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Abstract 

We present a priority system which is par- 
ticularly suited for production rules coupled 
to databases. In this system, there are de- 
fault priorities between all rules and overrid- 
ing user-defined priorities between particular 
rules. Rule processing using this system is re- 
peatable: for a given set of rules and priori- 
ties, the rules are considered for execution in 
the same order if the same set of transactions 
is executed twice on the same initial database 
state. The rule order adheres to the default 
order as closely as possible: rules are consid- 
ered in the same order as the default order un- 
less user-defined precedence constraints force 
an inversion. 
We present data structures and efficient algo- 
rithms for implementing such a priority sys- 
tem. We show how the data structures can be 
incrementally maintained as user-defined pri- 
orities are altered. We also discuss how the 
proposed scheme can be extended to build a 
multi-level hierarchical priority system. 

1 Introduction 

Incorporation of production rules into database sys- 
tems has recently received considerable attention 
(6,7,8,~1,19,21,25,26,27,30]. A central issue in produc- 
tion rule systems is conflict resolution [20,14]. Given 
that two or more rules are triggered, a conflict resolu- 
tion mechanism determines which rule is considered first 
for execution. Some rule systems (for example, Postgres 
[26]) require that the rule definer specify an absolute 
numeric priority to conflicting rules which is used to re- 
solve conflicts at run time. Other systems (for example, 
OPS5 (91) use a combination of some static properties 
of the rules (such as the complexity of the antecedents) 
and some dynamic properties of the data (such as the 
recency of the tuples satisfying the rules) to determine 
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relative priority. In the case that no criterion resolves 
the conflict, a rule is chosen randomly, making the rule 
system non-deterministic. 

Non-determinism in production rule systems has led 
to systems that have turned out to be much more com- 
plex and unwieldy than had been expected [15], which in 
turn has inspired research into deterministic production 
rule systems [12,24,32]. Although not necessarily appro- 
priate for all applications, deterministic production rule 
systems are more easily understood, maintained, and 
extended. They are particularly useful for rule bases 
coupled to databases, since the primary purpose of a 
rule base in such an environment is to automate deter- 
ministic activities [ 121. 

We propose a new priority system for determinis- 
tic production rule systems that has the following at- 
tributes: 

1. Default Priorities. The rules in the production rule 
system have default relative priorities that are a 
function of the static properties of the rules. This 
function, p, defines a default total order over the 
production rules. A function yielding the creation 
timestamp of the rules (assuming creation times- 
tamps are unique) is an example of such a function 
which gives higher priority to older rules. Produc- 
tion order rules, described in [20], provide other ex- 
amples of such a function. We represent the default 

total order by 5 such that, given two rules R and 

S, if p( R) < p(S) then RZS. Default priorities may 
be user-specified or induced by the system. 

2. User-Defined Priorities. The user may explicitly 
specify relative priorities between particular rules by 
defining a precedes relationship between them. If the 
user has specified that rule R precedes S, and if both 
R and S have been triggered, then R is considered 
first for execution, regardless of the default total or- 
dering. User-defined priorities are transitive; that 
is, if R precedes S and S precedes T, then R pre- 
cedes T even if S is not triggered. Cycles are not 
permitted in the user-defined priorities. R=+S rep 
resents that rule R has user-defined priority over S. 
We assume for convenience that for every rule R, 
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R*R. If there are Ic rules Tk (k could be 0) such 
that R=Cl=+Taa . . .TI,JS, we say R>S. 
User-defined priorities override default priorities. 
The user may define priorities at the time of rule 
definition or separately. User-defined priorities are 
dynamic - they may be dropped and added at any 
point during the existence of the rule set, 
Precedence relationships are a natural way of ex- 
pressing user-defined priorities [29] because they in- 
crease rule autonomy [20]: they do not force the rule 
designer to know about all the rules in the system, 
Such relationships are also often the result of rule 
analysis [24] and rule generation [2&J], which specify 
only the precedences that must be satisfied. 

