
Language Constructs for Programming Active Databases*

Richard Hull and Dean Jacobs

Computer Science Department
University of Southern California
Los Angeles, CA 90089-0782 USA

{hull,jacobs}@pollux.usc.edu

“YOU cannot step twice into the same river; for fresh
waters are ever flowing in upon you.”

Heraclitus, circa. 500 B.C.

Abstract:
This paper presents database programming lan-
guage constructs that. can be used to realize a
variety of different semantics for rule applica-
tion in active database syst.ems. The primary
novel feature introduced is the “delayed update”,
or delta, which is a first-class value representing
a set of proposed modifications to the underly-
ing persistent store. Deltas can be created, in-
spected, and combined without committing t.o
the given modifications. The utility of these
concepts for expressing the semantics of active
databases is demonstrated through a series of ex-
amples, including the presentation of the essen-
tial features of rule application in the AP5 system
of USC/Information Sciences Institute and the
Starburst Rule System being developed at IBM
Almaden. Technical results concerning the sim-
ulatability of certain fundamental constructs by
other fundamental constructs are also presented.
The discussion is baaed on Heraclitus[Rel], an im-
perative language containing a relational calculus
sublanguage and deltas.

1 Introduction

“Active” databases generally support the automatic trig-
gering of updates as a response to user-requested or system-
generated updates [M83]. Many active database systems,
e.g., [CC+90, Coh86, Coh89, MD89, H89, SdM88, SIG89,
SJt90, WF90, ZH90], use a paradigm of rulea to generate
these automatic updates, in a manner reminiscent of ex-
pert systems. As discussed in [HJ90] and elsewhere, each

‘This research was supported in part by a grant from
AT&T. The first author was supported in part by NSF grant
IRI-8719875, and by the Defense Advanced Research Projects
Agency under DARPA grant MDA903-81-C-033.5. The second
author supported in part by the German Academic Exchange
Service. This research was in part performed while both au-
thors were visiting the Technischc Universitiit Berlin.

Pmceediigs of the 17th International
Conference on Very Large Data Bases

of the systems described in the literature uses a different
semantics for rule application. Some of these differences
stem from the choice of underlying data model (e.g., rela.-
tional or object-oriented), but the most crucial differences
stem from choices concerning when rules should be fired
(e.g., at transaction boundaries or within transactions),
how they should be fired (e.g., in parallel or sequentially
in some order), and how their effects should be combined
(e.g., aborting on conflict or giving priority to insertions).
This highlights the fact that the “knowledge” represented
in both active and deductive databases stems from two
distinct components: (a) the rule base and (b) the seman-
tics for rule application, It appears that different rule-
application semantics will sometimes be appropriate, even
within a single database. This perspective is supported by
the LOGRES system [CC+90], in which users can choose,
for each requested update, from a palate of six rule applica-
tion semantics. It seems unlikely that a fixed collection of
choices will suffice however, especially as active databases
become increasingly sophisticated. For example, there has
been recent interest in developing techniques for modu-
larizing rules, e.g., by clustering them with classes in an
object-oriented system (cf. [MP90]) or with different kinds
of database transactions. It seems natural that designers
will require different semantics for different kinds of clu5

ters.
This paper presents database programming language

constructs that can be used to directly realize a variety of
different semantics for rule application. The primary novel
feature introduced is the “delayed update”, or delta, which
is a first-class value representing a set of proposed mod-
ifications to the underlying persistent store. Deltas can
be created, inspected, and combined without committing
to the given modifications. The utility of these concepts
for expressing the semantics of active databases is demon-
strated through a series of examples, including the presen-
tation of the essential features of rule application in the
AP5 system [Coh87, Coh86, Coh89] of USC/Information
Sciences Institute and the Starburst Rule System described
in [WF90, CW90], currently under development at IBM
Almaden. This is a contribution in and of itself be-
cause for both of these systems, rule application is spec-
ified only by informal, natural-language descriptions (see
[Coh87, CW90)). We also show how these constructs can be

455
Barcelona. September, 1991

used to express the semantics of some deductive database
systems.

Our discussions are based on the database program-
ming language Heraclitus[Rel] [JH91), cnrrently in t.he ini-
tial stages of implementation at USC and USC/lSl. The ba-
sic Heraclitus feature of deltas can be realized for a variety
of underlying programming paradigms and data models.
Heraclitus[Rel] is a simple imperative language using the
relational model and a calculus sublanguage, much along
the lines of PASCAL/R [Sch77] and APS. The short term
goal of the current implementation effort is to provide a
testbed for experiment,ing with different rule application
semantics. In the long term, we hope to develop an im-
plementation that is efficient enough to be directly used in
practical applications.

Heraclitus also serves as a basis for the theoretical anal-
ysis of alternative rule application semantics and their in-
teraction with, e.g., integrity constraints, parallelism, het-
erogeneity, etc. In this paper, we give a small t,aste of
this kind of analysis by examining the relative simulnta-
bility of two approaches to accessing deltas. The first. ap-
proach, called “peeking”, permits the programmer t,o di-
rectly inspect the proposed modifications contained in a
delta: this approach is used in the Starburst system, among
others. The second approach, called “hypothesizing”, per-
mits the programmer to query the hypothetical database
that would be obtained by applying a delta t,o the actual
current database; this approach is used in the AP5 syst.em,
among others. In the general context of Heraclitus, peeking
and hypothesizing can simulate each other. However, we
exhibit a set of restrictions on Heraclitus programs under
which hypothesizing cannot simulate peeking.

Although not considered here, Heraclitus also appears
useful in the context of hypothetical reasoning, truth main-
tanence systems, and in connection wit,h specifying imple-
mentation strategies for database transaction processing.

In Section 2 we present an overview of the kernel of
Heraclitus[Rel]. In Section 3 we show how Heraclitus can
be used to express rule application semantics, for both ac-
tive and deductive databases. In Section 4 we consider the
AP5 semantics, and in Section 5 we consider the semantics
of the Starburst system. Section 6 considers peeking and
hypothesizing. Brief conclusions are offered in Section 7.

2 Overview of Heraclit us [Rel]
Heraclitus[Rel], hereafter referred to more simply as Her-
aclitus, is a simple imperative language with the following
features.

l It is statically-typed, ’ i.e. all possible type errors are
detected at compile-time, modulo t,he issue ofinterfac-
ing with the persistent store. The types of program
variables must be explicitly declared by the user and
the types of quantified variables are automatically in-
ferred by the system.

I In this article we sometimes relax t.his discipline, permitt.ing
for succinctness the type tuple of arbitrary signature.

Proceedings of the 17th International
Conference on Very Large Data Bases

l It supports relation types and relation variables. Re-
lation variables may persist or be declared locally by
the programmer.

o It supports a type delta, whose values represent pro-
posed insertions into, and deletions from, the values
of (persistent and transient) relation variables. Delta
variables may be declared by the programmer.

s It has a relational calculus sublanguage that can be
used to construct relation and delta values. This sub-
language supports (a) quantified variables which are
not range-restricted, (b) variables and function sym-
bols which are bound “outside” of calculus formulas,
and (c) the use of deltas within formulas. This appears
to be richer than the ca.lculus sublanguages supported
in other relational database programming languages
(e.g., PASCAL/R [Sch77]), and we have had to extend
the usual notions of %afety” and the tranformations
used to translate safe formulas into relational alge-
bra expressions (see, e.g., [GTSS]). (Heraclitus also
includes explicit algebraic operators for union, inter-
section and difference.)

