‘Qj<x,>l 
A, Lj+l A.*. A “g yy) A 

-‘P,(X) A ,.. A -T IT, X A 

‘p’i+l(X) A... A -P’,(X) 

where the first option is taken if Lj = Q,(x,) is 
positive and the second if negative 

If E(P,) = L,,+1 A a.. A Ln 

For j = q+l...n 
(1’) ‘P(X) C- U(p,)A L,, A 1” ALj., A [‘Q,(x,>“Q,(x,)I 

A L.,, A... A Ln A 

yE(P’, J A . . . 

+,(Xj A . . . 

A -‘E(P’,,n) A 

A +i.,(X)‘A 

+,+I(X) A... A +,(X) 
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where the first option is taken if L, = Qj(x,) is 
positive and the second if negative 

Rules (17) and (18) are called deletion internal 
events rules of predicate P. They allow us to deduce 
whichSPfacts(induceddeletions)happeninatransition. 
In the example, these rules are: 
D. l GRr(x) t &a(x) A <r(x) A err’, 
D.2 &b(X) t b(X) A LCr(X) A +f,(x) 

D.3 t&(x) t Kit (x) A -W,(X) 

Note again the meaning of these rules. For example, 
D. 1 defines that the right of residence of x is deleted 
during a transition (SRr(x)) if x is deleted as a registered 
alien @a(x)), and x did not have a criminal record in 
theold state (<r(x)), and x has not that right in the new 
state according to Rr’,. 

3.5 The augmented database 

Let D be a database. We call augmented darabase, or 
A(D), the database consisting of D, its transition rules 
and its internal events rules. In the next section we will 
discuss the important role of A(D) in our method for 
integrity constraints enforcement. But before closing 
this section, we want to comment on the properties of 
A(D) with respect to those of D. In particular, given that 
our method is based on SLDNF-resolution, we are 
interested in the syntactic properties related to the 
completeness of SLDNF-resolution. 

SLDNF-resolution is incomplete, in general, but 
there are large classes of logic programs (databases) 
and goals for which it is complete (or have been 
conjectured complete). Thus, Clark [8] proved 
completeness for hierarchical and allowed databases. 
Cavedon and Lloyd [6] showed completeness for 
databases and goals which are allowed, strict and 
stratified, and Kunen [16] for databases and goals 
which are allowed, strict and call-consistent. More 
recently, Decker and Cavedon [l l] have proved 
completeness for databases and goals which are call- 
consistent, even and recursively covered (a 
generalization of allowed). 

It is easy to show (see [24a]) the following 
relationships between the properties of D and those of 
A(D): 

a) If D is hierarchical (resp.,call-consistent) then A(D) 
is also hierarchical (resp., call-consistent) 
b) If D is stratified then A(D) is call-consistent. 
c) If D u (t Icn(x)) is strict (resp., even) then A(D) u 
(c tIcn(x)) is also strict (resp., even). (the meaning 
of the goals will become clear in the next section). 
d) If D is allowed then A(D) is also allowed. 
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Therefore, if the properties of D are such that SLDNF- 
resolution iscomplete,accordingtotheabovementioned 
completeness results, then it will also be complete for 
A(D). 

goals cGEmp(Alan) and c R1’&4lar1) arenot included). 

t kl(x) 

1 I (IS) 
4. Integrity constraints enforcement 

The transition and internal events rules described 
above can be used directly to verify that a transaction 
does not produce inconsistencies. 

Let D be a database, A(D) the augmented database, 
and T a transaction consisting of a set of base internal 
events. If T leads to an inconsistency then some of the 
IIcj facts will be true in the transition. Using the SLDNF 
proof procedure, T violates integrity constraint Icj if 
the goal c tIcj(x) succeeds from input set A(D) u T. 
If every branch of the SLDNF-search space for A(D) 
u T u {c tIcj(x)) is a failure branch, then T does not 
violate Icj. 