3. Repeatability. If the same set of transactions is exe- 
cuted twice with the same database state, the same 
set of rules, and the same user-defined and default 
priorities between the rules, then all rules are con- 
sidered in the same order. This repeatability prop- 
erty is important since it is essential for a system to 
have predictable behavior. The repeatability prop- 
erty can be guaranteed if, given a default total order 
5 over a set of rules ?E and an overriding partial 
order & over a subset of rules in ‘R, we can obtain 
a new unique total order. The new total order is 
represented by 3. 
The repeatability property is stricter than the de- 
terminism property considered in [ 12,24,32], For ex- 
ample, (121 only requires that the production system 
have a unique fixed point, whereas the repeatability 
property insists that the computation path to the 
fixed point is also unique. However, [12] places con- 
straints on rule sets to realize production systems 
with unique fixed points. The repeatability prop- 
erty guarantees determinism without constraining 
rule sets. Also, just having a unique fixed point can 
be inadequate for applications having side effects (an 
action external to the database, for example), and 
we need the stronger repeatability property. 

4. Adherence to Default Order. The new total order 
-% adheres to the default order to the extent per- 
missible within user-defined precedence constraints. 
Starting with the first rule in the default order, the 
rules are put in the new order in the same order 
as the default order unless a user-defined priority 
forces a rule to come earlier. Consider, for example, 
the rule system consisting of rules Ro, RI, Rz, and 
Rs, where the subscripts associated with the rules 
also denote their timestamps. Assume that the de- 
fault order is to order the rules in increasing order of 
their timestamps, and the user-defined priorities are 
Ra=+Ro and Rs*Rl. If it weren’t for Ra*Ro, the 
adherence property would require that Ro come be- 
fore any other rule in a, as Rc is the first rule in the 
default order. However, due to user-defined priority 
of Ra over Ro, Ra comes first and then RD. Hav- 
ing placed Ro, the adherence property requires that 
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RI be placed next in 1. However, the user-defined 
priority of Rz over RI forces that R, be placed be- 
fore RI, and thus Ra~RoLR~~R~ is the new total 
order. 

Formally, for 2 to adhere to 2, it must be that 
R2.S and S:R if and only, if i) S$ R, or ii) S&R 

and 3T such that S$T,*R+T, and TkJ for all U 

such that R&-U and S+U. Otherwise, R% and 
R:S. In other words, if R precedes S in the default 
total order then their ordering is reversed in the new 
total order if and only if the user has specified that 
S must precede R or that S must precede a rule T 
that precedes in the default order all the rules that 
R must precede. Any rule that has been specified 
by the user to follow both R and S is ignored in this 
decision. 
The adherence property has a relationship to inver- 

sions [16] in the sense that 3 is an inversion of 2 
that satisfies user-defined precedence constraints. In 
addition, the adherence property requires that this 
inversion be such that, starting with the first item in 
d -+, items have the same order in 1 as in 5 unless 

a user-defined precedence dictates otherwise. This 
requirement resembles the priority-driven deadline 
scheduling of jobs in real-time systems [18,4]. How- 
ever, in deadline scheduling, if the deadline for a task 
is missed, the task may not be scheduled at all. On 
the contrary, rules are never dropped in rule systems 
(although a higher priority rule may cancel the firing 
of a lower priority rule). 

The priority system proposed in this paper is the re- 
sult of an effort to define a priority system for the Star- 
burst Production Rule System [30]. An initial design 
[29] allowed the user to define relative priorities between 
some rules and required the rule system to be repeat- 
able, However, the algorithm for determining ordering 
between rules in [29] can lead to cycles in the rule prior- 
ities and, hence, does not produce a total order. Letting 
is(R) represent the creation time of rule R, the order- 
ing between two rules R and S in [29] is determined as 
follows: 

1. If RjS and R#S, then R:S. 

2. If S&R and S#R, then SZR. 

3. Otherwise, if ts(R) < h(S), then RZS else S:R. 
However, consider rules Ro, RI, and R2, such that 
ts(Ro) = 0, ts(RJ) = 1, Js(R2) = 2, and Ra*Ro. 
RoLR1 since Ra+Rl, Rl+Ro, and ts(Ro) < ts(R1). 
Similarly, RI -2 Rz. Also R$Ro, since Rs*Ro. Thus, 
Ro-%R12R,lf;R,-,, a cycle. 