Delta values are generated by evaluating delta expres-
sions. The atomic delta expression <+R(el , . . . ,en)> pro-
duces a delta which calls for the value of tuple expression
(el , . ,e,) to be inserted into the value of relation vari-
able R. (Relations are viewed as sets; if (el e > is #‘.., n
in the current value for R then applying c+R(el e)> I..., n
causes no change to R.) Similarly, the atomic delta expres-
sion <-R(el , , . , ,e,)> produces a delta which calls for the
value of tuple expression (el , . . . ,e,) to be deleted from
the value of relation variable R. Two binary operators for
combining deltas are provided: Merge, denoted t, forms
the “union” of two deltas, but produces the special delta
fail if conflicting updat,es are proposed. Sma& denoted
! (resolves conflicting updates in favor of the second delta.
For example,

s <+R(l)> 8 <+R(2)> produces a delta that calls for (I)
and (2) to be inserted into R.

l <tR(l)> 8 <-R(i)> produces fail.

9 <tR(l)> ! <+R(2)> produces a delta that calls for (I)
and (2) to be inserted into R.

l <tR(l)> ! <-R(l)>produces adelta that callsfor (1)
to be deleted from R.

In the context of combining the output of rule applications,
merge implements a semantics based on “accumulation” of
requested updates, while smash implements a semantics
based on “overwriting” (see [HJ90]). In general, a delta
value may refer to more than one relation variable.

Let DE be the database state corresponding to the
binding of values to all relation variables in the scope at
some point in a Heraclitus program. If A is a delta value,
then apply(A, DB) is the database state corresponding to
the application of the modifications requested by A to DB.
For a delta expression 6, eval(6, DB) is the value of 6 under
t,he bindings specified by DB (and the bindings for delta

456
Barcelona, September, 1991

and simple-type variables, which we suppress here). Fi-
nally, the command apply 6 has the effect of reassigning
all relation variables according to apply(etd(6, DB), DB),

Heraclitus provides two ways of accessing deltas with-
out committing to the proposed modifications, as in the
command apply introduced above. The first way, called
“peeking”, permits the programmer to directly inspect the
proposed modifications. The boolean expression 61 in 62
produces true iff the value of delta expression 61 is a “sub-
set” of the value of delta expression 62. For example,
<-R(l)> in current tests whether the value of delta vari-
able current calls for the tuple (1) to be delet.ed from the
value of relation variable R. The second way, called “hy-
pothesizing”, permits the programmer to query the hypo-
thetical database obtained by applying a delta to the actual
current database. In particular, the expression E when 6
evaluates expression E in the database obtained by apply-
ing the value of delta expression 6 to the current state,

There are several different quantified expressions in
Heraclitus[Rel], all of which have the basic form

where Q is the name of the quantifier (this includes at
present forall, exists, union, the, merge, and also arith-
metic aggregates such as sum); zr , . . ,zn introduces quan-
tified variables, Qr is a formula analogous to the ones in
the relat.ional calculus, and E is an expression. It is use-
ful to view such “three-pronged” expressions in terms of
operations on multi-sets, although t,his type does not ap-
pear formally in the language. Conceptually, the body of
a quantified expression represents the multi-set containing
the value of E for each set of bindings for 21, . , ,tn that
satisfies @. Each quantifier corresponds to a way of col-
lapsing a multi-set of values of a particular type, As an
example using the aggregate sum quantifier,

SumIlX I O<x<6 I 2*x)

evaluates to 30. Note that sum is the extension of the bi-
nary operation + on integers to multi-sets of integers. The
quantifiers in Heraclitus[Rel] generally have this property:
forall and exists are the extensions of and and or on
booleans, union is the extension of binary union + on re-
lations, and merge is the extension of binary merge k on
deltas.

Most of the quantifiers have special abbreviated forms
which correspond to their common usage. In particular,
union{ 21,. , . , zn I @ } abbreviates union{ 21,. . . , z,, 1 Cp
I <z I,..., zn>}; the body of the latter expression produces
a set of singleton retations, which are then unioned. Also,
(forall zr,...,zn . Cp 1 abbreviates forall{ zr, ,., , zn
1 true 1 Q } and (exists ~1,. , . ,I” . Cp 1 abbreviates
exists{ 21,. . . , zn I true I ip }. Note that these abbre-
viated forms cannot always be used: as a rather contrived
example

foralljx I O<x<6 I (l/x)Cy)

is not equivalent to

(forall x . not(O<x<6) or (l/x)Cy)

Proceedings of the 17th International
Conference on Very Large Data Bases

because of the possibility of division by zero. Thus, these
quantifiers incorporate the conventional programming lan-
guage notions of “conditional and” cand and “conditional
or” car.

We now define the semantics of smash more precisely.
Given two delta values Ar and AZ, the smoah of AI and
A? is that delta value A such that for all states DB,
apply(A, DB) = apply(Aa, apply(Al, DB)). More gener-
ally, given delta expressions 61 and 62 and state DB, then
A = eval(6r !62, DB) has the property apply(A, DB) =
apply(A2, apply(Ar, DB)), where Ai = evsl(bi, DB) for
i E { 1,2}. An expression equivalent to 61 162 can be ob-
tained using merge and peeking; specifically, 61! 62 is equiv-
alent to the merge over all relation variables R (occuring
in the relevant scope) of merge{ I I (<+RO)> in 61 and
not <-R(2)> in 62) or <+R(t)> in 62 I c+R(r)>) merged
with merge{ t 1 (<-R(r)> in 61 and not <+R(t)> in 62)
or <-R(r)> in 62 I <-R(t)> }. From this example it is
clear that other operators for combining deltas, e.g., to
give precedence for insertions as in LOGRES [CC+90], can
be defined in Heraclitus.

The interaction of when and ! is interesting: for all
expressions E and delta expressions 61 and 62, (E vhen
61) when 62 is equivalent to E vhen (62 ! (61 vhen 62) 1.

3 Expressing Rule Application
Semantics

In this section we illustrate by simple examples the spirit
of how the constructs of Heraclitus can be used to specify
the semantics of rule application in active and deductive
database systems.

In most active database systems, a rule consists of a
trigger (or condition) that controls when the rule should
be fired and a body which specifies the modifications that
are contributed when firing occurs. The trigger and the
body will generally be able to access the original (most re-
cently committed) state of the database, as well as various
intermediate states proposed by the user and other rules.
In Heraclitus, a rule can be represented as a function that
takes deltas, representing intermediate states, as input and
produces deltas, representing contributed modifications, as
results For example, the rule

function rule(curr:delta):delta
return merge{ x I R(x) and (not R(x) vhen cur)

I <-S(x)> 1

can be applied during the processing of a transaction to
propagate deletions from R to S. This same rule can be
written in (set-oriented (WF90, CWSO]) trigger/body form
as two functions.

function trigger(curr:delta):rel(int)
return unioni x I R(x) and (not R(x) vhen curr) 1

function body(T:rel(int)):delta
return mergei x I T(x) I <-S(X)> 1

451
Barcelona, September, 1991

A particular semantics for rules can be expressed in
Heraclitus as a procedure, referred to as a (rule applica-
tion) template, which controls how functions such as the
ones above are called. In order to facilitate the manipu-
lation of rules, we introduce the notion of indesed-families
o/ functiona, as the first example below shows. This can
be viewed as a shorthand for a function taking as input an
integer, and containing a case statement which maps the
input integer to the appropriate code fragment. An alter-
native would be to permit explicit arrays of rules, but this
would entail elevating procedures to being first-class citi-
zens, which would distract us from the main focus of this
article.

