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“YOU cannot step twice into the same river; for fresh 
waters are ever flowing in upon you.” 

Heraclitus, circa. 500 B.C. 

Abstract: 
This paper presents database programming lan- 
guage constructs that. can be used to realize a 
variety of different semantics for rule applica- 
tion in active database syst.ems. The primary 
novel feature introduced is the “delayed update”, 
or delta, which is a first-class value representing 
a set of proposed modifications to the underly- 
ing persistent store. Deltas can be created, in- 
spected, and combined without committing t.o 
the given modifications. The utility of these 
concepts for expressing the semantics of active 
databases is demonstrated through a series of ex- 
amples, including the presentation of the essen- 
tial features of rule application in the AP5 system 
of USC/Information Sciences Institute and the 
Starburst Rule System being developed at IBM 
Almaden. Technical results concerning the sim- 
ulatability of certain fundamental constructs by 
other fundamental constructs are also presented. 
The discussion is baaed on Heraclitus[Rel], an im- 
perative language containing a relational calculus 
sublanguage and deltas. 

1 Introduction 

“Active” databases generally support the automatic trig- 
gering of updates as a response to user-requested or system- 
generated updates [M83]. Many active database systems, 
e.g., [CC+90, Coh86, Coh89, MD89, H89, SdM88, SIG89, 
SJt90, WF90, ZH90], use a paradigm of rulea to generate 
these automatic updates, in a manner reminiscent of ex- 
pert systems. As discussed in [HJ90] and elsewhere, each 
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of the systems described in the literature uses a different 
semantics for rule application. Some of these differences 
stem from the choice of underlying data model (e.g., rela.- 
tional or object-oriented), but the most crucial differences 
stem from choices concerning when rules should be fired 
(e.g., at transaction boundaries or within transactions), 
how they should be fired (e.g., in parallel or sequentially 
in some order), and how their effects should be combined 
(e.g., aborting on conflict or giving priority to insertions). 
This highlights the fact that the “knowledge” represented 
in both active and deductive databases stems from two 
distinct components: (a) the rule base and (b) the seman- 
tics for rule application, It appears that different rule- 
application semantics will sometimes be appropriate, even 
within a single database. This perspective is supported by 
the LOGRES system [CC+90], in which users can choose, 
for each requested update, from a palate of six rule applica- 
tion semantics. It seems unlikely that a fixed collection of 
choices will suffice however, especially as active databases 
become increasingly sophisticated. For example, there has 
been recent interest in developing techniques for modu- 
larizing rules, e.g., by clustering them with classes in an 
object-oriented system (cf. [MP90]) or with different kinds 
of database transactions. It seems natural that designers 
will require different semantics for different kinds of clu5 

ters. 
This paper presents database programming language 

constructs that can be used to directly realize a variety of 
different semantics for rule application. The primary novel 
feature introduced is the “delayed update”, or delta, which 
is a first-class value representing a set of proposed mod- 
ifications to the underlying persistent store. Deltas can 
be created, inspected, and combined without committing 
to the given modifications. The utility of these concepts 
for expressing the semantics of active databases is demon- 
strated through a series of examples, including the presen- 
tation of the essential features of rule application in the 
AP5 system [Coh87, Coh86, Coh89] of USC/Information 
Sciences Institute and the Starburst Rule System described 
in [WF90, CW90], currently under development at IBM 
Almaden. This is a contribution in and of itself be- 
cause for both of these systems, rule application is spec- 
ified only by informal, natural-language descriptions (see 
[Coh87, CW90)). We also show how these constructs can be 
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used to express the semantics of some deductive database 
systems. 

Our discussions are based on the database program- 
ming language Heraclitus[Rel] [JH91), cnrrently in t.he ini- 
tial stages of implementation at USC and USC/lSl. The ba- 
sic Heraclitus feature of deltas can be realized for a variety 
of underlying programming paradigms and data models. 
Heraclitus[Rel] is a simple imperative language using the 
relational model and a calculus sublanguage, much along 
the lines of PASCAL/R [Sch77] and APS. The short term 
goal of the current implementation effort is to provide a 
testbed for experiment,ing with different rule application 
semantics. In the long term, we hope to develop an im- 
plementation that is efficient enough to be directly used in 
practical applications. 

Heraclitus also serves as a basis for the theoretical anal- 
ysis of alternative rule application semantics and their in- 
teraction with, e.g., integrity constraints, parallelism, het- 
erogeneity, etc. In this paper, we give a small t,aste of 
this kind of analysis by examining the relative simulnta- 
bility of two approaches to accessing deltas. The first. ap- 
proach, called “peeking”, permits the programmer t,o di- 
rectly inspect the proposed modifications contained in a 
delta: this approach is used in the Starburst system, among 
others. The second approach, called “hypothesizing”, per- 
mits the programmer to query the hypothetical database 
that would be obtained by applying a delta t,o the actual 
current database; this approach is used in the AP5 syst.em, 
among others. In the general context of Heraclitus, peeking 
and hypothesizing can simulate each other. However, we 
exhibit a set of restrictions on Heraclitus programs under 
which hypothesizing cannot simulate peeking. 

Although not considered here, Heraclitus also appears 
useful in the context of hypothetical reasoning, truth main- 
tanence systems, and in connection wit,h specifying imple- 
mentation strategies for database transaction processing. 

In Section 2 we present an overview of the kernel of 
Heraclitus[Rel]. In Section 3 we show how Heraclitus can 
be used to express rule application semantics, for both ac- 
tive and deductive databases. In Section 4 we consider the 
AP5 semantics, and in Section 5 we consider the semantics 
of the Starburst system. Section 6 considers peeking and 
hypothesizing. Brief conclusions are offered in Section 7. 

2 Overview of Heraclit us [Rel] 
Heraclitus[Rel], hereafter referred to more simply as Her- 
aclitus, is a simple imperative language with the following 
features. 

l It is statically-typed, ’ i.e. all possible type errors are 
detected at compile-time, modulo t,he issue ofinterfac- 
ing with the persistent store. The types of program 
variables must be explicitly declared by the user and 
the types of quantified variables are automatically in- 
ferred by the system. 

I In this article we sometimes relax t.his discipline, permitt.ing 
for succinctness the type tuple of arbitrary signature. 
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l It supports relation types and relation variables. Re- 
lation variables may persist or be declared locally by 
the programmer. 

o It supports a type delta, whose values represent pro- 
posed insertions into, and deletions from, the values 
of (persistent and transient) relation variables. Delta 
variables may be declared by the programmer. 

s It has a relational calculus sublanguage that can be 
used to construct relation and delta values. This sub- 
language supports (a) quantified variables which are 
not range-restricted, (b) variables and function sym- 
bols which are bound “outside” of calculus formulas, 
and (c) the use of deltas within formulas. This appears 
to be richer than the ca.lculus sublanguages supported 
in other relational database programming languages 
(e.g., PASCAL/R [Sch77]), and we have had to extend 
the usual notions of %afety” and the tranformations 
used to translate safe formulas into relational alge- 
bra expressions (see, e.g., [GTSS]). (Heraclitus also 
includes explicit algebraic operators for union, inter- 
section and difference.) 

