
Aggregation and Relevance in Deductive Databases

S, Sudarshan Raghu Ramakrishnan’

Computer Sciences Department,
University of Wisconsin-Madison, WI 53706, U.S.A.

Abstract
In this paper we present a technique to optimize queries on

deductive databases that use aggregate operations such as

min, max, and “largest Ic values.” Our approach is based
on an extended notion of relevance of facts to queries that

takes aggregate operations into account. The approach has

two parts: a rewriting part that labels predica.tes with “ag-

gregate selections,” and an evaluat,ion part. t.hat, makes use of

“aggregate selections” to detect that facts are irrelevant and

discards them. The rewriting complements standard rewrit-

ing algorithms like Magic sets, and the evaluation essentially

refines Semi-Naive evaluation.

1 Introduction
Recursive queries with aggregation have heen considered by
several people [BNRt87, MPRSO]. The advantages of a. rich
language are clear, but unless effective optimization tech-
niques are developed, the performance of specialized systems
based on supporting a limited class of queries (for example
generalized transit,ive closure queries) cannot be matchrd. III
this paper we consider optimizations of recllrcivc programs
wit,h aggregate operations.

Consider the (very naive) program shown in Figure 1, for
computing shortest paths between nodes in the relation edge.
It essentially enumerates all paths and chooses shortest paths
among them. The notation path(X, I’, min,(< C >)) in t.he
head of rule R2 denotes that for each value of X, I’ all pos-
sible C values that are generated by the body of t.he rule are
collected in a set, and the min aggregat,e opera.tion is applied
on this set of values. For each value of X and Y, a path, fact
is created with the result of the min operation as the third
argument.

A formulation of the problem in t,his form is desirable since

‘The work of both authors was support,ed in pnrt hy R
David and Lucile Packard Foundation Fellowship in Science and
Engineering, an IBM Faculty Development Award and NSF
grant IRE8804319. The email addresses of the authors are
{sudareha,raghu}@cs.wisc.edu

it. is declarative, can be queried in many different ways and
is easy to write. It is easily augmented with additional con-
straints such as “the edges all have a given label” (for in-
stance, flights on United Airlines alone must be considered),

or “there must be no more than three hops on the flight”.
The standard bottom-up evaluation of such a program is ex-
t,remely inefficient since it constructs every possible path in
the graph. In contrast, the above problem can be solved in
polynomial time using either Warshall’s algorithm or Dijk-
stra’s shortest path algorithm (see [AHU74]). It can also be
evaluated efficiently if,it is expressed using specialized oper-
ators for transitive closure ([RHDM86, ADJ88, CN89]).

We propose to optimize bottom-up evaluation using a no-
t,ion of relevance of facts to some aggregate operations such
as min and m.ax. Our notion of relevance can be seen as
an extension of the notion of relevance used in optimizations
such as Magic sets rewriting [BMSU86, BR87, Ram88]. We
first explain the idea informally, using Program Simple (Fig-
ure 1).

Example 1.1 Consider Program Simple (Figure I)‘. Ag-
grrgat,e opernt.ion min ha.. the property that non-minimal
values in a set. are unnecessary for the aggregate oper-

&on on t.he set.. Using this property, we can deduce
that a fact path.(a, b,pl, cl) is relevant to the rule defining
the query predicate shortest-path only if there is no fact
path(a, b,p2, c2) such that c2 < cl. We use tests called aggre-
gore selections to check whether a fact is relevant; conditions
such as t,he above are used in the tests.

The rewrit.ing (automat.ically) deduces an aggregate selec-
tion on this occurrence of the predicate path; only facts with
minimum cost values satisfy the aggregate selection. It then
“pushes” this aggregate selection into rules that define path,
and propagates the selections through the program.

The rewriting algorithm outputs a program containing ag-
gregat,e selections on the predicates. In this case the output
is essentially the same as’ Program Simple, except that every

‘We assume that append is defined for us, and concentrate on
the rest of the program.

Proceedings of the 17th International
Conference on Very Large Data Bases

501
Barcelona, September. 1991

Rl : ~horfesLpalh(X, Y, P, C) + s-pJenglh(X, Y, C),path(X, Y, P, C).
R2 : a-p-length(X, Y, min(< C >)) + polh(X, Y, P,C).
R3 : path(X, Y, Pl, Cl) - pnth(X, Z, P,C),edge(Z,Y, EC),

appen.d([edge(Z, Y)lnil], P, PI), Cl = C + EC.
114 : pathl(X, Y, [edge(X, Y)lnil],C) - edge(X, Y, C).
Query: ?-s,p(X, Y, P, C).

Figure 1: Program Simple

occurrence of path in the program has an aggregate selection
that selects minimum cost paths. The rewritt,en program is
shown in Figure 2, and we discuss it after introducing the
notation used to express aggregate selections.

The evaluation phase of our technique makes use of the
aggregate selections on path, and discards facts on which
the aggregate selection test fails (namely the non-minimal
paths). We can optimize the evaluation further by using in
each iteration only the path fact wit,h minimum cost. among
all newly generated path facts, This reduces the cost t.o the
same as that of Dijkstra’s algorithm (O(e * log(n))), and this
is discussed in Section 5.2. The optimized evaluation also
works when edge weights are negative, so long as there are

no negative cost cycles. 0
Recently Ganguly et al. [GGZQO] independently examined

Datalog programs with min or mnz aggrega.te operations.
Their work addresses problems that are similar to t.hose t,hat
we consider, but the approaches are quit.e different and the
techniques are complementary. We present a comparison of
our techniques with those of Ganguly et al. in Section 6.1,
and describe several advantages of our approach.

The rest of the paper is organized as follows. We present.
basic definitions in Section 2. Our not,ion of relevance is dr-
veloped in Section 3, where we also introduce aggregate selcc-
tions and constraints as a way of specifying relevance infor-
mation. Techniques for propagation of aggregate selections
and constraints through single rules are developed in Sec-
tion 4.1. In Section 4.2 we present an algorithm to rewrite
programs by propagating aggregat,e select.ions t.hrnugh t.he
program, starting from the query. In Section 5 we show how
to evaluate rewritten programs.

2 Definitions
We consider logic programs (an extension of Datalog pro-
grams that allows terms such as lists) ext.ended with aggre-
gation primitives. For simplicity, we only consider programs
without negation although our resulm can be extended t.o
deal with stratified negation in a strnight.forward manner.
We also restrict the use of aggregation to be stratified. That
is, if p is used to define 9 via a rule that uses aggregation,
9 cannot be used to define p. Further, we require that ev-
ery variable in the head of a rule should appear in t,he body.
This means that. only ground t,erms can be generat.ecl, which
is reasonable in a database context, Finally, we assume t.hat

Proceedings of the 17th International
Conference on Very Large Data Bases

program transformations such as Magic Sets have already
been carried out; their use is largely orthogonal to our opti-
mizations.

We assume standard definitions [UllSQ]. We use overlines
to denote tuples of terms, variables etc. We use Vars(t) to
denote the set of variables that occur in a term 1. Similarly,
Vars(T) denotes the set of variables that occur in a tuple of

terms I.

