
Performance Analysis of a Load Balancing Hash-Join Algorithm
for a Shared Memory Multiprocessor

Edward Omiecinski

College of Corn pu ting
Georgia Institute of Technology

Atlanta, Georgia 30332
U. S. A.

Abstract
Within the last several years, there has been a
growing interest in applying general multiproces-
sor systems to relational database query process-
ing. Efficient parallel algorithms have been
designed for the join operation but usually have a
failing in that their performance deteriorates
greatly when the data is nonuniform. In this
paper, we propose a new version of the hash-
based join algorithm that balances the load
between the processors, for any given bucket, in
a shared everything environment. We develop an
analytical model of the cost of the algorithm and
implement the algorithm on a shared memory
multiprocessor machine. We also perform a
number of experiments comparing our model
with our empirical results.

1. Introduction
Applying m u ltiprocessor m ach in es to data-

base query processing has been an active area of
research. The motivation for using a multipro-
cessor machine stems from the fact that databases
are getting larger and that an adequate level of
performance, e.g. response time, is required.
Most of the proposed multiprocessor database
systems are based on a shared nothing
[BF87,DGGHKM86,K090] architecture. That is,
where each processor has its own local memory
and processors communicate via message passing.
In addition, a disk or set of disks is connected to
each processor, allowing processors to read/ write
to a disk in parallel. There have also been pro-
posed systems that follow a shared everything
[DKT90.MR89,OS90,QI88,SKPO88] paradigm,
In these schemes memory and disks are shared
by all processors, Once again, a disk (or set of
disks) would have its own I/O controller so that a
read/write to different disks can be done in paral-
lel.

Proceedings of the 17th International
Conference on Vety Large Data Bases

For relational database systems, there have
been a number of algorithms developed for
implementing the join operation in parallel
[BF87,DG85,QI88]. They include the nested-loop
method [BF87,SD89], the sort-merge method
[QI88,SD89] and the hash-join method
[QI88,SD89]. The performance of the algorithms
is usually predicted by analytical modelling or
simulation. In the performance analysis it is
assumed that the data (relations) are uniformly
distributed. However, as pointed out in
[LY88,SD89], a non-uniform data distribution
(also referred to as data skew) can have a severe
affect on the performance of the join algorithm.

In this paper we develop a hash-join algo-
rithm that is robust in the face of data skew. It is
specifically designed for a shared everything
architecture, We present some of the previous
work that has been done to devise a join algo-
rithm that will be immune to data skew in the
next .section. In section 3, we present our hash-
join algorithm that balances the load when the
data is skewed. In section 4, we present an
analytical cost model for our algorithm and in
section 5, we show the results of implementing
our algorithm on a shared memory multiproces-
sor math ine.

2. Previous Work
In [WDY90], the shared nothing model of

parallelism is assumed and a parallel join algo-
rithm based on the sort-merge method is
presented to handle data skew. The algorithm is
based on the divide-and-conquer approach, It
adds an extra scheduling phase to the usual sort,
transfer and join phases. During the scheduling
phase, an optimization algorithm is used, which
takes the output of the sort phase and determines
how the join is to be divided into multiple tasks
and how those tasks are to be assigned to proces-

375
Barcelona, September, 1991

sors so as to balance the load. They present an
analytical model of their algorithm’s performance
and show that it achieves a good load balancing
for the join processing phase in a CPU-bound
environment.

In [K090], a robust hash-join based algo-
rithm is devised for a specific parallel database
computer architecture. This architecture is also
based on a shared nothing model. Instead of their
previous approach [KNHTPO] of allocating buck-
ets to processors, they dynamically allocate buck-
ets to processors so as to balance the load. They
propose a bucket spreading strategy which parti-
tions buckets into fragments and in a subsequent
phase these fragments are assigned to processors.
The bucket spreading strategy is similar to the
idea of disk striping. They also use a specific net-
work structure, i.e., an omega network, to assist
in the bucket spreading strategy. They present a
simulation model of their system and show that
the performance of their algorithm is not affected
very much by the presence of data skew. The cost
of writing the result of the join to a file and to
disk is not considered.

In [SD89], the effect of limited data skew
on four different join algorithms is examined.
They conclude that the performance of the hash-
based join algorithms degrade when the join
values of the inner relation are highly skewed and
that a non-hash-based algorithm should be used
in those cases, e.g. sort-merge. However, the
double skew case was not considered.

