Kaleidoscope Data Model for An English-like Query Language

Sang K. Cha and Gio Wiederhold
Computer Science Department
Stanford, CA 94305, U.S.A.

Abstract

Most database interfaces provide poor guid-
ance on ad hoc query formulation, burden-
ing users to learn, and to recall precisely the
query language and the database. Kaleido-
scope avoids this problem by guiding the user’s
guery construction actively. Based on a gram-
mar specifying the syntax and semantics of an
English-like Query Language (EnQL), the in-
terface generates legitimate query constituents
incrementally as menu choices. Additional in-
traquery guidance ensures the integrity of a
partial query. The central theme of this paper
is that to support Kaleidoscope's style of user-
system interaction, the presence of a high-level
data model is critical. The absence of an
explicit mode] leads to ad hoc grammar de-
sign and query translation. Existing models
are inadequate for supporting EnQL because
of a significant conceptual gap between com-
mon English concepts and database represen-
tation of such concepts. This paper presents
the features of Kaleidoscope, its data model for
EnQL, and a mapping to the relational stor-
age.

1 Introduction

The impedance mismatch between database languages
such as SQL and host programming languages has mo-
tivated much research. Deductive and object-oriented
database systems have emerged to provide a uniform
language for application programmers [Minker, 1988,
Zdonik and Maier, 1990]. While this research is ex-
pected to facilitate the development of database ap-
plications, yet another type of impedance mismatch
exists between the end user’s language and database
languages: formal languages.such as SQL force users
to learn the syntax and semantics of the language and
the underlying database, and to recall them precisely
at the time of query formulation.

The impedance mismatch faced by end users can-
not be treated by assimilating the database language
to the user’s language alone. The so-called natural
language interfaces (NLIs) are intended to provide
the user’s habitual language. However, because of
the difficulty of developing a large body of machine-
interpretable knowledge on human linguistic behav-

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

351

ior, these systems inevitably implement only seminat-
ural languages and limited concepts. As a result, NLI
users experience what is called proactive interference,
the difficulty of remembering artificial constraints in a
seminatural language [Shneiderman, 1980]. In a field
evaluation of an NLI system with some 800 BNF rules,
NLI users were reported to perform poorly relative to
SQL users [Jarke et al., 1985].

Kaleidoscope is a cooperative interface which re-
lieves casual users of the impedance mismatch that
they experience in interacting with database systems
(Cha, 1991b]. It uses a grammar-driven menu sys-
tem as a device for bridging the mismatch between
the user’s language and the database language. This
system generates legitimate query constituents incre-
mentally as menu choices, and users formulate a query
by following menu guidance. A grammar specifying
the syntax and semantics of a database language gov-
erns the system’s automatic choice generation. While
Kaleidoscope’s grammar-driven menu guidance can
improve the usability of formal query languages such
as SQL [Cha, 1991a], a carefully designed English-like
query language (EnQL) improves the efficiency of user-
system communication significantly.

In supporting EnQL, Kaleidoscope takes a model-
based approach. Instead of designing a grammar in
an ad hoc manner, Kaleidoscope first defines a form
data mode] approximating the conceptual structure o
restricted English queries. The grammar design then
focuses on the unambiguous realization of references
to individual model concepts, taking into account the
capability of an underlying query processing system.
One benefit of this model-based approach is that all
queries created by the system’s guidance are mean-
ingful with respect to the underlying data model. In
addition, the model-based approach provides a basis
of defining a transportable interface architecture. This
paper focuses on the data model for supporting EnQL.

In Section 2, we introduce the features of Kalei-
doscope. Section 3 discusses the benefits of using
EnQL, and its desired features. Section 4 elaborates
Kaleidoscope’s model-based approach. Section 5 de-
scribes Kaleidoscope’s grammar and lexicon. Section 6
presents the data model for supporting EnQL. Section
7 presents an internal query language and a mapping
to the relational storage. Section 8 briefly describes
the implementation of Kaleidoscope. Section 9 com-
pares our work with previous related work. Section 10
summarizes this paper.

Barcelona, September, 1991

2 Kaleidoscope User Interface

EnQL supports wh-queries beginning with who. which.
where, when. and how. In Kaleidoscope, the user con-
structs an EnQL query incrementally from left to right.
For example. the following query is created in ten steps
of menu interaction:

[Ql] Who wrote (which 'DATABASE’ books
N’ S’ S e’ et et ey gt

~—
1 2 & 3 4 5
published by "McGraw-Hill') since 1€ 82
‘é" MR . ~— —— \C/—/ M
i & o

The user may retract and change early selections.
Figure 1 shows a few Kaleldoscope screen states en-
countered while creating Q1. Each state presents only
choices that are both syntactically and semantically
valid for extending a partial query. Database values.
such as “DATABASE.” “McGraw-Hill." and “1982."
are created by selecting demon choices, Bounded by
“<" and “>" on the screen. these choices prompt

sers with a hierarchical pop-up menn of daraha:e val-
ues or a type-in window constraining the user’s input.
Flgure 2 exemplifies this by a pop-up menu of key-
words. Clioices marked with a mang}e- (>) can be ex-
t.ended into submenus as shown in Figures 1 (¢) and
2. Submenus organize related general and specialized
terms hierarchically under a single choice. Some menu
choices provide limited cues to the user in project-
ing the consequences of selecting them. For example,
the prepositions “at” and “on” are amhiguous to the
user. Kaleidoscope associates a documentation string
with each choice to help users in projecting subsequent
choice sets (Figure 1 (e}).

Control of Ambiguity The ambiguity of queries
expressed in an English-like language is well-known.
Domain-specific semanties and contextual information
are helpful in reducing the number of possible interpre-
tations. but do not guarantee the unigue interpretation
that hoth the user and the machine agree to.