The syntax and semantics that we use for aggregation is
very similar t,o LDL [BNR+ 871. Wlog we assume that there is
at most one literal in the body of a rule that has an aggregate
operation in the head. The semantics of a rule

~0, w-f < Y >I-9(. . .I
is as follows. We use the set of all facts that can be derived
for 9 to instantiate 9(, . ,) and thus generate instantiation8 of

variables in Vars(?) u {Y}, For each value of Vars(?) in this
set, we first collect the set of corresponding instantiations of
Y and apply aggregate operation agg,f to it to get a value
y;, and then create a fact ~(7, ~7).

3 Views of Relevance In Logic
Programs

The idea of relevance of facts to a query is used by Prolog and
other top-down evaluation techniques, as well aa by program
rewriting techniques such as Magic sets. Suppose we have a
rule

R: p(i)--q,(t;),~z(~,...,~n(~
Assume for simplicity that we have a left-to-right rule evalu-
af.ion (in t,he fashion of Prolog). Then a fact gi(ei) is relevant
if there is an instantiation

R’ : p(a)+91 (al), a(m), . . . I gi(ai)

of (the head and first i body literals of) R such that
the head fact p(a) is relevant, and all instantiated facts

91(al),..~, 9i-r(oi-1) have been derived. Thus, the notion
of relevance is local to a rule and to a set of facts that can
inst,ant.iat.e it..

In contrast., in the shortest path problem we can decide
that a particular fact path(a, b,pl, cl) is irrelevant if a shorter
path (fact) has been found. Such information is “global”, in
the sense that relevance depends on facts other than those
used to instantiate a rule. We develop this notion of rele-
vance for programs with aggregate operations in the rest of
this section, in three steps. (1) If agg-f is an aggregate func-

502
Barcelona, September, 1991

tion and S a set of values, we consider when some values in S
can be ignored without affecting egg-f(S) (Sect.ion 3.1). (2)
We use the ideas of step 1 to define when A fact. is relevant
(Section 3.2). (3) We introduce aggregnte selections and ng.
gregate constraintsas a way of explicitly identifying irrelevant
facts (Section 3.3).

3.1 Relevance and Aggregate Functions
Given a set of values and an aggregate funct.ion on the set.,
not all the values may be needed to compute the result, of the
aggregate function. For instance, if the aggregate function is
min, no value except the minimum value is needed. We now
formalize the notion of values being unnecessary for aggregate
functions.
Deflnition 3.1 Incremental Aggregate Selector (Inc-
Sel) Functions : Let ngg-f be an aggregate function
agg-f : 2D - D on domain D. We say that agg-f is an in-
cremental aggregate selector (IncSel) funct,ion if there exists
a (nontrivial) function unnecc : 2’ --* 2’ such that

1. VS C D,VSI, (S - unnecc(S)) G Sl C_ S j

ago-f (Sl) = a99-f (S)

2. unneccagg-j is monotone. i.e., VSl E S2 C D,
unnecc,gg-j(Sl) E 14nnecc,gg-j(S2)

3. VS 2 D, unnecc,,+,(S) = unnecc,,,-f(
S - unnecc,,+f (S)) q

Given a set S, Part 1 of the above condition lets us drop
values in unnecc ogg-~(S) from S without affecting the result
of agg-f(S). Part 2 of the above conclition 1et.s us detect. nn-
necessary values before the entire set of values is compnted-
when we have computed some Sl C S, any valne clet.ect.ed

as unnecessary for agg-f on Sl is also guaranteed to be nn-
necessary for agg,f on S; a value that is necessary for Sl
may however be unnecessary for S. Part 3 of this condition
ensures that if a value is detected to be unnecessary for an
aggregate operation on a set, it will cont,inue t.o be detected
as unnecessary if we discard unnecessary valnes from the set2.

Consider an IncSel function agg-f on domain D. There
may be more than one possible function trnnecc as required
by the definition of IncSel functions.

I I Deflnrtron 3.2 unnecessary,gg-f : For each incremen-
tal aggregate selector function agg-f t,hat is allowed in our
programs, a function unnecc (as above) is chosen, and is tie-
noted by unneceaaaryaop-~.

The function necesaaryo,e-f : 2D 4 2D is defined as
neceaaary,ss-j(S) = S - unneceaanry,,p_j(S). 0

We do not consider how this choice is made, but assume it
is made by the designer of the system based on the following
criterion. Given two such functions f and g4 we say f 2’ g
iff VS C D, f(S) 1 g(S): clearly >’ (the strict, version of 2’)

2This is used in Theorem 5.1 to show that inferences are no!
repeakd. None of the other results require aggregate functions to
satisfy this condition.

proceedings of the 17th International
conference on Very Large Data Bases

is an (irreflexive) partial order. Preferably, a function that is
maximal under the (irreflexive) partial order >’ is chosen.

Note that unnecessary,,,,,(S) could be infinite. We do
not construct an infinite set unneceasary,ss,,(S), but re-
quire that we can efficiently test for the presence of a value
in unneceasary,ss-l(S), for finite S.

The function min on reals, with unnecesaarymin(S) =
{r E D 1 2 > min(S)} is an IncSel function. The function
maz on reals with unnecessary,,, symmetrically defined is
also an IncSel function. Other examples (with the functions
unn~eceaaaryoo,-~ appropriately defined), include the aggre-
gate function that selects the kth largest element of a set for
some constant k, and the aggregate function that sums up
the k largest elements of a set. Although we only consider
a.ggregat,e functions of the form 2D- > D, the ideas in this
paper can be extended t,o aggregate functions of the form
yzD x b - T/F. Examples of such functions include “se-
lect the best three results”. We can also extend the ideas to
aggregate functions on multisets.

In the rest of the paper, we assume that the optimization
t.echniques are applied only on IncSel functions, and that a set
of such aggregate functions and the corresponding functions
unnece8snryaoo-j are given to us.

3.2 Relevance of Facts
We now use the notion of necessity with respect to an aggre-
gate function in defining our extended notion of relevance of
fact.6.
Deflnition 3.3 Relevance of Facts : Consider a pro-
gram F with a query on it. A fact p(Z) is relevant to the
query iff one of the following is true:

1. p(E) is an answer to the query, or

2. p(Z) occurs in the body of an instantiated rule without
aggregation in the head such that every literal in the
body is true in the least mode13, and the head fact of
t,he rule is relevant to the query, or

3. There is a rule R in the program

R : g(iT, agg-f (< Y >)I-P(G)
and an instantiation R’ of R,

such

(4

(b)

R’ : q(K, agg-f(< Y >))+p(E)
that

Y is free in R’ and all other variables are bound
t.o ground terms, and

Let Sy be the set of all possible instantiations b
of Y such that p(z)[Y/b] is true in the model.
Then q(z, agg,f(Sy)) is present in the model and
is relevant to the query, and

3The program semantics is based upon a least model. For posi-
tive Horn logic programs, this is the least Herbrand model. In the
presence of set terms, we must consider models over an extended
Herbrand universe [BNR+87]. The definition can be extended to
non-stratified programs.