Delta values are generated by evaluating delta expres- 
sions. The atomic delta expression <+R(el , . . . ,en)> pro- 
duces a delta which calls for the value of tuple expression 
(el , . ,e,) to be inserted into the value of relation vari- 
able R. (Relations are viewed as sets; if (el e > is #‘.., n 
in the current value for R then applying c+R(el e )> I..., n 
causes no change to R.) Similarly, the atomic delta expres- 
sion <-R(el , , . , ,e,)> produces a delta which calls for the 
value of tuple expression (el , . . . ,e,) to be deleted from 
the value of relation variable R. Two binary operators for 
combining deltas are provided: Merge, denoted t, forms 
the “union” of two deltas, but produces the special delta 
fail if conflicting updat,es are proposed. Sma& denoted 
! ( resolves conflicting updates in favor of the second delta. 
For example, 

s <+R(l)> 8 <+R(2)> produces a delta that calls for (I) 
and (2) to be inserted into R. 

l <tR(l)> 8 <-R(i)> produces fail. 

9 <tR(l)> ! <+R(2)> produces a delta that calls for (I) 
and (2) to be inserted into R. 

l <tR(l)> ! <-R(l)>produces adelta that callsfor (1) 
to be deleted from R. 

In the context of combining the output of rule applications, 
merge implements a semantics based on “accumulation” of 
requested updates, while smash implements a semantics 
based on “overwriting” (see [HJ90]). In general, a delta 
value may refer to more than one relation variable. 

Let DE be the database state corresponding to the 
binding of values to all relation variables in the scope at 
some point in a Heraclitus program. If A is a delta value, 
then apply(A, DB) is the database state corresponding to 
the application of the modifications requested by A to DB. 
For a delta expression 6, eval(6, DB) is the value of 6 under 
t,he bindings specified by DB (and the bindings for delta 
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and simple-type variables, which we suppress here). Fi- 
nally, the command apply 6 has the effect of reassigning 
all relation variables according to apply(etd(6, DB), DB), 

Heraclitus provides two ways of accessing deltas with- 
out committing to the proposed modifications, as in the 
command apply introduced above. The first way, called 
“peeking”, permits the programmer to directly inspect the 
proposed modifications. The boolean expression 61 in 62 
produces true iff the value of delta expression 61 is a “sub- 
set” of the value of delta expression 62. For example, 
<-R(l)> in current tests whether the value of delta vari- 
able current calls for the tuple (1) to be delet.ed from the 
value of relation variable R. The second way, called “hy- 
pothesizing”, permits the programmer to query the hypo- 
thetical database obtained by applying a delta to the actual 
current database. In particular, the expression E when 6 
evaluates expression E in the database obtained by apply- 
ing the value of delta expression 6 to the current state, 

There are several different quantified expressions in 
Heraclitus[Rel], all of which have the basic form 

where Q is the name of the quantifier (this includes at 
present forall, exists, union, the, merge, and also arith- 
metic aggregates such as sum); zr , . . ,zn introduces quan- 
tified variables, Qr is a formula analogous to the ones in 
the relat.ional calculus, and E is an expression. It is use- 
ful to view such “three-pronged” expressions in terms of 
operations on multi-sets, although t,his type does not ap- 
pear formally in the language. Conceptually, the body of 
a quantified expression represents the multi-set containing 
the value of E for each set of bindings for 21, . , ,tn that 
satisfies @. Each quantifier corresponds to a way of col- 
lapsing a multi-set of values of a particular type, As an 
example using the aggregate sum quantifier, 

SumIlX I O<x<6 I 2*x) 

evaluates to 30. Note that sum is the extension of the bi- 
nary operation + on integers to multi-sets of integers. The 
quantifiers in Heraclitus[Rel] generally have this property: 
forall and exists are the extensions of and and or on 
booleans, union is the extension of binary union + on re- 
lations, and merge is the extension of binary merge k on 
deltas. 

Most of the quantifiers have special abbreviated forms 
which correspond to their common usage. In particular, 
union{ 21,. , . , zn I @ } abbreviates union{ 21,. . . , z,, 1 Cp 
I <z I,..., zn>}; the body of the latter expression produces 
a set of singleton retations, which are then unioned. Also, 
(forall zr,...,zn . Cp 1 abbreviates forall{ zr, ,., , zn 
1 true 1 Q } and (exists ~1,. , . ,I” . Cp 1 abbreviates 
exists{ 21,. . . , zn I true I ip }. Note that these abbre- 
viated forms cannot always be used: as a rather contrived 
example 

foralljx I O<x<6 I (l/x)Cy) 

is not equivalent to 

(forall x . not(O<x<6) or (l/x)Cy) 
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because of the possibility of division by zero. Thus, these 
quantifiers incorporate the conventional programming lan- 
guage notions of “conditional and” cand and “conditional 
or” car. 

We now define the semantics of smash more precisely. 
Given two delta values Ar and AZ, the smoah of AI and 
A? is that delta value A such that for all states DB, 
apply(A, DB) = apply(Aa, apply(Al, DB)). More gener- 
ally, given delta expressions 61 and 62 and state DB, then 
A = eval(6r !62, DB) has the property apply(A, DB) = 
apply(A2, apply(Ar, DB)), where Ai = evsl(bi, DB) for 
i E { 1,2}. An expression equivalent to 61 162 can be ob- 
tained using merge and peeking; specifically, 61! 62 is equiv- 
alent to the merge over all relation variables R (occuring 
in the relevant scope) of merge{ I I (<+RO)> in 61 and 
not <-R(2)> in 62) or <+R(t)> in 62 I c+R(r)> ) merged 
with merge{ t 1 (<-R(r)> in 61 and not <+R(t)> in 62) 
or <-R(r)> in 62 I <-R(t)> }. From this example it is 
clear that other operators for combining deltas, e.g., to 
give precedence for insertions as in LOGRES [CC+90], can 
be defined in Heraclitus. 

The interaction of when and ! is interesting: for all 
expressions E and delta expressions 61 and 62, (E vhen 
61) when 62 is equivalent to E vhen (62 ! (61 vhen 62) 1. 

3 Expressing Rule Application 
Semantics 

In this section we illustrate by simple examples the spirit 
of how the constructs of Heraclitus can be used to specify 
the semantics of rule application in active and deductive 
database systems. 