The problem of task allocation with precedence rela- 
tions [5,17,31] has similarities to the priority problem 
considered in this paper. Task allocation with prece- 
dence relations also considers the effect of precedence re- 
lations between modules on task scheduling. The prece- 
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dence relations put constraints on the final order, and 
the total order satisfies the partial order imposed by 
these relations. However, conflicts are resolved using 
dynamic information about the jobs, which does not 
necessarily impose a total order. We, on the other hand, 
use the adherence property to arrive at the unique total 
order. 

The organization of the remainder of the paper is as 
follows. In Section 2, we present an algorithm for de- 
termining the order between two rules given a default 
total order over a set of rules and an overriding partial 
order over some rules in this set. We show that this 
algorithm leads to a new total order that adheres to 
the default order and guarantees repeatability. Section 
3 discusses efficient implementation of this algorithm. 
Section 4 describes how changes in the user-defined pri- 
orities between rules can be handled incrementally. 

Section 5 shows how our scheme can be extended to 
build a hierarchical priority system. Related rules are 
grouped into rule classes, as in [13]. User-defined prior- 
ities are specified separately for rules in each class and 
also for rule classes themselves. This scheme extends 
naturally to multi-level hierarchies. We conclude with 
a summary in Section 6. 

2 Rule Ordering 

Definition 1 (Distinguished Rule) Given two rules 
R and 5’ and an ordering function p that determines 
the default total order, the distinguzshed rule for R with 
respect to S and p, ~(R)s,~, is defined as follows: 

1. If S+R, then ~(R),Q, = R. 
2. If SPR, then d(R) Q is defined to be the rule T 

such that all of the following hold: 

(a) R+T, 
(b) S+T, and 

(c) V U such that R&-U and S&U, p(V) 1. p(T). 

For example, assuming that p is the function yielding 
the creation time of a rule and that S+R, the distin- 
guished rule for rule R with respect to rule S is the 
oldest rule T that R must precede and that S does not 
precede in the user-defined priority ordering. Note that 
~(R)s,~ always exists and is unique. Also, ~(R),Q could 
be R itself. 

Algorithm 1 (Relative Rule Ordering) Given two 
rules R and S and an ordering function p that deter- 
mines the default total order, applying the following two 
steps in order determines the relative ordering between 
two rules R and S: 

1. If R&-S and R#S, then R:S. If S&R and Sf R, 
then S-%R. 

2. Otherwise, let U be d( R).Q, and let V be ~(S)R~~. 
If p(U) < p(V), then R-%S; otherwise, S:R. 

That is, the relative ordering between two rules is 
determined by the user-defined priority (direct or tran- 
sitive) between them when there is one. Otherwise, the 
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relative ordering is determined by the relative value of 
the default ordering function p for their respective dis- 
tinguished rules. 

For example, let the rule system consist of rules &, 
RI, Ra, Rs, R4, Rg, and Re, where the subscripts associ- 
ated with the rules also denote their creation time. Let 
the default total order be determined by the creation 
time of the rules, and let the user-defined priorities be 
as illustrated below. Then, RsftRs because tf(R~)~,,t, 
= RI, ~Rs)R,,,u = R2, and ts(R1) < Is(R2). 

RO 

R2 v R3 R4 \f R1 
R5 R6 

Theorem 1 (Repeatability and adherence of 
the relative rule ordering algorithm) Given a set of 
rules R, the pairwise application of the relative rule or- 
dering algorithm over rules in 12 generates a repeatable 
and adherent total order. 