We begin with some simple examples involving graphs,
represented using two unary relations, root (string)
and partcetring), and one binary relation, PS(string,
string). Intuitively, part holds (names of) parts, PS holds
part-subpart relationships, and root holds those parts
which serve as roots for the part-subpart graph.

We consider four constraints on instances of t,his
schema:

(a) All strings occurring in root occur in part

(b) All strings occurring in PS occur in part

(c) Each string in part is reachable from a string in root
via a path in PS.

(d) PS is a directed acyclic graph (i.e., has no directed
cycles).

The first series of examples focus on sets of rules which
maintain these constraints in the presence of deletions from
one or more of the three relations. (Here rules 1,2 and 3
maintain constraints a,b and c, respectively.) Under the
precedence rules of Heraclitus, a when connective is grouped
with the smallest complete subformula preceding it.

function ruleQ1
return mergetx

function rule02 (

curr:delta):delta
1 root(x) and

(not part(x) vhen curr)
I <-root(x)>)

curr:delta):delta
return merge{x,y I PS(x,y) and (hot part(x) or

not part(y)) shen curr)
I c-PS(x,y)> 1

function ruleQ3(curr:delta):delta
return merge{x I part (x1 and ((not root(x) and

forall y.not PS(y,x)) vhen curr)
I <-part(x)> 1

The following template, which is similar to the template
for applying consistency rules in AP5 (see Section 3), may
be used with these rules. We assume for the following tem-
plate that the user-proposed dat,abase upda.te is passed to
the rule system by the parameter prop (which consists en-
tirely of deletions). Execution consists in repeated parallel
application of the rules, with a merging of intermediate re-
sults, until a fixpoint is reached, i.e., no further changes
occur. Finally, this fixpoint is applied to t.he database.

Proceedings of the 17th International
Conference on Very Large Data Bases

(We use dec-in-enddec to specify a set of declarations and
their scope. Constant, function and procedure declarations
are identified by keywords; unspecified declarations declare
variables.)

procedure maintain,constraints(prop:delta)
dec next:int,

prev,curr:delta in
curr := prop;
repeat

prev := curr;
curr := curr I: mergefi I l<=iC=B I ruleOi(curr)I

until curr = prev endrepeat;
apply curr

enddec

During each execution of the loop, the current va.lue
of curr is merged with the outputs of ruleQi(curr) for
i in {1,2,3). The loop is executed until a fixpoint
is reached. It can be shown that for any input in-
stance satisfying the four constraints listed above and delta
prop consisting exclusively of deletions, that execution of
maintain-constraints will yield the unique maximal in-
stance contained in the initial instance such that the tuples
“deleted” by prop are absent, and such that the constraints
are satisfied.

Note that the command assigning curr in the above
loop has the same semantics as

dec temp:delta in
temp := empty-delta;
for i := 1 to 3 do

temp := temp t rule@i(curr) endfor;
curr := curr 0 temp

enddec

In this case, the rules are computed sequentially, all in the
context of curr. The output of the rules is held in temp,
which is m,erged with curr only after all rules have been
used.

We now present a variation of rule03, which has the
same impact but which does not produce redundant deltas.
This uses two deltas as input, one corresponding to the
“current” delta, and the other corresponding to the delta
computed most recently before that one during rule appli-
cation. It also uses peeking, i.e., explicit tests of member-
ship in deltas using the connective in.

function peekruleQ3(prev,curr:delta):delta
return merge< x I part(x) ohen curr and

<-root(x)> in curr and
forall y.(PS(y,x) when prev ->

C-PS(y,x)> in curr)
I <-part(x)> 1

Assuming that analogs of rule01 and rule92 US-

ing prev and curr are also specified, the following
rule-application template will have the same effect as
maintain-constraints.

procedure peek,maintain,constraints(prop:delta)

458
Barcelona, September, 1991

dec nextzint,
prev,curr:delta in

cur-r :- prop;
repeat

(prev,curr) := (curr,curr &
merge{ i 1 l<-i<=3 1 peekruleOi(prev,curr)})

until,curr = prev endrepeat;
apply curr

enddec

We now turn to a family of rules and a rule application
template which will accomplish a general form of garbage
collection. We assume two unary relations root and node
and the binary relation link (all over type string). We
also assume that the initial dai,abase sat.isfics t,he following
constraints:

(a) All strings occurring in root occur in node

(b) All strings occurring in link occur in node

(c) Each string in node is reachable from a string in root
via a directed path in link.

In this example, the rule template gc-template we ex-
hibit shall be a function from deltas t.o deltas, such t,hat
if A is an arbitrary set of insertions and deletions on a
database instance LIB, then apply(gc,template(A),DB)
will be the result of garbage collection on apply(A, DB).
gc,template will not have side-effects on the database, so
the entire computation can be rolled back if desired.

The variable OK is declared in the template to range over
unary relations of strings, and is initialized to be empty.
The template for rule application enforces a prioritization
of the rules - the first group of rules (numbers 1 and 2)
“determines” the set of nodes that are still connected to a
root after the user input delta prop has been applied to the
database, and places them into the temporary relation OK.
The second group of rules (3, 4 and 5) rises this information
to do the garbage collection. We first present the rules:

function gc,ruleOl(curr:delta):delta
return merge{ x 1 (root(x) and node(x)) when curr

I c+OK(x)>)

function gc,ruleO2(curr:delta):delta
return merge{ y 1 exist x.(OK(x) and node(y) and

link(x,y)) when curr
I <+OK(y)> 1

function gc,ruleO3(curr:delta):delta
return merge{ y 1 root(y) and not OK(y) when curr

I <-root(y)> 1

function gc,rule04(curr:delta):delta
return merge{ y 1 node(y) and not OK(y) when curr

I <-node(y)> 1

function gc,rule05(curr:delta):delta
return merge< x,y I link(x,y) and (not OK(x) or

not OK(y)) when curr
I <-link(x,y)> 1

proceedings of the 17th International
Conference on Very Large Data Bases

The following function is used to compute the impact
of a cluster of rules, using accumulation. This function
is analogous to maintain-constraints, but restricting its
attention to rules with indices in X.

function gc,no-change(curr:delta,X:rel(int)):delta
dec next:int,

prev:delta in
repeat

(prev,curr) :- (curr,curr t
merge{ i:int 1 X(i) 1 gc,ruleOi(curr) 1)

until curr - prev endrepeat;
return curr

enddec

The full template for garbage collection is now given.
Note that the functions given above are viewed as part of
the declaration part of this procedure.

function gc,template(prop:delta):delta
dec temp:delta,

OK:rel(string),
% .*. declarations for gc-rules, gc,no-change
in

OK := empty:
temp := gc-no,cha.nge(prop, <1>+<2>);
temp := temp!gc,no,change(temp, <3>+<4>+<5>);
return temp

enddec

In the procedure gc-template we use notation for ex-
plicitly building relations (e.g., <1>+<2>). In Heraclitus,
<Xl,..., r,> denotes an n-ary relation holding the single
tuple (%I,..., CC,,), and + denotes relational union.