In most active database systems, a rule consists of a 
trigger (or condition) that controls when the rule should 
be fired and a body which specifies the modifications that 
are contributed when firing occurs. The trigger and the 
body will generally be able to access the original (most re- 
cently committed) state of the database, as well as various 
intermediate states proposed by the user and other rules. 
In Heraclitus, a rule can be represented as a function that 
takes deltas, representing intermediate states, as input and 
produces deltas, representing contributed modifications, as 
results For example, the rule 

function rule(curr:delta):delta 
return merge{ x I R(x) and (not R(x) vhen cur) 

I <-S(x)> 1 

can be applied during the processing of a transaction to 
propagate deletions from R to S. This same rule can be 
written in (set-oriented (WF90, CWSO]) trigger/body form 
as two functions. 

function trigger(curr:delta):rel(int) 
return unioni x I R(x) and (not R(x) vhen curr) 1 

function body(T:rel(int)):delta 
return mergei x I T(x) I <-S(X)> 1 
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A particular semantics for rules can be expressed in 
Heraclitus as a procedure, referred to as a (rule applica- 
tion) template, which controls how functions such as the 
ones above are called. In order to facilitate the manipu- 
lation of rules, we introduce the notion of indesed-families 
o/ functiona, as the first example below shows. This can 
be viewed as a shorthand for a function taking as input an 
integer, and containing a case statement which maps the 
input integer to the appropriate code fragment. An alter- 
native would be to permit explicit arrays of rules, but this 
would entail elevating procedures to being first-class citi- 
zens, which would distract us from the main focus of this 
article. 

We begin with some simple examples involving graphs, 
represented using two unary relations, root (string) 
and partcetring), and one binary relation, PS(string, 
string). Intuitively, part holds (names of) parts, PS holds 
part-subpart relationships, and root holds those parts 
which serve as roots for the part-subpart graph. 

We consider four constraints on instances of t,his 
schema: 

(a) All strings occurring in root occur in part 

(b) All strings occurring in PS occur in part 

(c) Each string in part is reachable from a string in root 
via a path in PS. 

(d) PS is a directed acyclic graph (i.e., has no directed 
cycles). 

The first series of examples focus on sets of rules which 
maintain these constraints in the presence of deletions from 
one or more of the three relations. (Here rules 1,2 and 3 
maintain constraints a,b and c, respectively.) Under the 
precedence rules of Heraclitus, a when connective is grouped 
with the smallest complete subformula preceding it. 

function ruleQ1 
return mergetx 

function rule02 ( 

curr:delta):delta 
1 root(x) and 

(not part(x) vhen curr) 
I <-root(x)> ) 

curr:delta):delta 
return merge{x,y I PS(x,y) and (hot part(x) or 

not part(y)) shen curr) 
I c-PS(x,y)> 1 

function ruleQ3(curr:delta):delta 
return merge{x I part (x1 and ((not root(x) and 

forall y.not PS(y,x)) vhen curr) 
I <-part(x)> 1 

The following template, which is similar to the template 
for applying consistency rules in AP5 (see Section 3), may 
be used with these rules. We assume for the following tem- 
plate that the user-proposed dat,abase upda.te is passed to 
the rule system by the parameter prop (which consists en- 
tirely of deletions). Execution consists in repeated parallel 
application of the rules, with a merging of intermediate re- 
sults, until a fixpoint is reached, i.e., no further changes 
occur. Finally, this fixpoint is applied to t.he database. 
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(We use dec-in-enddec to specify a set of declarations and 
their scope. Constant, function and procedure declarations 
are identified by keywords; unspecified declarations declare 
variables.) 

procedure maintain,constraints(prop:delta) 
dec next:int, 

prev,curr:delta in 
curr := prop; 
repeat 

prev := curr; 
curr := curr I: mergefi I l<=iC=B I ruleOi(curr)I 

until curr = prev endrepeat; 
apply curr 

enddec 

During each execution of the loop, the current va.lue 
of curr is merged with the outputs of ruleQi(curr) for 
i in {1,2,3). The loop is executed until a fixpoint 
is reached. It can be shown that for any input in- 
stance satisfying the four constraints listed above and delta 
prop consisting exclusively of deletions, that execution of 
maintain-constraints will yield the unique maximal in- 
stance contained in the initial instance such that the tuples 
“deleted” by prop are absent, and such that the constraints 
are satisfied. 

Note that the command assigning curr in the above 
loop has the same semantics as 

dec temp:delta in 
temp := empty-delta; 
for i := 1 to 3 do 

temp := temp t rule@i(curr) endfor; 
curr := curr 0 temp 

enddec 

In this case, the rules are computed sequentially, all in the 
context of curr. The output of the rules is held in temp, 
which is m,erged with curr only after all rules have been 
used. 

We now present a variation of rule03, which has the 
same impact but which does not produce redundant deltas. 
This uses two deltas as input, one corresponding to the 
“current” delta, and the other corresponding to the delta 
computed most recently before that one during rule appli- 
cation. It also uses peeking, i.e., explicit tests of member- 
ship in deltas using the connective in. 

function peekruleQ3(prev,curr:delta):delta 
return merge< x I part(x) ohen curr and 

<-root(x)> in curr and 
forall y.(PS(y,x) when prev -> 

C-PS(y,x)> in curr) 
I <-part(x)> 1 

Assuming that analogs of rule01 and rule92 US- 

ing prev and curr are also specified, the following 
rule-application template will have the same effect as 
maintain-constraints. 

procedure peek,maintain,constraints(prop:delta) 
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dec nextzint, 
prev,curr:delta in 

cur-r :- prop; 
repeat 

(prev,curr) := (curr,curr & 
merge{ i 1 l<-i<=3 1 peekruleOi(prev,curr)}) 

until,curr = prev endrepeat; 
apply curr 

enddec 

We now turn to a family of rules and a rule application 
template which will accomplish a general form of garbage 
collection. We assume two unary relations root and node 
and the binary relation link (all over type string). We 
also assume that the initial dai,abase sat.isfics t,he following 
constraints: 

(a) All strings occurring in root occur in node 

(b) All strings occurring in link occur in node 

(c) Each string in node is reachable from a string in root 
via a directed path in link. 

In this example, the rule template gc-template we ex- 
hibit shall be a function from deltas t.o deltas, such t,hat 
if A is an arbitrary set of insertions and deletions on a 
database instance LIB, then apply(gc,template(A),DB) 
will be the result of garbage collection on apply(A, DB). 
gc,template will not have side-effects on the database, so 
the entire computation can be rolled back if desired. 