Proof: See Appendix A. 0 

3 Implementation 

We now discuss how the relative rule ordering algorithm 
can be implemented efficiently. 

Definition 2 (Rule Ordering Graph) The rule or- 
dering graph G for a given ordering function p and a 
given set of production rules ‘R, is obtained as follows: 

1. Corresponding to each rule R in 72, create a node 
R in G. Associate with node R the value of the 
default ordering function p(R). 

2. For each user defined priority R+S, create an arc 
from node R to node S in G. 

3. Create an arc from every node R to itself. 

The following are the data structures for the rule or- 
dering algorithm: 

1. Obtain the rule ordering graph G for the given rule 
set a. 

2. Compute the transitive closure G’ of graph G [2]. 

3. Sort the successors of every node R in G’ in ascend- 
ing order of their ordering function values. 

Given two rules ri and r2, the following function re- 
turns the rule that has the higher precedence: 
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function precedencecrule rl, rule r2) 
returns rule 

{ 
loop 

< 
81 
62 

// 
I/ 

if 

= next(successor(ri)); 
= next(successor(r2)); 

first use the uaer-defined 
precedence, if any 

(8.1 == r2) 
return rl; 

else if (82 == rl) 
return r2; 

// now use the default precedence 

else if (~(81) < ~(82)) 
return rl; 

else if (~(132) < p(sl)) 
return r2; 

else // ~(82) == ~(81) 
cant inue ; 

1 
1 

It may not be immediately obvious why the loop in 
the above precedence function always terminates be- 
fore the shorter of the successor lists of rl and r2 runs 
out. Also, if r2 + rl, then ri is not necessarily the first 
rule in the successor list of r2 - there may some other 
rule 82 that comes before rl in the successor list of r2. 
Why does the loop return the correct answer even in 
this case? The following theorem comes to our rescue: 

present here apply to the general problem of incremen- 
tal maintenance of complete transitive closure of acyclic 
directed graphs with sorted successors. 

4.1 Incremental Additions 
Addition of a new rule R simply results in the creation 
of a new node R in G’. Also, there is an arc from R to 
R in G’. 

When the user wants to add a new priority for rule R 
over rule S, we need to Arst ensure that SGR dots not 
already exist; otherwise, the creation of R=+S will cause 
a cycle in the user-defined priorities. If R=+S is a legal 
addition, then the successor list of every predecessor of 
R needs to be updated, as they can now reach S and ail 
the successors of S. 

The following procedure incrementally updates G’ 
when a new user-defined priority R=c-S is added: 

// Addition of the user-defined priority, 
// R => s 

procedure addpriority(rule R, rule S) 
c 

// check for potential cycle in the 
// user-defined priorities 

if R is a successor of S in G* 
4 

disallow priority of R over S; 
return; 

1 

// legal user-defined priority --- 
// update data structures 

L= successors(S); // new reachable 

Theorem 2 (Correctness of the precedence function) // successors; 

The function precedence generates the same relative // S is included 

ordering between two rules as the relative rule ordering // in successora 

algorithm. add(R,L) ; 

Proof: See Appendix B. 0 
1 

The total order 1 may be constructed by sorting all 
the rules in 73, using for comparison the precedence 
function. 

4 Addition and Deletion of Rules and 
Rule Priorities 

Rule systems are not static. Rules are continuously 
added and deleted, and user-defined priorities between 
existing rules are altered. One alternative is to form a 
new rule ordering graph G and compute its transitive 
closure G’, every time rules and/or priorities are added 
or deleted. However, instead of recomputing G‘ from 
scratch, we can incrementally update G’. The problem 
of incrementally updating compressed transitive closure 
has been considered in [l] and that of incrementally 
updating path information in [3]. The techniques we 
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// Recursive procedure that adds to R and all 
// its prsdscrssorr the rules in L 

procedure add(rule R, list L) 
< 

// omit from L those rules that are 
// already in the successor list of R 

L=L- successors(R) ; 

// Add rules in L to the successor list 
// of R and its predecessors, 
// maintaining the correct order 

if L is not empty 
i 

// update the successor list of R 
successors(R) = successors(R) t L; 

// maintain order 

// update the successor list of 
// predecessors of R 
for all P such that 

P is an immediate predecessor of R do 
add(P, L) 

1 . 