Kaleidoscope takes the initiative in guiding users to
avoid creating ambiguous queries. The menu window
from which each token is selected provides the category
information of the token. Overloading a choice with
multiple interpretations is permitred only if the lexi-
cal ambiguity can be resolved hy grammar. To avoid
structural ambiguity. the svstem prompts users to en-
close complex phrases with parentheses. For exam-
ple, the query Q1l, without the parentheses enclosing
the object noun phrase. would be ambiguous hecause
there are two possible interpretations on the scope of
the phrase “since 1982 By providing the choice of
parenthesizing complex phrases. as shown in Figure
1 {d). Kaleidoscope avoids the structural ambiguity,

Meaning-Based Guidance In parallel with choice
generation, Kaleidoscope builds the meaning of a
query incrementally for further intraquery conceptual
guidance.

First. by executing the partial query. the system
guides the user’s value creation with a dynamically

Proceedings of the 17th International
Conference on Very Large Data Bases

352

KALLILOLCOML wuery Ltatus Vindow

(a)

HO

S.". Command Wh-Word

Determiner

KALEIDOSCOPE Query Stulus Winduw

o) Svs Command Verb
HECE[\)IED PHD
)
NECOMMENDED N=2
REVIEWED
REVISED
SUBMITTED
WHO I
1L ObL uery ftat s Windav.
WHO WROTE WHICH 'DATABASE®
SES
T SUNAL ARTIGLES.
o ARTICLI
. Sys Commann Concept Noun 3
(© METETENCES h oo DOk
Attribute Gualitier
<CONFERENCE>
<EDITION>
CJOURNAL>
CLENGTHY N=S
<NUMBER>
<PUBLISHED YEAR>
roun Qualifier
TECHNICAL REPORT
THESIS »
KALF IDOSCOPE QuRry Statn Wintnw
WHO WROTE WHICH 'DATABASE' BOOKS PUBLISHED BY 'McGraw -Hilt
(d) Sys Command Wh Word Finish Phrase
g%#;Ag]{ WHEN (WHICH *DATABA ...
ACT e
CHANGE » ey
EXIT ND N=$§
Brepusition
BEFORE
BETWEEN
IN
WHO WROTE (leCH 'DnTABASE' BOOKS PUBLIBHED BY 'McGraw -Hitt")
(e

Sys Comrnand Wh Wurd
RUN QUERY
gg.?;:g; , Connective

CHANGE «| AND
Preposition

BEFORE
BETWEEN

iN

SINCE

Figure 1. Progression of Kaleidoscope Screen States

DeDlmro
DBDkb
D8Diogic
D80Omodel
DBDnat
DBDob)oct

b

uman Factors
INLP

ames and Acronyms 5|
<CABORTY>

iNames and Acronyms »
CCABOAT YD

Figure 2. Two Srates of A Hierarchical Pop-Up Menu

Barcelona, September, 1991

computed range of values feasible for extending the
partial query. This dynamie instantiation of pop-up
menus nhot only narrows the range of choices for users
but also reduces the chance of extensional query fail-
ure - the failure of syntacticaily well-formed queries 1o

produce tuples due to the user’s misunderstanding of

database contents [Kaplan. 1982].

Second. by checking the meaning of a partial
query against the system’s knowledge of integrity con-
straints. the system detects user misconceptions in the
middle of query composition. Consider a query

[Q2) Wl:ich inst‘n'l'ct.ors w:o taught (S445
2 4 5
since 1980 are students who...

T 3 I3 10

to a university database with an integrity constraint:

[IC1] “Student instructors never teach CS 400 or
higher level courses.”

After the user’s nineth selection. the system recognizes
that the query Q2 becomes inconsistent with the in-
tegrity constraint, and warns the user of the incon-
sistency, This early detection of misconception. com-
pared with postquery detection. saves the user's effort
that would otherwise be wasted on completing a query
bound to produce no meaningful resuit,

The same integrity constraint is also useful for gen-
erating informative messages. Consider IC1 rephrased
as follows:

(IC2] “If an instructor teaches a CS course whose
number is higher than or equal to 400.
then the instructor is not a student.”

Once the user finishes the fifth selection in the query
Q2. the system derives a constraint that the instructor
is not a student. This derived constraint is useful for
guiding the user away from potential semantic incon-
sistency in the user's subsequent selections. However,
in general. presenting all derived information may dis-
tract experienced users needlessly. The user has an op-
tion of disabling the system’s presentation of derived
informative messages.

Output Presentation Kaleidoscope presents each
query result in a separate spreadsheet window to facil-
itate further screen manipulation. Figure 3 shows such
a window containing the result of the query Q1. Rela-
tional, graph-drawing, and arithmetic operations are
provided as generic spreadsheet functions. With this
presentation strategy, EnQL does not need features for
formatting and transforming query results.

The schema of a query result consists of the at-
tributes drawn from the entity sets specified by wh-
words. To determine these projection attrihutes, the
system either prompts the user with a pop-up menu
of selected entity attributes or takes default projection
attributes defined by the schema.

Proceedings of the 17th International
Conference on Very Large Data Bases

353

[N

DR I O ot T b
WHO V:gg;i (WHICH 'DATABASE® BOOKS PUBLISHED 8Y "MoGraw -HI)

OIS]

R

N A T A T

ARID__|AR.NAME BKJO |BK.TITLE

1 Wiederhold. Gio__ 3006_|Database Design
17___|Cari_Stefano A 3012_|Distributed Databases
170 [Pelagali, Guseppo 017 _|Distributed Databases
197 __{Korth, Hency F E Database

112 __|Sberschatz, Abraham k Database Conc
1 |Wiederhold. Gio 3074 |File Organization and Da
et

Figure 3: Kaleidoscope Screen with Query Output

3 Why An English-like Query
Language?

Although grammar-driven menu guidance can improve
the usability of formal languages such as SQL {Cha.
1991a). EnQL enables the user to express queries more
concisely than SQL, and relieves the user of trans-
forming mental queries to those based on a underlying
database implementation. Some examples show that
SQL translations of EnQL queries may consume ten
times as many tokens, and involve joins of several ta-
bles. For example, while the query Q1 is created in ten
steps. its SQL translation with no redundancy, com-
prises 89 tokens, not counting SQL punctuation marks
(“." and “."). Figure 4 shows this SQL query. One
EnQL token 'DATABASE’ alone accounts for 12 SQL
tokens.