The variable OK is declared in the template to range over 
unary relations of strings, and is initialized to be empty. 
The template for rule application enforces a prioritization 
of the rules - the first group of rules (numbers 1 and 2) 
“determines” the set of nodes that are still connected to a 
root after the user input delta prop has been applied to the 
database, and places them into the temporary relation OK. 
The second group of rules (3, 4 and 5) rises this information 
to do the garbage collection. We first present the rules: 

function gc,ruleOl(curr:delta):delta 
return merge{ x 1 (root(x) and node(x)) when curr 

I c+OK(x)> ) 

function gc,ruleO2(curr:delta):delta 
return merge{ y 1 exist x.(OK(x) and node(y) and 

link(x,y)) when curr 
I <+OK(y)> 1 

function gc,ruleO3(curr:delta):delta 
return merge{ y 1 root(y) and not OK(y) when curr 

I <-root(y)> 1 

function gc,rule04(curr:delta):delta 
return merge{ y 1 node(y) and not OK(y) when curr 

I <-node(y)> 1 

function gc,rule05(curr:delta):delta 
return merge< x,y I link(x,y) and (not OK(x) or 

not OK(y)) when curr 
I <-link(x,y)> 1 
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The following function is used to compute the impact 
of a cluster of rules, using accumulation. This function 
is analogous to maintain-constraints, but restricting its 
attention to rules with indices in X. 

function gc,no-change(curr:delta,X:rel(int)):delta 
dec next:int, 

prev:delta in 
repeat 

(prev,curr) :- (curr,curr t 
merge{ i:int 1 X(i) 1 gc,ruleOi(curr) 1) 

until curr - prev endrepeat; 
return curr 

enddec 

The full template for garbage collection is now given. 
Note that the functions given above are viewed as part of 
the declaration part of this procedure. 

function gc,template(prop:delta):delta 
dec temp:delta, 

OK:rel(string), 
% .*. declarations for gc-rules, gc,no-change 
in 

OK := empty: 
temp := gc-no,cha.nge(prop, <1>+<2>); 
temp := temp!gc,no,change(temp, <3>+<4>+<5>); 
return temp 

enddec 

In the procedure gc-template we use notation for ex- 
plicitly building relations (e.g., <1>+<2>). In Heraclitus, 
<Xl,..., r,> denotes an n-ary relation holding the single 
tuple (%I,..., CC,,), and + denotes relational union. 

Let DB denote the initial database instance. When 
gc,template is called on prop, the first action is to 
compute the set of OK nodes using gcno-change(prop, 
<1>+<2>). Note that this delta contains no mod- 
ifications to the persistent database variables. The 
next step is to compute the modifications which cor- 
respond to garbage collection that should be made to 
apply(eual(prop, DB), DB). This is accomplished by call- 
ing gc,no,change(temp, <3>+<4>+<5>). 

The second assignment of gc,template computes 
the smash of the input delta prop and the output of 
gc-no,change(temp). When the value of temp is returned, 
all atomic deltas involving OK are removed, because OK is 
declared locally within the procedure. 

This example is reminiscent of the LOGRES system 
[CCs90], which permits the sequential application of dif- 
ferent rule “modules”. The example also embodies some 
of the spirit of the theoretical language DATALOG” 
[AV88, ASgO], a variant of DATALOG in which rule heads 
can be positive or negative. Unlike DATALOG”, which 
supports either inflationary semantics and a semantics 
based on nondeterministic application of rules, this exam- 
ple uses a semantics reminiscent of stratified logic program- 
ming. 
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In the next example, we present a template that would 
be useful if rule actions had associated costs.2 For exam- 
ple, suppose that in a business, based on certain conditions, 
rules will be fired in order to remedy problems, (e.g., if sales 
volume is too low then increase advertising; or lower prices 
by 5%). Suppose further that the rules are clustered, with 
the remedies proposed by some clusters being more “costly” 
than others; the more costly ones should be invoked only 
if the cheaper clusters are unable to remedy the problem, 
The following template assumes that there are c rule clus- 
ters, ordered by increasing cost, and attempts to find the 
cheapest solution to the current status of the database: 

procedure apply,cheapest-solution 
dec attempt:delta, 

constant c:int, 
% . . . declarations for functions 
in 

for i := 1 to c do 
attempt := apply-rules(i) ; 
if satisfies,constrainte(attempt) 

then apply attempt; return endif 
endf or 
print,measage(‘no cluster offers a solution’) 

enddec 

We conclude this section by indicating how Heraclitus 
can be used to express a popular semantics for rule applica- 
tion in deductive databases, namely stratified DATALOG’ 
(e.g., see [Min88]). Under this approach, a set of “exen- 
sional” database relations is assumed, and a set of rules is 
used to populate a disjoint set of “intentional” database 
relations, which are initially assumed to be empty). In 
the example, we follow the usual convention, and do not 
materialize the contents of the intent,ional relations. 

DATALOG’ rules can be represented in Heraclitus by 
functions of the form 

rule9i(curr:delta) :delta 
return merge{ x-1,. . . ,x-n I Cp vhen curr 

I <+R(x,l ,.,.,x-n)> 1 

where Cp is an existentially quantified conjunction of posi- 
tive and negative literals. 

The following function produces a delta corresponding 
to the effect of applying the set of rules whose indexes occur 
in the input relation: 

function apply-rule,set(X:rel(int), 
prop:delta):delta 

dec prev,curr:delta in 
curr := prop; 
repeat 

(prev,curr) :- 
(curr,curr t mergexi I X(i) I ruleOi(curr))) 

until prev - curr 
endrepeat; 
return curr 

enddec 

2The authors thank Serge Abiteboul for suggesting this ex- 
ample and the following one. 
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Suppose now that the rule base is stratified with n levels, 
and let LEVEL-i hold a unary relation containing the indices 
of the rules at level i. We now define: 

function apply-all-1evels:delta 
dec curr:delta, 

% . . . declaration for apply-rule-set 
in 

curr := empty-delta: 
for i := 1 to n do 

curr := apply-rule-set(LEVEL,i,curr) endfor; 
return curr 

enddec 

The expression Q vhen apply,all,levels evaluates to the 
value of query p in the deductive database. 

4 The semantics of AP5 
In this section ,we specify the core of the semantics of 
rule application in the AP5 system. AP5 (Coh67, Coh86, 
Coh89] is a database programming language which extends 
LISP, and supports virtual memory databases and a frans- 
action facility. It was implemented over five years ago at 
the USC/Information Sciences Institute, and has been in 
continuous use since then. AP5 was initially developed in 
connection with software specification and transformation, 
and has also been used to support office management func- 
tions and research on heterogeneous databases. 

AP5 distinguishes two kinds of rules: Consistency rules 
are intended to be used to perform repairs of constraint 
violation. Speaking informally, the semantics of consis- 
t,ency rule application is baaed on accumulation, and the 
set of all consistency rules are fired until further applica- 
tions yield no change. (If inconsistent updates arise, or a 
rule with no specified repair is triggered, then a rollback 
to the last commit is performed.) Automation rules may 
call for more substantial actions, including overwriting of 
previously requested modifications, and side-effects outside 
of the database. There are different semantics for applying 
the two kinds of rules: the application of automation rules 
forms an outer loop which calls for application of consis- 
tency rules as an inner loop. 

Both kinds of rules are triggered on the basis of an 
“old” state and a ‘new” state; there is no peeking in AP5. 
At the beginning, the “old” state is the initial state of the 
database, and the “new” state is the result of applying the 
user proposed delta prop to that state. As computation 
progresses, the underlying database state is modified, and 
both “old” and “new” state may take on new values. In 
particular, the “old” always refers to the value that the 
database actually has, and “new” refers to the result of ap 
plying the delta currently being considered (typically de- 
noted ‘curr’) to that state. 

