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Abstract 
In this paper we present a technique to optimize queries on 

deductive databases that use aggregate operations such as 

min, max, and “largest Ic values.” Our approach is based 
on an extended notion of relevance of facts to queries that 

takes aggregate operations into account. The approach has 

two parts: a rewriting part that labels predica.tes with “ag- 

gregate selections,” and an evaluat,ion part. t.hat, makes use of 

“aggregate selections” to detect that facts are irrelevant and 

discards them. The rewriting complements standard rewrit- 

ing algorithms like Magic sets, and the evaluation essentially 

refines Semi-Naive evaluation. 

1 Introduction 
Recursive queries with aggregation have heen considered by 
several people [BNRt87, MPRSO]. The advantages of a. rich 
language are clear, but unless effective optimization tech- 
niques are developed, the performance of specialized systems 
based on supporting a limited class of queries (for example 
generalized transit,ive closure queries) cannot be matchrd. III 
this paper we consider optimizations of recllrcivc programs 
wit,h aggregate operations. 

Consider the (very naive) program shown in Figure 1, for 
computing shortest paths between nodes in the relation edge. 
It essentially enumerates all paths and chooses shortest paths 
among them. The notation path(X, I’, min,( < C >)) in t.he 
head of rule R2 denotes that for each value of X, I’ all pos- 
sible C values that are generated by the body of t.he rule are 
collected in a set, and the min aggregat,e opera.tion is applied 
on this set of values. For each value of X and Y, a path, fact 
is created with the result of the min operation as the third 
argument. 

A formulation of the problem in t,his form is desirable since 
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it. is declarative, can be queried in many different ways and 
is easy to write. It is easily augmented with additional con- 
straints such as “the edges all have a given label” (for in- 
stance, flights on United Airlines alone must be considered), 

or “there must be no more than three hops on the flight”. 
The standard bottom-up evaluation of such a program is ex- 
t,remely inefficient since it constructs every possible path in 
the graph. In contrast, the above problem can be solved in 
polynomial time using either Warshall’s algorithm or Dijk- 
stra’s shortest path algorithm (see [AHU74]). It can also be 
evaluated efficiently if,it is expressed using specialized oper- 
ators for transitive closure ([RHDM86, ADJ88, CN89]). 

We propose to optimize bottom-up evaluation using a no- 
t,ion of relevance of facts to some aggregate operations such 
as min and m.ax. Our notion of relevance can be seen as 
an extension of the notion of relevance used in optimizations 
such as Magic sets rewriting [BMSU86, BR87, Ram88]. We 
first explain the idea informally, using Program Simple (Fig- 
ure 1). 

Example 1.1 Consider Program Simple (Figure I)‘. Ag- 
grrgat,e opernt.ion min ha.. the property that non-minimal 
values in a set. are unnecessary for the aggregate oper- 

&on on t.he set.. Using this property, we can deduce 
that a fact path.(a, b,pl, cl) is relevant to the rule defining 
the query predicate shortest-path only if there is no fact 
path(a, b,p2, c2) such that c2 < cl. We use tests called aggre- 
gore selections to check whether a fact is relevant; conditions 
such as t,he above are used in the tests. 

The rewrit.ing (automat.ically) deduces an aggregate selec- 
tion on this occurrence of the predicate path; only facts with 
minimum cost values satisfy the aggregate selection. It then 
“pushes” this aggregate selection into rules that define path, 
and propagates the selections through the program. 

The rewriting algorithm outputs a program containing ag- 
gregat,e selections on the predicates. In this case the output 
is essentially the same as’ Program Simple, except that every 

‘We assume that append is defined for us, and concentrate on 
the rest of the program. 
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Rl : ~horfesLpalh(X, Y, P, C) + s-pJenglh(X, Y, C),path(X, Y, P, C). 
R2 : a-p-length(X, Y, min(< C >)) + polh(X, Y, P,C). 
R3 : path(X, Y, Pl, Cl) - pnth(X, Z, P,C),edge(Z,Y, EC), 

appen.d([edge(Z, Y)lnil], P, PI), Cl = C + EC. 
114 : pathl(X, Y, [edge(X, Y)lnil],C) - edge(X, Y, C). 
Query: ?-s,p(X, Y, P, C). 

Figure 1: Program Simple 

occurrence of path in the program has an aggregate selection 
that selects minimum cost paths. The rewritt,en program is 
shown in Figure 2, and we discuss it after introducing the 
notation used to express aggregate selections. 

The evaluation phase of our technique makes use of the 
aggregate selections on path, and discards facts on which 
the aggregate selection test fails (namely the non-minimal 
paths). We can optimize the evaluation further by using in 
each iteration only the path fact wit,h minimum cost. among 
all newly generated path facts, This reduces the cost t.o the 
same as that of Dijkstra’s algorithm (O(e * log(n))), and this 
is discussed in Section 5.2. The optimized evaluation also 
works when edge weights are negative, so long as there are 

no negative cost cycles. 0 
Recently Ganguly et al. [GGZQO] independently examined 

Datalog programs with min or mnz aggrega.te operations. 
Their work addresses problems that are similar to t.hose t,hat 
we consider, but the approaches are quit.e different and the 
techniques are complementary. We present a comparison of 
our techniques with those of Ganguly et al. in Section 6.1, 
and describe several advantages of our approach. 

The rest of the paper is organized as follows. We present. 
basic definitions in Section 2. Our not,ion of relevance is dr- 
veloped in Section 3, where we also introduce aggregate selcc- 
tions and constraints as a way of specifying relevance infor- 
mation. Techniques for propagation of aggregate selections 
and constraints through single rules are developed in Sec- 
tion 4.1. In Section 4.2 we present an algorithm to rewrite 
programs by propagating aggregat,e select.ions t.hrnugh t.he 
program, starting from the query. In Section 5 we show how 
to evaluate rewritten programs. 

2 Definitions 
We consider logic programs (an extension of Datalog pro- 
grams that allows terms such as lists) ext.ended with aggre- 
gation primitives. For simplicity, we only consider programs 
without negation although our resulm can be extended t.o 
deal with stratified negation in a strnight.forward manner. 
We also restrict the use of aggregation to be stratified. That 
is, if p is used to define 9 via a rule that uses aggregation, 
9 cannot be used to define p. Further, we require that ev- 
ery variable in the head of a rule should appear in t,he body. 
This means that. only ground t,erms can be generat.ecl, which 
is reasonable in a database context, Finally, we assume t.hat 
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program transformations such as Magic Sets have already 
been carried out; their use is largely orthogonal to our opti- 
mizations. 

We assume standard definitions [UllSQ]. We use overlines 
to denote tuples of terms, variables etc. We use Vars(t) to 
denote the set of variables that occur in a term 1. Similarly, 
Vars(T) denotes the set of variables that occur in a tuple of 

terms I. 