The number of tokens required to express a query
is critical to the performance of query interface users.
In the absence of other information on the complexity
of a query, the ratio of the required number of to-
kens and the capacity of human short-term memory
(7 £ 2 [Miller. 1956]) could be a measure of the user’s
cognitive burden. The higher this ratio, the more cog-
nitive swapping. we suspect, is required to produce a
query. The fact that EnQL queries consume a signifi-
cantlv smaller number of tokens than its SQL transla-
tions snggests that EnQL queries are more efficient and
probably easier to phrase than SQL queries. This leads
us to ask what the elements of the English-likeness are
that contribute to the conciseness of EnQL queries,
and that will be of further benefit to grammar-driven
menu interface users. Our answer to this question is
summarized in terms of four degrees of freedom:

1. Distribution of modifiers over the span of a sen-
tence: A underlying data model should support a
rich set of modifier types. This set includes verb
modifiers as well as prenoun and postnoun modi-
fiers.

2. Reduction of query production sieps: For example,
the user should be able to choose a shorthand ex-
pression "“DATABASE books” instead of its full-
fledged version “books written on DATABASE.”
The latter structure is still needed for the user to
add adverb phrases modifying the verb. Similarly,

Barcelona, September, 1991

SELECT ari.author, p2.pname,
b9.id, reference7.title,
author.reference ari!,
person p2

keyword.view kv4,
reference kxeyword rk5,
reference x7,

book b3,

organization 010,
publish.reference prit,
pril.reference = r7,id and
010.id = priil.organization and
b9.1id = pril.reference and
b9.id = r7.id and

b9.id = rk5.reference and
kv4.id = rk5.keyword and
arl.reference = b9.id and
arl.author = p2.id and
010.name = ’McGraw-Hill’ and
r7.year >= 1982 and
kv4.string = *DATABASE’

FROM

WHERE

Figure 4: SQL Translation of Q1

the phrase “McGraw-Hill's books” is a shorthand
for “hooks published hy McGraw-Hill."

3. Allernative ordering of references: While users
can tolerate limited syntax with menu guidance,
too restrictive a syntax forces users to navigate
through a narrow network of choice sets, To lessen
this burden. the language syntax should support
means of alternatively ordering references to en-
tities and relationships. such as passive voice.

4. Choice of commitment degree: The user’s selec-
tion of a generalized term, compared with a spe-
cialized term, makes a weak commitment in refer-
ring to entity sets and relationships. thus leaving
more options in the subsequent mienus. For ex-
ample, the choice set following “which persons”
includes verbs that are not applicable to “which
authors,” such as editing books.

4 Model-Based Approach

To support Kaleidoscope's style of user-system in-
teraction, coupling of syntactic and semantic infor-
mation is indispensable. The lack of semantics in
choice generation results in the failure to prune ir-
relevant choices, which not only misleads users to-
ward nonsensical queries but also wastes the screen
space and potentially increases the user’s choice search
time. On the other hand. in defining Kaleidoscope's
architecture, we are concerned with the ease of cre-
ating specific database interfaces. It is desirable
for the architecture to possess the f{ollowing features:
{1) a domain-independent grammar, (2) a domain-
independent translator. and (3) ease in generating a
domain-specific lexicon, where the lexicon refers to a
collection of categorized choices.

Proceedings of the 17th International
Conference on Very Large Data Bases

354

Grammar

_>l Lexicon I

Schema
\
Translator
Domln-g.:gtopcndmt Dm*:gpoclﬂe

Figure 5. Model-Based Approach

The central theme of our approach is that in seek-
ing these architectural goals, the presence of a high-
level data model formalizing the conceptual structure
of EnQL queries is critical. The absence of an ex-
plicit model leads to ad hoc grammar design and query
translation. thus harming the transportability of the
system. Existing data models are not adequate for
supporting the desired features of EnQL. There is a
significant conceptual gap between common English
concepts and database representation of such concepts.
Ignoring this gap would either force users to create
cumbersome queries, or overload the grammar with
a complex mapping to achieve a comfortable level of
Enghish-likeness.

Figure 5 shows how the model serves as the basis of
defining the run-time components of a transportable
grammar-driven menu system. In this model-hased
approach, grammar design focuses on the specifica-
tion of rules for unambiguously realizing references to
model concepts. and dynamically constructing query
meaning. Unlike the conventional NLI approach in
which the goal of non-normative systems is pervasive
[Bobrow and Bates, 1982, Marcus, 1982], the norma-
tive design principle [Simon, 1981] is applied. The de-
sign process sets a target expressive power by consider-
ing the capability of the underlying query processing
system. Alternative designs are evaluated by a cost
function. In our research, we have taken conjunctive
queries as the target expressive power, and devised a
simple cost model of user query production when using
grammar-driven menu interfaces [Cha, 1991b]). One
benefit of this model-based grammar design is that all
queries created via menu guidance are meaningful with
respect to the data model.

Based on grammar specification, we design a set
of procedures that generate the lexicon automatically
from the schema. This relieves interface creators of
dealing with the linguistic part of the system. Finally,
with a well-defined model, it is possible to define a
mapping from this model to a target storage model.
We assume the relational model for the storage model.