Some work has appeared in the recent
literature dealing with hash-join algorithms for a
shared everything architecture [LTS90,QI88], In
[QISS], they present a large set of parallel algo-
rithms, including hash-join, for implementing a
join operation on a shared memory database
machine. An analytical model of the various
algorithm’s performance is presented. However,
the problem of data skew was not considered.

In [LTS90], they examine only hash-based
join algorithms for a general purpose shared
memory multiprocessor. The amount of avail-
able memory is assumed to be proportional to the
number of processors. In this approach a global
hash table is built for each bucket. They use a
locking mechanism to provide exclusive access
for a write to this hash table but they allow mul-
tiple reads to occur simultaneously. They provide
an analytical model of the total processing time
for their join algorithms. As in the previously
mentioned work in this section, data skew is not

Proceedings of the 17th International
Conference on Very Large Data Bases

considered.

3, Hash Join Algorithms for a Shared
Everything Architecture

The basic architecture that we assume is
that o’f a shared everything machine. Each proces-
sor shares common memory with other proces-
sors and each processor may have some local
(nonshared) memory as well. Processors also
share secondary storage devices. We assume that
for secondary storage, we have the same number
of disk drives as we do processors. We do not
have to limit our approach to this but we had to
make a decision regarding this feature and this
seemed reasonable. The processors, disks and
memory are linked by an interconnection net-
work. We assume that disk reads/writes of
different pages can be done concurrently as can
memory accesses to distinct variables. Although
main memory sizes are increasing rapidly, we
assume that neither of the two relations to be
joined will fit entirely in main memory.

The hash-join algorithm that we consider
for a shared memory multiprocessor is the
GRACE hash-join method [KTM83]. This algo-
rithm will also form the basis for our load balanc-
ing hash-join algorithm. Since the number of
processors will be relatively small in a shared
memory multiprocessor, the number of buckets
produced will be greater than the number of pro-
cessors.. Hence, a single processor will handle
multiple buckets. The GRACE hash-join algo-
rithm can be summarized by the following phases
for performing R Ir(l S.

I. Read relation R, partition the tuples into
buckets based on a given hash function
applied to the joining attribute value and
write those buckets to secondary storage;

II, Read relation S, partition the tuples into
buckets based on the same hash function
as used in prior phase and write those
buckets to secondary storage;

III, For each bucket created in phase I, read
the R bucket from secondary storage,

. build an in memory hash table using
some hash function applied to the joining
attribute value, read the corresponding S
bucket from secondary storage and for
each tuple probe the hash table for an R
tuple with the matching value for the

376
Barcelona, September, 1991

joining attribute. The join result is cost and implement the algorithm so that we can
formed by the matching tuples. validate our model.

One can see that if the data for each rela-
tion is partitioned across all the disks, then each
phase can be done in parallel. As seen in
[LTS90], one has to be careful in phases I and II
that multiple processors do not try to write to the
same bucket at the same time, In [LTS90], they
used locks to avoid the problem. However, when
the data is highly skewed the lock conflict rate
can be quite high for both phases. For our adap-
tation of this algorithm, we avoid the use of
locks. In phase I (or phase II) each processor
determines the bucket that a tuple belongs in but
does not write it to the bucket at that time.
Instead that information is stored in a small array.
The array is small since we are processing a page
of a relation at a time on each processor, Hence,
the number of entries in the array is equal to the
number of tuples in a page. Each processor sorts
its array in increasing order of bucket number
and builds a small index on that information, i.e.,
linking a bucket number with the tuples that
belong to that bucket, After that, the processors
are assigned buckets. The tuples for each given
bucket will be placed in a buffer page by only one
processor. To accomplish this, a given processor
wilI access a distinct entry in the index of each of
the processors. For example, if a processor is
responsible for bucket 0, then that processor will
access entry 0 in the index created by each of the
processors. With this scheme only one buffer
page per bucket is needed and there is no conten-
tion between processors.

In contrast to the approach in [LTS90], one
hash table is not built at a time and alI processors
do not probe that hash table in parallel during
phase III, As previously mentioned, if the data is
highly skewed, then building and probing a single
hash table in parallel can result in a high conflict
rate that degrades performance, Instead, if there
are n processors then hash tables for n buckets
will be created in parallel and probed in parallel.