The recursion terminates when all the predecessors 
of R have been updated. It is possible that the add 
procedure is not executed for some predecessor P if L 
becomes empty for all its successors. 

Multiple visits to a predecessor of R can be avoided 
by some book-keeping. The first time a predecessor is 
visited, a bit is set for this rule indicating that this rule 
has already been visited. Now, before calling add for a 
predecessor P, this bit is tested to ensure that P has 
not been already visited. 

4.2 Incremental Deletions 

Deletion of a user-defined priority Rzs.9 does not nec- 
essarily imply that S and all its successors should be 
deleted from the successor list of R and all its predcces- 
sors - there may be alternative paths. 

The following procedure incrementally updates G- 
when a user-defined priority RdS is deleted: 

// Deletion of the user-defined priority, 
// R => S 

procedure deletepriority(rule R, rule S) 
C 
L= successors(S); // rules potentially 

// unreachable from R via S; 
// S is included in successors(S) 

delete(R, S, L); 
3 
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// Recursive procedure that deletes from R 
// and all its predecessors the rules in L 
// that are not anymore reachable from them 

procedure delete(rule R, rule S, list L) 
c 

// omit from L those rules for which 
// alternative path exists 

L =L- 
successors(inunediate-successors(R) - S); 

// Delete rules in L from the successor 
// list of R and its predecessors 

if L is not empty 
c 

// update the successor list of R 
successors(R) = succeseors(R) - L; 

/( update the successor list of 
// predecessors of R 
for all P such that 

P is an immediate predecessor of R do 
delete(P, R, L) 

3 
3 

As in the case of incremental addition, the recursion 
terminates when all the predecessors of R have been 
updated. It is possible that the delete procedure is 
not executed for some predecessor P of R if L becomes 
empty for at least one node on every path from P to R. 

However, it is incorrect to apply the marking opti- 
mization discussed with addpriority to avoid multiple 
visits to a predecessor of R. The reason is that, to prop- 
agate the addition of a rule 1 in L to some predecessor 
P of R, it is sufficient to add 1 to one of the successors 
of P and then let P inherit 1 from this successor. How- 
ever, to propagate the deletion of a rule 1 in L to some 
predecessor P of R, 1 must not be reachable from any 
successor of P. If 1 is only reachable from P through R, 
then 1 will only be deleted from P on the last visit to 
node P. 

Deletion of a rule R results in the deletion of all in- 
coming arcs into R and all outgoing arcs from R in G. 
The deletepriority procedure can be applied for each 
such arc, followed by the deletion of the node R in G. 

5 Hierarchical Priority System 

Rules are sometimes grouped into rule classes, as in [13]. 
Rule classes are useful for structuring problem-solving 
by allowing related rules to be bundled into a separate 
class. User-defined priorities may be specified between 
rule classes and between rules within a class. The algo- 
rithm presented in Section 3 can be extended to handle 
such a hierarchical priority system: 
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Create a class ordering graph CQ as follows: 

i. For every rule class C, create a node C in Cg. 
Associate with a node C a value which is the 
smallest of the value of the application of the 
default ordering function p on all the rules in C. 

ii. Create an arc C to D in CG if the rule class C 
has been specified to have a priority over the rule 
class D. 

iii. For every rule class C, create an arc from C to 
C in C&7. 

Compute the transitive closure Cg* of C&!. 

Create a rule ordering graph G and its transitive 
closure G* separately for each rule class as in Section 
3. 