5 Grammar and Lexicon

This section briefly deseribes Kaleidoscope’s grammar
and lexicon. A more detailed description will be pre-

Barcelona, September, 1991

sented in [Cha, 1991b). WHPN:
Around 40 phrase structure rules specify EnQL. The “who"
following shows a top-level rule prescribing the con- entity = Person
struction of a class of queries comprising a noun phrse vsubj = [Author-Reference, Edit.Book, ...]
(NP) followed by a conjunction of verb phrases (VPS): v.obj = NIL
subj.entity, "‘wrote”
subj.evar, subj_entity, rel = Author.Reference
(detl :init 'wh), subj.evar, subj.entity = Author
relationship, relationship, obj-entity = Reference A Edited Book
-obj.entity, number, arity = 2
$]— NP number, VPS case, ‘fe"“ = past
(case (form :nit orm = past
:init 'subj), '[pres,past]), E‘Ii'fll’l;:j'SET'N'
compare.pred, xmodifiars Tentity = Book
xmodifiers ;/-SUj - NIL
Fach grammar symbol is augmented by a collection v.obj = [‘éui}l’j"‘;‘g""];" Edit-Book,
of feature attributes (shown in boxes) that formalizes countp = l::s sh-Book|
the context of constituent structures. Both syntactic numbeF: - ;l
and semantic features are captured this way. The run- “(authored) books”
time bindings of these features come primarily from entity = Authored_Book
the lexicon, although the grammar rules often provide vsubj = NIL
domain-independent values such as wh and subj. Fea- v.obj = Author.Book
ture attributes may take a limited constraint formula: countp = plus
disjunction of atoms (enclosed by “[” and “]"), negated number = pl

disjunction of atoms, or conjunction of one disjunc-
tion and one negated disjunction. Unification of fea-
ture bindings is enforced between a parent rule and
its children to block unnecessary application of child
rules. We call the feature attributes of nonterminals
contezi variables because they can be manipulated by
a few types of procedural decorations. These decora-
tions, activated by the events of Kaleidoscope's chart-
based grammar interpreter, initialize unbound context
variables, construct the partial query meaning, and in-
terface the system’s nonlinguistic part.

The lexicon consists of a list of preterminal cat-
egories. Each category defines a list of feature at-
tributes, a list of choices, and a display menu window,
Table 1 shows sample lexicon entries. Semantic fea-
ture attributes, such as entity, vsubj, and v.obj, refer
to the schema concepts.

6 The Data Model

8.1 Basic Concepts

Entities, relationships, and relationship modifiers de-
scribe the overall schema of a database. Entities
correspond to noun phrases {NPs) appearing as sub-
jects, objects, and prepositional phrase (PP) objects.
Relationships model domain-specific verbs, and take
one or two entities as arguments. Relationship mod-
ifiers represent adverb phrases, such as wh-adverbs
and prepositional phrases. Each relationship modi-
fier takes two arguments: one for the base entity in-
volved in modifying the relationship, and another for
the relationship that it modifies. The arguments of
both relationships and relationship modifiers can be
specified by constraint formulas as well as atoms. In
our model, a typical E-R relationship [Chen, 19786,

Proceedings of the 17th International
Conference on Very Large Data Bases

355

Table 1: Sample Lexicon Entries

Chen, 1980] is represented by a relationship of fixed
arity (< 2) and an arbitrary number of relationship
modifiers.

Figure 6 shows a graphically represented schema.
Rectangles, diamonds, and trapezoids represent enti-
ties, relationships, and relationship modifiers, respec-
tively.

68.1.1 Entities

Entities model not only objects with unique identity
such as Author and Book but also mass nouns, such as
Salary, if domain-specific verbs take them as subjects,
objects, or PP objects. Count and mass entities have
different wh-determiners in EnQL: “which” and “how
much,” respectively. Mass entities may have compara-
tive adjectives as in “Who earn more salary than their
managers?” An entity definition includes:

s a feature countp, which indicates the countability

of an entity,

s a noun to be used for reference,

e aset A of attributes (or properties),

o aset K of key attributes (X C A),

e a set P of default projection attributes (P C A).
Entity Attributes An attribute is marked to in-
dicate if it is qualified for a prenoun modifier. Key
attributes are in general not allowed to appear as pre-

noun modifiers. All attributes may appear in post-
noun modifier clauses. Each entity attribute refers to

Barcelona, September, 1991

Figure 6: A Graphical EnQL Schema

a doman and has a noun for its reference, A domain
definition contains information on guiding the user’s
value creation, such as the type of pop-up menus.

6.1.2 Relationships

Relationship arguments are assigned their roles:
subject or object. In the graphical schema represen-
tation. an arrow from an entity to a relationship indi-
cates that the entity plays the subject role. while an
arrow from a relationship to an entity indicates that
the entity plays the object role. A relationship defini-
tion additionally includes:

o a feature tense to specify the legitimate tenses of
a relationship,

¢ a verh to be used for reference.

Example The query Q1 illustrates the realization of
two binary relationships: Author.Book (Authorys;.
Authored.Bookeyj) and Publish_Book (Publisher,yy;.
Bookob;) underly the verbs “wrote” and “published.”
respectively.

The unary relationship Receive.PhD (Authores;)
with tense = past models the fact that some authors
received PhD. When this relationship is realized in a
query, an NP referring to Author appears in the sub-
ject position of verb “received PhD.”

While three-place relationships are conceivable to
mode] ditransitive verbs (e.g.. "z pays y $:7). such re-
lationships are substituted by two-place relationships

Proceedings of the 17th International
Conference on Very Large Data Bases

356

by moving indirect objects to adverb positions ("2
pays $: to y).

6.1.3 Relationship Modifiers

An arbitrary number of relationship modifiers may
be associated with each relationship, and vice versa.
As a result, the relationship argument of a rela-
tionship modifier is typically specified by a disjunc-
tion of relationships. For example. in Figure 6,
In_Publishing.Time and On_Keyword modify the re-
lationships Author.Book, Edit.Book, Publish.Book,
and Author_Journal_Article. The relationship argu-
ment of these modifiers is then expressed by a disjunc-
tive formula:

Author_Book V Edit_Book V Publish_Book V
Author.Journal Article.

A relationship modifier may be realized with
multiple prepositions. For example, although
our convention affixes a representative preposition
“In" to the base entity name “Publishing.Time,”
In_Publishing.Time may be realized not only as “in
1982" but also as “since 1982” or “before 1982."

Some relationship modifiers are shared by a set of
relationships in the sense that two verbs sharing an
NP also share adverb phrases. The query Q1 exem-
plifies this. If either of two verbs “wrote” and “pub-
lished” is restricted by the adverb phrase “since 1982,"
the other is also restricted by the same adverb phrase.
This information is useful for checking the semantic
consistency of two related verb phrases. In the graph-
ical schema representation, arrowed lines connect re-
lationship modifiers to relationships. If the line ends
with multiple relationships, they share the relationship
modifier.