503
Barcelona, September, 1991

(4 P(C) = p(G)[Y/bl], where bl E necess-

arYa,,J(SY 1. 0

A fact is said to be irrelevant to the query if it is not rele-
vant to the query. In future, we simply say relevant (resp.
irrelevant) when we mean “relevant to the query” (resp. “ir-
relevant to the query”).
Example 3.1 Consider a program with one rule

R : p(X,min(< Y >))-q(X, Y)
and facts q(5,4),q(5,6) and q(5,3). Let, the query on the
program be ?p(X, Y). Fact p(5,3) is generat,ed as an answer.
With X = 5, the set of facts that match the body of the
rule have Y values of 3,4 and 6, of which only 3 is necessary
for min. Using the above definition of relevance, we find
that the facts q(5,4) and q(5,B) are irrelevant to -the’ query,
while q(5,3) is relevant. Also, by t.he above definit,ion, for
the shortest path program (Figure 1) all path facts, except,
those corresponding to shortest paths, are irrelevant. 0

Our extended notion of relevance is very tight, and in gen-
eral we may not be able to determine the relevance of a fact
without actually computing the least model of the program.
The techniques we present will use sufficient but not neces-
sary conditions to test for irrelevance. Dnring the evalnn.tion
of some programs we may generat,e a fa.ct, and la.t.er discover
that it is irrelevant, for instance when some other “better”
fact is generated. Once a fact is found to be irrelevant, by
“withdrawing” this fact, we may be able to determine that
other facts generated using it can no longer be generated, and
hence can also be “withdrawn”. The cost of such cascading
wit,hdrawals could be very high, and so we confine ourselves
to only discarding irrelevant facts. Although this could re-
sult in some addit,ional irrelevant comput.ation, the gains in
efficiency from our optimization can still be significant.

3.3 Aggregate Constraints and Select-
ions

We now introduce some concepts t.hat allow us t,o specify rrlp-
Vance information. Informally, sound nggrcgotr aelecIiona are
used to specify tests for relevance of facts--if t,here is a sound
aggregate selection on a predicate in Our rewritten program,
and a fact for the predicate does not satisfy the selection,
the fact is irrelevant. Aggregate select.ions are int.roduced by
our rewriting algorithm and the information is n.4 by our
evahlat,ion algorithm. The syntax (using a varia.nt. of St.ar-
burst SQL groupby) and semantics of aggregate selsct,ions a.re
described in the next few definitions.
Deflnition 3.4 Atomic Aggregate Selection : An
atomic aggregate selection has the following syntax:

44 : cwwh(d% [Xl, w-f(Y))
Here c(E) denotes a literal or a conjunction of lit,era.ls. and
z a set of variables such that 7 E Vnr,s(i). We ml& have
Y E Vars(?), and agg-f must be an IncSel funct.ion.

Consider a program P with an associated least model.
Given the set of facts for predicate p in the least model of

P, we have a set of instantiation8 of 1. Since x C Vars(i)
and Y E Vars(i), for each value 2 of x in this set of in-
st,antiations, we have a corresponding set of values for Y; we
denote this set by Sz We construct (conceptually) a rela-
tion unneccagg(X, Y) with a tuple (Ze) for each 2, and
each e E unnecessaryo,,,j(S$.

Let c(Z) be a ground conjunction. We say that c(a) satis-
fies the atomic aggregate selection si iff there exists a substi-
tution u such that (1) c(Z) = c(i;)[e], (2) u assigns ground
terms to all variables in Vars@)uXu{Y}, and (3) (X, Y)[a]
is not in unneccagg ‘. 0

In the above definition, the variables in [X] are called
grouped variables and the variable Y is called the aggregated
variable in the atomic aggregate selection. The variables in
the set ((Vars(l) - X) - {Y}) are local to the groupby,
and cannot be quantified or instantiated from outside the
groupby.
Definition 3.6 Aggregate Selection : An aggregate
selection 3 is a conjunction of atomic aggregate selections,
3 = (31 A 32 A.. . A Sn).

A ground conjunction c(E) satisfies an aggregate selection
s = (.91 A sz A .., A sn) iff it satisfies each of the atomic
aggregate selections s, individually. 0

We use the short form c(Z) : gl A g2 to denote (c(E) :
gl) A (c(c) : 92). We often say “the aggregate selection J on
the body of R” to denote the aggregate selection c(U) : s,
where c(Z) is the body of rule R. Note that a conjunction of
aggregate selections is also an aggregate selection.

Our approach to rewriting the program consists of placing
nggrega‘te select,ions on lit,erals and rule bodies in the pro-
gram in such a fashion that if a fact/rule instantiation does
not satisfy the aggregate selection it is guaranteed to be ir-
relevant. Hence we define the concept of sound aggregate
selections formally below.
Deflnition 3.6 Sound Aggregate Selection : An ag-
gregate selection s is a sound aggregate selection on the body
of n rrlle R iff only irrelevant facts are produced by instanti-
ations of t,he body of R that do not satisfy a.

An aggregate selection s is a sound aggregate selection for
a literalp in the body of a rule R iff only irrelevant facts
are produced by instantiations of R that use for literal p(i)
any fact p(Z) that does not satisfy s.

An aggregate selection s is a sound aggregate selection on
n pwdicntep iff any fact p(F) is irrelevant if it does not satisfy
3. 0

Given a sound aggregate selection on a literal/rule, we can
(partially) test during an evaluation whether a fact or an
inst,antiated rule satisfies it. The extension of each predi-

‘Note that the relation unnecc-agg could be infinite. To actu-
ally perform the test,, we would take an instantiation of Y, and test
if it is in 1lnT1Ccesso~y~~~-j(~)[0 without actually constructing]
the whole (possibly infinite) set unnece9s=,y,oo-,(X)[al, or the
(possibly infinite) relation unnecc-agg.

Proceedings of the 17th International
Conference on Very Large Data Bases

504
Barcelona, September. 1991

cate p at that point is a subset of the extension of p in the
least model of the program. Since the aggregate functions
are incremental aggregate selectors, an answer of “no” at
that point means that the answer would be “no” in the leant
model of the program, and hence t,he fact,/instantiation in ir-
relevant. However, an answer of “yes” is conservative, since
the fact/instantiation may be detected to be irrelevant. if all
facts in the least model were available.
Example 3.2 Consider an aggregate selection

path(X, r, P, C) : groupby(path(X:, y, P, C), [X, Y],
min(C))

Suppose we have two facts path(a, h, _, 2) and path(a, h, _, 3)
at a point in the computation. Then we know that,
path(a, !J, -, 3) does not satisfy the selection. Lat,er in the
computation we may derive a fact path(a, b, _, I). At, this
point we find that path(a, b, -2) also does not satisfy the
selection. 0

We define sound aggregate constraints next-they differ
slightly from sound aggregate select,ions, and we use t#hem in
our rewriting algorithm to generat,e aggregate select.ions.
Deflnition 3.7 Sound Aggregate Constraint. : An ng-
gregate selection s is a sound aggregate constraint for pred-
icate p iff every fact that can be derived for p satisfies the
aggregate selection 3. 0

