
Rule Management in Object Oriented Databases:
A Uniform Approach

Oscar Diazt$ Norman Patons Peter Grayi
Facultad de Informdticat Computing Science Departments Computing Science Department)

Universidad de1 Pais Vasco Heriot-Watt IJniversity University of Aberdeen
San Sebastiin, Spain Edinburgh, Scotland Aberdeen, Scotland

Abstract

Rules have been proposed for providing active be-

haviour in DBMS. Previous attempts to add rules
to Object Oriented DBs have often resulted in a di-
chotomy between rules and other kind of objects. Bere
a uniform approach is presented, in which rules are
described and handled in the same way as any other
object in the system, without any additional mecha-
nisms being introduced. Thus rules can be related to
other objects or arranged in hierarchies, and rules can
even be defined which are triggered by methods at-
tached to rules themselves. Since rules and classes are
both objects, a relationship between these two kinds
of objects can be used to provide a class-based index
for rules. In this way, the search for applicable rules
is considerably reduced. An early implementation and
several examples are shown in ADAM, an Object Ori-
ented DB in PROLOG.

Keywords: Active DBh4S, Object Oriented DBs,
Rule Management, Knowledge Bases, Triggers

1 Introduction

Active databases have been defined as database sys-
tems that respond automatically to events generated
internal or external to the system itself wilhoul user
intervention” [Bauz 901. System responses are declar-
atively expressed using event-condition-action rules
(ECA rules proposed in [Dayal 881). ECA rules have
an event that triggers the rule, a cwdition describing
a given situation, and an action to be performed if
the condition is satisfied. In this way, not only does
the system know how to perform operations, but also
when operations have to be performed.

In [BBBC 901 1 ru es are seen as a major feature in fu-
ture database (DB) systems, and it is remarked that
“object-oriented database (OODB) researchers have
generally ignored the importance of rules”. The re-
search presented here is an attempt to provide insight
into rules in an 00 context. The focus is on providing
a uniform approach.

What is meant by a uniform approach is that rules

have to be defined and treated in the same way as
other objects in the system, without defining any ad-
ditional mechanisms or auxiliary structures, Rules are
seen as “first-class” objects, and are described using
attributes and methods. In this way, rule manage-
ment operations are conceived and implemented as
methods. This brings all the advantages of the 00
paradigm into rule management: encapsulation, mod-
ularity, reusability. In a uniform approach the system
should not distinguish rules from other kinds of object.
As a result, rules can he related to other objects, and
also arranged in hierarchies. Since methods attached
to objects can trigger rules, and rules are themselves
objects, rules can be defined which are triggered by
methods attached to rules. As with any other entity,
the meaning of a rule lies in the attributes attached
to the rule, and their interpretation by the associated
methods. From the point of view of the system how-
ever, no distinction should be made. Treating rules
as objects also has the advantage that any new facil-
ity introduced for objects is automatically applicable
to rules (e.g. transaction mechanisms, locking mecha-
nisms, display facilities). This is born out by an imple-
mentation in ADAM [Paton 89, Gray 911, an OODB
programmed in PROLOG.

Rule evaluatiou imposes an overhead on every possi-
ble event that can be detected by the system. Whereas
in relational databases events are generally restricted
to be database updates, the approach presented here
allows any message to raise an event. Thus, the effi-
cieucy requirements for rule support in 00 databases
are even greater that in relational databases. Iiere, an
attempt is made to enhance system performance by
indexing rules by class. A single thread of execution
is assumed, and topics such as transactions and opti-
mization are not addressed here.

This paper is organized as follows. A review of related
work is given in section 2. In section 3, the components
involved in rule management are identified. Issues re-
lating to events irl an object oriented context are dis-
cussed in section 4. In section 5 the implementa.tion
of a rule manager in ADAA is described. Conclusions
are presented in section 6.