6.2 ISA Hierarchies

ISA hierarchies organize schema concepts by similarity
and difference. Figure 6 also shows IS4 relationships
hetween entities, The semantics of the entity hierarchy
is that if E4is a descendent of E, (ISA(Eq4. Eg)). then
E,; is a subset of E,. E,4 inherits all attributes of E,,
and may define new attributes. The model imposes a
mandatory rule regarding entity specialization:

If a set of relationships disjointly divides an
entityv set. create specialized entity sets, one
for each of the relationships.

For example, two relationships Author.Book and
Edit_Book disjointly divide the entity set Book be-
cause a book is either authored or edited but not both.
{An edited hook, however, may contain many authored
chapters or articles.) By the mandatory rule, two en-
tities Authored_Book and Edited.Book are created as
specializations of Book. and used for specifying the ob-
ject arguments of the relationships. This mandatory
entity specialization avoids nonsensical queries such as
“Who wrote books edited by ...” Here, the entity Au-
thored_Book referred to by “books” cannot be an ar-
gument of Edit_.Book. Thus “edited by” is pruned

Barcelona, September, 1991

Auther_Rete

o———
Rdtwd_Rook

PHD_Thesls -

Figure 7: A Relationship IS4 Hierarchy

from the choice set presented after the user’s selection
of “books.”

The entity hierarchy enables users to query a spe-
cialized entity set. Let N, and Ny be NPs realizing
entities E, and E4. Users may ask:

“Which N, are N?"

(“Which theses are PhD theses?")

Note that reversing the order of N, and Ny leads to
trivial questions such as “Which PhD theses are the-
ses?” Therefore EnQL does not support this type of
query.

Relationships are also organized into hierarchies as
shown in Figure 7. The arguments of a parent relation-
ship subsume the arguments of all of its child relation-
ships. A child relationship inherits all the modifiers as-
sociated with its parent. Additional relationship mod-
_ifiers may be defined for the child relationship. The ex-

istence of additional relationship modifiers mandates
relationship specialization. For instance. the relation-
ship Author_Journal_Article is specialized from Au-
thor.Reference hecause the modifier In.Journal is ap-
plicable only to Author_Journal_Article. A rvelation-
ship is also specialized without introducing new modi-
fiers when its arguments are specialized. For example,
Author_Thesis has specializations Author.PhDThesis
and Author.MasterThesis.

Benefits The IS4 hierarchies form a basis for:

e Extending unification in such a way that two
atoms in ISA relationship unify to the specialized

- one. As a result, Book and Authored.Book unify
to Authored_Book.

o Overloading attribute-hased choices. For exam-
ple, the choice “edition™ is specified as the at-
tribute of the entity Book. hut also serves as an at-
tribute of Authored_Book and Edited_Book. thus
reducing the number of choices on the screen.

Proceedings of the 17th International
Conference on Very Large Data Bases

357

e Supporting the user’s choice of commitment de-
gree: Let V. denote a set of verbs that can be at-
tached to an NP referring to the entity E,. Then
Vi C V, holds for ISA(Ey4, E,;). Similarly, let A,
he a set of attributes that can be matched by the
entity specification E,. Then, 43 C A, holds as
well.

e Presenting general/specialized terms hierarchi-
cally on the menu.

¢ Organizing lexicon entries hierarchically such that
the failure of unification at a nonleaf node guaran-
tees the failure at all of its descendents. For exam-
ple. if the match fails at Books, it is uhnecessary
to try to match Authored.Book and Edited.Book.

6.3 I-OVERLAP

Often two entity sets such as Thesis and Techni-
cal_Report overlap, even if they are not in ISA rela-
tionship. The I-OVERLAP relationship captures such
intrinsically overlapping entity sets. This relationship
provides the hasis of determining legitimate noun qual-
ifiers, such as “thesis” in “thesis technical reports,”
and qualified NP complements for establishing the en-
tity identity as in “Which technical reports are ‘Stan-
ford' theses?” I-OVERLAP has following properties:

Symmelry:
I-OVERLAP(E,.Es) = I-OVERLAP(E,, E}).
Thus, if “thesis technical reports” is legitimate,
%0 18 “technical report theses.”

Pseudotransitivity:
ISA(E;,E») A I-OVERLAP(Es, E3) =
I-OVERLAP(E,, E3). As a result, “PhD thesis
technical reports™ is also a legitimate NP.

With the .-OVERLAP relationship, entity sets with
multiple parents are not necessary. As a result, the
ISA hierarchies in our model retain the simplicity of
tree structures. Compared with the lattice-based mul-
tiple inheritance, our inheritance model reduces the
number of entity sets to represent in the schema sig-
nificantly.

6.4 Derived Attributes and Subordinate
Entities

It is desirable for entities. relationships, and relation-
ship modifiers to be defined without redundancy. For
example, if Keyword is modeled as the base entity
of the relationship modifier On_Keyword, the key-
word information does not appear in the definition of
Book. However. to support the shorthand expression
“DATABASE hooks,” it is desirable to treat Kevword
as if it were an attribute of Book. In Kaleidoscope.
this is done by derived aftributes: the attributes from
a relationship modifier’s base entity are imported to
the argument entity of the relationship.

Similarly, it is desirable to refer to some entities as
if they were subordinate to others, as in “which pub-
lisher's books™ or “which book’s publishers.” The re-
lationship Publish_Boaok is implicit in both cases. The

Barcelona, September, 1991

schema may define an argument entity of a binary re-
lationship subordinate to the other.

7 Internal Query Language

This section defines an internal query language (IQL)
for representing the query meaning and integrity con-
straints, and presents a mapping from our model to
the relational model.

Let R, M, and S be the sets of symbols represent-
ing relationships, relationship modifiers, and built-in
predicates. S includes =, #, >, <, >, <, between,
and not between as its members. Note that S is closed
under negation. A query may contain range-restricted
variables for entity sets and relationships.