Let DB denote the initial database instance. When
gc,template is called on prop, the first action is to
compute the set of OK nodes using gcno-change(prop,
<1>+<2>). Note that this delta contains no mod-
ifications to the persistent database variables. The
next step is to compute the modifications which cor-
respond to garbage collection that should be made to
apply(eual(prop, DB), DB). This is accomplished by call-
ing gc,no,change(temp, <3>+<4>+<5>).

The second assignment of gc,template computes
the smash of the input delta prop and the output of
gc-no,change(temp). When the value of temp is returned,
all atomic deltas involving OK are removed, because OK is
declared locally within the procedure.

This example is reminiscent of the LOGRES system
[CCs90], which permits the sequential application of dif-
ferent rule “modules”. The example also embodies some
of the spirit of the theoretical language DATALOG”
[AV88, ASgO], a variant of DATALOG in which rule heads
can be positive or negative. Unlike DATALOG”, which
supports either inflationary semantics and a semantics
based on nondeterministic application of rules, this exam-
ple uses a semantics reminiscent of stratified logic program-
ming.

459
Barcelona, September, 1991

In the next example, we present a template that would
be useful if rule actions had associated costs.2 For exam-
ple, suppose that in a business, based on certain conditions,
rules will be fired in order to remedy problems, (e.g., if sales
volume is too low then increase advertising; or lower prices
by 5%). Suppose further that the rules are clustered, with
the remedies proposed by some clusters being more “costly”
than others; the more costly ones should be invoked only
if the cheaper clusters are unable to remedy the problem,
The following template assumes that there are c rule clus-
ters, ordered by increasing cost, and attempts to find the
cheapest solution to the current status of the database:

procedure apply,cheapest-solution
dec attempt:delta,

constant c:int,
% . . . declarations for functions
in

for i := 1 to c do
attempt := apply-rules(i) ;
if satisfies,constrainte(attempt)

then apply attempt; return endif
endf or
print,measage(‘no cluster offers a solution’)

enddec

We conclude this section by indicating how Heraclitus
can be used to express a popular semantics for rule applica-
tion in deductive databases, namely stratified DATALOG’
(e.g., see [Min88]). Under this approach, a set of “exen-
sional” database relations is assumed, and a set of rules is
used to populate a disjoint set of “intentional” database
relations, which are initially assumed to be empty). In
the example, we follow the usual convention, and do not
materialize the contents of the intent,ional relations.

DATALOG’ rules can be represented in Heraclitus by
functions of the form

rule9i(curr:delta) :delta
return merge{ x-1,. . . ,x-n I Cp vhen curr

I <+R(x,l ,.,.,x-n)> 1

where Cp is an existentially quantified conjunction of posi-
tive and negative literals.

The following function produces a delta corresponding
to the effect of applying the set of rules whose indexes occur
in the input relation:

function apply-rule,set(X:rel(int),
prop:delta):delta

dec prev,curr:delta in
curr := prop;
repeat

(prev,curr) :-
(curr,curr t mergexi I X(i) I ruleOi(curr)))

until prev - curr
endrepeat;
return curr

enddec

2The authors thank Serge Abiteboul for suggesting this ex-
ample and the following one.

Proceedings of the 17th International
Conference on Very Large Data Bases

Suppose now that the rule base is stratified with n levels,
and let LEVEL-i hold a unary relation containing the indices
of the rules at level i. We now define:

function apply-all-1evels:delta
dec curr:delta,

% . . . declaration for apply-rule-set
in

curr := empty-delta:
for i := 1 to n do

curr := apply-rule-set(LEVEL,i,curr) endfor;
return curr

enddec

The expression Q vhen apply,all,levels evaluates to the
value of query p in the deductive database.

4 The semantics of AP5
In this section ,we specify the core of the semantics of
rule application in the AP5 system. AP5 (Coh67, Coh86,
Coh89] is a database programming language which extends
LISP, and supports virtual memory databases and a frans-
action facility. It was implemented over five years ago at
the USC/Information Sciences Institute, and has been in
continuous use since then. AP5 was initially developed in
connection with software specification and transformation,
and has also been used to support office management func-
tions and research on heterogeneous databases.

AP5 distinguishes two kinds of rules: Consistency rules
are intended to be used to perform repairs of constraint
violation. Speaking informally, the semantics of consis-
t,ency rule application is baaed on accumulation, and the
set of all consistency rules are fired until further applica-
tions yield no change. (If inconsistent updates arise, or a
rule with no specified repair is triggered, then a rollback
to the last commit is performed.) Automation rules may
call for more substantial actions, including overwriting of
previously requested modifications, and side-effects outside
of the database. There are different semantics for applying
the two kinds of rules: the application of automation rules
forms an outer loop which calls for application of consis-
tency rules as an inner loop.

Both kinds of rules are triggered on the basis of an
“old” state and a ‘new” state; there is no peeking in AP5.
At the beginning, the “old” state is the initial state of the
database, and the “new” state is the result of applying the
user proposed delta prop to that state. As computation
progresses, the underlying database state is modified, and
both “old” and “new” state may take on new values. In
particular, the “old” always refers to the value that the
database actually has, and “new” refers to the result of ap
plying the delta currently being considered (typically de-
noted ‘curr’) to that state.

In the examples below, we assume that each consis-
tency rule takes as input a delta corresponding to the
“new” state, and returns a delta (which will ultimately be
merged with the proposed one). The rule’s and gclule’s
given above have the correct form to be used here as consis-

460
Barcelona, September. 1991

tency rules. (AP5 provides different conventions for spec-
ifying consistency rules: conditions there permit the key-
word ‘atart’, where start cp holds if ‘p is true in the new
state and false in the old one. Also, unqualified formulas
are interpreted over the new state, M opposed to the old
one as done here.)

The template for applying consistency rules, on input
delta prop, is based on repeated parallel application of the
rules, with a merging of intermediate results, until a fix-
point or inconsistency3 is reached. Assuming that there
are T consistency rules with names coneist_ruleOi for
i E [1.-r], this is captured by the following function. (This
function differs from maintain-constraints in two ways:
first, it returns the final delta, rather than applying it; and
second, it may return the special delta fail, denoting in-
consistency of the user requested update with the effect of
the consistency rules.)

function consist(prop:delta):delta
dec curr,prev:delta,

constant r: integer in
curr := prop:
repeat

(prev , curr) := (curr,curr &
mergeii I l<=i<=r I consist,ruleOi(curr)}~

until curr = prev or curr = fail
endrepeat;

return curr
enddec

If this function returns a delta not equal to foil, then the
delta is eventually applied to the database. If this proce-
dure returns the delta jail the system does not modify the
database. (At present we view fail as carrying no addi-
tional information; however, a semantics can be developed
in which fail carries with it information, e.g., about why
the fail occurred.)

The actions of oulomalion rules in AP5 can be arbi-
trary programs, possibly with side-effects outside of the
database. Automation rules are triggered on the basis of
the output of the function consist. The rule actions are
applied in a nondeterministic order. Since these are arbi-
trary actions, they may themselves modify the database,
thus invoking the rule-application module of AP5 recur-
sively. Importantly, automation rules can do dat,ahase
modifications which consistency rules alone cannot do. For
example, automation rules can alone simulate the garbage
collection template of the previous section, whereas consis-
tency rules alone cannot. This is because the application of
consistency rules cannot “undo” anything which the user
has requested.