For our load balancing hash-join approach,
we need to modify the three phases and to add a
scheduling phase prior to phase III. In phase I,
we keep a count of the number of tuples that
hash into each bucket for relation R. In addition,
since one bucket may need to be processed by
several processors in phase III, we must stripe the
pages of a bucket across the disks. This will
allow us to read in a portion of one bucket in
parallel and to process each portion in parallel.
We need to do the same for phase II but for rela-
tion S. Having the size (in number of tuples) for
each bucket we can decide on the number of pro-
cessors to handle each bucket and the schedule of
buckets to processors. For a given bucket, we
use the maximum of the sizes of the correspond-
ing R and S buckets for the following calculation.
To determine the number of processors that are
needed to handle a bucket, we calculate the size
of a uniform bucket, u&e, i.e., as if the tuples
were uniformly distributed to buckets. We then
divide each actual bucket size by u&e and take
the ceiling of that result, which yields the number
of needed processors per bucket,
processorsger-bucket . The scheduling phase,
which precedes phase III, sorts the
processorsger,bucket in form ation in increasing
order. Next a schedule is produced by using a
first-fit decreasing heuristic to allocate buckets to
individual steps in the schedule so that the
number of steps is minimized. In the first-fit
decreasing heuristic, buckets are allocated to a
step in non-increasing order of the number of
processors needed. If the required number of pro-
cessors for the bucket to be scheduled is not
available in the current set of steps in the
schedule, then a new step is added to the
schedule and the bucket is allocated to the pro-
cessors in that new step.

Our load balancing hash-join approach is
similar to the approach in [K090] but with the
following notable differences: our method is
designed for a shared everything system as
opposed to a shared nothing system, we make use
of no special hardware and we assign a bucket to
one or more processors based on a first-fit
decreasing heuristic, similar to that used for the
bin-packing problem [HS78]. In addition, we
develop an analytical model of our algorithm’s

Once the scheduling phase is complete,
which is done by a single processor, phase III
may begin using the schedule as a driver. The
schedule is a global array and as such is accessi-
ble by all processors. Using the schedule infor-
mation, each processor involved with a given
bucket can read a disjoint subset of the pages of
that bucket since the pages are striped across the
disks and can build an in-memory hash table of
the tuples on those pages. Now, since there does
not exist just a single hash table for a given
bucket but, let say n hash tables where n is the
number of processors needed to process the

Proceedings of the 17th International
Conference on Very Large Data Bases

377
Barcelona, September, 1991

bucket, the tuples in the corresponding S bucket
must be processed against each of those n hash
tables, Once again, since the pages of the S
bucket have been striped across the disks, a dis-
joint subset of those pages can be processed by
each of the n processors. At this point the pro-
cess resembles the nested-loop join method since
a page read (by processor i) and processed
against hash table I has to be processed against
the remaining n- 1 hash tables. This is accom-
plished in a circular fashion, i.e., processor i
processes a data page with hash tables
i,i+ l,..., n ,O,..,, i- 1 in that order. The circular
approach is also used for reading pages from the
disks so that contention is minimized due to mul-
tuple processors trying to read distinct pages from
the same disk at the same time,

Table I. Model Parameters

Parameter
IRI

ISI

(RI
61
JvR

tR

‘S

P
B
D
IO

Comp

Assign

C
F
Hash

Move

Rskew

Sskew

Description/ Value
size of relation R = 1000
(in pages)
size of relation S = 1000
(in pages)
number of R tuples 3: 10000
number of S tuples = 10000
number of unique join
values in relation R = 1000
number of tuples per
page of relation R = 10
number of tuples per
page of relation S = 10
number of processors = 2 thru 9
number of buckets = 25
number of disks = 2 thru 9
time to perform an
I/O operation = 24 ms
time to compare
two attributes = 0.007 ms
time to assign a
value to a variable = 0.007 ms
sorting constant = 2
scheduling constant = 2
time to compute hash
value of an attribute = 0.015 ms
time to move a tuple
in memory = 0.040 ms
fraction of R tuples
with skew data value = 0.1 to 0.4
fraction of S tuples
with skew data value = 0.1 to 0.4