The syntax and semantics that we use for aggregation is 
very similar t,o LDL [BNR+ 871. Wlog we assume that there is 
at most one literal in the body of a rule that has an aggregate 
operation in the head. The semantics of a rule 

~0, w-f < Y >I-9(. . .I 
is as follows. We use the set of all facts that can be derived 
for 9 to instantiate 9(, . ,) and thus generate instantiation8 of 

variables in Vars(?) u {Y}, For each value of Vars(?) in this 
set, we first collect the set of corresponding instantiations of 
Y and apply aggregate operation agg,f to it to get a value 
y;, and then create a fact ~(7, ~7). 

3 Views of Relevance In Logic 
Programs 

The idea of relevance of facts to a query is used by Prolog and 
other top-down evaluation techniques, as well aa by program 
rewriting techniques such as Magic sets. Suppose we have a 
rule 

R: p(i)--q,(t;),~z(~,...,~n(~ 
Assume for simplicity that we have a left-to-right rule evalu- 
af.ion (in t,he fashion of Prolog). Then a fact gi(ei) is relevant 
if there is an instantiation 

R’ : p(a)+91 (al), a(m), . . . I gi(ai) 

of (the head and first i body literals of) R such that 
the head fact p(a) is relevant, and all instantiated facts 

91(al),..~, 9i-r(oi-1) have been derived. Thus, the notion 
of relevance is local to a rule and to a set of facts that can 
inst,ant.iat.e it.. 

In contrast., in the shortest path problem we can decide 
that a particular fact path(a, b,pl, cl) is irrelevant if a shorter 
path (fact) has been found. Such information is “global”, in 
the sense that relevance depends on facts other than those 
used to instantiate a rule. We develop this notion of rele- 
vance for programs with aggregate operations in the rest of 
this section, in three steps. (1) If agg-f is an aggregate func- 
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tion and S a set of values, we consider when some values in S 
can be ignored without affecting egg-f(S) (Sect.ion 3.1). (2) 
We use the ideas of step 1 to define when A fact. is relevant 
(Section 3.2). (3) We introduce aggregnte selections and ng. 
gregate constraintsas a way of explicitly identifying irrelevant 
facts (Section 3.3). 

3.1 Relevance and Aggregate Functions 
Given a set of values and an aggregate funct.ion on the set., 
not all the values may be needed to compute the result, of the 
aggregate function. For instance, if the aggregate function is 
min, no value except the minimum value is needed. We now 
formalize the notion of values being unnecessary for aggregate 
functions. 
Deflnition 3.1 Incremental Aggregate Selector (Inc- 
Sel) Functions : Let ngg-f be an aggregate function 
agg-f : 2D - D on domain D. We say that agg-f is an in- 
cremental aggregate selector (IncSel) funct,ion if there exists 
a (nontrivial) function unnecc : 2’ --* 2’ such that 

1. VS C D,VSI, (S - unnecc(S)) G Sl C_ S j 

ago-f (Sl) = a99-f (S) 

2. unneccagg-j is monotone. i.e., VSl E S2 C D, 
unnecc,gg-j(Sl) E 14nnecc,gg-j(S2) 

3. VS 2 D, unnecc,,+,(S) = unnecc,,,-f( 
S - unnecc,,+f (S)) q 

Given a set S, Part 1 of the above condition lets us drop 
values in unnecc ogg-~(S) from S without affecting the result 
of agg-f(S). Part 2 of the above conclition 1et.s us detect. nn- 
necessary values before the entire set of values is compnted- 
when we have computed some Sl C S, any valne clet.ect.ed 

as unnecessary for agg-f on Sl is also guaranteed to be nn- 
necessary for agg,f on S; a value that is necessary for Sl 
may however be unnecessary for S. Part 3 of this condition 
ensures that if a value is detected to be unnecessary for an 
aggregate operation on a set, it will cont,inue t.o be detected 
as unnecessary if we discard unnecessary valnes from the set2. 

Consider an IncSel function agg-f on domain D. There 
may be more than one possible function trnnecc as required 
by the definition of IncSel functions. 

I I Deflnrtron 3.2 unnecessary,gg-f : For each incremen- 
tal aggregate selector function agg-f t,hat is allowed in our 
programs, a function unnecc (as above) is chosen, and is tie- 
noted by unneceaaaryaop-~. 

The function necesaaryo,e-f : 2D 4 2D is defined as 
neceaaary,ss-j(S) = S - unneceaanry,,p_j(S). 0 

We do not consider how this choice is made, but assume it 
is made by the designer of the system based on the following 
criterion. Given two such functions f and g4 we say f 2’ g 
iff VS C D, f(S) 1 g(S): clearly >’ (the strict, version of 2’) 

2This is used in Theorem 5.1 to show that inferences are no! 
repeakd. None of the other results require aggregate functions to 
satisfy this condition. 
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is an (irreflexive) partial order. Preferably, a function that is 
maximal under the (irreflexive) partial order >’ is chosen. 

Note that unnecessary,,,,,(S) could be infinite. We do 
not construct an infinite set unneceasary,ss,,(S), but re- 
quire that we can efficiently test for the presence of a value 
in unneceasary,ss-l(S), for finite S. 

The function min on reals, with unnecesaarymin(S) = 
{r E D 1 2 > min(S)} is an IncSel function. The function 
maz on reals with unnecessary,,, symmetrically defined is 
also an IncSel function. Other examples (with the functions 
unn~eceaaaryoo,-~ appropriately defined), include the aggre- 
gate function that selects the kth largest element of a set for 
some constant k, and the aggregate function that sums up 
the k largest elements of a set. Although we only consider 
a.ggregat,e functions of the form 2D- > D, the ideas in this 
paper can be extended t,o aggregate functions of the form 
yzD x b - T/F. Examples of such functions include “se- 
lect the best three results”. We can also extend the ideas to 
aggregate functions on multisets. 

In the rest of the paper, we assume that the optimization 
t.echniques are applied only on IncSel functions, and that a set 
of such aggregate functions and the corresponding functions 
unnece8snryaoo-j are given to us. 