The following are technical definitions that we use primar-
ily 1.0 ensure that the aggregate selections t.hat. we gencrat.c
can be tested efficiently. The motivat.ion is t.hat t,he fact,/rule
instance on which we have an aggregate selection must hind
all the variables in the aggregate selection.
Deflnition 3.8 Non-bound Variables : The non-
bound variables of an atomic aggregate selection c(Z) :

9rowb&(h FL a99-f(Y)) are the variables in the set
(Vats(X) u {Y}). The non-bound variables of aggregate sc-
lection s = 91 A . . *As,, are those vnriahles t.hat. are non-hound
in at least one of the atomic selections aggregate sl. q

Deflnition 3.9 Restrictions of Aggregate Sclcctions
: An atomic aggregate selection s, is said to be res6riclerl
to a given set V of variables if every non-bound variable
in si occurs in V. Let s = (31 A 32 A ,. . A s,,). Then
reslriclion(s, V) = A{Si 1 3, is restricted to V} 0
Example 3.3 Consider the following selrction:

3 = c(Z) : groupby(path(X, Y, P, C). [X, P], min(C))A
groupby(paWX, K P, C), [X, Yl, min(C))

The non-bound variables of s are X, Y, P and C, and
reslriction(3, {X, Y, C}) =

c(Z) : groupby(path(X, Y, P, C), [X, Y], min(C)) 0

4 Aggregate Rewriting
We present a quick overview of the next few sect,ions of the
paper. We develop our algorithm for propagating relevance
information in two steps. (1) In Section 4.1 we present a
collection of techniques for generating sound aggregate se-
lections. (2) In Section 4.2, we present our main rewriting
algorithm, Algorithm Push-Selections, which uses these tech-
niques as subroutines. In Section 5, we examine an evaluat.ion

proceedings of the 17th International
Conference on Very Large Data Bases

mechanism that can take advantage of sound aggregate se-
lections on predicates of the form p/s that are generated by
the rewriting mechanism.

As a preview of what the techniques can achieve, consider
Program Simple (Figure 1). The result of rewriting is Pro-
gram Smart, shown in Figu.re 2. The notation path/s1
denotes a (new) predicat,e that is a version of path with the
sound aggregate selection sl on it. The other predicates have
no aggregate selections on them. This selection tells us that
paths that are not of minimum length between their end-
points are irrelevant. Discarding such facts during the evalu-
ation leads to considerable time benefits, and is discussed in
Section 5.2.

4.1 Generation of Aggregate Constra-
ints and Selections

In t,his section we present a collection of techniques for gen-
erating aggregate constraints and selections, The techniques
are shown below. The reader may skip this section and pro-
ceed t.o Section 4.2 on a first reading. Technique Cl describes
a way of deducing sound aggregate constraints on predicates.
Techniques BSl, BS2 and BS3 describe three ways to gen-
erate sound aggregate selections on the bodies of rules. In
Sections 4.1.1 and 4.1.2 we present a more sophisticated anal-
ysis t.hat helps us to derive further sound aggregate selections
on horly lit,erals. For lack of space we omit several other tech-
niques for genera.ting sound aggregate constraints and selec-
tions.

Technique Cl: Suppose that there is only one rule defining
p, and it is of the form:

P(i, o.99-f(< Y >))-q(G)
T,et x = Vars(t), and let agg-f be an IncSel function
such that. VS 2 lZ),aggJ(S) = relevant,,,,j(S). Then
~(3, I’) : groupby(q(G), [x], aggJ(Y)) is a sound aggre-
gate constraint on p.

Technique BSl: Let R be of the form
R : head(‘i;;)+c(G),p(?)

and suppose there is an aggregate constraint on p of the
form: p(F) : s where all non-bound variables in s are
included in Vars(F). Suppose there exists a renaming5
0 of variables in q such that p(z) = p(c)[a]. Then s[u]
is a sound aggregate selection on the body of rule R.

Technique BS2: Suppose we have a rule of the form
P(% a99-f(C Y >))-q(G)

with an aggregate operation in its head. Let x =
\‘nrs(j). Then groupby(q(G), [??I, agg-f(Y)) is a sound
aggregate selection on the body of rule R.

Technique BS3: Consider a rule of the form
R : p(G)+body(G).

Suppose the head predicate p has a sound aggregate
selection p(l) : s on it, where all non-bound variables
in s are included in Vars(‘i). Suppose there exists a

505
Barcelona. September. 1991

Rl : shortest-path(X, Y, P, C) + s-p-length(X, Y, C),poth/sl(X, Y, P,C).
R2 : s$-length(X, Y, min(< C >)) * poth/sl(X, Y, P, C).
R3 : poth/sl(X, Y, Pl, Cl) - polh/sl(X, Z, P,C),edge(Z,Y, EC),

append([edge(Z, Y)lnil], P, Pl),Cl = C t EC.
R4 : polh/sl(X, Y, [edge(X, Y)}nil], C) - edge(X, Y, C). *
Selections:: sl s path/sl(X, Y, P, C) : groupby(pnth/sl(X, Y, P, C), [X, Y],min(C)))

Figure 2: Program Smart

renaming5a of variables in i such that p(q) = p(T)[a].
Then a(~] is a sound aggregate selection on the body of
rule R.

Technique LSl: Let 8 be a sound aggregat.e selection on
the body of a rule R, and let p(l) be a literal in the
body of R. Then p(T) : resttiction(s, Vars(i)) is a
sound aggregate selection on the literal p(s) in the body
of R.

Example 4.1 Consider Program Simple (Figure 1). Using
Technique Cl and rule R2 we get the aggregate constraint

s-pJength(X, Y, C) : groupby(poth(X, Y, P, C), [X, Y],
min(C))

on the predicate s-p-length. Using this aggregnt,e const,raint
with rule Rl, Technique BSl deduces the following sound
aggregate selection on the body of rule RI:

groupby(poth(X, Y, Pl, C), [X, Y], min(C)).

Using Technique BS2 we get the following sound aggregate
selection on the body of rule R2:

vowbWh(X, Y, P, C), [X, Y], min(C))
If we had a sound aggregate selection
path(X, Y, P,C) : groupby(poth(X, Y, P, C), [X, I’], min.(C))
on the head predicate of rule R3, Technique BS3 would
derive the following sound aggregate selection on the body
of rule R3:

groupby(path(X, Y, Pl, Cl), [X, Y], min(C1)).

From these sound aggregate selections on the bodies of Rl
and R2, using LSl, we deduce the sound aggregate selection

poth(X, Y, P,C) : groupby(pa,th(X, I.‘, Pl, C), [X,1’],
min(C))

on the literal poth(X, Y, P, C) in the body of the rule Rl,
and the sound aggregate selection

poth(X, Y, P,C) : groupby(path.(X, Y, P,C), [X, Y],
min(C))

on the literal pnth(X,Y, P,C) in t,he body of the rnle R2. 0

4.1.1 Pushing Aggregate Selections
We now look at another way of generat,ing aggregat,e selec-
tions on rule body literals. But first we present some defini-
tions. Aggregate functions such as min and ordinary func-

bWe could allow d to be a substitut,ion on variables. However.
to simplify the tank of ensuring that o11r rewriting rrlgnrilhrrl trr-
minntes, we restrict. ourselves to renaming.4.