Proceedings of the 17th International
Conference on Very Large Data Bases

4, Analytical Models for Hash Join
Algorithms

In this section we present the analytical
models for both hashing schemes. To make the
modelling more tractable we make a few assump-
tions. We should note that these assumptions are
not restrictions on the algorithms. The main
assumption regards the data skew. We assume
that only one bucket contains a disproportionate
number of tuples, which is a percentage of the
total number of tuples in the relation. The other
tuples are uniformly distributed across the
remaining buckets. To accomplish this we have a
single data skew value for the joining attribute
and we generate a specified fraction of the tuples
with that value. The remaining tuples will actually
be distributed across all of the buckets, including
the skew bucket. In addition, when we consider
the double skew case, the corresponding buckets
in the other relation have the same structure.
This is in agreement with the assumptions made
in other work [LY88]. We also assume that there
is enough main memory to process any given
bucket, since we are primarily interested in how
data skew affects load balancing and not how data
skew may cause overflow in a hash bucket. Table
I describes the different parameters and their
values used with the analytical models. They are
similar to the values found in
[LTS90,QI88,Sha86].

We will first present the model for the basic
hash-join approach and then for the load balanc-
ing approach. Since the processors are working in
parallel, the one processor that takes the longest
time to finish in each step will dictate the overall
cost of the algorithm. That processor is the one
that is assigned the skew bucket. As already
mentioned, that processor will also handle an
equal share of the other buckets. Hence, the cost
formulas will be derived for just that processor.
In phase I, we have the following steps:

(a) Read pages of R relation:

l-1 ‘“p’ *IO

(b) Find bucket address of tuple:

‘tR *Hash

378
Barcelona. September, 1991

(cl Store address of tuple and bucket address in
an array:

2; IRI

l-1 P
* tR *A ssign

(d) Sort array by bucket number:

(d

c. ‘R’
l-1 P ‘1R log2 tR *(Compare + Assign)

Build index on bucket number:

‘(fR SCompare + 2-B -Assign)

Move tuples to their associated buckets: Note,
based on our assumptions, one proce

handle the skew bucket as well as

other buckets since the bucket to processor
assignment is static and since all processors
will handle approximately the same number
of buckets. So the skew value contributes
[Rskew*(R 11 tuples to the skew bucket.

Since the other tuples are uniformly distri-
buted cross all B bucke s, each bucket will

have f 1 - Rskew)uF\tuples. So the total

number of tuples in any nonskew bucket can
be delined as

hukewbuckcr = (1 - Rskew),?
1

and the total number of tuples in the skew
bucket can be defined as

t akevbuckrt = k skew ’ (R) 1 + hamhdmckrr

So we have the following cost for this step:

- 1) ‘hwnrkewbuckcckcr +fove

Prcceedings of the 17th International
Conference on Very Large Data Bases

(g) Write pages of buckets to disk:

Phase II has the same cost formulas as phase I
except that the R relation is replaced by the S
relation, Rskew replaced by Sskew and tR
replaced by tS.
Phase III consists of the following steps:

(a) Read R pages for skew bucket and

other buckets:

This is the same cost as in Phase I, step (g).

(b)

(cl

(d)

379

Build an in-memory hash table for each
bucket:

I skrwbwkrr Ofash + Move) + (
B

l-1 P - 1)

‘t,hWbWkr,*(Hash + Move)

B Read S pages for skew bucket and p - 1
F-1

other buckets:

This is the same cost as in Phase II, step (g).

Probe the hash table and form the join:

The cost for the non skew buckets is

_ 1),((1 - Sskew)s(S 1)
B

*(Hash + (Comp + Move)
, (1 - Rskew)*(R))

flR - 1

The cost for the skew bucket is

(1 - Fskew)s(Sskew.(S) + (’ - S\W)“S l)

:(Hash f (Comp + Move)

Jl - Rskew)*(R 1)
flR - 1

Barcelona, September, 1991

+ Fskew$Sskew-(S] + (’ - skgeW)“sJ)

*(Hash + (Comp + Move)mRskewe(R))

where Fskew is the fraction of tuples in rela-
tion S that match the skew value in relation
R, i.e.,

Sskew * (S)