3.2 Relevance of Facts 
We now use the notion of necessity with respect to an aggre- 
gate function in defining our extended notion of relevance of 
fact.6. 
Deflnition 3.3 Relevance of Facts : Consider a pro- 
gram F with a query on it. A fact p(Z) is relevant to the 
query iff one of the following is true: 

1. p(E) is an answer to the query, or 

2. p(Z) occurs in the body of an instantiated rule without 
aggregation in the head such that every literal in the 
body is true in the least mode13, and the head fact of 
t,he rule is relevant to the query, or 

3. There is a rule R in the program 

R : g(iT, agg-f (< Y >)I-P(G) 
and an instantiation R’ of R, 

such 

(4 

(b) 

R’ : q(K, agg-f(< Y >))+p(E) 
that 

Y is free in R’ and all other variables are bound 
t.o ground terms, and 

Let Sy be the set of all possible instantiations b 
of Y such that p(z)[Y/b] is true in the model. 
Then q(z, agg,f(Sy)) is present in the model and 
is relevant to the query, and 

3The program semantics is based upon a least model. For posi- 
tive Horn logic programs, this is the least Herbrand model. In the 
presence of set terms, we must consider models over an extended 
Herbrand universe [BNR+87]. The definition can be extended to 
non-stratified programs. 
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(4 P(C) = p(G)[Y/bl], where bl E necess- 

arYa,,J(SY 1. 0 

A fact is said to be irrelevant to the query if it is not rele- 
vant to the query. In future, we simply say relevant (resp. 
irrelevant) when we mean “relevant to the query” (resp. “ir- 
relevant to the query”). 
Example 3.1 Consider a program with one rule 

R : p(X,min(< Y >))-q(X, Y) 
and facts q(5,4),q(5,6) and q(5,3). Let, the query on the 
program be ?p(X, Y). Fact p(5,3) is generat,ed as an answer. 
With X = 5, the set of facts that match the body of the 
rule have Y values of 3,4 and 6, of which only 3 is necessary 
for min. Using the above definition of relevance, we find 
that the facts q(5,4) and q(5,B) are irrelevant to -the’ query, 
while q(5,3) is relevant. Also, by t.he above definit,ion, for 
the shortest path program (Figure 1) all path facts, except, 
those corresponding to shortest paths, are irrelevant. 0 

Our extended notion of relevance is very tight, and in gen- 
eral we may not be able to determine the relevance of a fact 
without actually computing the least model of the program. 
The techniques we present will use sufficient but not neces- 
sary conditions to test for irrelevance. Dnring the evalnn.tion 
of some programs we may generat,e a fa.ct, and la.t.er discover 
that it is irrelevant, for instance when some other “better” 
fact is generated. Once a fact is found to be irrelevant, by 
“withdrawing” this fact, we may be able to determine that 
other facts generated using it can no longer be generated, and 
hence can also be “withdrawn”. The cost of such cascading 
wit,hdrawals could be very high, and so we confine ourselves 
to only discarding irrelevant facts. Although this could re- 
sult in some addit,ional irrelevant comput.ation, the gains in 
efficiency from our optimization can still be significant. 

3.3 Aggregate Constraints and Select- 
ions 

We now introduce some concepts t.hat allow us t,o specify rrlp- 
Vance information. Informally, sound nggrcgotr aelecIiona are 
used to specify tests for relevance of facts--if t,here is a sound 
aggregate selection on a predicate in Our rewritten program, 
and a fact for the predicate does not satisfy the selection, 
the fact is irrelevant. Aggregate select.ions are int.roduced by 
our rewriting algorithm and the information is n.4 by our 
evahlat,ion algorithm. The syntax (using a varia.nt. of St.ar- 
burst SQL groupby) and semantics of aggregate selsct,ions a.re 
described in the next few definitions. 
Deflnition 3.4 Atomic Aggregate Selection : An 
atomic aggregate selection has the following syntax: 

44 : cwwh(d% [Xl, w-f(Y)) 
Here c(E) denotes a literal or a conjunction of lit,era.ls. and 
z a set of variables such that 7 E Vnr,s(i). We ml& have 
Y E Vars(?), and agg-f must be an IncSel funct.ion. 

Consider a program P with an associated least model. 
Given the set of facts for predicate p in the least model of 

P, we have a set of instantiation8 of 1. Since x C Vars(i) 
and Y E Vars(i), for each value 2 of x in this set of in- 
st,antiations, we have a corresponding set of values for Y; we 
denote this set by Sz We construct (conceptually) a rela- 
tion unneccagg(X, Y) with a tuple (Ze) for each 2, and 
each e E unnecessaryo,,,j(S$. 

Let c(Z) be a ground conjunction. We say that c(a) satis- 
fies the atomic aggregate selection si iff there exists a substi- 
tution u such that (1) c(Z) = c(i;)[e], (2) u assigns ground 
terms to all variables in Vars@)uXu{Y}, and (3) (X, Y)[a] 
is not in unneccagg ‘. 0 

In the above definition, the variables in [X] are called 
grouped variables and the variable Y is called the aggregated 
variable in the atomic aggregate selection. The variables in 
the set ((Vars(l) - X) - {Y}) are local to the groupby, 
and cannot be quantified or instantiated from outside the 
groupby. 
Definition 3.6 Aggregate Selection : An aggregate 
selection 3 is a conjunction of atomic aggregate selections, 
3 = (31 A 32 A.. . A Sn). 

A ground conjunction c(E) satisfies an aggregate selection 
s = (.91 A sz A .., A sn) iff it satisfies each of the atomic 
aggregate selections s, individually. 0 

We use the short form c(Z) : gl A g2 to denote (c(E) : 
gl) A (c(c) : 92). We often say “the aggregate selection J on 
the body of R” to denote the aggregate selection c(U) : s, 
where c(Z) is the body of rule R. Note that a conjunction of 
aggregate selections is also an aggregate selection. 

Our approach to rewriting the program consists of placing 
nggrega‘te select,ions on lit,erals and rule bodies in the pro- 
gram in such a fashion that if a fact/rule instantiation does 
not satisfy the aggregate selection it is guaranteed to be ir- 
relevant. Hence we define the concept of sound aggregate 
selections formally below. 
Deflnition 3.6 Sound Aggregate Selection : An ag- 
gregate selection s is a sound aggregate selection on the body 
of n rrlle R iff only irrelevant facts are produced by instanti- 
ations of t,he body of R that do not satisfy a. 

An aggregate selection s is a sound aggregate selection for 
a literalp in the body of a rule R iff only irrelevant facts 
are produced by instantiations of R that use for literal p(i) 
any fact p(Z) that does not satisfy s. 