Proceedings of the 17th International
Conference on Very Large Data Bases

tione aa + or * interact in a particular fashion, and we use this
interaction to generate sound aggregate selections on literals
in the bodies of rules.
Deflnition 4.1 Distribution : Let fn be a total function
fn:DxDx...xD-+ D that maps n-tuples of values from
D to a value in D. Define s-fn(U) = iJ(fn(7) 1 5 E U).
Let agg-f be an aggregate function egg-f : 2’ -+ D. Let
Sl,SZ,... S, be subsets of D, and let S = .!?I x Sz x . . . x

S 73. Let R = necessary,,,-/(SI) x necessory,oo-/(Ss) x
x nece~snry,og-/(S,). Then necessary,sp-/ is said to

di8tribUte over fn iff for every Sl,. . . , S,, ogg,f(s,fn(R)) =

ass-f(a-fn(S)). 0
For example neceasarymin distributes over “+” for redls

and integers, and over * for positive reals and positive in-
tegers, but does not distribute over * for arbitrary reals ‘.
Technique PSI shows a way of deriving aggregate selections
on lit,erals in rule bodies by making use of distribution of
aggregate functions over ordinary functions.

Technique PSl: Let R be a rule of the form
R : ph(Tt;;)+. . . ,p(i, Wi), . . . , Y = fn(W1,. . . , Wn)
such that there is no aggregate operation in the head of
R. Suppose

There is a sound atomic aggregate selection on the
body of R, of the form

wvb?dn (G), [% agg-f (Y))

necessary,o,-l distributes over f n, and

Each of WI,. , Wn, Y are distinct variables, and
t,hey each occur in exactly one literal other than
Y = fn(W1,. . , Wn) in the body of R; no two
W,‘s appear in the same literal; further, Y does
not appear in any other literal in the body of the
rule.

Define the non-repeated arguments of ~(7, wi) as those
of the form V, where V is a variable that does not
appear anywhere else in the body of the rule, and
V @ Vnrs(X) u {Y}. Then the following is a sound
atomic aggregate selection on the literal ~(7, Wi) in the
body of the rule:

p(z, W,) : wupbdp(Z, Wi), IFI, agg-f (Wi))

s We extend the notion of distribution considerably in the full
version of t.he paper.

506
Barcelona, September, 1991

where z is a tuple of new variables, wit.h nrity t.he same

as 1, and where 27 contains all varia.l)les in 2 a(.her

than those that appear in non-repeatsed argument,s of
P@t Wi)*

The above technique works for a version of the shortest
path program, that computes the pat,h lengt,h hut does not
keep track of the path information. In t,he next section we
see some shortcomings of this technique, and extend it.

4.1.2 Extended Techniques for Pushing Selec-
tions

Certain predicates, such as append, used in the bodies of
rules are t,otal functions on some t,ypes. Given any t,wo val-

ues of type list as the first two arguments of nppend, there

is guaranteed to he a third value such that. the predicate is
true. Such functions are said to be “non-constraining” on ar-
guments of the appropriate type. Under certain conditions,
if such a function appears as a literal in the body of a rule
we can drop the literal before applying Technique PSI. The
result of dropping such literals from a rnle is the reduction
of the rule; if we apply Technique PSI and generat.e an ag-

gregate selection s for a literal in the reduct.ion of t,he rule,
then s is a sound aggregate selection for t,he literal in the
original rule. Due to lack of space, we do not give details of
the technique here, but present a brief example of its use.
Example 4.2 We continue with Example 4.1. sup-
pose we have a sound atomic nggregat,e selection
groupby(path(X, Y, Pl, Cl), [X, I’], min(C1)) on the body of

rule R3. The reduction of R3 wrt to the atomic aggregate
selection is

R3’ : path(X, I’, Pl, Cl) - path(X, Z, P,C),
edge(Z, Y, EC), Cl = C + EC.

Using Technique PSI, on the reduction, we find t,hnt, the t.hird

argnment of pafh(X, Z, P, C) is non-repeated. Hence we tle-
dnce the following sound aggregate select,ion on the literal
pnth

path(X, Y, P, C) : gmupby(path(X, Z, P, C), [X, Z],
min(C))

and the sound aggregate selection
edge(Z, Y, EC) : groupby(edge(Z, Y, EC), [Z, Y], min,(EC))
on the literal edge.

If we used Technique PSl without I,he reclnct.ion st.ep, we
would get the aggregate selection

path(X, Y, P, C) : groupby(path(X, z, P, C), [X, z, P],
min(C))

which is “weaker” than the selection described above. 0

4.2 The Aggregate Rewriting Algorithm
In this section we present a rewriting of t,he program hased on
the propagation of sound aggregate selections. The rewriting
algorithm is somewhat similar to the adornment algorithm

Procediigs of the 17th Inramational
Cmfemnce. on Very Large Data Bases

used in Magic sets rewriting (see [UllSS]). When it detects
t,hab an occurrence of a predicate p in the body of a particular
rule hm a sound aggregate selection s on it, it creates a new
labeled version p/s of p. That occurrence of predicate p is
replaced by p/s, and by using aggregate selection s, (copies
of) rules defining p are specialized to define p/s.

The rewriting algorithm is shown below. In Step 7 of the
algorithm, s is a sound aggregate selection on the head of
R’, and this along with any aggregate constraints on body
predicates may be used with techniques from Section 4.1 to
generate new aggregate selections.

Algorithm Push-Selections(P, Pa’)

Input: Program P, and query predicate guery,ptcd.
output: Rewritten program Pa’.
I) Derive sound aggregate constraints on the predicates of

t,he program.
2) Push querygredf nil onto stack.
3) While atack not empty do
4) Pop p/s from the stack and mark p/s as seen.
5) For each rule R defining p do

6)

7)

8)
9)

10)

11)
12)
13)

Set R’ = a copy of R with head predicate
replaced by p/s.

Derive sound aggregate selections for each body
literal p, of R’.

For each pi in the body of R’ do
Let si denote the conjunction of sound

aggregate selections derived for pi.
If a version pi/t of pi such that t < si haa been

seen,
Then choose one such, and set si = t ;
Else push pi/si onto stack.

Output a copy of R’, with each pi replaced by pi/si.
14) Output selection 3 on p/s.

End Algorithm.

Pnstproccssing 1: For each predicate p, for each version
p/s of p+ choose the weakest version p/t of p in the rewritten
program such that s 2 t. Replace all occurrences of p/s
in bodies of rules in the rewritten program by p/t. Finally,
remove a.ll rules that are not reachable from the query.

Postprocessing 2: Suppose we have an atomic aggregate

selection 9 = groupby(p(T), [xl, agg-f(Y)) in the rewritten
program. If p is absent from the rewritten program select
version p/s of p if it exists. If not, select a version’p/sl of
p if any such version exists. If no p/s1 was found, p is not
connected to the query predicate-drop the selection s from
all predicates that use it. Otherwise rename p in the groupby
in s to p/s or p/s1 as the case may be.