In the examples below, we assume that each consis- 
tency rule takes as input a delta corresponding to the 
“new” state, and returns a delta (which will ultimately be 
merged with the proposed one). The rule’s and gclule’s 
given above have the correct form to be used here as consis- 
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tency rules. (AP5 provides different conventions for spec- 
ifying consistency rules: conditions there permit the key- 
word ‘atart’, where start cp holds if ‘p is true in the new 
state and false in the old one. Also, unqualified formulas 
are interpreted over the new state, M opposed to the old 
one as done here.) 

The template for applying consistency rules, on input 
delta prop, is based on repeated parallel application of the 
rules, with a merging of intermediate results, until a fix- 
point or inconsistency3 is reached. Assuming that there 
are T consistency rules with names coneist_ruleOi for 
i E [1.-r], this is captured by the following function. (This 
function differs from maintain-constraints in two ways: 
first, it returns the final delta, rather than applying it; and 
second, it may return the special delta fail, denoting in- 
consistency of the user requested update with the effect of 
the consistency rules.) 

function consist(prop:delta):delta 
dec curr,prev:delta, 

constant r: integer in 
curr := prop: 
repeat 

(prev , curr) := (curr,curr & 
mergeii I l<=i<=r I consist,ruleOi(curr)}~ 

until curr = prev or curr = fail 
endrepeat; 

return curr 
enddec 

If this function returns a delta not equal to foil, then the 
delta is eventually applied to the database. If this proce- 
dure returns the delta jail the system does not modify the 
database. (At present we view fail as carrying no addi- 
tional information; however, a semantics can be developed 
in which fail carries with it information, e.g., about why 
the fail occurred.) 

The actions of oulomalion rules in AP5 can be arbi- 
trary programs, possibly with side-effects outside of the 
database. Automation rules are triggered on the basis of 
the output of the function consist. The rule actions are 
applied in a nondeterministic order. Since these are arbi- 
trary actions, they may themselves modify the database, 
thus invoking the rule-application module of AP5 recur- 
sively. Importantly, automation rules can do dat,ahase 
modifications which consistency rules alone cannot do. For 
example, automation rules can alone simulate the garbage 
collection template of the previous section, whereas consis- 
tency rules alone cannot. This is because the application of 
consistency rules cannot “undo” anything which the user 
has requested. 

We view automation rules as having two components, 
a “trigger” and an Uaction”. Following the spirit of AP5 
automation rules, the trigger returns a relation, but the 
action is specified in terms of single tuples. To pro- 
vide an example, we use relations: etud(string,string), 

3We simulate each rule with no specified repair by a rule 
which, when triggered, introduces <+R(t)> t <-R(t)> for some R 
and t. 
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holding student names and majors; GPA(string,real), 
which give student names and their GPAs; Dliat (string) 
holding the names of students on the Dean’s list; and 
Dcount (string, int), which will give for each major the 
number of students having that major on the Dean’s list. 

The rules 1 and 2 below implement the policy that a 
student is placed on the Dean’s list if s/he obtains a GPA of 
at least 3.8, but is removed from the Dean’s list if the GPA 
falls below a 3.6. These rules also send a message to the 
(un)fortunate student. Rules 3 and 4 maintain the relation 
Dcount. The procedure apply-rules, invoked by the rule- 
actions here, haa the effect of applying the AP5 rule system, 
and will be specified shortly. (The “de-setting” quantifier 
the in action03 returns the element of a singleton set, and 
is undefined otherwise.) 

function triggerQl(curr:d&ta):rel(string,real) 
return unionix,y I not Dlist(x) and y>=3.8 and 

(GPA(x,y) vhen cu.rr)) 

procedure actionOl(t:(string,real)) 
dec output:delta in 

send,to(t.1, ‘Ye are happy to inform 
you . ..‘.t..2,‘...‘); 

output :- <+Dlist(t.l)>; 
apply,rulee(output) 

enddec 

function trigger02(curr:delta):rel(string,real) 
return unionix,y 1 Dlist(x) and y < 3.6 and 

(GPA(x,y) vhen curr)) 

procedure action@2(t:(string,real)) 
dec output :delta in 

send,to(t.1, ‘Ye regret informing 
you . ..‘.t.2,‘...‘); 

output :- <-Dlist(t.1)) 
apply,rules(output) 

enddec 

function triggerO3(curr:delta):rel(string,string) 
return union< x,m I not Dlist(x) and 

(etud(x,m) and DlistCx)) vhen curr) 

procedure actionO3(t:(string,string)) 
dec output:delta, 

i:int in 
i :- the{ i I Dcount(t.2,i)) 
output :- <-Dcount(t..2,i)> k <+Dcount(t.2,i+l)>; 
apply-rulee(output) 

enddec 

function triggerO4(curr:delta):rel(string,string) 
return unioni x,m I DlistCx) and stud(x,m) and 

not Dlist(x) vhen curr) 

procedure actionO4(t:(string,string)) 
dec output:delta 

i:int in 
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i := the{ i l Dcount(t.2,i)) 
output := <-Dcount(t.2,i)F t <+Dcount(t.2,i-1)); 
apply-rulee(output) 

enddec 

Note that if the user requests 
the update <+Dlist(‘Joe’)> and Joe has a GPA of 2.1, 
then only rule 3 will be be fired. In particular, then, the 
presence of rule 2 does not enforce an integrity constraint 
that no student can have a GPA below 3.6 and be on the 
Dean’s list. 

We can now state (the central core’) of the seman- 
tics of AP5 rules application. We assume that the au- 
tomation rules are numbered from 1 to 2. Also, in this 
code we step outside of the current capabilities of Her- 
aclitus by using a relational variable which ranges over 
sets of tuples whose second coordinates which are them- 
selves tuples, and have unspecified arities and signatures. 
In AP5 the order of firing of applicable automation rulea 
is nondeterministically selected; we assume that a func- 
tion select (rel (int , tuple)) : Cint , tuple) is defined to 
accomplish this. 

procedure apply,rulee(prop:delta) 
dec fix:delta; 

X:rel(int,tuple), 
constant r:int in 

fix :- consist (prop) ; 
if fix - fail then return; 

% abort this procedure call if the proposed 
% update cannot be “fixed” by the 
% consistency rules 

X := { i,t I l<=i<=r 1 t in triggeraiffix) 1; 
% compute the “trigger set” before applying 
% fix to the database: X now holds 
% rule-identifier/witness-tuple pairs, giving 
% a list of all triggered rulee and 
% (intuitively) all tuples responsible for 
% triggering the rule. 

apply fix; 
while X != empty,reln do 

(i,t.) - select(X); 
X =: X - <i,t>: 
actionQi(t) 

% recursion results because actions can have 
% calls to apply-rules 

endahile 
enddec 

The cycle of rule application begins with a user re- 
quested delta prop. The consistency rules are applied to 
obtain fix = consist (prop). If fix = fail, then the 
database is left unchanged. Otherwise, the automation 
rules are considered with the “new” database rqnal to t.he 
result of applying fix to t,he inil.ial database. A relat.ion 
X is creat,ed and populated with pairs of (labels of) com- 
mands corresponding to the actions of triggered automa- 
tion rules, and “witness” tuples that triggered them. Then 

*The AP5 system incorporates a number of special kinds of 
rules, each with their own semantics for application [Coh87]. 

fix is applied to the database. Processing now continues 
by considering each separate command called for in X (LB 
if it where a user generated request. Execution terminates 
when the initidly created set is empty and the processing 
of its last pair has terminated. 