An aggregate selection s is a sound aggregate selection on 
n pwdicntep iff any fact p(F) is irrelevant if it does not satisfy 
3. 0 

Given a sound aggregate selection on a literal/rule, we can 
(partially) test during an evaluation whether a fact or an 
inst,antiated rule satisfies it. The extension of each predi- 

‘Note that the relation unnecc-agg could be infinite. To actu- 
ally perform the test,, we would take an instantiation of Y, and test 
if it is in 1lnT1Ccesso~y~~~-j(~)[ 0 without actually constructing ] 
the whole (possibly infinite) set unnece9s=,y,oo-,(X)[al, or the 
(possibly infinite) relation unnecc-agg. 
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cate p at that point is a subset of the extension of p in the 
least model of the program. Since the aggregate functions 
are incremental aggregate selectors, an answer of “no” at 
that point means that the answer would be “no” in the leant 
model of the program, and hence t,he fact,/instantiation in ir- 
relevant. However, an answer of “yes” is conservative, since 
the fact/instantiation may be detected to be irrelevant. if all 
facts in the least model were available. 
Example 3.2 Consider an aggregate selection 

path(X, r, P, C) : groupby(path(X:, y, P, C), [X, Y], 
min(C)) 

Suppose we have two facts path(a, h, _, 2) and path(a, h, _, 3) 
at a point in the computation. Then we know that, 
path(a, !J, -, 3) does not satisfy the selection. Lat,er in the 
computation we may derive a fact path(a, b, _, I). At, this 
point we find that path(a, b, -2) also does not satisfy the 
selection. 0 

We define sound aggregate constraints next-they differ 
slightly from sound aggregate select,ions, and we use t#hem in 
our rewriting algorithm to generat,e aggregate select.ions. 
Deflnition 3.7 Sound Aggregate Constraint. : An ng- 
gregate selection s is a sound aggregate constraint for pred- 
icate p iff every fact that can be derived for p satisfies the 
aggregate selection 3. 0 

The following are technical definitions that we use primar- 
ily 1.0 ensure that the aggregate selections t.hat. we gencrat.c 
can be tested efficiently. The motivat.ion is t.hat t,he fact,/rule 
instance on which we have an aggregate selection must hind 
all the variables in the aggregate selection. 
Deflnition 3.8 Non-bound Variables : The non- 
bound variables of an atomic aggregate selection c(Z) : 

9rowb&(h FL a99-f(Y)) are the variables in the set 
(Vats(X) u {Y}). The non-bound variables of aggregate sc- 
lection s = 91 A . . *As,, are those vnriahles t.hat. are non-hound 
in at least one of the atomic selections aggregate sl. q 

Deflnition 3.9 Restrictions of Aggregate Sclcctions 
: An atomic aggregate selection s, is said to be res6riclerl 
to a given set V of variables if every non-bound variable 
in si occurs in V. Let s = (31 A 32 A ,. . A s,,). Then 
reslriclion(s, V) = A{Si 1 3, is restricted to V} 0 
Example 3.3 Consider the following selrction: 

3 = c(Z) : groupby(path(X, Y, P, C). [X, P], min(C))A 
groupby(paWX, K P, C), [X, Yl, min(C)) 

The non-bound variables of s are X, Y, P and C, and 
reslriction(3, {X, Y, C}) = 

c(Z) : groupby(path(X, Y, P, C), [X, Y], min(C)) 0 

4 Aggregate Rewriting 
We present a quick overview of the next few sect,ions of the 
paper. We develop our algorithm for propagating relevance 
information in two steps. (1) In Section 4.1 we present a 
collection of techniques for generating sound aggregate se- 
lections. (2) In Section 4.2, we present our main rewriting 
algorithm, Algorithm Push-Selections, which uses these tech- 
niques as subroutines. In Section 5, we examine an evaluat.ion 
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mechanism that can take advantage of sound aggregate se- 
lections on predicates of the form p/s that are generated by 
the rewriting mechanism. 

As a preview of what the techniques can achieve, consider 
Program Simple (Figure 1). The result of rewriting is Pro- 
gram Smart, shown in Figu.re 2. The notation path/s1 
denotes a (new) predicat,e that is a version of path with the 
sound aggregate selection sl on it. The other predicates have 
no aggregate selections on them. This selection tells us that 
paths that are not of minimum length between their end- 
points are irrelevant. Discarding such facts during the evalu- 
ation leads to considerable time benefits, and is discussed in 
Section 5.2. 

4.1 Generation of Aggregate Constra- 
ints and Selections 

In t,his section we present a collection of techniques for gen- 
erating aggregate constraints and selections, The techniques 
are shown below. The reader may skip this section and pro- 
ceed t.o Section 4.2 on a first reading. Technique Cl describes 
a way of deducing sound aggregate constraints on predicates. 
Techniques BSl, BS2 and BS3 describe three ways to gen- 
erate sound aggregate selections on the bodies of rules. In 
Sections 4.1.1 and 4.1.2 we present a more sophisticated anal- 
ysis t.hat helps us to derive further sound aggregate selections 
on horly lit,erals. For lack of space we omit several other tech- 
niques for genera.ting sound aggregate constraints and selec- 
tions. 

Technique Cl: Suppose that there is only one rule defining 
p, and it is of the form: 

P(i, o.99-f(< Y >))-q(G) 
T,et x = Vars(t), and let agg-f be an IncSel function 
such that. VS 2 lZ),aggJ(S) = relevant,,,,j(S). Then 
~(3, I’) : groupby(q(G), [x], aggJ(Y)) is a sound aggre- 
gate constraint on p. 

Technique BSl: Let R be of the form 
R : head(‘i;;)+c(G),p(?) 

and suppose there is an aggregate constraint on p of the 
form: p(F) : s where all non-bound variables in s are 
included in Vars(F). Suppose there exists a renaming5 
0 of variables in q such that p(z) = p(c)[a]. Then s[u] 
is a sound aggregate selection on the body of rule R. 

Technique BS2: Suppose we have a rule of the form 
P(% a99-f(C Y >))-q(G) 

with an aggregate operation in its head. Let x = 
\‘nrs(j). Then groupby(q(G), [??I, agg-f(Y)) is a sound 
aggregate selection on the body of rule R. 

Technique BS3: Consider a rule of the form 
R : p(G)+body(G). 

Suppose the head predicate p has a sound aggregate 
selection p(l) : s on it, where all non-bound variables 
in s are included in Vars(‘i). Suppose there exists a 
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Rl : shortest-path(X, Y, P, C) + s-p-length(X, Y, C),poth/sl(X, Y, P,C). 
R2 : s$-length(X, Y, min(< C >)) * poth/sl(X, Y, P, C). 
R3 : poth/sl(X, Y, Pl, Cl) - polh/sl(X, Z, P,C),edge(Z,Y, EC), 

append([edge(Z, Y)lnil], P, Pl),Cl = C t EC. 
R4 : polh/sl(X, Y, [edge(X, Y)}nil], C) - edge(X, Y, C). * 
Selections:: sl s path/sl(X, Y, P, C) : groupby(pnth/sl(X, Y, P, C), [X, Y],min(C))) 

Figure 2: Program Smart 

renaming5a of variables in i such that p(q) = p(T)[a]. 
Then a(~] is a sound aggregate selection on the body of 
rule R. 

Technique LSl: Let 8 be a sound aggregat.e selection on 
the body of a rule R, and let p(l) be a literal in the 
body of R. Then p(T) : resttiction(s, Vars(i)) is a 
sound aggregate selection on the literal p(s) in the body 
of R. 