7 We omit details on how to make this choice from this version
of the paper.

507
Barcelona. September. 1991

An aggregate selection s is stronger than an aggregate se-
lection t (denoted aa s > t), if whenever 2 classifies an instan-
tiation as irrelevant, then so does s. We can obtain simple
sufficient conditions for this, which we omit for lack of space.
If in the rewritten program there are two versions of p, p/s
and p/t such that s > 1, there is no point, using the st.ronger
version p/s-all the facts computed for p/s will he compnted
anytiay for p/t. Preprocessing to remove p/s is described in
Postprocessing 1.

As a result of the renaming of predicates, predicates in
aggregate selections may not be present in the rewritten pro-
gram. Postprocessing 2 describes how t,o fix this. *

Algorithm Push-Selections terminates on all finit.e input
programs, producing a finite rewritten program. Thk rewrit-
ten program could potentially be large, but, as is the case
with the adornment algorithm for Magic sets rewriting, this
is very unlikely to happen in practice--the rewritten program
is likely to be not much larger than the original program. To
ensure that the rewritt’en program is small we could adopt.
heuristics such as bounding the number of at.nmic aggregate
selections in an aggregate selection to some fixed small value,
or bounding the number of different aggregate selections on
each predicate. We omit details here; these restrictions may
increase the number of facts computed, but will not affect
correctness.
Proposition 4.1 (Stratification) : If t,he init,ial pro-
gram is stratified wrt aggregation, t,hen t.he aggregat,e rewrit-
ten program is also stratified wrt aggregation. D
Lemma 4.1 (Correctness of Rewriting) : Semi-
Naive Evaluation of Pa* gives the same set of answers for
query-pred as Semi-Naive evaluation of P. Further, the ag-
gregate selections on each predicate in Pad are sound aggre-
gate selections.0
Example 4.3 Applying this algorithm to Progra.m Simple,

we get the optimized program, Program Smart shown in
Figure 2). The algorithm starts with the query predicate

shortest-path. Creation of aggregate const,raint,s, and push-
ing them into rules is done as discussed in earlier exam-
ples, and the operation of Algorithm Push-Selections is fairly
st,raight,forward. As a result of the rewriting we get the rules
of Program Smart, but wit.h po.th/sl having t#lle hollowing

sound aggregate selection on it:
pnfh/sl(X, I’, P,C) : groupby(palh(X, I: P,C), [X, I,‘],

min(C))
On postprocessing, we rename predicate path in the above

selection to path/sl, to get Program Smart. To get the ben-
efits of the rewriting, the evaluation must, make use of the
nggregat,e selections present. in Program Smart. We describe

*A renaming of p is a version of p with an aggre@e 6eIect inn on
it, and is thus a subset of p. Due t,o monotonicity of the functions
unnece~snry,~~-/, any value that is found unnecessary wrt the
subset would also be unnecessary wrt the full set. Hence while
the new selection may not be as strong as the original one, the
renaming is guaranteed to be sound.

Proceedings of the 17th International
Conference on Very Large Data Bases

how to do this in the next section. 0

5 Aggregate Retaining Evalua-
tion

In this section we see how to evaluate a rewritten program
making use of aggregate selections on predicates. Essentially,
once we know that a fact does not satisfy a sound aggregate
selection on it we know that it is irrelevant to the computac
tion, and can discard it.

We define Aggregate Retaining Evaluation as a modifica-
tion to Semi-Naive evaluation (see e.g. [UllSS]): At the end
of each iteration of Semi-Naive evaluation, we discard facts
that, have been computed for each predicate if they do not
sat.iafy a sound aggregate selection on the predicate.
Theorem 5.1 (Correctness, Completenese, Non-Red-
undancy) : Evaluation of Par using Aggregate Retaining
evaluation gives the same set of answers for query-pred as
evaluation of P using Semi-Naive evaluation, and does not
repeat any inferences. Further, the Aggregate Retaining eval-
uation of Pa* terminates whenever the Semi-Naive evaluation
of P terminates. 0
Example 6,l Predicate path/s1 in Program Smart has
a sound aggregate selection sl =c path/sl(X,Y, P,C) :
groupby(path/sl(X, Y, P, C), [X, Y], min(C)). In the evalua-
tion of Program Smart, we maintain at most one path/31 fact
at a time with a given value for X, Y. If a fact is generated
with any value for X and Y and another fact with the same
value for X and Y already exists we know that the one with
the great,er C value does not satisfy the aggregate selection.
Hence it can be discarded. 0

5.1 Pragmatic Issues Of Testing Aggre-
gate Selections

Our selection propagating techniques ensure that all non-
hound variables in a groupby of an atomic aggregate selection
also appear in the corresponding literal on which the selec-
tion is applied. When testing an atomic aggregate selection
on a fact f, we have a unique instantiation of the grouped
variables of the selection, and the test can be performed ef-
ficiently. If t,he test determines that fact f is irrelevant, f
is discarded, else it. is retained. As the computation pro-
ceeds, the set of unnecessary values for the “group” to which
f belongs (i.e., the set of facts with the same values in the
grouped arguments) could change, and this might enable US
to determine that f is irrelevant after all. By sorting the set
of facts on the grouped arguments, this “re-testing” can be
done efficiently. The cost of sorting is small for the aggregate
operat,ions we consider in this paper; in the case of maz ot
mt7t aggregat,e operations there is at most one fact stored in
each set.
Proposition 5.1 (Bounds on Performance) : Given a
program that uses only aggregate operations defined in this
paper, and a data set, let the time for Aggregate Retaining
Evaluation of the program on the dataset be 1~~ and let to

508
Barcelona. September. 1991

be the time taken to evaluate the original program on the
dataset. There is a constant k (independent. of the dat.a set)
such that 1~ 5 k *lo. a
This means that Aggregate Retaining evaluation of t.he
rewritten program can do at most a constant factor worse
than Semi-Naive evaluation of the original program- the
converse is not true.

Using Aggregate Retaining Evaluation, Program Smart
runs in time O(EV’), and the single source v&ion of t.he
program ’ runs in time O(EV). These bounds hold even
if there are negative length edges, so long as there are no
negative cycles in the edge graph.

5.2 Ordered Search
Consider the shortest path problem with a given st,arting
point. Dijkstra’s algorithm t,akes O(E * log(V)) t,ime if we
use a heap data structure to find the minimum cost, pat.h
at, each stage. However, Aggregat.e Retaining Evaluation on
the single source shortest path program takes O(E * V) time.
We can get the effect of Dijkstra’s algorithm by extending at
each stage only the shortest path that hasn’t been extended
yet. In other words, we use only the path facts that are of
minimal cost among those that haven’t yet been used. This
important observation is made in [GGZSO] and is used in their
evaluation algorithm (see Section 6.1 for a brief description)
for monotonic min programs (in their notation a min program
is one that uses only the aggregate operation min, and it is
said to be monotonic if it is monotonically non-decreasing on
a pa.rticulnr argument of each predicat,e).