Now to determine the relative precedence between 
two rules, use CB’ if they belong to different rule 
classes, and use the corresponding G’ if they belong 
to the same rule class. 

The preceding algorithm can be extended in a 
straightforward manner to handle multi-level class hier- 
archies. However, a limitation of this algorithm is that 
it does not directly admit the user-defined precedence 
between rules in different classes, 

6 Summary 

We presented a priority system that is incrementally 
maintainable for combining user-defined priorities with 
default priorities. Such priority systems are becoming 
increasingly important in integrating production sys- 
tems with database systems which require deterministic 
behavior. Precedence relationships are a natural way of 
expressing user-priorities (291 because they increase rule 
autonomy [20]: they do not force the rule designer to 
know about all the rules in the system. Such relation- 
ships are also often the result of rule analysis 1241 and 
rule generation [28], which specify only the precedences 
that must be satisfied. 

Rule processing using this priority system is repeat- 
able: for a given set of rules and priorities, the rules 
are considered for execution in the same order if the 
same set of transactions is executed twice on the same 
initial database state. The rule order adheres to the de- 
fault order as closely as possible: rules are considered in 
the same order as the default order unless user-defined 
precedence constraints force an inversion. 

We also presented data structures and efficient algo- 
rithms for implementing such a priority system. User- 
defined priorities are dynamic - new priorities may be 
added and existing priorities may be deleted or altered. 
We showed how data structures required for priority de- 
termination can be incrementally maintained. Finally, 
we showed how the proposed scheme can be extended 
to build a multi-level hierarchical priority system. 

We are considering the implementation of this priority 
system in the Starburst extensible database system [lo]. 
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A Appendix - Correctness of the 
relative rule ordering algorithm 

In this appendix, we prove that the relation -!!+ defined 
by the relative rule ordering algorithm is a repeatable, 
adherent, total ordering of any given of set rules 72 by 
proving several lemmas. Repeatability is satisfied by 
the fact that 1 satisfies a total order, and adherence 
has its own lemma. Let (+e) denote contradiction. 

Lemma 1 (Uniqueness) If Rnand S are two distinct 
rules in 72 and R 1 S, then 5’ ft R. 

Proof: Suppose R 1 S and S -% R for two dis- 
tinct rules in 73. Now, R $ S and S $ R cannot both 
hold since there are no cycles in the \ser-defined priori- 
ties. If R j S, then R 2, S, and S f( R since the first 
step of the algorithm is always applied first. A similar 
argument holds if S & R. So p(d(S)~,,) < p(d(R)s+,) 
and p(d(S)~,) > p(d(R)~,~) must both be true. This is 
not possible since < is unique (=+e). 0 

Lemma 2 (Totality) Between every pair of distinct 
rules R and S in 12, either R -% S or S -% R. 

Proof: Consider two distinct rules R and S in 
I?. If there is a user-defined priority between these two 
rules, then obviously s holds between these two rules. 
If there is not a user-defined priority between the rules, 
then ~(R)s,~ and ~(S)R,~ determine their relative or- 
dering. Now, ~(4%~) < P(~S)R,~) or ~(d(R)s,~) > 
p( d( S)R,~) since d( R)Q and d( S)R,~ are distinct and p 
is a total order. Therefore, either R 1 S or S 2 R. 0 

Lemma 3 (Adherence) p(R) < p(S) and S:R if 
and only if i) S&R, or ii) SAT and p(T) < p(U), V 
U such that RGU and S+U. Otherwise, p(R) < p(S) 
and R:S. 

Proof: (if) Suppose p(R) < p(S) and Sl R. 
By definition of SZR, either S&R satisfying (i), 

or p(d(S)Rvp) * < ~(d(R)s,p)~ Now, SGd( S)R,p, 

RkWs,p, WWR)s,p and V U such that R&U and 
S+U, p(d(R)s+) <= U, so p(d(S)~,,) < U, satisfying 
(ii). 