5 The Starburst Semantics 
In this section we use Heraclitus to specify the (core of the) 
semantics of the Starburst Rule System, an active database 
system being developed at IBM Almaden [WF90, CW90). 
We present here the semantics as described in [CWSO]. 

Some of the philosophical foundations underlying the 
Starburst semantics for rule applications are significantly 
different than those for APL These include 

(4 

(b) 

Cc) 

(4 

partitioning the test for whether a rule should be 
applied into two parts: a “trigger”, which is ex- 
pressed in a restricted language and testable deep in- 
side the database implementation; and a ‘condition” 
(expressed in an SQL extension), which is used subse- 
quently to determine if a rule should really be applied. 
It turns out that the trigger is based on properties of 
a specific delta, while the condition and action are 
determined by that delta and the “current” state. 

the use of peeking into a delta, instead of hypothesiz- 
ing. 
maintaining a sequence of states, corresponding to the 
sequence of successful rule applications, and triggering 
different rules according to different choices of “old” 
and “current” states. (I n our simulation, we think 
in’terms of a sequence of deltas rather than states.) 
The intuition of [CW90] is that when a rule action is 
executed, then the rule has completely resolved the 
problem which lead to its action execution. Thus, fu- 
ture consideration of the rule should be based entirely 
on modifications to the database which occurred after 
the rule firing. As a result, building rules with the in- 
tension of having them fire recursively might be more 
cumbersome in the Starburst semantics. 
in the Starburst semantics each tuple has an “object 
identifier” (OID); and insertion, deletion and modifi- 
cation are considered. In this presentation, tuples do 
not have OIDs, and tuple modification is not explic- 
itly supported. (These features can be simulated in 
Heraclitus.) 

Following the spirit of the Starburst framework, we as- 
sume that rules for this semantics have three components, 
a trigger, an condition, and an action. 

As a simple example of this, we rewrite one of rules of 
[CW90] (the optimized version of rule lc). The example of 
that paper concerns setting up electrical networks between 
power st,ations and users: one aspect of the problem focuses 
on the tubes used to house the wires. In their example, 
they assume a 4-ary relation tube which gives a tube-id, 
the source and destination of the tube, and its (tube) type; 
and also a 3-ary relation tube-type, whose tuples hold a 
(tube) type, a boolean indicating whether this type of tube 
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is “protectedn or not, and the diameter of a cross-section of 
this type of tube. The following rule corrects the situation 
where a tuple is inserted into tube but the type value of 
the tuple does not appear in tube-type. (In the formu- 
las below, the symbol ‘-’ is used in coordinate positions 
to denote a distinct variable which is existentially quanti- 
fied immediately outside of the atom in which the symbol 
occurs.) 

function trigQlc(change:delta):bool 
return exists tid.<+tube(tid,,,,,,)> in change 

function condQlc(change,curr:delta):bool 
return exists tid,type. 

(<+tube(tid ,,,,,type)> in change and 
not tube,type(type,,,,) when curr) 

function actionOlc(change,curr:delta):delta 
return merge{ tid,fr,to,type 

I <-tube(tid,fr,to,type)> in change 
and not tube-type(type,,,,) vhen curr 

1 <-tube(tid,fr,to,type)> & 
<+tube(tid,fr,to,default,tube,type> 1 

Here def ault,tube-type is a variable which is defined ex- 
ternal to the functions given here. 

Because of the overlap of computation between the con- 
dition and action here (which seems typical of consistency 
rules arising in the context of the [CW90] framework), it is 
convenient to view the condition as a function mapping to 
relations, and to obtain the boolean information by testing 
whether the relation is empty. We therefore rewrite the 
above as: 

function condQlc(change,curr:delta): 
rel(string,string) 

return union< tid,type 
I <+tube(tid ,,,,,type)> in change and 

not tube-type(type,,,,) ahen curr) 

function actionQlc(curr:delta, 
ritneeses:rel(string,string)):delta 

return merge< tid,fr,to,type 
I (vitnesses(tid,type) and 

tube(tid,fr,to,type)) when curr 
I C-tube(tid,fr,to,type)> t 

<+tube(tid,fr,to,default,tube-type>} 

Let us assume now that there are r rules in the rulebase 
specified by groups of indexed functions. For simplicity of 
exposition, we again step outside of the strong typing of 
Heraclitus, and specify the rule components in terms of 
relations of unspecified arities and signnt ures. 

function trig@i(change:delta):bool 
function condQi(change,curr:delta) :rel 
function actionQi(change,curr:delta, 

aitnesses:rel):delta 

In the Starburst semantics, rules are fired and “applied” 
to the underlying database in sequence. As noted above, 

Ao = the empty delta 
Al = user proposal 
Aa = I.. 

A,: suppose rules-3,5 and 8 triggered at ith step; 
the condition of rule 3 was evaluated and false; 
the condition of rule 5 was evaluated and true; 
the condition of rule 8 was not evaluated. 

Ai+l = output of action of rule 5 
. I 

. . 

A, Suppose rules 3,5,8 are not triggered between 
steps i and n 

At this point, then, we have 

MRC31 
HR c51 
MR C81 
PREV c31 
PREV [51 
PREV 181 
CHANGE [31 
CHANGE [51 
CHANCEL81 
curr 

i+l 
value of HR[81 at step i 
Ao!A,! *** !Ai 
Ao!Al! *** !A,!Ai+l 
value of PREVCII at step i 
actual(PREVC31,Aitl !Ai+2! 0.. !A,) 
actual(PREV CSI, Ai+ ! Ai+s ! * * * ! An) 
actual(PREVC8l,AnR[8]+1! *** !A,) 
actual(emptydelta,A~!Al!~*~!A~) 

Figure 1: Illustration of sequence of deltas used for 
Starburst semantics 

we specify this in Heraclitus by constructing a sequence 
of deltas (see Figure 1). In our specification, we use the 
variable curr to hold the cumulative effect of all of the 
deltas created so far. In addition to computing the current 
cumulative effect of the rule-created deltas, the Starburst 
semantics keeps track of the most recent time which a rule 
is known to have been ‘satisfied”. In a series of comments, 
we maintain an array MR[l. .r] of integers which essentially 
indicate, for each i, the most recent step after which rule i 
was known to be satisfied. 