We view automation rules as having two components,
a “trigger” and an Uaction”. Following the spirit of AP5
automation rules, the trigger returns a relation, but the
action is specified in terms of single tuples. To pro-
vide an example, we use relations: etud(string,string),

3We simulate each rule with no specified repair by a rule
which, when triggered, introduces <+R(t)> t <-R(t)> for some R
and t.

Proceediigs of the 17th International
Conference on Very Large Data Bases

holding student names and majors; GPA(string,real),
which give student names and their GPAs; Dliat (string)
holding the names of students on the Dean’s list; and
Dcount (string, int), which will give for each major the
number of students having that major on the Dean’s list.

The rules 1 and 2 below implement the policy that a
student is placed on the Dean’s list if s/he obtains a GPA of
at least 3.8, but is removed from the Dean’s list if the GPA
falls below a 3.6. These rules also send a message to the
(un)fortunate student. Rules 3 and 4 maintain the relation
Dcount. The procedure apply-rules, invoked by the rule-
actions here, haa the effect of applying the AP5 rule system,
and will be specified shortly. (The “de-setting” quantifier
the in action03 returns the element of a singleton set, and
is undefined otherwise.)

function triggerQl(curr:d&ta):rel(string,real)
return unionix,y I not Dlist(x) and y>=3.8 and

(GPA(x,y) vhen cu.rr))

procedure actionOl(t:(string,real))
dec output:delta in

send,to(t.1, ‘Ye are happy to inform
you . ..‘.t..2,‘...‘);

output :- <+Dlist(t.l)>;
apply,rulee(output)

enddec

function trigger02(curr:delta):rel(string,real)
return unionix,y 1 Dlist(x) and y < 3.6 and

(GPA(x,y) vhen curr))

procedure action@2(t:(string,real))
dec output :delta in

send,to(t.1, ‘Ye regret informing
you . ..‘.t.2,‘...‘);

output :- <-Dlist(t.1))
apply,rules(output)

enddec

function triggerO3(curr:delta):rel(string,string)
return union< x,m I not Dlist(x) and

(etud(x,m) and DlistCx)) vhen curr)

procedure actionO3(t:(string,string))
dec output:delta,

i:int in
i :- the{ i I Dcount(t.2,i))
output :- <-Dcount(t..2,i)> k <+Dcount(t.2,i+l)>;
apply-rulee(output)

enddec

function triggerO4(curr:delta):rel(string,string)
return unioni x,m I DlistCx) and stud(x,m) and

not Dlist(x) vhen curr)

procedure actionO4(t:(string,string))
dec output:delta

i:int in

461 Barcelona, September, 1991

i := the{ i l Dcount(t.2,i))
output := <-Dcount(t.2,i)F t <+Dcount(t.2,i-1));
apply-rulee(output)

enddec

Note that if the user requests
the update <+Dlist(‘Joe’)> and Joe has a GPA of 2.1,
then only rule 3 will be be fired. In particular, then, the
presence of rule 2 does not enforce an integrity constraint
that no student can have a GPA below 3.6 and be on the
Dean’s list.

We can now state (the central core’) of the seman-
tics of AP5 rules application. We assume that the au-
tomation rules are numbered from 1 to 2. Also, in this
code we step outside of the current capabilities of Her-
aclitus by using a relational variable which ranges over
sets of tuples whose second coordinates which are them-
selves tuples, and have unspecified arities and signatures.
In AP5 the order of firing of applicable automation rulea
is nondeterministically selected; we assume that a func-
tion select (rel (int , tuple)) : Cint , tuple) is defined to
accomplish this.

procedure apply,rulee(prop:delta)
dec fix:delta;

X:rel(int,tuple),
constant r:int in

fix :- consist (prop) ;
if fix - fail then return;

% abort this procedure call if the proposed
% update cannot be “fixed” by the
% consistency rules

X := { i,t I l<=i<=r 1 t in triggeraiffix) 1;
% compute the “trigger set” before applying
% fix to the database: X now holds
% rule-identifier/witness-tuple pairs, giving
% a list of all triggered rulee and
% (intuitively) all tuples responsible for
% triggering the rule.

apply fix;
while X != empty,reln do

(i,t.) - select(X);
X =: X - <i,t>:
actionQi(t)

% recursion results because actions can have
% calls to apply-rules

endahile
enddec

The cycle of rule application begins with a user re-
quested delta prop. The consistency rules are applied to
obtain fix = consist (prop). If fix = fail, then the
database is left unchanged. Otherwise, the automation
rules are considered with the “new” database rqnal to t.he
result of applying fix to t,he inil.ial database. A relat.ion
X is creat,ed and populated with pairs of (labels of) com-
mands corresponding to the actions of triggered automa-
tion rules, and “witness” tuples that triggered them. Then

*The AP5 system incorporates a number of special kinds of
rules, each with their own semantics for application [Coh87].

fix is applied to the database. Processing now continues
by considering each separate command called for in X (LB
if it where a user generated request. Execution terminates
when the initidly created set is empty and the processing
of its last pair has terminated.

5 The Starburst Semantics
In this section we use Heraclitus to specify the (core of the)
semantics of the Starburst Rule System, an active database
system being developed at IBM Almaden [WF90, CW90).
We present here the semantics as described in [CWSO].

Some of the philosophical foundations underlying the
Starburst semantics for rule applications are significantly
different than those for APL These include

(4

(b)

Cc)

(4

partitioning the test for whether a rule should be
applied into two parts: a “trigger”, which is ex-
pressed in a restricted language and testable deep in-
side the database implementation; and a ‘condition”
(expressed in an SQL extension), which is used subse-
quently to determine if a rule should really be applied.
It turns out that the trigger is based on properties of
a specific delta, while the condition and action are
determined by that delta and the “current” state.

the use of peeking into a delta, instead of hypothesiz-
ing.
maintaining a sequence of states, corresponding to the
sequence of successful rule applications, and triggering
different rules according to different choices of “old”
and “current” states. (I n our simulation, we think
in’terms of a sequence of deltas rather than states.)
The intuition of [CW90] is that when a rule action is
executed, then the rule has completely resolved the
problem which lead to its action execution. Thus, fu-
ture consideration of the rule should be based entirely
on modifications to the database which occurred after
the rule firing. As a result, building rules with the in-
tension of having them fire recursively might be more
cumbersome in the Starburst semantics.
in the Starburst semantics each tuple has an “object
identifier” (OID); and insertion, deletion and modifi-
cation are considered. In this presentation, tuples do
not have OIDs, and tuple modification is not explic-
itly supported. (These features can be simulated in
Heraclitus.)

Following the spirit of the Starburst framework, we as-
sume that rules for this semantics have three components,
a trigger, an condition, and an action.

As a simple example of this, we rewrite one of rules of
[CW90] (the optimized version of rule lc). The example of
that paper concerns setting up electrical networks between
power st,ations and users: one aspect of the problem focuses
on the tubes used to house the wires. In their example,
they assume a 4-ary relation tube which gives a tube-id,
the source and destination of the tube, and its (tube) type;
and also a 3-ary relation tube-type, whose tuples hold a
(tube) type, a boolean indicating whether this type of tube

Proceedings of the 17th International
Conference on Very Large Data Bases

462 Barcelona, September, 1991

is “protectedn or not, and the diameter of a cross-section of
this type of tube. The following rule corrects the situation
where a tuple is inserted into tube but the type value of
the tuple does not appear in tube-type. (In the formu-
las below, the symbol ‘-’ is used in coordinate positions
to denote a distinct variable which is existentially quanti-
fied immediately outside of the atom in which the symbol
occurs.)

function trigQlc(change:delta):bool
return exists tid.<+tube(tid,,,,,,)> in change

function condQlc(change,curr:delta):bool
return exists tid,type.