Thus, our method for integrity constraints 
enforcement is entirely based on the use of standard 
SLDNF resolution. We take as input set A(D) u T and, 
for each integrity constraint Icj, (cLIcj(x)) aqgoal. 
Transaction T leads to an inconsistent database state if 
there is a refutation for some of the above goals. 
Otherwise, T can be accepted, and the database is then 
updated. Note that in our method the database is updated 
after verification of constraint satisfaction. 

In what follows we illustrate the method and comment 
some implementation details with an example. 

4.1 Insertion or deletion of base facts t +r’,(Alan) 

Assume that a transaction T consists either of an 
insertion or deletion of a single base fact, and let us 
denoteitby T= (tQ(K)) or T= (&Q(K)),respectively, 
with Q being a base predicate and K a vector of 
constants. We say that L.Q(K) or 6Q(K) are the input 
internal events given or produced by the update. Recall 
that by (4) and (5) we require verifying that the database 
does not contain (if insertion), or contains (if deletion) 
Q(K) prior to the inconsistency analysis. The following 
example shows the application of our method. 

Example 4.1~3 
Assume the database has the following facts: 

F. 1. Emp(Alan) 
F.2. Ra(AIan) 
and let the transaction be the insertion of Cr(Alan), 
which we denote by: 
T. LCr(Alan) 
The following refutation shows that T violates Ic 1, with 
x = Alan (the subsidiary trees showing the failure of 

c IclJx) 
I 

2 I (T.8) 

t Emp(x) A 7 GEmp(x) A m 
I 

3 I (D.2) 

c Ra(x) A-A -k’,(x) A Emp(x) A -) GEmp(x) 
I 

4 I (‘-I’, x=Alan) 

c Ra(Alan) A %r’,(Alan) A Emp(Alan)h 
-GEmDo 

5 I ( dEmp(Alan) fails) 

t Pa(Alan\ A TRr’,(Alan) A Emp(Alan) 
I 

6 I (F.2) 

c -Rr’,(AIan) h Em&&& 
I 

7 I (F.1) 

8 ; (cRr’,(Alan) fails) 

;I 

Some obvious simplifications in the transition and 
internal events rules may reduce the search space. For 
example, we may combine rules I.5 and T.8 into a 
single rule: 

tk 1 (x) c Emp(x) A 7 amp(x) A &Rr(x) 
thus reducing in one step the derivations. 

Note that in the third step we have selected literal 
GRr(x) instead of Emp(x) or 7 GEmp(x). Given that in 
most real databases the number of facts is likely to be 
muchgreaterthanthenumberofintemaleventsproduced 
in a transition, it seems convenient to use the strategy of 
selecting first the internal events (once fully instantiated 
if they are negative). 
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4.2 OtIwr updates 

Our method can also be applied with complex updates, 
such as 
- Insertion or deletion of qualified base facts. 
- Insertion or deletion of deductive rules. 
- Insertion or deletion of integrity constraints. 
- Transaction with multiple updates 

In [24a] we explain the details of the method in these 
cases, and show its application with examples. 

5. Transition integrity constraints 

Up to now, we have only dealt with static integrity 
constraints. Our method, however, can also handle 
transition integrity constraints. A transition integrity 
constraint is a closed first-order formula that database 
transitions are required to satisfy. We only consider 
here transitions between two successive states. 
Transition integrity constraints in deductive databases 

were formalized for the first time by Nicolas and 
Yazdanian [23]. Their approach consists in extending 
the database with new relations (predicates), called 
“actionrelations”. Three action relations are associated 
with each relation R in the database, one for each of the 
three operations: update, deletion and insertion. They 
are denoted UPD-R, DEL-R and ENT-R, respectively. 