Sskew*(S) + (1 - Sskew)$J

We now present the analytical cost model
for our load balancing hash-join algorithm.
Phase I has the same cost formulas as phase I for
the hash-join model.
Phase II has the same cost formulas as phase II
for the hash-join model.
Scheduling phase:

F~B’*Assign

where F is a scheduling constant.
Phase III consists of the following steps:

(a) Read R pages for skew bucket and other
buckets:

,O,l[B-(P;N+l) 1, [(L-Rsky)*lR I \+

Rskews I R I + l(l-R$ke/)l R I]

I

N ’ I

where N is the number of processors needed
to handle the skew bucket. N is defined as

Max (Rskew*(R) + (1-Rskew)*(R JIB
(R l/B

,

Sskew*(S) + (1- Sskew)’ (S JIB
(S l/B

1

The first term gives the number of other
buckets that will be handled by the processor
that handles the skew bucket times the
number of pages for non skew buckets. The
second term gives the number of pages per
processor for the skew bucket, i.e., number
of pages of skew data plus number of pages
for non skew data in skew bucket divided by

(b) Build an in-memory hash table for each
bucket:

the number of processors that will process the
skew data bucket.

IB-(P;N+I) 1, [(1-Rsy)dR i

‘tR *(Hash + Move)

RskewmlR I +

+
N

‘tR *(Hash + Move)

(c) Read S pages for skew bucket and other buck-
ets:

fO*[
I

B-(P-N+1 p)].rl-S~k~)*lSl]

Sskew*I S I -t
+

/(l-S~k~).lSl j 3

N

(d) Probe the hash table and form the join:

*(Hash + (Camp + Move)*j’ -FRkyy’” ‘;

+ N*[(1 - Fskew)*(Sskew*[S) + (’ - Skew)*‘S))
B

-(Hash + (Comp + Move)*(l -~Rk~~cR))

+ Fskew*(Sskew*(S) + 1 1 - Skew)*(S)
B >

.(Hash + (Comp + Move),

Barcelona, September, 1991
Proceedings of the 17th International
Cottfemtce on Very Large Data Bases

380

5. Comparison of Analytical and
Experimental Results

In this section we present the results of
some of our experiments as well as the results of
our analytical models. The hash-join algorithms
were executed on a 10 node Sequent Symmetry
multiprocessor, in a single user environment.
Since the multiprocessor we used does not have a
parallel I/O capability, that part of the algorithm
had to be simulated. When a page I/O was
required, a procedure was called that did a busy
wait for the required amount of time, e.g., 24 ms.
We ran experiments with a uniform data distribu-
tion, single skew in the inner relation, single
skew in the outer relation and skew in both rela-
tion, i.e., double skew. For the single skew
cases, the join selectivity was the same, i.e.,
0.0001. For the double skew case, the join selec-
tivity was 0.0406, the result was considerably
larger than in the single skew cases, Also, in the
double skew case, the CPU processing became
the dominating factor in the response time of the
algorithms. We also ran experiments that
included the cost of writing the resultant relation
to secondary storage. We should note that our
analytic models were adjusted to accomodate the
extra I/O cost, although for brevity we did not
show the changes of the cost formulas in the
paper. We should note that the data used for the
graphs are an average of several runs of the algo-
rithms on the multiprocessor. We should also
point out that in our experiments we assumed
that enough memory exists to permit an in
memory hash table to be built for the maximum
bucket size. So for the basic hash-join method,
we would not incur bucket overflow. Hence, our
experiments deal solely with the load balancing
aspect of the hash-join approach in a shared
memory multiprocessor.

In figure 1, we show the effect of data skew
on the basic hash-join algorithm. An interesting
observation concerning the 6 processor case, is
that the decrease in response time over the 5 pro-
cessor case is small. The reason for this, is that
for both the 5 and 6 processor cases, a maximum
of 5 buckets will be processed during phase III by
at least one processor, i.e., the processor that dic-
tates the overall performance. A similar situation
occurs for the 8 processor case.

As one would imagine, the response time
increases as the data skew increases, as shown in
figure 1. For the 2 processor run, the difference
between the time taken by the algorithm for a
uniform data distribution versus a data skew of

0.4 was only 13.76%. When we used 4 processors
the difference increased to about 55.79% and
when we used 9 processors the difference reached
97.62%.