(<+tube(tid ,,,,,type)> in change and
not tube,type(type,,,,) when curr)

function actionOlc(change,curr:delta):delta
return merge{ tid,fr,to,type

I <-tube(tid,fr,to,type)> in change
and not tube-type(type,,,,) vhen curr

1 <-tube(tid,fr,to,type)> &
<+tube(tid,fr,to,default,tube,type> 1

Here def ault,tube-type is a variable which is defined ex-
ternal to the functions given here.

Because of the overlap of computation between the con-
dition and action here (which seems typical of consistency
rules arising in the context of the [CW90] framework), it is
convenient to view the condition as a function mapping to
relations, and to obtain the boolean information by testing
whether the relation is empty. We therefore rewrite the
above as:

function condQlc(change,curr:delta):
rel(string,string)

return union< tid,type
I <+tube(tid ,,,,,type)> in change and

not tube-type(type,,,,) ahen curr)

function actionQlc(curr:delta,
ritneeses:rel(string,string)):delta

return merge< tid,fr,to,type
I (vitnesses(tid,type) and

tube(tid,fr,to,type)) when curr
I C-tube(tid,fr,to,type)> t

<+tube(tid,fr,to,default,tube-type>}

Let us assume now that there are r rules in the rulebase
specified by groups of indexed functions. For simplicity of
exposition, we again step outside of the strong typing of
Heraclitus, and specify the rule components in terms of
relations of unspecified arities and signnt ures.

function trig@i(change:delta):bool
function condQi(change,curr:delta) :rel
function actionQi(change,curr:delta,

aitnesses:rel):delta

In the Starburst semantics, rules are fired and “applied”
to the underlying database in sequence. As noted above,

Ao = the empty delta
Al = user proposal
Aa = I..

A,: suppose rules-3,5 and 8 triggered at ith step;
the condition of rule 3 was evaluated and false;
the condition of rule 5 was evaluated and true;
the condition of rule 8 was not evaluated.

Ai+l = output of action of rule 5
. I

. .

A, Suppose rules 3,5,8 are not triggered between
steps i and n

At this point, then, we have

MRC31
HR c51
MR C81
PREV c31
PREV [51
PREV 181
CHANGE [31
CHANGE [51
CHANCEL81
curr

i+l
value of HR[81 at step i
Ao!A,! *** !Ai
Ao!Al! *** !A,!Ai+l
value of PREVCII at step i
actual(PREVC31,Aitl !Ai+2! 0.. !A,)
actual(PREV CSI, Ai+ ! Ai+s ! * * * ! An)
actual(PREVC8l,AnR[8]+1! *** !A,)
actual(emptydelta,A~!Al!~*~!A~)

Figure 1: Illustration of sequence of deltas used for
Starburst semantics

we specify this in Heraclitus by constructing a sequence
of deltas (see Figure 1). In our specification, we use the
variable curr to hold the cumulative effect of all of the
deltas created so far. In addition to computing the current
cumulative effect of the rule-created deltas, the Starburst
semantics keeps track of the most recent time which a rule
is known to have been ‘satisfied”. In a series of comments,
we maintain an array MR[l. .r] of integers which essentially
indicate, for each i, the most recent step after which rule i
was known to be satisfied.

A rule i is triggered on the basis of the net (requested)
change of the database which occurred since the most re-
cent time when it was satisfied, i.e., from the HR[i]-th step
to the current step. In our specification, we maintain these
net changes in the array CHANGE[l. .r1 of deltas. For com-
putational purposes, we also maintain an array PREVCl. . rl
of deltas, which hold for each i the delta corresponding to
the “old” state against which rule i will be considered.

To describe the semantics more precisely, we need some
technical terminology. A rule is triggered at step k if
trigOi(CHANGE[i]) is true at that time. A rule is eual-
uoted at step k if condai is evaluated (i.e., tested) during
this step. (This can occur only if this rule was triggered
here.)

During step k, the set of all triggered rules is com-
puted, and then a loop is executed in which the triggered
rules are evaluated in sequence until one of them yields

Barcelona. September. 1991 Procadiigs of the 17th International
Chferenee on Very Large Data Bases

463

condOi(CHANGE[k] ,curr) = true. If rule i is triggered at
step k and its condition is evaluated with value false, then
MRCi3 is set to k. If rule i is triggered and is evaluated
with value true, then its effect is added to curr to form the
(k + I)-st delta of the sequence, and HR[i] is set to k + 1.

Suppose now that DB ie the initial database, that
we have performed n steps of the computation, and that
MRCi3 = j. Then PREV[i] will hold Ao!Al! , . .!A,, and
rule i is going to act aa if the underlying database is
DB’ = apply(PREV[i], DB), and that the requested up-
date is A’ = A,+, !. e. !A,,. It is assumed that A’ is in
reduced form relative to DB’. Intuitively, this means that
A’ is replaced by the minimal set A” of atomic ground
deltas such that apply(A”, DB’) = apply(A’, DB’). More
formally, for database DB and deltas A,, A2 we define
actual(Al, A2) to be the merge over all relations R in DB
of mergeIt I not R(t) vhen Al and R(t) vhen AI !A2 I
<+R(t)>) merged with merge{t I R(t) vhen Al and not
R(t) vhen Al !A2 I <-R(t)>}. We assume that actual is
defined as a function.

In order to compute the values of CHANGE[i] in-
crementally, we also maintain an array PREVCI. .rl of
deltas, where PREV[i] holds actual (emptydelta,Ao !. *.
!A,R[i] 1. We now have the Starburst semantics:

procedure atarburst(prop:delta):delta
dec position:int,

flag:boolean,
total,increment:delta,
constant r: int,
PREV,CHANGE:array([l. .r]) of delta,
function actual(prev,curr:delta):delta % . . .
function select,next(rel(int)):int % . . .
in

curr := actual(empty,delta,prop);
X curr alvays holds the full effect of all
% deltas computed so far

for i :- 1 to r do Xinitialization
X HRCi] :- 1:
PREV Ci] :- empty-delta
CHANGE[i] :- curr

endf or ;
position :- 1;

% position holds the number of current etep
repeat X begin main loop

TRIG := empty,reln;
for i :- 1 to r do if trigOi(CHANGE[il)

then TRIG :- TRIG + <i> endif;
% TRIG nov holds indices of triggered rules

flag := false:
vhile TRIG !- empty,reln and not flag do

% ve assume select-next0 is a procedure
% for element selection; Starburst
% semantic8 suggests rule priorities

i :- select,next(TRIG);
TRIG :- TRIG - Ci>;

% rule i is evaluated in next step
if condOi(CHANGE[i] ,curr) !- empty,reln

then flag :- true

Proceedings of the 17th International
Conference on Very Large Data Bases

else
% ve nov have bookkeeping because
‘1, condOi has been evaluated

% MR[i] :- position;
PREV [i] :- curr;
CHANGE ci] := empty-delta;

endif
endvhile ;

if flag then
increment : = actionoi (CHANGECi] ,curr) ;
if increment = rollback
then return empty-delta endif;