If R is a n-ary relation, then UPD-R is a 2n-ary 
relation. The meaning of a tuple: 

ca l,...and,*... &>E UPD-R 
is that the tuple cai,...,aI1xR is being updated in a 
transition and the new value is ca’l,...a’n>. The use of 
the UPD-R action relation in the formalization of 
transition constraints can be illustrated by means of the 
following example (taken from [23]). 
TIC: Let FS(p,s) be a relation giving the family status 
s of a person p and let VALT(s,sl) be a relation giving 
the valid transitions in family status (such as 
VALT(single,manied)). The constraint that changes is 
family status must be valid can be defined: 
Vp,s,p’,s’ (UPD-PAS@,s,p’,s’) A p = p’ A s # s’ + 
V~‘W,s’N 

Once the transition constraints have been formalized 
in this way, they can be enforced using any method 
applicable to static constraints, provided the method 
computes adequately the induced updates. 

In our method, both input and induced updates of a 
predicate P are represented explicitly, by means of the 
LP and 6P predicates. This suggests that, for us, a 
transition constraint is a condition c L, A ,,, AL, 
(withn)l)Iikeastatlcconstraint,butwhereliteralscan 
be not only database predicates, but also internal events 
predicates. Database predicates in the condition have to 
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be evahated in the current state of the database, and not 
in the state after the update. This implies that we don’t 
have to transform transition constraints, as we had to for 
static constraints, and that the associated transition 
constraint predicate will have the nature of an internal 
event. Therefore, in our method a transition constraint 
Ticn is a rule with the following general form: 
tTicn c L,A . ..hLn with nb 1 
We give below the definition of the above transition 
constraint example in our formalization. 
(TIC) tTic 6- SFS(p,s) A tFS(p,sl) A ?VALT(s,sl) 

Enforcement of a transition constraint is not different 
from the static case. A transaction T will violate a 
transition integrity constraint Ticj if the goal t 
tTicj(x) succeeds from input set A(D) u T. If every 
branch of the SLDNF-search space for A(D) uTu {t 
tTicj(x)J is a failure branch, then T does not violate 
Ticj. The following example shows the application of 
the method in this case. 

Example 5.a 
Assume the database contains the following facts: 

F. 1 Cit(Alan) 
F.2 Emp(Alan) 
and the transition constraint (The right of residence of 
an employee can not be deleted): 
TIC. 1 rTicl(x) t Emp(x) A GRr(x) 
Let the transaction be the deletion of Cit(Alan), that is: 
T. GCit(Alan) 
The following refutation shows that the transaction 
violates the constraint, with x = Alan. 

t- tTicl(x) 
I 
I (TIC. 1) 
I 

e- Ewtx) A GRr(x) 

/ (D.3) 

t m A d,(X) A Emp(x) 

; (T, x = Alan) 
I 

t W,(Alan) A EmD(Alan) 

; (F.2, x = Alan) 
I 

t +r’,(Alan) 

It c +r’,(Alan) fails) 
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6. Comparison with other methods 

In this section we compare in detail our approach to 
integrity checking in deductive databases with the 
approaches taken by some of the methods mentioned in 
the Introduction. All of these methods deal with the 
same class of databases, static integrity constraints an 
updates as ours. However, they don’t handle transition 
integrity constraints. 

6.1 The Consistency method [15,25] 

The Consistency method has inspired our strategy in 
integrity constraints enforcement (Section 4). The 
distinction we make between the database and its 
transition and internal events rules allow us to use the 
standard SLDNF procedure. Without this distinction, 
the Consistency method needs to extend SLDNF by: 
- Allowing forward reasoning as well as backward 
reasoning 
- Incorporating additional inference rules for reasoning 
about deletions caused by changes to the database, and 
- Incorporating a general&d resolution step, which is 
needed for reasoning forward from negation as failure. 

The significance of this difference can be made 
apparent by means of a simple example. We use the 
database example given in Section 2, and the facts and 
transaction given in example 4.1 .a. 

The following search space illustrates the violation 
of IC. 1 in the updated database. 