In figure 2, we show the effect of data skew
on the load balancing hash-join algorithm. Again,
as the data skew increases, so does the response
time, but not as much as for the basic method.
For the 2 processor case, there is a difference of
8.37%. for the 5 processor case there is a
difference of 31.85% and for the 9 processor case
there is a difference of 52.17%. If we examine
the case with skew equal to 0.4, we see that the
difference in response time for the basic method
and the load balancing method for 2, 5 and 9 pro-
cessors is 3.93%, 16.96% and 28.75%, respec-
tively. So, we see a reasonable decrease in
response time with the load balancing hash-join
method.

In figure 3, we compare the basic hash-join
method with the load balancing hash-join method
for a uniform data distribution. We see that
there is little difference between the two. The
maximum difference is approximately 1.09%.
Hence, the scheduling overhead for the load
balancing algorithm is insignificant compared to
the entire cost. In addition, we show the results
of the models for each of the two algorithms. The
maximum difference between the basic method
and its model is about 6.97%. The maximum
difference between the load balancing method
and its model is about 5.43%.

In figure 4, we again compare the basic
hash-join algorithm with the load balancing hash-
join algorithm but for the case where there is sin-
gle skew in the inner relation. The skew value of
0.2 indicates that 20% of the tuples in the R rela-
tion have the same value. The total percentage of
tuples hashing into the skew bucket is 23.2%. For
the 8 processor case, the load balancing hash-join
algorithm reduces the response time by about
13.83%. The average improvement for 6 to 9 pro-
cessors is about 10.4%. The results of the models
are also shown in figure 4. For the basic algo-
rithm, the maximum difference between the
actual run and the model is 3.15%. In the case of
the load balancing algorithm and model, the max-
imum difference is only 8.46%.

For the next set of experiments, we wanted
to see the effect of having to write the join result
to disk. Writing the resulting relation back to disk
dominated the overall cost of the join as can be
seen by comparing figure 5 with figure 4. We can

Barcelona, September, 1991
Fkxeedings of the 17th Inte.mational
Conference on Very Large Data Bases

381

Processors

Figure 1: Basic Hash-Join Method

-*q*- Skew = 0.4
-**I Skew = 0.3

80

3 70
s
it4

60

‘-= 50

40

30

.oo

?
90

80

70

60

50

40

30

20
1

-***- Load Bal Model
-s-e Load Bal Exp
- - - Basic Model

lO--

O-7 I I I I I I I I I I I I I I 1 I I
0 1 2 3 4 5 6 7 8 9 10

Processor8

Figure 3: Basic and Load Balancing Hash-Join (uni-
form data)

.oo T -*-*- Load Bal Model
-e-s Load Bal Exp

- - * Basic Model
80

t
. B&c Exp

. .

2 3 4 5 6 7 8 9 10
Processors 0 1 2 3 4 5 6 7 8 9 10

Processors
Figure 2: Load Balancing Hash-Join Method

Figure 4: Basic and Load Balancing Hash-Join (R
skew = 0.2)

Proceedings of the 17th International
Conference on Very Large Data Bases

382
Barcelona, September, 1991

300
c7
$ ~250
8
‘f 200
3
%50
!3

100

-m-s Load Bal Exp
8 &qic Exp

Ol I I I I 1 I I I I 1 1 I 1 I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Processors Processors

Figure 5: Basic and Load Balancing Hash-Join (R Figure 7: Speedup for Basic and Load Balancing
skew = 0.2) with result written to disk Hash-Join (R skew = 0.2) with result written to disk

250

200

c

g,50

‘2
W
B
g100

2

50

0 7"
0

-‘-I Load Bal Exp

- - * Basic Model

10

9

8

7

4 6
1
(fl” 5

4

3

2
. Basic Exp

I I I I I I I I I 1 1 I I I I I I I 1
1 2 3 4 5 6 7 8 9 10

Processors

I 1

-p-s Load Bal Exp
. &qic Exp

.e....~- ,c.c.-‘-

,/
*’

*‘
.’

*’
.’

.’

.(
,(

*’
.)