Proceedings of the 17th International
Conference on Very Large Data Bases

317
Barcelona. September, 1991

2 Related work

Research on active behaviour has been conducted in
the areas of programming languages, Artificial Intelli-
gence(A1) and DBs. ACTOR [Hewitt 771 was a pio-
neer programming language in providing objects with
active behaviour. Modelling parallel and distributed
applications are among the research interests in this
area [Ellis 891. Active behaviour in AI is provided
through daemons and active values. So daemons such
as if-needed or if-added are associated with slots to
compute their values on demand, or to perform some
other test or action.

In relational DBs, active capabilities have been used
to enforce integrity constraints, define views, trans-
late update requests and compute derived attributes
[Eswaran 75, Stonebr 90, Morgens 841. In [BBBC 901
rules are seen as a unifying paradigm for providing a
broad range of DB facilities. However, in relational
DBs, rules are implemented as a distinct layer, and
additional mechanisms and structures are required to
support rule management.

Several 00 systems that support rules are described
in the literature [Katz 88, Dayal 89, Budson 89,
Chakrav 89, Bauz 90). In [Bauz 901 a review of differ-
ent mechanisms for supporting rules is given, namely:

method-based mechanisms: the rule is precom-
piled into each place in the code where it might
be activated. Alternatively, commands could be
planted to fire the rule whenever applicable.

object-based mechanisms: enlarging the object
description to indicate which rule to invoke when-
ever message sending takes place. This is the ap-
proach followed in this paper

external mechanism: additional structures are de-
fined which support checking when some event oc-
curs (e.g. [Bauz 90, Kotz 881)

Several drawbacks can be enumerated for the first
approach:

1 .-

2 .-

3 .-

4 *-

Rules are buried inside methods, and thus it is dif-
ficult to enquire about any of the rules attributes,
e.g. the condition, the action, or whether it is
enabled or not.

Modification of any of the attributes of a rule im-
plies making change in every method supporting
the rule.

Since rules can interact, coding of rules within
methods requires the programmer to understand
all the rules that appear in the method, so that
interaction can be handled properly.

The rule definition is scattered in different places,
compromising the 00 philosophy that encourages

Proceedings of the 17th International
Conference on Very Large Data Bases

318

all information about a given object to be gath-
ered together.

5.- Method code now includes two things: how the
operation itself is implemented and the enforcing
of the rule. This severely compromises me2hod
overriding. Overriding of methods is a useful
mechanism in 00 systems for customising an
operational implementation for special require-
nlents. The problem is that in this case not only is
the operation being overridden but also the em-
bedded concept described by the rule (e.g. an
integrity constraint).

In [BBBC 901 some of these drawbacks are pointed out
and the following conclusion is made: “In our opinion
there is only one reasonable solution; rules must be
enforced by the DBMS but not bound to any function
(i.e. method) or collection”. The other two approaches
to supporting rules overcome these disadvantages by
providing a mechanism supported by the DBMS.

In [Bauz 901 a rule management mechanism is pro-
posed for Oz. Rules are objects having the event
as an attribute, and auxiliary structures are defined
for storing rule lists which are checked when specific
events occur. However, events are not seen as objects
in themselves, and thus, system extensibility can be
compromised in the sense that composite events or
events with special requirements are difficult to intro-
duce. Further, a local mechanism is used to provide
rule “inheritance” instead of using a mechanism based
on the object hierarchy itself.

In HiPAC [Dayal 881 rules and events are seen as differ-
ent entities with their own attributes and methods. A
sound approach is taken to rule support, paying special
attention to transaction management and optimiza-
tion techniques. However, some of the idiosyncrasies
of the 00 paradigm have not been considered, such as
the primary role that classes play, where methods are
part of the class definition.

3 An overview of rule manage-
ment

The 00 paradigm provides a different approach to
system design. Whereas procedural design emphasizes
the decomposition of the problem into a set of tasks to
be executed sequentially, 00 design focuses on the en-
tities involved and how they interact. Thus, to provide
a rule manager in the context of an OODB, a primary
requirement is to identify the significant entities and
their interaction.