(only if) Suppose SjR. Then, by definition, SZR 
even if p(R) < p(S). 
Suppose (ii) is satisfied. Then p(d(S)+) <= p(T), and 
~(R)s,~ is the U with the minimal value of p(V). So 

r-+Wh,) < pW)s,d and S-X. 
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Therefore, 1 is adherent. c1 

Lemma 4 (Transitivity) If R, S, and T are distinct 

rules in ‘R such that R 2, S and S -% T, then R 2 T. 
Proof: Suppose R, S, and T are distinct rules in 

‘R such that R 1 S and S % T. Then exactly one of 
the following holds: 

R & S and S & T. 
Then R & T since user-defined priorities are tran- 
sitive and acyclic. 
Hence, R 1 T. 

R 2 s a,“d P(W)T,~) < ~(d(T)s,~). 
Now, T # R, otherwise T 1 S. 
Since R & S, p(d(R)~,~) <= p(d(S)~+,) and 
z@@~\s,P\ <= P(@‘)R,~). So, ~(d(Rb,p) < 

J&P Q 

Hence, R 1 T. 

~(dfR)s,p) < p(d(S)~,p) and S j T. 

T $$ R, otherwise S 1 R. 
Since S & T, p(d(S)~,~) <= p(d(T)~,,) and 
P(W)T,P <= p(d(R)s,p. 
P(~(T)R,P). 

So, ~(d(R)rp < 

Hence R 5 T. 

P(~%P) < P(~S)R,P) and P(~(S)T,~) < 
~(d(T)s,~). Is order to prove this case, we first 
show that T p R, and then prove by contradic- 
tion that p(d(R)~,~) < p(d(T)~,~). The following 
observation is useful: 

Observation 1 VX 
P&X, then Q&X. 

3 P(x) < p(d(P)Q) if 

Suppose T 5 R. Then p(d(T)~,~) <= p(d(R)~,~) 
and ?@(S)R,p) <= P(d(Sh,p), ~0 ~(W)s,p) < 
P(@%~,P) (==). So, 2’ P R. 
SuPPose ~(d(Rh,p) > dd(T)R,p)* 
Consider P(~(S)R~P) and ~(d(Sh,~). 

(4 Suppose p(d(S)~,p) <= P(~S)T,~). Then 
P(~%,P) < ~(d(S)tr,p < ~(d(T)s,p). 
Further consider p(d(R)~,,) and p(d(R)~,~). 
i. Suppose ~(d(Rh,~) > ~(d(R)s,~). Now, 

RhWs,p, so T&d( R)qp. Obviously, 
WWs,p~ 90 p(d(T)s,p) <= ~(d(R)s,p). 
But p(d(R)s,p) < ~(d(S)~,p)s so ~(d(T)s,p) 
< P(Wh,P) (*e)* 

ii. Suppose p(d(R)~,~) <= p(d(R)~,~). Then 
p(d(Th,~) < dd@)R,p). But, by as- 
sumption p(d(S)R,p) <= p(d(S)T,p)t so 
p(d(T)~,p) < ~(d(T)s,p), and according to 

the observation, SG~(T)R,~, so p(d(S)~,~) 
<= P(~(T)R,P) (*t). 

(b) Suppose p(d(S)R,,) > p(d(S)~,,). Recall that 
l 

P(~(%,P) < p(d(S)R,p)g so R=WSh,p~ Ob- 
viously, WNS)T,~~ 
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so p(d(R)~,~) <= p(d(S)~~). But the as- 
sumption (P(d(T)R,p) < P(~@T,~)) implies 
P(d(Thp) < p(4S)r,p). Then S%Thp, 
so p(d(S)~,~) <= p(d(T)~,~). But this implies 
p(d(S)R) < p(d(S)T) (a*). 

Hence, p(d(Rh,p) < p(d(T)R,p), 80 &T. 

So, in all cases, R:T. 0 

Lemma 5 (Total Order) The relation -% is a total 
order. 