A rule i is triggered on the basis of the net (requested) 
change of the database which occurred since the most re- 
cent time when it was satisfied, i.e., from the HR[i]-th step 
to the current step. In our specification, we maintain these 
net changes in the array CHANGE[l. .r1 of deltas. For com- 
putational purposes, we also maintain an array PREVCl. . rl 
of deltas, which hold for each i the delta corresponding to 
the “old” state against which rule i will be considered. 

To describe the semantics more precisely, we need some 
technical terminology. A rule is triggered at step k if 
trigOi(CHANGE[i]) is true at that time. A rule is eual- 
uoted at step k if condai is evaluated (i.e., tested) during 
this step. (This can occur only if this rule was triggered 
here.) 

During step k, the set of all triggered rules is com- 
puted, and then a loop is executed in which the triggered 
rules are evaluated in sequence until one of them yields 
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condOi(CHANGE[k] ,curr) = true. If rule i is triggered at 
step k and its condition is evaluated with value false, then 
MRCi3 is set to k. If rule i is triggered and is evaluated 
with value true, then its effect is added to curr to form the 
(k + I)-st delta of the sequence, and HR[i] is set to k + 1. 

Suppose now that DB ie the initial database, that 
we have performed n steps of the computation, and that 
MRCi3 = j. Then PREV[i] will hold Ao!Al! , . .!A,, and 
rule i is going to act aa if the underlying database is 
DB’ = apply(PREV[i], DB), and that the requested up- 
date is A’ = A,+, !. e. !A,,. It is assumed that A’ is in 
reduced form relative to DB’. Intuitively, this means that 
A’ is replaced by the minimal set A” of atomic ground 
deltas such that apply(A”, DB’) = apply(A’, DB’). More 
formally, for database DB and deltas A,, A2 we define 
actual(Al, A2) to be the merge over all relations R in DB 
of mergeIt I not R(t) vhen Al and R(t) vhen AI !A2 I 
<+R(t)>) merged with merge{t I R(t) vhen Al and not 
R(t) vhen Al !A2 I <-R(t)>}. We assume that actual is 
defined as a function. 

In order to compute the values of CHANGE[i] in- 
crementally, we also maintain an array PREVCI. .rl of 
deltas, where PREV[i] holds actual (emptydelta,Ao !. *. 
!A,R[i] 1. We now have the Starburst semantics: 

procedure atarburst(prop:delta):delta 
dec position:int, 

flag:boolean, 
total,increment:delta, 
constant r: int, 
PREV,CHANGE:array([l. .r]) of delta, 
function actual(prev,curr:delta):delta % . . . 
function select,next(rel(int)):int % . . . 
in 

curr := actual(empty,delta,prop); 
X curr alvays holds the full effect of all 
% deltas computed so far 

for i :- 1 to r do Xinitialization 
X HRCi] :- 1: 
PREV Ci] :- empty-delta 
CHANGE[i] :- curr 

endf or ; 
position :- 1; 

% position holds the number of current etep 
repeat X begin main loop 

TRIG := empty,reln; 
for i :- 1 to r do if trigOi(CHANGE[il) 

then TRIG :- TRIG + <i> endif; 
% TRIG nov holds indices of triggered rules 

flag := false: 
vhile TRIG !- empty,reln and not flag do 

% ve assume select-next0 is a procedure 
% for element selection; Starburst 
% semantic8 suggests rule priorities 

i :- select,next(TRIG); 
TRIG :- TRIG - Ci>; 

% rule i is evaluated in next step 
if condOi(CHANGE[i] ,curr) !- empty,reln 

then flag :- true 
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else 
% ve nov have bookkeeping because 
‘1, condOi has been evaluated 

% MR[i] :- position; 
PREV [i] :- curr; 
CHANGE ci] := empty-delta; 

endif 
endvhile ; 

if flag then 
increment : = actionoi (CHANGECi] ,curr) ; 
if increment = rollback 
then return empty-delta endif; 

1 exit from procedure if the called-for 
% update is “rollback” othervise, add 
% the delta to the sequence 

position :- position + 1; 
curr :- actual(empty,delta,curr!increment); 

% nov do bookkeeping for all rules 
% MRCil :- position: 
PREV [il :* curr; 
CHANGE[i] :- empty-delta; 
for j := 1 to r do 

if j != i then CHANGE[j] :- 
actual(PREV[j] ,CHANGE[jl !increment) endif; 

endf or 
endif % of test on flag 

until TRIG - empty-reln 
endrepeat; % end main loop 

% if one of the rules vas applied, then 
X TRIG did not become empty, and so the 
% loop vi11 be repeated. If TRIG did 
X become empty, then the condition of 
% each triggered rule failed, i.e., no 
% rule can be applied 

return curr 
enddec 

In the above procedure, two arrays of delta-s are main- 
tained. An alternative procedure can be specified in Hera- 
clitus in which only one array (of size r) of deltas is main- 
tained, but with considerable computational overhead, thus 
providing a kind of space-time trade-off. 

6 “Hypothesizing” vs. “Peek- 
ing” 

Some active databases support hypothesizing (i.e., using 
vhen) in formulas as the means for accessing deltas, while 
others support peeking (i.e., using in). In this section we 
use Heraclitus to explore the ability of each of these to 
simulate the other. In general the simulations go in both 
directions, but we exhibit a family of restrictions under 
which peeking cannot be simulated by hypothesizing. Due 
to space limitations, we omit many of the formal argu- 
ments, and provide only a sketch of the main result, Also, 
we focus primarily on the use of in and vhen in calculus 
formulas. 

Simulation of when by in in formulas can be accom- 
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plished by a transformation of the formulas. Suppose that 
‘p is a formula involving vhen but not in. In the first step, 
‘p is placed into prenex conjunctive normal form (in partic- 
ular, so that each negation symbol immediately precedes 
an atom) and the when’s are “moved inwards” so that, they 
range exclusively over atoms and negated atoms (or atoms 
which are already qualified by vhen’s). Nested vhen’s are 
resolved by replacing (cp ahen 61) when 62 with ‘p vhen 
(62 ! (61 when 61)). It can be shown that these transfor- 
mations preserve equivalence. Now perform the following 
replacements: Replace R(t) vhen 6 by 

C+R(t)> in6or (R(t) and not C-R(t)> in61 

Replace not R(t) ahen 6 by 

C-R(t)> in6or (not R(t) and not C+R(t)> in6) 

Proposition 6.1: The transformation from a formula 
with hypothesizing to peeking described above yields an 
equivalent, formula. 

The transformation may extend the length of t,he for- 
mula as much as exponentially, because of the transforma- 
tion to conjunctive normal form. The problem of finding a 
less expensive transformation from hypothesizing to peek- 
ing remains open at this time, as does an analysis of the 
expressive complexity [Var82] (intuitively, the succintness) 
of programs using hypothesizing vs. peeking. 