Example 4.1 Consider Program Simple (Figure 1). Using 
Technique Cl and rule R2 we get the aggregate constraint 

s-pJength(X, Y, C) : groupby(poth(X, Y, P, C), [X, Y], 
min(C)) 

on the predicate s-p-length. Using this aggregnt,e const,raint 
with rule Rl, Technique BSl deduces the following sound 
aggregate selection on the body of rule RI: 

groupby(poth(X, Y, Pl, C), [X, Y], min(C)). 

Using Technique BS2 we get the following sound aggregate 
selection on the body of rule R2: 

vowbWh(X, Y, P, C), [X, Y], min(C)) 
If we had a sound aggregate selection 
path(X, Y, P,C) : groupby(poth(X, Y, P, C), [X, I’], min.(C)) 
on the head predicate of rule R3, Technique BS3 would 
derive the following sound aggregate selection on the body 
of rule R3: 

groupby(path(X, Y, Pl, Cl), [X, Y], min(C1)). 

From these sound aggregate selections on the bodies of Rl 
and R2, using LSl, we deduce the sound aggregate selection 

poth(X, Y, P,C) : groupby(pa,th(X, I.‘, Pl, C), [X,1’], 
min(C)) 

on the literal poth(X, Y, P, C) in the body of the rule Rl, 
and the sound aggregate selection 

poth(X, Y, P,C) : groupby(path.(X, Y, P,C), [X, Y], 
min(C)) 

on the literal pnth(X,Y, P,C) in t,he body of the rnle R2. 0 

4.1.1 Pushing Aggregate Selections 
We now look at another way of generat,ing aggregat,e selec- 
tions on rule body literals. But first we present some defini- 
tions. Aggregate functions such as min and ordinary func- 

bWe could allow d to be a substitut,ion on variables. However. 
to simplify the tank of ensuring that o11r rewriting rrlgnrilhrrl trr- 
minntes, we restrict. ourselves to renaming.4. 
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tione aa + or * interact in a particular fashion, and we use this 
interaction to generate sound aggregate selections on literals 
in the bodies of rules. 
Deflnition 4.1 Distribution : Let fn be a total function 
fn:DxDx...xD-+ D that maps n-tuples of values from 
D to a value in D. Define s-fn(U) = iJ(fn(7) 1 5 E U). 
Let agg-f be an aggregate function egg-f : 2’ -+ D. Let 
Sl,SZ,... S, be subsets of D, and let S = .!?I x Sz x . . . x 

S 73. Let R = necessary,,,-/(SI) x necessory,oo-/(Ss) x 
x nece~snry,og-/(S,). Then necessary,sp-/ is said to 

di8tribUte over fn iff for every Sl,. . . , S,, ogg,f(s,fn(R)) = 

ass-f(a-fn(S)). 0 
For example neceasarymin distributes over “+” for redls 

and integers, and over * for positive reals and positive in- 
tegers, but does not distribute over * for arbitrary reals ‘. 
Technique PSI shows a way of deriving aggregate selections 
on lit,erals in rule bodies by making use of distribution of 
aggregate functions over ordinary functions. 

Technique PSl: Let R be a rule of the form 
R : ph(Tt;;)+. . . ,p(i, Wi), . . . , Y = fn(W1,. . . , Wn) 
such that there is no aggregate operation in the head of 
R. Suppose 

There is a sound atomic aggregate selection on the 
body of R, of the form 

wvb?dn (G), [% agg-f (Y)) 

necessary,o,-l distributes over f n, and 

Each of WI,. , Wn, Y are distinct variables, and 
t,hey each occur in exactly one literal other than 
Y = fn(W1,. . , Wn) in the body of R; no two 
W,‘s appear in the same literal; further, Y does 
not appear in any other literal in the body of the 
rule. 

Define the non-repeated arguments of ~(7, wi) as those 
of the form V, where V is a variable that does not 
appear anywhere else in the body of the rule, and 
V @ Vnrs(X) u {Y}. Then the following is a sound 
atomic aggregate selection on the literal ~(7, Wi) in the 
body of the rule: 

p(z, W,) : wupbdp(Z, Wi), IFI, agg-f (Wi)) 

s We extend the notion of distribution considerably in the full 
version of t.he paper. 
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where z is a tuple of new variables, wit.h nrity t.he same 

as 1, and where 27 contains all varia.l)les in 2 a(.her 

than those that appear in non-repeatsed argument,s of 
P@t Wi)* 

The above technique works for a version of the shortest 
path program, that computes the pat,h lengt,h hut does not 
keep track of the path information. In t,he next section we 
see some shortcomings of this technique, and extend it. 

4.1.2 Extended Techniques for Pushing Selec- 
tions 

Certain predicates, such as append, used in the bodies of 
rules are t,otal functions on some t,ypes. Given any t,wo val- 

ues of type list as the first two arguments of nppend, there 

is guaranteed to he a third value such that. the predicate is 
true. Such functions are said to be “non-constraining” on ar- 
guments of the appropriate type. Under certain conditions, 
if such a function appears as a literal in the body of a rule 
we can drop the literal before applying Technique PSI. The 
result of dropping such literals from a rnle is the reduction 
of the rule; if we apply Technique PSI and generat.e an ag- 

gregate selection s for a literal in the reduct.ion of t,he rule, 
then s is a sound aggregate selection for t,he literal in the 
original rule. Due to lack of space, we do not give details of 
the technique here, but present a brief example of its use. 
Example 4.2 We continue with Example 4.1. sup- 
pose we have a sound atomic nggregat,e selection 
groupby(path(X, Y, Pl, Cl), [X, I’], min(C1)) on the body of 

rule R3. The reduction of R3 wrt to the atomic aggregate 
selection is 

R3’ : path(X, I’, Pl, Cl) - path(X, Z, P,C), 
edge(Z, Y, EC), Cl = C + EC. 

Using Technique PSI, on the reduction, we find t,hnt, the t.hird 

argnment of pafh(X, Z, P, C) is non-repeated. Hence we tle- 
dnce the following sound aggregate select,ion on the literal 
pnth 

path(X, Y, P, C) : gmupby(path(X, Z, P, C), [X, Z], 
min(C)) 

and the sound aggregate selection 
edge(Z, Y, EC) : groupby(edge(Z, Y, EC), [Z, Y], min,(EC)) 
on the literal edge. 

If we used Technique PSl without I,he reclnct.ion st.ep, we 
would get the aggregate selection 

path(X, Y, P, C) : groupby(path(X, z, P, C), [X, z, P], 
min(C)) 

which is “weaker” than the selection described above. 0 

4.2 The Aggregate Rewriting Algorithm 
In this section we present a rewriting of t,he program hased on 
the propagation of sound aggregate selections. The rewriting 
algorithm is somewhat similar to the adornment algorithm 
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used in Magic sets rewriting (see [UllSS]). When it detects 
t,hab an occurrence of a predicate p in the body of a particular 
rule hm a sound aggregate selection s on it, it creates a new 
labeled version p/s of p. That occurrence of predicate p is 
replaced by p/s, and by using aggregate selection s, (copies 
of) rules defining p are specialized to define p/s. 