Proof: Since 1 is transitive, unique, and total, 1 
defines a total order. 0 

B Appendix - Correctness of the 
precedence function 

In this appendix we establish that the function 
precedence (Section 3) generates the same relative or- 
dering between two rules as the rule ordering algorithm 
(Algorithm 1). We must prove that the loop terminates, 

and at termination, rl is returned if and only if rl-%2; 
r2 is returned if and only if r2qrl. Annotate the func- 
tion as follows: 

function precedence(rule ri, rule r2) 
return8 rule 

c 
loop 

(A) 

(B) 

(Cl 

(D) 

(E) 

(F) 

I 

c 
81 = next(successor(r1)); 
a2 = next(euccessor(r2)); 

// first use the user-defined 
// precedence, if any 

if (61 == r2) 
return rl; 

else if (s2 == rl) 
return r2; 

// now use the default precedence 

else if (~(81) < ~(82)) 
return rl; 

else if (~(82) < p(ei)) 
return r2; 

else // ~(82) == p(t31) 
cant inue ; 

Lemma 6 (Loop Invariant) Assuming 61 and 82 are 
initially NULL, sl == s2 at (A) for each iteration. 

Proof: This is clearly the case in the first itera- 
tion, since 81 == NULL == 82. 
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The loop terminates whenever sI! = a2 since p is a 
total order. If sl! = s2 then p(al)! = p(a2), and the 
loop exits at (E) with ~(61) < p(a2), or at (F) with 
P(8I) > p(s2). q 

Lemma 7 (Termination) The loop does not execute 
indefinitely. 

Proof: The loop will terminate since rI and r2 are 
both in their own list of successors and there is a finite 
number of rules. 

Suppose rI&r2 or r2jrI. Then the loop will ter- 
minate at either (C) or (D) if not before. 

Suppose rI&2 and r2$rI. Then the loop will ter- 
minate when el == rl or s2 == r2, if not before, since 
rl is not in r2’s successor list and r2 is not in ri’s suc- 
cessor list. q 

Observation 2 By 
nsxt(succezsorO), 

the definition of 

l ~(81) > all previously visited successors of rI, 
l ~(61) < all unvisited successors of rl, 

0 p(s2) > all p reviously visited successors of r2, and 
l ~(82) < all unvisited successors of r2. 

Lemma 8 (Correctness of Function) Precedence 
returns ri if and only if rI3*r2, and precedence re- 
turns r2 if and only if r2zrI. 

Proof: 

1. Suppose precedence returns ri. Then the loop 
exited at either CC) or (E). 
If the loop exited at (C) then ai == r2. So r2 is 

in rl’s successor list. So rIjr2 and ri$r2. 
If the loop exited at (E), then I < ~(82). 
Let sla be the value of SI and s2a br 
the value of 42 in the iteration preceding 
loop termination. Now p(sIa) == p(s2a) and 
p(ala) < ~(81) < ~(82). So, by observation 2, sI 
is a not in r2’s successor list. Note, however, that 
s2 might be in rI’s successor list. 
Suppose there is a user precedence between rl and 
r2. Now, it cannot be the case that r2jr1, be- 
cause then sI would be in r2’s successor list. So 
ri&r2 and rI%2. 
Suppose there is a not a user precedence between 
rI and r2. By observation 2 and the loop invari- 
ant, al == d(ri)r2,p and 52 == d(r2),I p Since v 
p(aI) < p(s2), rlSr2. 

2. Suppose precedence returns r2. Then the loop 

exited at (D) or (F). The proof that r2zrl follows 
in the same fashion as (1). 
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Suppose rIlr2. The loop terminates at exactly 4 
points. Suppose precedence does not return rl. 
Then precedence returns r2. But then, by (2), 

r2zrl. But 2 is unique. (q+). So precedence 
must return rl. 

Suppose r2%rI. The proof that precedence 
turns r2 follows in the same fashion as (3). 

rt- 

Therefore, the function precedence is correct. 0 
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