1 exit from procedure if the called-for
% update is “rollback” othervise, add
% the delta to the sequence

position :- position + 1;
curr :- actual(empty,delta,curr!increment);

% nov do bookkeeping for all rules
% MRCil :- position:
PREV [il :* curr;
CHANGE[i] :- empty-delta;
for j := 1 to r do

if j != i then CHANGE[j] :-
actual(PREV[j] ,CHANGE[jl !increment) endif;

endf or
endif % of test on flag

until TRIG - empty-reln
endrepeat; % end main loop

% if one of the rules vas applied, then
X TRIG did not become empty, and so the
% loop vi11 be repeated. If TRIG did
X become empty, then the condition of
% each triggered rule failed, i.e., no
% rule can be applied

return curr
enddec

In the above procedure, two arrays of delta-s are main-
tained. An alternative procedure can be specified in Hera-
clitus in which only one array (of size r) of deltas is main-
tained, but with considerable computational overhead, thus
providing a kind of space-time trade-off.

6 “Hypothesizing” vs. “Peek-
ing”

Some active databases support hypothesizing (i.e., using
vhen) in formulas as the means for accessing deltas, while
others support peeking (i.e., using in). In this section we
use Heraclitus to explore the ability of each of these to
simulate the other. In general the simulations go in both
directions, but we exhibit a family of restrictions under
which peeking cannot be simulated by hypothesizing. Due
to space limitations, we omit many of the formal argu-
ments, and provide only a sketch of the main result, Also,
we focus primarily on the use of in and vhen in calculus
formulas.

Simulation of when by in in formulas can be accom-

464 Barcelona, September, 1991

plished by a transformation of the formulas. Suppose that
‘p is a formula involving vhen but not in. In the first step,
‘p is placed into prenex conjunctive normal form (in partic-
ular, so that each negation symbol immediately precedes
an atom) and the when’s are “moved inwards” so that, they
range exclusively over atoms and negated atoms (or atoms
which are already qualified by vhen’s). Nested vhen’s are
resolved by replacing (cp ahen 61) when 62 with ‘p vhen
(62 ! (61 when 61)). It can be shown that these transfor-
mations preserve equivalence. Now perform the following
replacements: Replace R(t) vhen 6 by

C+R(t)> in6or (R(t) and not C-R(t)> in61

Replace not R(t) ahen 6 by

C-R(t)> in6or (not R(t) and not C+R(t)> in6)

Proposition 6.1: The transformation from a formula
with hypothesizing to peeking described above yields an
equivalent, formula.

The transformation may extend the length of t,he for-
mula as much as exponentially, because of the transforma-
tion to conjunctive normal form. The problem of finding a
less expensive transformation from hypothesizing to peek-
ing remains open at this time, as does an analysis of the
expressive complexity [Var82] (intuitively, the succintness)
of programs using hypothesizing vs. peeking.

The simulation of peeking by hypothesizing cannot be
accomplished using a transformation on formulas analogous
to the one just given for the opposite direction, as shown in
Theorem 6.2 below. After presenting this result, we give a
less direct simulation of peeking which uses neither peeking
nor hypothesizing.

Theorem 6.2 focuses on two classes Fin and Fquhen of
Heraclitus functions. It should be not,ed that the the com-
putation of deltas for the semantics of the AP5 consistency
rules can be formulated as an instance of F,&cn, and the
related semantics of rule application studied in [ZH9O] can
be formulated as an instance of Tin. In particular, then,
this result shows that the template of [ZH90] is strictly
stronger than the consistency rule portion of AP5 consid-
ered in isolation. (This statement must of course be taken
with a grain of salt, because the theorem restricts at.tention
to the case where additional relational variables cannot be
used, but it is easy in AP5 to create additional relations in
the database, which can serve as relational variables.)

Theorem 6.2: Consider the class of Heraclitus functions
T with the following properties:

(a) the input variable for the program is curr;

(b) the only variable used with the return command is
curr;

(c) no relational variables are introduced;

(d) only curr is qualified by vhen or in;

(e) the only boolean tests on delta variables are = and !a
(in particular, there are no tests for = fail);

Prtxmdiigs of the 17th International
Conference on Very Large Data Bases

(f) for each assigment statement of the form
curr := expr, expr has the form curr Ir . . ., (i.e.,
curr is modified only through augmentation); and

(g) there are no function or procedure calls, and in partic-
ular no use of arithmetic or string manipulation func-
tions.

Furthermore, let

(i) Fin denote elements of T which do not use vhen; and

(ii) Twhen denote elements of T which do not use in.

there is a function peek-can-do in Fin which is not equiv-
alent to any function in Twhen.

The intuition of the proof of this theorem stems from
the fact that a delta variable Delta might hold an element
<-R(t)> where R(t) is false in the database. If peeking
and relational variables are not used, it turns out that it is
impossible to detect the presence of such elements of Delta
(Note that in the Starburst semantics, the deltas which are
used in peeking are reduced by the actual function, and
so these no-op tuples cannot play a role there.)

Sketch of proof of Theorem 6.2: We begin by describ-
ing the function peek-can-do in Tin. It uses an underlying
database with three binary relations R, !3 and T, all ranging
over strings. peek-can-do will have the property that on
an input instance [I, J, 01 (where I is the relation assigned
to R, J-to S and 0 to T) and input empty-delta we will
have’ apply(peek-canAo(emptydelta), [I, J, 01) = [I, J,
trans,closute(l) n J]. The function is given by?

function peek,can,do(curr:delta):delta
dec prev:delta in

repeat
(prev,curr) := (curr,curr t

merge{ x,z I exists y.(R(x,y) and
(R(y,z) or C-R(y,z)> in curr)
and not R(x,z))

I C-R(x,z)> 1
until curr = prev endwhile;

return merge{ x,y I S(x,y) and
(R(x,y) or C-R(x,y)> in curr)

I C+T(x,y)> 1
enddec

Intuitively, after the repeat-loop has executed, we have
trans-closure(R) = union{ x,y I R(x,y) or C-R(x,y)>
in curr }.

This is used in the return statement of peek-can-do,
which uses curr to identify the tuples that should be in-
serted into T.

The proof that this cannot be simulated by an element
of pWhen relies on (a generalization of) the fact that the re-
lational calculus cannot compute transitive closure [AU79].

~trana-cclosure(K) denotes the transitive closure of a binary
relation K.

8 This program can be expressed using the language of [ZH90],
with rules that satisfy the conditions stated there for ordcr-
independent Nk application,

465
Barcelona, September, 1991

In particular, suppose that the function aill-not-work in
P when does simulate peek-can-do. Let II consist of two
long non-intersecting “chains”, one from $1 to $2 and the
other from %l to %2. Let I2 be similar, but with chains
from $1 to %2 and from $1 to o/02. In particular, the chains
should be chosen to be so long relative to will,not-vork
that. no formula occurring in will-not,vork is able to dis-
tinquish between II and I2. Also, let J = <$1,$2>. Note
that

peek-can-do CI1, J, 01 = VI, J, Jl
peek,can,do[I2, J, 01 = [II, J, 01

We now induct on the execution of will,not-work on in-
puts 11 = [I], J, 01 and IZ = Clz, J, 01, showing t,hat. on
input II;, at each step of t,he execution,

union{ x,y I R(x,y) when curr } = Ik
union{ x,y l S(x,y) when curr) = J

and that at each step, union{ x,y l T(x,y) ahen curr }
is 0 or <$1,$2 >. (This last observation fo11ows in part be-
cause the final output of will-not-work must be computed
by augment,ing the delta value held in curr; at, most, t.he
element t%l,%2> can be added to T.)