*’
<....- ~~,,.‘........ *** ..w........*~

I I I I I I I

2 3 4 5 6 7 i i, jf)
I I I I I ,

Processors

Figure 6: Basic and Load Balancing Hash-Join (R Figure 8: Speedup for Basic and Load Balancing
skew = S skew = 0.2) Hash-Join (R skew = S skew = 0.2)

Proceedings of the 17th International
Conference on Very Large Data Bases

383
Barcelona, September, 1991

also see in figure 5 that the difference between
the two algorithms is even more pronounced.
This is due to the fact that in the basic method,
one processor writes out the join result from the
skewed bucket whereas in the load balancing
method multiple processors write out the join
result in parallel. In the 2 processor case, the
load balancing method shows a decrease of about
15.4% as compared with the basic method. In the
8 processor case, the difference between the two
algorithms increases to 51.19%. The average
difference for the 2 to 9 processor cases is 33.1%.
In addition, the model for both algorithms is
quite good. The maximum difference between the
observed time and the calculated time for the
load balancing case is only 11.83%, while for the
basic hash-join case it is less than 1%.

In addition to the response time graph in
figure 5, we also include the companion graph,
figure 7, of the speedup for the basic hash-join
method and the load balancing method. As can
be seen in figure 7, the speedup for the basic
method is dismal. This can be attributed to the
fact that a single processor is responsible for han-
dling the skewed bucket, The small increase in
speedup as proccessors are added is probably due
to the distribution of some of the I/O costs across
the additional disks. As a reminder, the number
of disks is set equal to the number of processors.
For the load balancing method, the speedup is
close to linear, especially up to the 6 processor
case. As calculated by the load balancing algo-
rithm, the number of processors needed to han-
dle the skewed bucket, so as to distribute the load
evenly, is 6. Hence, the improvement as shown
in figure 7. For the 7 processor case, the number
of steps needed by the algorithm is the same as
for the 6 processor case. A similar situation
occurs for the 9 processor and 8 processor cases.

For the final set of experiments to be
reported in this paper, we examined the situation
of double skew. The results are shown in figure
6. Both the inner and outer relations had a skew
value of 0.2. That is, as mentioned previously,
23.2% of the tuples of each relation hashed into
one bucket, which was the same bucket, i.e.,
bucket 0, for each relation. This produced a join
selectivity of 0.0406. For the case of double
skew as with the case of writing the result to disk,
the difference between the performance of the
two methods is considerable. The maximum
difference occurs for the 9 processor case, i.e.,
the load balancing algorithm shows a reduction in
response time of approximately 59.28%. The

Proceedings of the 17th International
Conference. on Very Large Data Bases

average reduction in response time, considering
the 2 to 9 processor cases, is 40.7%, with the 2
processor case having the least reduction, i.e.,
8.5%. It can also be seen from figure 6 that the
cost model is again a good reflection of the
algorithm’s cost.

In addition to the response time graph in
figure 6, we also include the companion graph,
figure 8, of the speedup for the basic hash-join
method and the load balancing method. As can
be seen in figure 8, the speedup for the basic
method is virtually nonexistent. This is due to
the fact that a single processor is responsible for
handling the skewed R and S buckets. The
amount of work done by this processor oversha-
dows the total work done by all the other proces-
sors. For the load balancing method, we see a
reasonable speedup, although not as good as in
figure 7. This can be attributed to the fact that
the load balancing algorithm calculates the
number of needed processors based on the max-
imum size of the R bucket and S bucket. For the
double skew case, the decision should be made
based on the combined sizes, Hence, more than
6 processors should be allocated to the skewed
bucket.

6. Conclusion
In this paper, we have adapted the Grace

hash-join method for a shared everything
environment and have designed and implemented
a modified version that trys to balance the load
on the processors when the data is skewed. We
also developed cost models for our algorithms
and showed that they accurately reflect the per-
formance of the algorithms, under our assump-
tions. The algorithms were run on a 10 node
Sequent multiprocessor machine with the parallel
I/O capability simulated. From our experiments,
we saw that even single skew affects the perfor-
mance. of the basic hash-join approach for a
shared-everything system. The performance
degrades greatly when the result of the join is
written to disk or when there is double skew. Our
load balancing algorithm has also been shown to
have a much better performance when compared
with the basic method in all of those cases.

7. Acknowledgments
The author would like to thank the anonymous
referees for their insightful and constructive com-
ments.