7.1 Query Meaning Representation
A query Q is a conjunction of positive literals P;:

Qz{(ellei’n)l/n\Pi}

=1

where e;, €3, ... are free entity variables. Let p; be the
predicate symbol of P;, then p, is drawn from R, M, or
S. All relationship variables, and the entity variables
which do not appear as free variables are existentially
quantified. The following condition holds for Q: for
each literal P;, there exists at least one literal P; (1 # j)
such that the variables in the arguments of P; and P;
overlap.

EnQL grammar encodes the following mapping from
EnQL to IQL:

o For each reference to an entity set or an individual
entity in EnQL, an entity variable is created. If
an entity set reference is qualified by a wh-word,
the variable is free; otherwise, it is existentially
quantified.

e If p; € R, P, has three arguments: a relationship
variable, and variables for the subject and object
entities. If p; represents a unary relationship, one
argument is left empty.

o Ifp; € M, the first argument of P, is a relationship
variable, and the second is a variable for the base
entity of p;.

o If p; € S, the first argument of F; is a pair of
an entity variable and an attribute. Either con-
stants or pairs of entity variables and attributes
are qualified for the remaining arguments.

Example The system builds the following conjunc-
tive query incrementally while the user creates the

query Q1.

{(=,y) | (Author.Book ry z y) A (= y.keyword
“DATABASE”) A (Publish.Book r3 p y)
A (= p.name “McGraw-Hill")
A (In.Publishing.Time ry t) A (> t.year 1982) }
where z € Author, y € Authored.Book
p € Publisher, t € Publishing.Time
ry € Author.Book,r; € Publish.Book.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

358

In this query, variables p, t, r;, r; are existentially
quantified.

7.2 Integrity Constraints for Intraquery
Cooperation

An integrity constraint is a negated conjunction of lit-
erals:

where the predicate symbol I; of L; is drawn from
R, M, or §. We restrict L; to be positive if I; be-
longs to R and M. With S closed under negation, the
literals based on the symbols in S could be treated as
either positive or negative.

To illustrate, the integrity constraint IC1 is formally
expressed as:

= ((Teach r i ¢c) A (IFOVERLAP i s) A s € Student
A (= c.dept “CS™) A (> c.number 400))

Here, for the simplicity of presentation, we left out
the declaration of range variables except for s. If
all literals of an integrity constraint are true in a
query, the system warns the user of the integrity con-
straint violation. For this inference, Kaleidoscope uses
OPS5 [Forgy, 1981). Thus, Kaleidoscope represents
the above integrity constraint by a production rule:

IF (Teach ric) A

(I-OVERLAP i s) A s € Student A

(= c.dept [CS|) A (2 c.number 400)
MAKE (Warning {Student instructors never
teach CS 400 or higher level courses|).

THEN

The Integrity constraint IC2, on the other hand, has
a different type of THEN part to derive literals:

IF (Teach r i ¢) A

(I-OVERLAP i s) A

(= c.dept [CS|) A (2 c.number 400)
THEN MAKE s ¢ Student

7.3 Mapping to Relational Storage
7.8.1

A mapping from an EnQL schema to a relational
schema consists of:

Mapping

o Anattribute-level mapping, which maps entity at-
tributes to database (DB) relation attributes.

o An entity-level mapping, which adds restrictions
and joins to the collection of attribute-level map-
pings.

» A relationship-level mapping, which defines joins
between the arguments of a relationship, and be-
tween the argument of a relationship and the base
entities of its modifiers.

Barcelona, September, 1991

7.3.2 Query Translation
Query translation proceeds as follows:

1. From an IQL representation, create an input
record with:

o Entity variables and their types.

o Free entity variables and projection at-
tributes: the latter are acquired either by
prompting the user with pop-up menus or by
retrieving the default set of attributes.

¢ Entity restrictions and joins.

¢ Relationships and their modifiers: collect re-
lationship modifiers within the relationship
that they are associated with. Relationship
variables are removed in this process.

2. Create a hash table for keeping track of entity
views. An entity view is created for each entity
variable in the query and contains a minimal list
of attributes: key attributes, projection and re-
striction attributes, and join attributes that are
either explicit in the user query or required by
the entity and relationship-level mapping.

3. For each relationship R with a list of modifiers
{M;}, do the following:

(a) Collect entity views corresponding to the en-
tity variables found in R and M,’s.

(b) Create DB joins across these entity views
as defined by the relationship-level mapping.
Also unify multiple instantiations of identical
DB relations in this process.

4. For each instance of -OVERLAP in the query,
create an equijoin of two entity views,

5. Collect the DB projection attributes, DB rela-
tion instances (pairs of relation names and unique
identifiers), DB table joins, and DB table restric-
tions, and create an SQL query.

8 Implementation of Kaleidoscope

Kaleidoscope runs on a XEROX 1186 Li1sP machine with
a SUN configured as a remote database server [Cha,
1991a]. Its interpreter is made up of two interacting
procedures:

o A chart-based choice generator interprets gram-
mar and incrementally generates choices. A run-
time structure called chart keeps track of alterna-
tive parses and pending hypotheses about a par-
tial query (Kay, 1980] and context variable bind-
ings. The unification embedded in this interpreter
recognizes the generalization/specialization hier-
archy.

e Anintraquery conceptual guidance module based
on OPS5 keeps track of the partial query mean-
ing and generates corrective and informative mes-
sages.

Proceedings of the 17th International
Conference on Very Large Data Bases

359

Kaleidoscope manages the schema, integrity con-
straints, and the dictionary of words for referring to
schema concepts in the relational database. This
DBMS-based approach provides the locality of changes
and the set-oriented querying capability over the
knowledge structure. Furthermore, with rules and
triggers supported as part of DBMS functionality
[Sybase, 1988, Stonebraker et al., 1987, Widom and
Finkelstein, 1989], updates can be automatically prop-
agated based on known dependencies.

With the sample database shown in Figures 1 and 3,
Kaleidoscope takes a 1ew seconds to update its menu
state on XEROX 1186, which runs at about 0.75 MIPS.
This update interval, however, can be reduced by a fac-
tor of ten or more if Kaleidoscope is ported to today’s
RISC-based workstations.