In the proof we also handle the case of computations
occurring with delta variables other than curr. •I

Finally, we state

Proposition 6.3: Heraclitns programs using in can be
simulated by Heraclitus programs using neither in nor
when.

One way to achieve this simulai.ion is to maintain “new”
relation variables ~~~~~~ and Ru,~“~ for each relation vari-
able R and each delta variable D occurring in the pro-
gram. Commands are added to the initial program so
that at each point of the computation these relat,ion vari-
ables hold, respectively, union{ t I <tR(t)> in D } and
union{ t l <-R(t)> in D), It. is now t.rivial t,o rrplare
all occurrences of in by tests to t,hrsr relat.ional variables.

7 Conclusions
In this paper we have shown how the constructs of the Her-
aclitus language can be used to specify the rule application
semantics of prominent active database systems found in
the literature, and also used it to st.udy a particular techni-
cal issue concerning hypothesizing vs. peeking. In addition
to the specific contributions of providing the first specifica-
tions for two active database systems in a formal langauge
(as opposed to English), this paper demonstrates that Her-
aclitus can be used as a common language for specifying a
wide variety of alternative semantics for active databases.

Heraclitus can provide part of the foundation for the
study of a wide range of topics. We are currently in the
initial phases of implementing Heraclitus, in order to pro-
vide a test. bed for experimentation with active database
semantics, and also to understand implementation issues
in the context of active databases and more generally, de-
layed updates. Other directions to be pursued include: the

Proceedings of the 17th International
Conference on Very Large Data Bases

development of compile-time tools for certifying that rule
bases and rule application templates will enforce various
integrity constraints; extending the Heraclitus constructs
to incorporate features from- semantic and object-oriented
databases; studying the impact of rules in the context of
heterogeneous databases; and to better understand the in-
terplay of concurrent database usage and rule application.

Acknowledgements
The authors are grateful to members of the Software Sys-
tems group at USC/Information Sciences Institute, includ-
ing in particular Dennis Allard, Don Cohen, Neil Goldman,
and Dave Wile, for numerous informative discussions con-
cerning active databases and AP5; and also Junhui Luo,
for clarifying the subtleties of nested vhen’s.

References

[AS901 S. Abiteboul and E. Simon. Fundamental proper-
ties of deterministic and nondeterministic extensions of
Datalog. Technical report, INRIA, July 1990. to appear
in Theoretical Computer Science.

[AU791 A. V. Aho and J. D. Ullman. Universality of data
retrieval languages. In Proc. ACM Symp. on Principles
oj Programming Languages, pages 110-120, 1979.

[AVSB] Serge Abiteboul and Victor Vianu. Datalog exten-
sions for database queries and updates. Technical Report
900, INRIA, September 1988. to appear in Journal of
Computer and System Sciencea; extended abstract ap-
pears ‘in Proc. ACM Symp. on Principles of Database
Systems, 1988.

[CC+901 F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca,
and R. Zicari. Integrating.pbject-oriented data modeling
wit.h a rule-baqed programm.ing paradigm. In Proc. ACM
SIGMOD Symp. on the Management of Data, pages 225-
236, 1990.

[Coh86] Don Cohen. Programming by specification and
an&&ion. In Proc. of AAAI, 1986.

[Coh87] Don Cohen. AP5 reference manual. Technical
report, USC/Information Sciences Institute, 1987.

[Coh89] Don Cohen. Compiling complex database tran-
sition triggers. In Proc. ACM SIGMOD Symp. on the
Management of Data, pages 225-234, 1989.

[CW9O] Stefano Ceri and Jennifer Widom. Deriving pro-
duction rules for constraint maintenance. Technical Re-
port RJ 7348 (68829), IBM Alemaden Research Center,
March 1990. Abstract appears in Proc. ojlntl. Conj. on
Very Large Data Baaea, 1990.

[CT891 A. van Gelder and R.W. Topor. Safety and trans-
lation of relational calculus queries. Technical Report
UCSC-CRL-89-40, Baskin Center for Computer Engi-
neering and Information Sciences, University of Califor-
nia, ‘Santa Cruz, December 1989. to appear, ACM Z’ran+
actions on Database Systema.

466
Barcelona, September, 1991

(HE91 E.N. Hanson. An initial report on the design of Ariel:
A DBMS with an integrated production rule system.
SIGMOD fkcord 18(3), September 1989, 12-19

[HJ90] R. Hull and D. .I acobs. On the semantics of rules in
database programming languages. In Next Generafion
Information System Technology: Pmt. of the Firat In-
ternational East/West Workshop, I(iec!, USSR, October
1990, ed. by .I. Schmidt and A. Stogny, Springer-Verlag
LNCS, volume 504, 1991, to appear.

[JH91] D. Jacobs and R. Hull. Database programming
with delayed updates. Technical report, Computer Sci-
ence Department, University of Southern California,
1991. In preparation, to be submitted to DBPT, 91.

[MD891 Dennis R. McCarthy and IJmeshwnr Daya.1. The
architecture of an active dat,a base management system.
In PFOC. ACM SIGMOD Symp. on the Management of
Data, pages 215-224, 1989.

[Min88] Jack Minker, edit,or. Foundations of Deductive
Databases and Logic Programming. Morgan-Kaufmnnn,
Inc., San Mateo, CA, 1988.

[MPSO] C.B. Medeiros and P. Pfeffer. A mechanism for
managing rules in an object-oriented database. Technical
report, Altair, 1990.

[M83] M. Morgenstern. Active databases as a paradigm for
enhanced computing environments. Proc. of Intl. Conf.
on Very Large Data Bases, pages 34-42, 1983.

[Sch77] J. W. Schmidt. Some high level language con-
structs for data of type relation. ACM Tvans. on
Database Systems, 2(3):247-261, September 1977.

[SdM88] E. Simon and C. de Maindreville. Deciding
whether a production rule is relational computable. In
Proc. of Intl. Conj. on Database Theory, pages 205-222,
1988.

[SIG891 SIGMOD Record 18:3, “Special Issue on Rule
Management and Processing in Expert Database Sys-
terns”, September 1989.

[SJt90] M. Stonebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedures, caching and views
in dat,a base systems. In Proc. ACM SIGMOD Symp.
on the Management of Data, pages 2X1--290, 1990.

[Var82] Moshe Y. Vardi. The complexity of rrlational
query languages. In PFOC. ACM SIGACT Symp. on fhf
Theory of Computing, pages 137-146, 1982.

[WF90] Jennifer Widom and Sheldon J. Finkelstein. Set-
oriented production rules in relational database systems.
In Proc. ACM SIGMOD Symp. on the Managemrnt of
Data, pages 259--264, 199n.

[ZH90] Y. Zhou and M. Hsu. A theory for rule t,riggering
systems, In Intl. Conf. on Eztending Data Base Tech-
nology, pages 407-421, 1990.

Proceedings of the 17th International
Conference on Very Large Data Bases

467 Barcelona. September, 1991