Cr(Alan) 

1lcR) 

NO-KW~~)) 

2 I (IC.1) 

t Emp(Alan) 

3 I (F.l) 
I 
[I 

The fist step of the above refutation uses an inference 
rule (R) that allows reasoning as follows: 

(R) because in the updated database 
Cr(Alan) holds and we have 

Rr(x) e Ra(x) and NOT(Cr(x)) 
and we have no other way of proving Rr(Alan) and 
Rr(Alan) was provable in the database 
then Rr is deleted 
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Thus NOT(Rr(Alan)) is provable in the updated 
database. 
The second step isan “extended” resolution of clauses: 

-ad 
t Empx) and NOT- 

on the underlined literals.The resolventis t Emp(Alan). 
The last step is a standard SLDNF step. 

Comparing this solution with ours (given in example 
4.l.a) we note several differences. The first, minor, 
difference is in the top clause used in both methods. In 
ourmethod thetopclauseisthegoal (t tIcl(x)), while 
in the Consistency method the top clause is the update 
( Cr(Alan) ) . The Consistency method could also choose 
the constraint as top clause, but then the search space 
would be somewhat larger, because it would not take 
advantage of the assumption that the constraint was 
satisfied before the update [25]. In our method we don’t 
take c Icl(x) as top clause, but t tIcl(x), which 
means that we only search for violations of Ic 1 produced 
in the transition. 

The major difference we see lies in the inference rule 
(R) required in the Consistency method for reasoning 
about implicit deletions. Its implementation in Prolog 
systems requires a mela-interpreter, which may causea 
significant overhead. In our method we achieve the 
samereasoning capabilities, while still remaining in the 
SLDNF framework. It is interesting to observe how we 
infer that Rr(Alan) has been implicitly deleted. Rule 
D.2 (used in step 3) states that GR.r(Alan) if Ra(Alan) 
and ~Cr(Alan) and -&‘&Alan). Given that tCr(Alan) is 
the input internal event, step 4 reduces the goal to 
Ra(Alan) and +r’,(Alan). Ra(Alan) is fact F.2 in the 
database and, thus, step 6 reduces again the goal to 
yRr’,(Alan), which succeeds in step 8, because 
Rr’,(Alan) fails (Cit(Alan) and Kit(Alan) are not 
provable). 

Finally, we note that our search space includes a step 
5 to check that Emp(Alan) has not been deleted in the 
transition. There is not asimilar step in the Consistency 
method. The reason for this lies in the fact that we have 
a single search space for each transaction, independent 
of the updates induced in it, while in the Consistency 
method there is a search space for each update in the 
transaction. In this particular case, if the transaction 
were: 
Insert Cr(Alan) 
Delete Emp( Alan) 

no violation of the constraint would occur. This makes 
our search space somewhat larger for simple 
transactions. However, if we know the transaction 
types in advance we can do some preparatory work at 
compile time, which can restrict significantly the search 
space. 
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6.2 The method of Bry, Decker and Manthey [4J] 

This method distinguishes clearly two phases in 
integrity checking: 
- a generation phase, in which “update constraints” are 
derived for every possible update. 
- an evaluation phase, in which the update constraints 
are evaluated. 

Update constraints are derived at compile time, 
involving only the rules and not the facts of the database. 
There is a set of update constraints for every update. Let 
Ubeaground single-factupdatepositive (insertion)or 
negative (deletion). Due to the deductive rules, U may 
induce other updates. However, in the generation phase 
the methodonly computes the potential updates induced 
by U. A literal L is a potential update induced by U iff 
LdirectlydependsonU(throughadeductiverule)oron 
a literal that is a potential update induced by U. If, for 
example, the database contains the deductive rules: 
R.1 R(x) + WLY) A Q(Y) 
R.2 S(x) c R(x) A 1 T(x) 
then the potential updates induced by P(A,B) are R(A) 
and S(A), and the potential updates induced by Q(A) 
are R(x) and S(x). Every induced update is an instance 
of a potential update, depending on the facts stored in 
the database, but there may be potential updates no 
instance of which is an induced update. 