The rewriting algorithm is shown below. In Step 7 of the 
algorithm, s is a sound aggregate selection on the head of 
R’, and this along with any aggregate constraints on body 
predicates may be used with techniques from Section 4.1 to 
generate new aggregate selections. 

Algorithm Push-Selections( P, Pa’ ) 

Input: Program P, and query predicate guery,ptcd. 
output: Rewritten program Pa’. 
I) Derive sound aggregate constraints on the predicates of 

t,he program. 
2) Push querygredf nil onto stack. 
3) While atack not empty do 
4) Pop p/s from the stack and mark p/s as seen. 
5) For each rule R defining p do 

6) 

7) 

8) 
9) 

10) 

11) 
12) 
13) 

Set R’ = a copy of R with head predicate 
replaced by p/s. 

Derive sound aggregate selections for each body 
literal p, of R’. 

For each pi in the body of R’ do 
Let si denote the conjunction of sound 

aggregate selections derived for pi. 
If a version pi/t of pi such that t < si haa been 

seen, 
Then choose one such, and set si = t ; 
Else push pi/si onto stack. 

Output a copy of R’, with each pi replaced by pi/si. 
14) Output selection 3 on p/s. 

End Algorithm. 

Pnstproccssing 1: For each predicate p, for each version 
p/s of p+ choose the weakest version p/t of p in the rewritten 
program such that s 2 t. Replace all occurrences of p/s 
in bodies of rules in the rewritten program by p/t. Finally, 
remove a.ll rules that are not reachable from the query. 

Postprocessing 2: Suppose we have an atomic aggregate 

selection 9 = groupby(p(T), [xl, agg-f(Y)) in the rewritten 
program. If p is absent from the rewritten program select 
version p/s of p if it exists. If not, select a version’p/sl of 
p if any such version exists. If no p/s1 was found, p is not 
connected to the query predicate-drop the selection s from 
all predicates that use it. Otherwise rename p in the groupby 
in s to p/s or p/s1 as the case may be. 

7 We omit details on how to make this choice from this version 
of the paper. 
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An aggregate selection s is stronger than an aggregate se- 
lection t (denoted aa s > t), if whenever 2 classifies an instan- 
tiation as irrelevant, then so does s. We can obtain simple 
sufficient conditions for this, which we omit for lack of space. 
If in the rewritten program there are two versions of p, p/s 
and p/t such that s > 1, there is no point, using the st.ronger 
version p/s-all the facts computed for p/s will he compnted 
anytiay for p/t. Preprocessing to remove p/s is described in 
Postprocessing 1. 

As a result of the renaming of predicates, predicates in 
aggregate selections may not be present in the rewritten pro- 
gram. Postprocessing 2 describes how t,o fix this. * 

Algorithm Push-Selections terminates on all finit.e input 
programs, producing a finite rewritten program. Thk rewrit- 
ten program could potentially be large, but, as is the case 
with the adornment algorithm for Magic sets rewriting, this 
is very unlikely to happen in practice--the rewritten program 
is likely to be not much larger than the original program. To 
ensure that the rewritt’en program is small we could adopt. 
heuristics such as bounding the number of at.nmic aggregate 
selections in an aggregate selection to some fixed small value, 
or bounding the number of different aggregate selections on 
each predicate. We omit details here; these restrictions may 
increase the number of facts computed, but will not affect 
correctness. 
Proposition 4.1 (Stratification) : If t,he init,ial pro- 
gram is stratified wrt aggregation, t,hen t.he aggregat,e rewrit- 
ten program is also stratified wrt aggregation. D 
Lemma 4.1 (Correctness of Rewriting) : Semi- 
Naive Evaluation of Pa* gives the same set of answers for 
query-pred as Semi-Naive evaluation of P. Further, the ag- 
gregate selections on each predicate in Pad are sound aggre- 
gate selections.0 
Example 4.3 Applying this algorithm to Progra.m Simple, 

we get the optimized program, Program Smart shown in 
Figure 2). The algorithm starts with the query predicate 

shortest-path. Creation of aggregate const,raint,s, and push- 
ing them into rules is done as discussed in earlier exam- 
ples, and the operation of Algorithm Push-Selections is fairly 
st,raight,forward. As a result of the rewriting we get the rules 
of Program Smart, but wit.h po.th/sl having t#lle hollowing 

sound aggregate selection on it: 
pnfh/sl(X, I’, P,C) : groupby(palh(X, I: P,C), [X, I,‘], 

min(C)) 
On postprocessing, we rename predicate path in the above 

selection to path/sl, to get Program Smart. To get the ben- 
efits of the rewriting, the evaluation must, make use of the 
nggregat,e selections present. in Program Smart. We describe 

*A renaming of p is a version of p with an aggre@e 6eIect inn on 
it, and is thus a subset of p. Due t,o monotonicity of the functions 
unnece~snry,~~-/, any value that is found unnecessary wrt the 
subset would also be unnecessary wrt the full set. Hence while 
the new selection may not be as strong as the original one, the 
renaming is guaranteed to be sound. 
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how to do this in the next section. 0 

5 Aggregate Retaining Evalua- 
tion 

In this section we see how to evaluate a rewritten program 
making use of aggregate selections on predicates. Essentially, 
once we know that a fact does not satisfy a sound aggregate 
selection on it we know that it is irrelevant to the computac 
tion, and can discard it. 

We define Aggregate Retaining Evaluation as a modifica- 
tion to Semi-Naive evaluation (see e.g. [UllSS]): At the end 
of each iteration of Semi-Naive evaluation, we discard facts 
that, have been computed for each predicate if they do not 
sat.iafy a sound aggregate selection on the predicate. 
Theorem 5.1 (Correctness, Completenese, Non-Red- 
undancy) : Evaluation of Par using Aggregate Retaining 
evaluation gives the same set of answers for query-pred as 
evaluation of P using Semi-Naive evaluation, and does not 
repeat any inferences. Further, the Aggregate Retaining eval- 
uation of Pa* terminates whenever the Semi-Naive evaluation 
of P terminates. 0 
Example 6,l Predicate path/s1 in Program Smart has 
a sound aggregate selection sl =c path/sl(X,Y, P,C) : 
groupby(path/sl(X, Y, P, C), [X, Y], min(C)). In the evalua- 
tion of Program Smart, we maintain at most one path/31 fact 
at a time with a given value for X, Y. If a fact is generated 
with any value for X and Y and another fact with the same 
value for X and Y already exists we know that the one with 
the great,er C value does not satisfy the aggregate selection. 
Hence it can be discarded. 0 