We make use of this idea to derive an improved evaluation
technique for stratified min programs. The basic idea is t,o
modify Aggregate Retaining Evaluation hy hiding all fa.cts
whose cost arguments are not of minimum value until no
more derivations can be made. At this stage the hidden fact
whose cost argument is minimum (over all hidden facts) is
ma.de visible. The whole process is repeat,ed unt.il there are
no more hidden facts. As before, facts t.hnt. do not. satisfy
sound aggregate selections on predica.tes are discarded. We
omit details here due to lack of space. We call this evalna.tion
technique as Ordered Aggregate Retaining Eualualion.
Theorem 6.2 Ordered Aggregate Retaining Evaluation is
sound, and is complete for and terminates on those programs
on which Aggregate Retaining evalrtation terminates.

The effect, of the above evnlua.tion is exnct,ly the same its
if Ganguly et al.% evaluation technique were used, for t,he
case of stratified monotonic min programs. For instance, Or-

gThis version is obtained automatically by using the Factoring
transformation [NRSU89] on Program Dumb, before using Aggre-
gate Rewriting. We do not show details here, but the net effect is
as if the first. argument of path becomes a fixed constant,, Aggre-
gate Rewriting optimizes the resultant program s~~ccesshllly. We
also assume that, sharing of ground lists between t.he body and
head facts of a rule can be done, so t,hat, the append cnlls in the
program can be executed in constant time.

Proceedings of the 17th International
Conference on Very Large Data Bases

dered Aggregate Retaining Evaluation of the single source
shortest path program would explore paths in order of in-
creasing cost, and would have time complexity O(Elog(V))
which is the same as that of the technique of Ganguly et al.
and Dijkstra’s algorithm. Program Smart would have time
complexity O(EVlog(V)) using any of these techniques.

Ordered Aggregate Retaining Evaluation also works on
(and Theorem 5.2 holds for) min programs that are not
monotonic. For instance, the shortest path program is non-
monot,onic if there are negative cost edges. But even in this
case, Ordered Aggregate Retaining Evaluation of Program
Smart functions correctly, and terminates if there are no neg-
ative cost cycles.

6 Discussion
We now see some more examples of programs to which our
techniques are applicable.
Example 6.1 The following program defines the earliest fin-
ish time of a task, given the finish times of preceding tasks.

Rl : e-fin(X,mac(< T >)) +- fin(X,T).
R2 : fin(X,T) + ptecedes(X, Y), fin(Y, Tl),

delay(X, D),T = Tl + D.
R3 : fin(X,T) + first(X), detay(X, T).

This program can be optimized using our tech-
niques, and in the resultant program fin is replaced by
fin/s, where a is the aggregate selection fin/s(X,T) :
gro@y(fin/r(X, T), [Xl, maz(T)). The rules and other
predicates are the same, but finish facts that don’t have
maximal times are deduced to be irrelevant. We can extend
t.his program to compute the critical path, and still apply our
opt.imiKations. a
Example 6.2 With a minor modification to Technique BSI,
to allow,pushing aggregate selections through rules with ag-
gregate operations in the head, we can optimize the following
program. Predicate path%(X, Y, H, C) denotes a path where
X and Y are source and destination, H denotes hops, and C
denot.es cost.

Query: ?-p-best(X, Y, H, C).
RI : p-be&(X, Y, H, C) - p-f ew(X, Y, H),

p-short(X, Y, H, C)
R2 : p,few(X, Y, min(< H >)) + p-short(X, Y, H, C).
R3 : p-short(X,Y, H, min(< C >)) +- path2(X, Y, H,C).
/* .*. Rules for path2 . . . */

The program finds flights with the minimum number
of hops, and within such flights, finds those with mini-
mum cost. Our technique generates the aggregate selection
path2(X, Y, H, C) : s where:

a = groupby(path2(X, Y, H, C), [X, Y, H], min(C))A
groupby(path2(X, Y, H, C), [X, Y], min(H)).

The selection propagates unchanged through the rules defin-
ing pnth2, so that the rewritten program is the same except
for having the sound aggregate selection sl on path2 as well
as aggregate selections on p-few and p-best. a

509
Barcelona, September. 1991

Example 6.3 The following program can be used to find t.he
cost of the cheapest three paths, and illustrates the ability
of our techniques to handle aggregate operations other than
min and mat. We use the aggregate operation leas13 that
selects the three least values”,

Query: ?-shotdest3(X, Y, C).
Rl : shorlest3(X, Y, P, least3(< C >) - path(X, Y, P, C)
f’ . . . Rules for path as in Figure 1 .., */

Aggregate operation leaat is an IncSel function (under
an extended definition of In&e1 functions that we do not
present in this paper), with unnecessata(lo,ls(S) defined as
all values greater than the third lowest value in S. Also.
n.eceaaargILolt3 distributes over “+‘I. Hrnce our rewriting
technique proceeds on the rules for path in this program ex-
actly as it does for the earlier shortest path problem (Exnm-
ple 4.3) and the path rules in the rewritten program are the
same as in Program Smart (Example 4.3) except that min
is replaced by leaal3. Evaluation of the rewritten program is
very similar too, except that instead of ret,aining only mini-
mum paths between pairs of points, t.hr cheapest. three paths
between pairs of points are retained. 0

Our optimization techniques are ort.hogonnl to t’he Magic
Sets t,ransformation, and are applicable t,o programs that, can-
not be expressed using transitive closure, as the next example
shows.
Example 6.4 Consider Program Nearest-Same-Generat.ion
(adapted from [GGZSOJ) in Figure 3, t.hat comput,cs t.he
%earest” among all nodes in the %ame generation” as a.
node a. Our techniques can be applied t.o opt,imize this pro-
gram. This program has been rewritten using the Magic Sets
transformation.

The rewriting produces essentially the same program ex-
cept t.hat there is an aggregate selection .9 = agbJ’(X, I’, I?) :
grotcph~(ag*“(X, Y, D), [X, Y], min.(I))) on predica.te sg*“.
In the evaluation of the rewritten program, for each X, Y
pair only the fact ag *“(X,Y, 1)) such t,hat D is minimum is
retained. 0

6.1 Related Work
Several papers in the past [RHDM86, ADJ88] addressed op-
timizations of generalized forms of transit,ive closure that, al-
lowed aggregate operations. Cruz and Norvell [CN89] exam-
ine t,he same problem in a generalized algebraic framework.
On t,he other hand, we deal with a language that can express
more general recursive queries with aggregation, and do not
make use of any special syntax.

Recently Ganguly et al. [GGZSO] present,ed opt,imiaation
techniques for monotonic increasing (resp. decreasing) logic
programs with m.in (resp. maz) aggregat,c operations. Tnfor-

loThis aggregate operation returns (L value that is in the ex-
tended Herbrand univcrse[BNR+87]. Although we do not con-
sider these in this paper due t.o space limit,ations, this causes no
problems for our optimization techniques.

Pmceediigs of the 17th International
Confemnce on Very Large Data Bases

madly, there must be a single cost argument for each pred-
icate in the program and the program must be monotonic
on this argument. They transform such a program into a
(possibly unstratified) program with negation whose stable
model yields the answers to the original program, but does
not contain any irrelevant facts. They also present an effi-
cient evaluation mechanism for computing the stable model
for the transformed program.