Now, let L be an update or an induced update, and C 
be a constraint that may be violated by L. Bry et al. 
apply Nicolas’method [22] toderive simplified instances 
s(C) of C, such that if s(C) are satisfied in the updated 
database so will be C. If, for example, Cl is Vx [-R(x) 
v V(x)] and the update is R(A) then s(C1) is V(A). But 
if C2 is 3x [S(x)) and the update is +(A) then s(C2) = 
C2, and no simplification is possible. 

The general form of an update constraint for a literal 
L is the universal closure of the formula: 

delta(U,L) 4 new(U,s(C)) 
where: 
- U denotes an update 
- C is a constraint relevant to L 
- s(C) is a simplified instance of C 
- delta is a me&predicate such that delta(U,L) holds if 
L is satisfied in the updated database, but not before. 
- new is a meta-predicate such that new(U,F) holds if F 
holds in the updated database. 

Given an update U, the updated database will satisfy 
all integrity constraints iff they are satisfied prior to the 
update, and every update constraint for U or for a 
potential update induced by U is satisfied after the 
update. These updateconstraints are evaluated when an 
update occurs. Implementation of the predicates delta 
and new in Prolog can be made easily by means of meta- 

interpreters. 
We see three noteworthy differences beteween this 

method and the method proposed here. First, as said 
before, we do not require a meta-interpreter, The “delta” 
predicate corresponds to our internal events rules, and 
we use SLDNF resolution to evaluate the “new” 
predicate. Second, this method may do some redundant 
work in the evaluation of update constraints. Thus, in 
rules R. 1 and R.2 above, with the update Q(A), if both 
R(x) and S(x) are relevant for some constraints, then an 
update constraint will evaluate delta(Q(A),R(x)), 
computing all induced updates of predicate R, and 
anotherupdateconstraintwillevaluatedelta(Q(A),S(x)), 
computing all induced updates of predicate S, which in 
fact requires recomputing the former induced updates. 
In our method, we define tS(x) in terms of tR(x), thus 
avoiding this redundancy. 

Finally, the advantage of the method of Bry et al. lies 
in its distinction beteween the two phases. It would be 
interesting to explore this distinction in our method. A 
possible idea could be to generate, at compile time, a 
reduced set of transition and internal events rules for a 
given update. The concept of potential induced update 
could be used to restrict the search space. 

7. Conclusions 

In this paper, we have presented a method for checking 
integrityconstraintsindeductivedatabases,Themethod 
deals with range-re&icu?ddatabases and with integrity 
constraints in denial form. Updates considered are 
insertion or deletion of a base fact, qualified base facts, 
deductive rules and integrity constraints. Transaction 
with multiple updates are also allowed. 

The method augments the database with a set of 
transition and internal events rules. These rules play an 
important role in integrity constraints enforcement, 
since they define explicitly the induced updates caused 
by a database update. We can then use the standard 
SLDNF procedure to check consistency and, in this 
way, the method can be implemented directly in 
Prolog. However other methods could be used as well. 
Some optimization techniques [7] can be easily 
incorporated into our method. 

The main cost implied by our method is the space 
required to store the transition and internal events rules. 
The cost may only be important in databases with a 
largenumberofdeductiventlesandintegrityconstraints. 
In most practical databases, however, this number is 
small as compared to the number of base facts stored 
and, thus, the cost should not be significant. 
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The gain is the time saved in checking integrity 
constraints satisfaction, since our method does not 
require a meta-interpreter. We find here again the 
classical tradeoff between space and time. 

On the other hand, our method also handles tmnsi tion 
integrity constraints, which extend the range of 
constraints a database may be subjected to. These 
constraints have received little attention in the past, 
probably because efficient methods for their 
enforcement were not available. We believe that our 
method provides a simple and elegant approach to the 
enforcement of transition integrity constraints, which is 
as efficient as for static constraints. 
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