9 Relation to Other Work

8.1 Cooperative Response Systems

Past research in artificial intelligence proposed
knowledge-based postquery cooperation to increase
the usability of NLI systems. At the parsing level, one
direction of research sought the system’s robustness
to extragrammatical sentences [Carbonell and Hayes,
1984]. At the conceptual level, following Grice’s prin-
ciple of cooperation {Grice, 1975], so-called coopera-
tive response systems dealt with the user’s miscon-
ception about underlying information systems {Corella
et al., 1884 Gal and Minker, 1987, Janas, 1981,
Kaplan, 1982, Kao el al., 1988, Mays, 1980, McCoy,
1985]., When queries fail to produce meaningful re-
sults becanse of the user’s misconception, the system
resolves specific causes of failure for the user. Yet, in
these postquery cooperation approaches, the system
still does not use its knowledge until the user query
fails.

Kaleidoscope takes a more active attitude in utiliz-
ing the system’s knowledge: a system knowledgeable
enough to correct or to suggest the postquery correc-
tion should use its knowledge first to guide users away
from query failure. The increasing speed of computers
makes it feasible for the system to take this initiative.
Nevertheless, postquery cooperative response would be
still needed to handle queries that have no matching
tuples in the database or produce too many or too
small tuples. Even in such a case, the system’s knowl-
edge should be used actively. Consider an extension-
ally failing query with F, a set of conjuncts causing .
the failure. Instead of just informing the user of F,
the system suggests alternatives in query generaliza-
tion focusing on this set of literals. For instance, if the
keyword specification of books belongs to F, the sys-
tem suggests its generalization based on the hierarchy
of keyword values. Previous research explored a range
of options for such query generalization [Motro, 1986,
Chaudhuri, 1990).

Barcelona, September, 1991

9.2 Menu-Based NLI Approach

As windows and pointing devices such as the mouse
become widely available for human-computer inter-
action, Tennant and Thompson recognized that the
window-based interaction could restrict the users of so-
called NLIs within the system’s limited linguistic and
conceptual coverage {Thompson et al., 1983]. Thisidea
has developed into so-called menu-based NLI systems
NLMenu [Thompson et ol., 1983], INGLISH [Phillips
and Nicholl, 1985], and NLParse/NLGen [Hemphill et
al., 1986). A context-free, semantic grammar spec-
ifies dynamic choice generation in NLMenu and IN-
GLISH. NLParse/NLGen employs a unification-based
grammar to pursue linguistic generalization.

Kaleidoscope takes the notion of grammar-driven
menu guidance from these menu-based NLI systems,
and provides a model-based framework for the gram-
mar design and interface generation. A semantically
rich mode] provides the basis for user guidance and in-
terface design. In contrast, the past research assumed
a very low-level model or no explicit mode} at all. For
example, the underlying model of NLMenu grammar is
not much different from the relational model [Thomp-
son et al, 1987], As a result, NLMenu queries are
often reminiscent of formal queries. The emphasis on
a mode] in Kaleidoscope also makes it possible to pro-
vide meaning-based guidance, which previous menu-
based NLI systems overlooked.

10 Summary

Kaleidoscope provides an English-like query language
for users to phrase queries with restricted yet common
English expressions. A grammar-driven menu system
bridges the inevitable mismatch between this language
and the user’s language, By generating legitimate
EnQL constituents step by step as menu choices, this
matching device relieves casual database users of learn-
ing and recalling the restrictions on EnQL and the spe-
cific concepts in a database. Users formulate queries in
an English-like language by recognizing choices com-
ing one after another that match their mental queries.
The system uses its knowledge actively to guide users
to create unambiguous and meaningful queries.

This paper has presented a formal data model for
supporting EnQL, and a mapping to the relational
storage. This model provides users with various de-
grees of freedom in query formulation. The presence
of this data model is also very important for defin-
ing a transportable interface architecture. The model
guides the design of a domain-independent grammar,
a domain-independent query translator, and a set of
procedures generating domain-specific lexicons from a
schema.

To measure the gain in the user’s benefit of using
EnQL, we have relied on a syntactic measure - the
number of tokens required to express a query. When
SQL is taken as a reference, EnQL queries are signifi-
cantly more concise than their SQL translations, often
by an order of magnitude. In the future, we expect

Proceedings of the 17th International
Conference on Very Large Data Bases

360

a human subject experiment to measure more seman-
tic gains such as the user’s conceptual freedom in ex-
pressing a query. We also expect future research to
extend the expressive power of EnQL beyond conjunc-
tive queries.

Acknowledgement

This research was supported in part by the DARPA
contract N039-84-C-211 for Knowledge Based Manage-
ment Systems. The authors wish to thank Prof. Terry
Winograd, Dr. Charles Kellogg, and Prof. Jack Milton
for their feedback on this research.

References

[Bobrow and Bates, 1982) Robert J. Bobrow and
Madeleine Bates. Design dimensions for non-
normative understanding systems. In Proc. 22th
Annual Meeting of ACL, 1982,

[Carbonell and Hayes, 1984] I. G, Carbonell and P. J.
Hayes. Recovery strategies for parsing extragram-
matical language, Technical Report CMU-CS-84-
107, Dept. of Computer Science, Carnegie-Mellon
University, February 1984.

[Cha, 1991a) Sang K. Cha, Kaleidoscope: A cooper-
ative menu-guided query interface {SQL version).
IEEE Trans. on Knowledge and Data Engineering,
3(1):42-47, March 1991.

[Cha, 1991b] Sang K. Cha. Kaleidoscope: A model-
based grammar-driven menu interface for databases.
Ph.D. Thesis in preparation, Stanford University,
1991.

[Chaudhuri, 1990] Surajit Chaudhuri. Generalization
and a framework for query modification. In Proc.
IEEE Data Engineering Conf., Feb 1990,

[Chen, 1976) Peter Chen. The Entity-Relationship
Model - Toward a unified view of data. ACM Trans.
on Database Systems, 1(1):9-36, 1976.