384
Barcelona, September, 1991

8, References
[BF87] C. Baru and 0. Frieder, “Implementing

Realtional Database Operations in a Cube-
Connected Multicomputer,” Proc. of IEEE
Data Engineering Conference, 1987, 36-43.

[DKT90] S. Dean, D. Kannangara and M. Taylor,
“Multi-Join on Parallel Processors,” IEEE
Symposium on Databasas in Parallel and Dis-
tributed Systems, 1990, 92.102.

[DG85] D. Dewitt and R. Gerber, “Multiproces-
sor Hash-Based Join Algorithms,” Proc. of
11th VLDB Conference, 1985, 151-164.

[DGGHKM86] D. Dewitt, R. Gerber, G.
Graefe, M. Heytens, K. Kumar and M.
Muralikrishna, “GAMMA - A High Perfor-
mance Dataflow Database Machine,” Proc, of
VLDB Conference, 1986, 228.237,

[HS78] E. Horowitz and S. Sahni, Fundamentals
of Computer Algorithms, Computer Science
Press, Potomac, MD, 1978.

[KNHT90] M. Kitsuregawa, M. Nakano, L.
Harada and M. Takagi, “Performance Evalua-
tion of Functional Disk System with Nonuni-
form Data Distribution,” Proc. of IEEE Sym -
posium on Databases in Parallel and Distri-
buted Systems, 1990, 80-89.

[KG901 M. Kitsuregawa and Y. Ogawa, “Bucket
Spreading Parallel Hash: A New Robust,
Parallel Hash Join Method for Data Skew in
the Super Database Computer (SDC),” Proc.
of 16th VLDB Conference, 1990, 210-221.

[KTM83] M. Kitsuregawa, H; Tanaka and T.
Moto-Oka, “Application of Hash to Database
Machine and its Architecture,” New Genera-
tion Computing, 1, 1983, 63-74.

[LY88] S. Lakshima and P. Yu, “Effect of Skew
on Join Performance in Parallel Architec-
tures, ” IEEE Symposium on Databases in
Parallel and Distributed Systems, 1988, 107.
120.

[LTS90] H. Lu, K. Tan and M. Shari, Hash-Based
Join Algorithms for Multiprocessor Comput-
ers with Shared Memory,” Proc, of 16th
VLDB Conference, 1990, 198-209.

Fkxedings of the 17th International
Conferenee on Very Large Data Bases

[MR89] M. Murphy and D. Rotem, “Effective
Resource Utilization for Multiprocessor Join
Execution,” Proc. of 15th VLDB Conference,
1989, 69-75.

[OL89] E. Omiecinski and E. Lin, ‘Hash-Based
and Index-Based Join Algorithms for Cube
and Ring Connected Multicomputers,” IEEE
Trans. on Knowledge & Data Eng., 1, 3, Sep-
tember 1989, 329-342.

[OS901 E. Omiecinski and R. ShonkwiIer, “Paral-
lel Join Processing using Nonclustered
Indexes for a Shared Memory Multiproces-
sor,” 2nd IEEE Symposium on Parallel & Dis-
tributed Processing, December 1990, pp.
144-151.

[QISS] 0. Qadah and K. Irani, ‘The Join Algo-
rithms on a Shared-Memory Multiprocessor
Database Machine,” IEEE Trans. on Software
Brig., 14, 11, November 1988, 1668.1683.

[SD891 D, Schneider and D. Dewitt, “A Perfor-
mance Evaluation of Four Parallel Join Algo-
rithms in a Shared-Nothing Multiprocessor
Environment,” ACM SIGMOD Procaedings,
1989, 110-122.

[Sha86] L. Shapiro, “Join Processing in Database
Systems with Large Main Memories,” ACM
Trans. on Database Sys., 11, 3, 1986, 239.
264.

[SKP088] M. Stonebraker, R. Katz, D. Patterson
and J, Ousterhout, ‘The Design of XPRS,”
Proc. of 14th VLDB Conference, 1988, 318.
330.

[WDY90] J. Wolf, D. Dias and P. Yu, “An
Effective Algorithm for Parallelizing Sort
Merge Joins in the Presence of Data Skew,”
IEEE Symposium on Databases in Parallel
and Distributed Systems, 1990, 103-115.

385
Barcelona, September, 1991