5.1 Pragmatic Issues Of Testing Aggre- 
gate Selections 

Our selection propagating techniques ensure that all non- 
hound variables in a groupby of an atomic aggregate selection 
also appear in the corresponding literal on which the selec- 
tion is applied. When testing an atomic aggregate selection 
on a fact f, we have a unique instantiation of the grouped 
variables of the selection, and the test can be performed ef- 
ficiently. If t,he test determines that fact f is irrelevant, f 
is discarded, else it. is retained. As the computation pro- 
ceeds, the set of unnecessary values for the “group” to which 
f belongs (i.e., the set of facts with the same values in the 
grouped arguments) could change, and this might enable US 
to determine that f is irrelevant after all. By sorting the set 
of facts on the grouped arguments, this “re-testing” can be 
done efficiently. The cost of sorting is small for the aggregate 
operat,ions we consider in this paper; in the case of maz ot 
mt7t aggregat,e operations there is at most one fact stored in 
each set. 
Proposition 5.1 (Bounds on Performance) : Given a 
program that uses only aggregate operations defined in this 
paper, and a data set, let the time for Aggregate Retaining 
Evaluation of the program on the dataset be 1~~ and let to 
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be the time taken to evaluate the original program on the 
dataset. There is a constant k (independent. of the dat.a set) 
such that 1~ 5 k *lo. a 
This means that Aggregate Retaining evaluation of t.he 
rewritten program can do at most a constant factor worse 
than Semi-Naive evaluation of the original program- the 
converse is not true. 

Using Aggregate Retaining Evaluation, Program Smart 
runs in time O(EV’), and the single source v&ion of t.he 
program ’ runs in time O(EV). These bounds hold even 
if there are negative length edges, so long as there are no 
negative cycles in the edge graph. 

5.2 Ordered Search 
Consider the shortest path problem with a given st,arting 
point. Dijkstra’s algorithm t,akes O(E * log(V)) t,ime if we 
use a heap data structure to find the minimum cost, pat.h 
at, each stage. However, Aggregat.e Retaining Evaluation on 
the single source shortest path program takes O(E * V) time. 
We can get the effect of Dijkstra’s algorithm by extending at 
each stage only the shortest path that hasn’t been extended 
yet. In other words, we use only the path facts that are of 
minimal cost among those that haven’t yet been used. This 
important observation is made in [GGZSO] and is used in their 
evaluation algorithm (see Section 6.1 for a brief description) 
for monotonic min programs (in their notation a min program 
is one that uses only the aggregate operation min, and it is 
said to be monotonic if it is monotonically non-decreasing on 
a pa.rticulnr argument of each predicat,e). 

We make use of this idea to derive an improved evaluation 
technique for stratified min programs. The basic idea is t,o 
modify Aggregate Retaining Evaluation hy hiding all fa.cts 
whose cost arguments are not of minimum value until no 
more derivations can be made. At this stage the hidden fact 
whose cost argument is minimum (over all hidden facts) is 
ma.de visible. The whole process is repeat,ed unt.il there are 
no more hidden facts. As before, facts t.hnt. do not. satisfy 
sound aggregate selections on predica.tes are discarded. We 
omit details here due to lack of space. We call this evalna.tion 
technique as Ordered Aggregate Retaining Eualualion. 
Theorem 6.2 Ordered Aggregate Retaining Evaluation is 
sound, and is complete for and terminates on those programs 
on which Aggregate Retaining evalrtation terminates. 

The effect, of the above evnlua.tion is exnct,ly the same its 
if Ganguly et al.% evaluation technique were used, for t,he 
case of stratified monotonic min programs. For instance, Or- 

gThis version is obtained automatically by using the Factoring 
transformation [NRSU89] on Program Dumb, before using Aggre- 
gate Rewriting. We do not show details here, but the net effect is 
as if the first. argument of path becomes a fixed constant,, Aggre- 
gate Rewriting optimizes the resultant program s~~ccesshllly. We 
also assume that, sharing of ground lists between t.he body and 
head facts of a rule can be done, so t,hat, the append cnlls in the 
program can be executed in constant time. 
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dered Aggregate Retaining Evaluation of the single source 
shortest path program would explore paths in order of in- 
creasing cost, and would have time complexity O(Elog(V)) 
which is the same as that of the technique of Ganguly et al. 
and Dijkstra’s algorithm. Program Smart would have time 
complexity O(EVlog(V)) using any of these techniques. 

Ordered Aggregate Retaining Evaluation also works on 
(and Theorem 5.2 holds for) min programs that are not 
monotonic. For instance, the shortest path program is non- 
monot,onic if there are negative cost edges. But even in this 
case, Ordered Aggregate Retaining Evaluation of Program 
Smart functions correctly, and terminates if there are no neg- 
ative cost cycles. 

6 Discussion 
We now see some more examples of programs to which our 
techniques are applicable. 
Example 6.1 The following program defines the earliest fin- 
ish time of a task, given the finish times of preceding tasks. 

Rl : e-fin(X,mac(< T >)) +- fin(X,T). 
R2 : fin(X,T) + ptecedes(X, Y), fin(Y, Tl), 

delay(X, D),T = Tl + D. 
R3 : fin(X,T) + first(X), detay(X, T). 

This program can be optimized using our tech- 
niques, and in the resultant program fin is replaced by 
fin/s, where a is the aggregate selection fin/s(X,T) : 
gro@y(fin/r(X, T), [Xl, maz(T)). The rules and other 
predicates are the same, but finish facts that don’t have 
maximal times are deduced to be irrelevant. We can extend 
t.his program to compute the critical path, and still apply our 
opt.imiKations. a 
Example 6.2 With a minor modification to Technique BSI, 
to allow,pushing aggregate selections through rules with ag- 
gregate operations in the head, we can optimize the following 
program. Predicate path%(X, Y, H, C) denotes a path where 
X and Y are source and destination, H denotes hops, and C 
denot.es cost. 

Query: ?-p-best(X, Y, H, C). 
RI : p-be&(X, Y, H, C) - p-f ew(X, Y, H), 

p-short(X, Y, H, C) 
R2 : p,few(X, Y, min( < H >)) + p-short(X, Y, H, C). 
R3 : p-short(X,Y, H, min(< C >)) +- path2(X, Y, H,C). 
/* .*. Rules for path2 . . . */ 

The program finds flights with the minimum number 
of hops, and within such flights, finds those with mini- 
mum cost. Our technique generates the aggregate selection 
path2(X, Y, H, C) : s where: 

a = groupby(path2(X, Y, H, C), [X, Y, H], min(C))A 
groupby(path2(X, Y, H, C), [X, Y], min(H)). 