Our results were obtained independently of Ganguly et
al. [GGZSO]. The results of Ganguly et al. complement this
work in two important ways. Their idea of ordering of facts
in the computation (which we have adapted and extended in
Se&on 5.2) offers significant improvements in time complex-
it,y, and unlike our technique, theirs can handle monotonic
min programs eiren if the use of min is unstratified.

Our techniques are more general than those of Ganguly
et al. in several ways. (1) Our techniques are applicable to
stratified programs that are not monotonic, and that can con-
tain multiple aggregate operations including min and max.
(2) For the class of strat,ified monotonic min programs, our
rcwrit.ing techniques genera.te selections that are at least as
st rang as t,hose generat,ed by Ganguly et al. (3) Given a strat-
ified monotonic min program, its evaluation using rewriting
and Ordered Aggregate Retaining Evaluation computes no
more facts (in an order of magnitude sense) than its evalua-
tion using their techniques.

There are many common examples of programs that can
benefit. from our optimizations, although they cannot be han-
dlrd by [GGZSO] since they are not appropriately monotonic.
These include the shortest path problem with edges of nega-
tive weight, and the the earliest finish time problem shown in
Example 6.1. I1 Further, the Magic Sets rewritten versions
of many monotonic non-linear programs are non-monotonic,
and our optimizat,ions would be useful in this context.

Unlike [GGZSO] we allow aggregate operations other than
mnx and min, for instance “least k values”. We also allow
predicates with multiple cost arguments and allow multiple
atomic aggregate selections on the same predicate. The use
of these generalizations is illustrated in Examples 6.2 and 6.3,
which cannot be handled by Ganguly et al.

7 Extensions and Conclusions
We believe that evaluation with Aggregate.Optimization will
offer significant time benefits for a significant class of strat-
ified programs that use aggregate operations similar to min
and max. We believe that given a technique such as that
of Ganguly et al., or of Beeri et al. [BRSS89] for evaluat-
ing special classes of unat,ratified programs, our results can
he adapted t,o det.ect, irrelevant fact.s using aggregate selec-
t,ions. Our optimization techniques may be useful for opti-
mizing (non-recursive) SQL-like queries that use aggregate

“This program uses max and is monotonically increasing,
whereas Ganguly et al. require it to be monotonically decreasing.

510
Barcelona, September, 1991

Rl : nearest-sgb”(X, Y, min(< D >)) - m_ncnr~.sl-.sghf’(X), .qgblf (X, Y, D).

R2 : sgb/j(X, Y, D) e msg b”(X), up(X, Zl), sg b”(Z1, 22, Dl), down(Z2, Y), D = D1 + 1.
R3 : sgb”(X, Y, 1) - m_sgblf(X), jlat(X, Y).
R4 : m-sgblJ(X) - m-nearest-sgb~f(X).
R5 : m-sgbff(Zl) - m-sgbll(X), up(X, Zl).
R6 : m-nearest-sgbfl(s).

Figure 3: Program Ne.a.rest,-Same-Generation

operations. We believe our techniques will find use in the
bottom-up evaluation of quantitative logic programs (see e.g.,
[SSGK89]). Our techniques can be adapted to “push” a more
general class of aggregate operations through rules, so that,
aggregate operat,ions can be performed on smaller intrrme-

diate relations rather than on larger final re1nt.ion.s. This in
turn could enable us to discard facts that have been used in
the aggregation. Operations such as sum or count, to which
the optimization techniques we described do not apply, can

benefit from such adaptations.

Acknowledgements: The authors would like to thank Di-
vesh Srivastava for his comments and suggest.ions.

References

[ADJ88] R.. Agrawal, S. Dar, and H. V. Jagadish. On
transitive closure problems involving path com-
putnt,ions. Technical Memorandum, 1988.

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D.
Ullman. The Design and Annlysis of Computer
Algorithms. Addison-Wesley, 1974.

[BMSUBG] Francois Bancilhon, David Maier, Yehoshua Sa-
giv, and Jeffrey D. Ullman. Magic set.s and other
strange ways to implement, logic programs. In
Proceedings of the ACM Symposium on Prin-
ciples of Database Systems, pages l-15, Cnm-

bridge, Massachusetts, March 1986.

[BNR+E?] Catriel Beeri, Shamim Naqvi, Raghu Ramakrish-
nan, Oded Shmueli, and Shalom Tsur. Sets and
negation in a logic database language. In Pro-
ceedings of the ACM Sympositrm on Principles
of Database Systems, pages 21-37, San Diego,
California, March 1987.

[BR87] Catriel Beeri and Raghu Ramakrishnan. On the
power of magic. In Proceedings of the A CM Sym-
posium on Principles of Database Systems, pages
269-283, San Diego, California, March 1987.

(BRSS89J C. Beeri, R. Ramakrishnan, D. Srivastava, and
S. Sudarshan. Magic implementarion of st,rafified
programs. Manuscript, Sept,emher 89.

[CN89] I. F. Cruz and T. S. Norvell. Aggregative closure:
An extension of transitive closure. In Proc. IEEE

Proceedings of the 17th International
Confev on Very Large Data Bases

[GGZSO]

[MPRSO]

[NRSUSS]

[Ram881

5th Int’l Conj. Data Engineering, pages 384-389,
1989.

Sumit Ganguly, Sergio Greco, and Carlo Zaniolo.
Minimum and maximum predicates in logic pro-
gramming. In Procedings of the ACM Symposium
on Principles of Database Systems, 1990.

Inderpal S. Mumick, Hamid Pirahesh, and
Raghu Ramakrishnan. Duplicates and aggre-
gates in deductive databties. In Proceedings of
the Sixteenth International Conference on Very
Large Databases, August 1990.

Jeffrey F. Na.ughton, Raghu Ramakrishnan,
Yehoshua Sagiv, and Jeffrey D. Ullman. Argu-
ment reduction through factoring. In Proceed-

ings of the Fifteenth International Conference on
Very Large Databases, pages 173-182, Amster-
dam, The Netherlands, August 1989.

Raghu Ramakrishnan. Magic templates: A spell-
binding approach to logic programs. In Pro-

ceedings of the International Conference on Logic
Programming, pages 140-159, Seattle, Washing-
ton, August 1988.

[RHDM86] A. Rosenthal, S. Heiler, U. Dayal, and F. Manola.
Traversal recursion: A practical approach to sup-
porting recursive applications. In Proceedings
of the ACM SIGMOD Conj. on Management of
Data, pages 166-176, 1986.

[SSGK89] Nikolaus Steger, Helmut Schmidt, Ulrich
Giintzer, and Werner Kiessling. Semantics and
efficient compilation for quantitative deductive
databases. In IEEE International Symposium on
Logic Programming, pages 660-669, 1989.

[U1189] Jeffrey D. Ullman. Principles of Database and
Knowledge-Base Systems, volume 2. Computer
Science Press, 1989.

511
Barcelona, September, 1991