[Chen, 1980] Peter Chen. Entity-Relationship dia-
grams and English sentence structures. In Pe-
ter Chen, editor, Int. Conf. on Entity-Relationship
Approach to Sysiems Analysis and Design. North-
Holland Publishing Company, 1980.

[Corella et al., 1984] Francisco Corella, S. J. Kaplan,
G. Wiederhold, and L. Yesil. Cooperative responses
to boolean queries, In Proc. JEEE Data Engineering
Conf., pages 77-93, April 1984,

Forgy, 1981} C. L. Forgy. OPS5 user’s manual. Tech-

nical Report CMU-CS-81-135, Dept. of Computer
Science, Carnegie-Mellon University, 1981.

(Gal and Minker, 1987) Annie Gal and Jack Minker.
Informative and cooperative answers in databases
using integrity constraints. Technical Report CS-
TR-1191, University of Maryland, September 1987.

[Grice, 1975] H. P. Grice. Logic and Conversation. In
Donald Davidson and Gilbert Harman, editors, The

Barcelona, September, 1991

Lagic of Grammar, pages 64-75. Dickinson Publish-
ing Co, 1975.

(Hemphill et al., 1986] Charles T. Hemphill, Inderjeet
Mani, and Steven L. Bossie. Towards an effec-
tive natural language interface to knowledge based
systems. Internal Working Paper, Al lab., Com-
puter Science Center, Texas Instruments, Inc., Dal-
las, TX, December 1986.

[Janas, 1981] Jurgen M. Janas. On the feasibility of
informative answers. In H. Gallaire, J. Minker, and
J. M. Nicolas, editors, Advances in Database The-
ory, pages 397-414, Plenum Press, 1981.

[Jarke et al., 1985 Matthias Jarke, Jon A. Turner,
Edward A Stohr, Yannis Vassiliou, Norman H.
White, and Ken Michielsen. A field evaluation of
natural language for data retrieval. JEEE Trans.
Software Engineering, SE-11(1):97-114, January
1985.

[Kao et al, 1988] Mimi Kao, Nick Cercone, and Wo-
Shun Luk. Providing quality responses with nat-
ural language interfaces: The null value problem,
IEEE Trans. on Software Engineering, 14(7):959-
984, July 1988.

[Kaplan, 1982} S. Jerrold Kaplan. Cooperative re-
sponses from a portable natural language query sys-
tem. Artificial Intelligence, 19:165-187, October
1982.

(Kay, 1980] Martin Kay. Algorithm schemata and
data structures in syntactic processing. Techni-
cal Report CSL-80-12, XEROX Palo Alto Research
Center, October 1980. Also in B. Grosz, K. Jones,
and B. Webber, editors, Readings in Natural Lan-
guage Processing, Morgan Kaufmann Publishers,
Inc. 1986.

(Marcus, 1982] Mitchell P. Marcus. Building non-
normative systems - The search for robustness. In
Proc. 20th Annual Meeting of ACL, 1982,

(Mays, 1980] Eric Mays. Failures in natural language
systems: Applications to data base query systems.
In Proc. AAAI pages 327-330, 1980.

[McCoy, 1985] Kathleen Filliben McCoy. Correcting
Object-Related Misconceptions. PhD thesis, Univer-
sity of Pennsylvania, Dec 1985.

[Miller, 1956] George A. Miller. The magical number
seven, plus or minus two: Some limits on our capac-

ity for processing information. The Psychological
Review, 63(2):81-97, March 1956.

[Minker, 1988] Jack Minker, editor. Foundations of
Deductive Dalabases and Logic Porgramming. Mor-
gan Kaufmann Publishers, Inc., San Mateo, CA,
1988,

[Motro, 1986] Amihai Motro. Query generalization: A
method for interpreting null answers, In Larry Ker-
schberg, editor, Ezpert Database Sysiems: Proceed-
tngs from the First Internalional Workshop, pages
597-616. Benjamin/Cummings, 1986,

Proceedings of the 17th International
Conference on Very Large Data Bases

[Phillips and Nicholl, 1985] Brian Phillips and Shel-
don Nicholl. INGLISH: A natural language inter-
face. In Foundation for Human-Computer Commu-
nication. [FIP WG 2.6 Working Conference on The
Future of Command Languages, 1985.

'Shneiderman, 1980] Ben Shneiderman. Software Psy-
chology: Human factors in Computer and Informa-
tion Systems. Winthrop Publishers, Inc., 1980,

[Simon, 1981) Herbert A. Simon. The Sciences of the
Artificial. MIT Press, 2 edition, 1981,

[Stonebraker et al., 1987) Michael Stonebraker, Eric
Hanson, and Chin-Heng Hong. The design of the
Postgress rules system. In Proc. IEEE Daia Engi-
neering Conf., 1987.

[Sybase, 1988] Sybase, Inc. TRANSACT-SQL man-
val, 1988,

[Thompson et al., 1983) C. W. Thompson, K. M.
Roth, H. R. Tennant, and R. M. Saenz. Build-
ing usable menu-based natural language interface
to databases. In Proc. 9th Conf. on VLDB, pages
43-55, 1983,

[Thompson et al., 1987) C. Thompson, S. Corey,
M. Rajinikanth, P. Bose, S. Martin, R. Roberts,
R. Lewis, R. Enand, T. DiPesa, and S. Cha. RTMS:
Toward close integration between database and ap-
plication. In Proc. of 20-th Annual Hawaii Int’l
Conf. on System Sciences, 1987,

(Widom and Finkelstein, 1989] Jennifer Widom and
Sheldon J. Finkelstein. A syntax and semantics for
set-oriented production rules in relational database
systems. Technical report, IBM Almaden Research
Center, 1989,

{Zdonik and Maier, 1990) Stanley B. Zdonik and
David Maier, editors. Reading in Object-oriented
Database Sysiems. Morgan Kaufmann Publishers,
Inc., San Mateo, CA, 1890.

361

Barcelona, September, 1991