The selection propagates unchanged through the rules defin- 
ing pnth2, so that the rewritten program is the same except 
for having the sound aggregate selection sl on path2 as well 
as aggregate selections on p-few and p-best. a 
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Example 6.3 The following program can be used to find t.he 
cost of the cheapest three paths, and illustrates the ability 
of our techniques to handle aggregate operations other than 
min and mat. We use the aggregate operation leas13 that 
selects the three least values”, 

Query: ?-shotdest3(X, Y, C). 
Rl : shorlest3(X, Y, P, least3( < C >) - path(X, Y, P, C) 
f’ . . . Rules for path as in Figure 1 .., */ 

Aggregate operation leaat is an IncSel function (under 
an extended definition of In&e1 functions that we do not 
present in this paper), with unnecessata(lo,ls(S) defined as 
all values greater than the third lowest value in S. Also. 
n.eceaaargILolt3 distributes over “+‘I. Hrnce our rewriting 
technique proceeds on the rules for path in this program ex- 
actly as it does for the earlier shortest path problem (Exnm- 
ple 4.3) and the path rules in the rewritten program are the 
same as in Program Smart (Example 4.3) except that min 
is replaced by leaal3. Evaluation of the rewritten program is 
very similar too, except that instead of ret,aining only mini- 
mum paths between pairs of points, t.hr cheapest. three paths 
between pairs of points are retained. 0 

Our optimization techniques are ort.hogonnl to t’he Magic 
Sets t,ransformation, and are applicable t,o programs that, can- 
not be expressed using transitive closure, as the next example 
shows. 
Example 6.4 Consider Program Nearest-Same-Generat.ion 
(adapted from [GGZSOJ) in Figure 3, t.hat comput,cs t.he 
%earest” among all nodes in the %ame generation” as a. 
node a. Our techniques can be applied t.o opt,imize this pro- 
gram. This program has been rewritten using the Magic Sets 
transformation. 

The rewriting produces essentially the same program ex- 
cept t.hat there is an aggregate selection .9 = agbJ’(X, I’, I?) : 
grotcph~(ag*“(X, Y, D), [X, Y], min.(I))) on predica.te sg*“. 
In the evaluation of the rewritten program, for each X, Y 
pair only the fact ag *“(X,Y, 1)) such t,hat D is minimum is 
retained. 0 

6.1 Related Work 
Several papers in the past [RHDM86, ADJ88] addressed op- 
timizations of generalized forms of transit,ive closure that, al- 
lowed aggregate operations. Cruz and Norvell [CN89] exam- 
ine t,he same problem in a generalized algebraic framework. 
On t,he other hand, we deal with a language that can express 
more general recursive queries with aggregation, and do not 
make use of any special syntax. 

Recently Ganguly et al. [GGZSO] present,ed opt,imiaation 
techniques for monotonic increasing (resp. decreasing) logic 
programs with m.in (resp. maz) aggregat,c operations. Tnfor- 

loThis aggregate operation returns (L value that is in the ex- 
tended Herbrand univcrse[BNR+87]. Although we do not con- 
sider these in this paper due t.o space limit,ations, this causes no 
problems for our optimization techniques. 
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madly, there must be a single cost argument for each pred- 
icate in the program and the program must be monotonic 
on this argument. They transform such a program into a 
(possibly unstratified) program with negation whose stable 
model yields the answers to the original program, but does 
not contain any irrelevant facts. They also present an effi- 
cient evaluation mechanism for computing the stable model 
for the transformed program. 

Our results were obtained independently of Ganguly et 
al. [GGZSO]. The results of Ganguly et al. complement this 
work in two important ways. Their idea of ordering of facts 
in the computation (which we have adapted and extended in 
Se&on 5.2) offers significant improvements in time complex- 
it,y, and unlike our technique, theirs can handle monotonic 
min programs eiren if the use of min is unstratified. 

Our techniques are more general than those of Ganguly 
et al. in several ways. (1) Our techniques are applicable to 
stratified programs that are not monotonic, and that can con- 
tain multiple aggregate operations including min and max. 
(2) For the class of strat,ified monotonic min programs, our 
rcwrit.ing techniques genera.te selections that are at least as 
st rang as t,hose generat,ed by Ganguly et al. (3) Given a strat- 
ified monotonic min program, its evaluation using rewriting 
and Ordered Aggregate Retaining Evaluation computes no 
more facts (in an order of magnitude sense) than its evalua- 
tion using their techniques. 

There are many common examples of programs that can 
benefit. from our optimizations, although they cannot be han- 
dlrd by [GGZSO] since they are not appropriately monotonic. 
These include the shortest path problem with edges of nega- 
tive weight, and the the earliest finish time problem shown in 
Example 6.1. I1 Further, the Magic Sets rewritten versions 
of many monotonic non-linear programs are non-monotonic, 
and our optimizat,ions would be useful in this context. 

Unlike [GGZSO] we allow aggregate operations other than 
mnx and min, for instance “least k values”. We also allow 
predicates with multiple cost arguments and allow multiple 
atomic aggregate selections on the same predicate. The use 
of these generalizations is illustrated in Examples 6.2 and 6.3, 
which cannot be handled by Ganguly et al. 

7 Extensions and Conclusions 
We believe that evaluation with Aggregate.Optimization will 
offer significant time benefits for a significant class of strat- 
ified programs that use aggregate operations similar to min 
and max. We believe that given a technique such as that 
of Ganguly et al., or of Beeri et al. [BRSS89] for evaluat- 
ing special classes of unat,ratified programs, our results can 
he adapted t,o det.ect, irrelevant fact.s using aggregate selec- 
t,ions. Our optimization techniques may be useful for opti- 
mizing (non-recursive) SQL-like queries that use aggregate 

“This program uses max and is monotonically increasing, 
whereas Ganguly et al. require it to be monotonically decreasing. 
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Rl : nearest-sgb”(X, Y, min(< D >)) - m_ncnr~.sl-.sghf’(X), .qgblf (X, Y, D). 

R2 : sgb/j(X, Y, D) e msg b”(X), up(X, Zl), sg b”(Z1, 22, Dl), down(Z2, Y), D = D1 + 1. 
R3 : sgb”(X, Y, 1) - m_sgblf(X), jlat(X, Y). 
R4 : m-sgblJ(X) - m-nearest-sgb~f( X). 
R5 : m-sgbff(Zl) - m-sgbll(X), up(X, Zl). 
R6 : m-nearest-sgbfl(s). 

Figure 3: Program Ne.a.rest,-Same-Generation 

operations. We believe our techniques will find use in the 
bottom-up evaluation of quantitative logic programs (see e.g., 
[SSGK89]). Our techniques can be adapted to “push” a more 
general class of aggregate operations through rules, so that, 
aggregate operat,ions can be performed on smaller intrrme- 

diate relations rather than on larger final re1nt.ion.s. This in 
turn could enable us to discard facts that have been used in 
the aggregation. Operations such as sum or count, to which 
the optimization techniques we described do not apply, can 

benefit from such adaptations. 

Acknowledgements: The authors would like to thank Di- 
vesh Srivastava for his comments and suggest.ions. 
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