The simulation of peeking by hypothesizing cannot be 
accomplished using a transformation on formulas analogous 
to the one just given for the opposite direction, as shown in 
Theorem 6.2 below. After presenting this result, we give a 
less direct simulation of peeking which uses neither peeking 
nor hypothesizing. 

Theorem 6.2 focuses on two classes Fin and Fquhen of 
Heraclitus functions. It should be not,ed that the the com- 
putation of deltas for the semantics of the AP5 consistency 
rules can be formulated as an instance of F,&cn, and the 
related semantics of rule application studied in [ZH9O] can 
be formulated as an instance of Tin. In particular, then, 
this result shows that the template of [ZH90] is strictly 
stronger than the consistency rule portion of AP5 consid- 
ered in isolation. (This statement must of course be taken 
with a grain of salt, because the theorem restricts at.tention 
to the case where additional relational variables cannot be 
used, but it is easy in AP5 to create additional relations in 
the database, which can serve as relational variables.) 

Theorem 6.2: Consider the class of Heraclitus functions 
T with the following properties: 

(a) the input variable for the program is curr; 

(b) the only variable used with the return command is 
curr; 

(c) no relational variables are introduced; 

(d) only curr is qualified by vhen or in; 

(e) the only boolean tests on delta variables are = and !a 
(in particular, there are no tests for = fail); 
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(f) for each assigment statement of the form 
curr := expr, expr has the form curr Ir . . ., (i.e., 
curr is modified only through augmentation); and 

(g) there are no function or procedure calls, and in partic- 
ular no use of arithmetic or string manipulation func- 
tions. 

Furthermore, let 

(i) Fin denote elements of T which do not use vhen; and 

(ii) Twhen denote elements of T which do not use in. 

there is a function peek-can-do in Fin which is not equiv- 
alent to any function in Twhen. 

The intuition of the proof of this theorem stems from 
the fact that a delta variable Delta might hold an element 
<-R(t)> where R(t) is false in the database. If peeking 
and relational variables are not used, it turns out that it is 
impossible to detect the presence of such elements of Delta 
(Note that in the Starburst semantics, the deltas which are 
used in peeking are reduced by the actual function, and 
so these no-op tuples cannot play a role there.) 

Sketch of proof of Theorem 6.2: We begin by describ- 
ing the function peek-can-do in Tin. It uses an underlying 
database with three binary relations R, !3 and T, all ranging 
over strings. peek-can-do will have the property that on 
an input instance [I, J, 01 (where I is the relation assigned 
to R, J-to S and 0 to T) and input empty-delta we will 
have’ apply(peek-canAo(emptydelta), [I, J, 01) = [I, J, 
trans,closute(l) n J]. The function is given by? 

function peek,can,do(curr:delta):delta 
dec prev:delta in 

repeat 
(prev,curr) := (curr,curr t 

merge{ x,z I exists y.(R(x,y) and 
(R(y,z) or C-R(y,z)> in curr) 
and not R(x,z)) 

I C-R(x,z)> 1 
until curr = prev endwhile; 

return merge{ x,y I S(x,y) and 
(R(x,y) or C-R(x,y)> in curr) 

I C+T(x,y)> 1 
enddec 

Intuitively, after the repeat-loop has executed, we have 
trans-closure(R) = union{ x,y I R(x,y) or C-R(x,y)> 
in curr }. 

This is used in the return statement of peek-can-do, 
which uses curr to identify the tuples that should be in- 
serted into T. 

The proof that this cannot be simulated by an element 
of pWhen relies on (a generalization of) the fact that the re- 
lational calculus cannot compute transitive closure [AU79]. 

~trana-cclosure(K) denotes the transitive closure of a binary 
relation K. 

8 This program can be expressed using the language of [ZH90], 
with rules that satisfy the conditions stated there for ordcr- 
independent Nk application, 
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In particular, suppose that the function aill-not-work in 
P when does simulate peek-can-do. Let II consist of two 
long non-intersecting “chains”, one from $1 to $2 and the 
other from %l to %2. Let I2 be similar, but with chains 
from $1 to %2 and from $1 to o/02. In particular, the chains 
should be chosen to be so long relative to will,not-vork 
that. no formula occurring in will-not,vork is able to dis- 
tinquish between II and I2. Also, let J = <$1,$2>. Note 
that 

peek-can-do CI1, J, 01 = VI, J, Jl 
peek,can,do[I2, J, 01 = [II, J, 01 

We now induct on the execution of will,not-work on in- 
puts 11 = [I], J, 01 and IZ = Clz, J, 01, showing t,hat. on 
input II;, at each step of t,he execution, 

union{ x,y I R(x,y) when curr } = Ik 
union{ x,y l S(x,y) when curr ) = J 

and that at each step, union{ x,y l T(x,y) ahen curr } 
is 0 or <$1,$2 >. (This last observation fo11ows in part be- 
cause the final output of will-not-work must be computed 
by augment,ing the delta value held in curr; at, most, t.he 
element t%l,%2> can be added to T.) 

In the proof we also handle the case of computations 
occurring with delta variables other than curr. •I 

Finally, we state 

Proposition 6.3: Heraclitns programs using in can be 
simulated by Heraclitus programs using neither in nor 
when. 

One way to achieve this simulai.ion is to maintain “new” 
relation variables ~~~~~~ and Ru,~“~ for each relation vari- 
able R and each delta variable D occurring in the pro- 
gram. Commands are added to the initial program so 
that at each point of the computation these relat,ion vari- 
ables hold, respectively, union{ t I <tR(t)> in D } and 
union{ t l <-R(t)> in D ), It. is now t.rivial t,o rrplare 
all occurrences of in by tests to t,hrsr relat.ional variables. 

7 Conclusions 
In this paper we have shown how the constructs of the Her- 
aclitus language can be used to specify the rule application 
semantics of prominent active database systems found in 
the literature, and also used it to st.udy a particular techni- 
cal issue concerning hypothesizing vs. peeking. In addition 
to the specific contributions of providing the first specifica- 
tions for two active database systems in a formal langauge 
(as opposed to English), this paper demonstrates that Her- 
aclitus can be used as a common language for specifying a 
wide variety of alternative semantics for active databases. 

Heraclitus can provide part of the foundation for the 
study of a wide range of topics. We are currently in the 
initial phases of implementing Heraclitus, in order to pro- 
vide a test. bed for experimentation with active database 
semantics, and also to understand implementation issues 
in the context of active databases and more generally, de- 
layed updates. Other directions to be pursued include: the 
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development of compile-time tools for certifying that rule 
bases and rule application templates will enforce various 
integrity constraints; extending the Heraclitus constructs 
to incorporate features from- semantic and object-oriented 
databases; studying the impact of rules in the context of 
heterogeneous databases; and to better understand the in- 
terplay of concurrent database usage and rule application. 
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