Briefly described, the function of a rule manager is
to provide quick response through the use of rules, to
events generated by some system. Three components
can be identified in this process:

Barcelona, September, 1991

I EVENT CENERAl’OR

-=e==-

I RULE

Figure 1: E/R diagram for rule management

l the rule describes both when and how the system
reacts to an event.

l 2he event is an indicator to signal that a specific
situation has been reached to which reactions may
be necessary [Kotz 881. Not all systems consider
events as first class objects. For example, events
can be treated as simple attribute values. How-
ever, this approach can compromise the extensi-
bility of the system to cope with events coming
from different sources, or events that need special
treatment (e.g. composite events [Dayal 881).

l the event generator can be seen as any system pro-
ducing events which may need a special response
in terms of rule triggering. Events can be gener-
ated by the DBMS itself or by any other external
system such as a clock or an application program.

Figure 1 shows an Entity-Relationship diagram where
these entities are depicted together with the relation-
ships between then. First, a rule can be triggered by
an event, but an event can trigger several rules. Sec-
ond, an event can be generated by several systems and
a system can generate several events.

The main interaction between these entities can be de-
scribed as follows:

l.- an event is produced by any event-generator, and
is signalled to the event manager through the mes-
sage signal,

2.- the event manager checks if any rule can be trig-
gered by the event signalled. If so, it sends the
message fire to the appropriate rules,

3 .- when the message fire is received by a rule, the
rule condition is then checked and if satisfied the
rule action is executed

Other kinds of interactions are also possible, such as
“awakening” of events as a result of rule creation.

In the following sections the object rule and the object
event are defined. Event generators have not, been
described as objects, although conceptually they are
seen as the senders of the signals.

Proceedings of the 17th International
Conference on Very Large Data Bases

319

4 Events in an object oriented
context

An eveni is an indicator to signal that a specific situa-
tion has been reached to which reactions may be nec-
essary. In relational DBs, an event can be described
by the operation together with the moment when this
operation takes place (i.e. before or after). For in-
stance, the pair (insert,beJore) could specify that the
event arises before the operation insert occurs. In this
context, OODBs present some differences from rela-
tional DBs. In 00 systems, operations (i.e. methods)
are not isolated but are part of the class definition.
The class is not, just an argument of the method, but
the method itself is subordinated to the class. As a
result, the same method name can be implemented in
different ways in distinct classes, the process known
as overloading, or a method can be specialized down
the hierarchy by any subclasses, thereby revising the
behaviour of the superclass. Now, let. us consider the
situation shown in figure 2 where an integrity rule to
prevent students from being older that ninety is de-
fined. This rule should be fired for instances of the
class student, before the message put-age begins exe-
cution, i.e. before the student age is altered. Since
00 systems allow methods to be inherited from su-
perclasses, the method put-age can be defined at the
level of the class person and inherited by the subclass
student. Thus, the previous integrity rule has to be in-
voked not only when an attempt is detected to insert
the age of a person. but, also when this per.pon happens
to be a student. Otherwise, the rule should not be in-
voked even if the message pzll-age is detected.

In other words, the method alone does not completely
specify the context of invocation, since a method gets
its meaning from a class (subsequently called the ac-
tive class). Several alternatives are possible for sup-
porting the idea of an active class, for instance:

l.- The active class could be embedded in the condi-
tion part of a rule. For example, the previous rule
would have as an event the pair (put-nge,before)
and the condition part of the rule would be ex-
tended to check that the receiver of the message
is an instance of the class student. Besides mak-
ing the context where a rule is invoked difficult
to understand, this approach prevents the system
from taking full advantage of the active class as
an indexing mechanism, as shown later.

2.- The event definition could be enlarged with an
act.ive class at#tribute. Thus, in the previous
example, the event would become (siudeni,pul-
age, before). However the message receiver can be
an instance of some subclass (e.g. postgraduate),
and thus the active class is not its immediate class.
Two options are now possible. One is to check
if the message receiver is an instance of the ac-

Barcelona, September, 1991

‘put-age” method definition

posTGRAwArr
age of postgraduate > 20 UNDERGRADUATE

Figure 2: Person hierarchy

tive class (i.e. student). This process can turn
out to be quite expensive since this checking has
to be done for every message sent and for every
possible event. Another approach is to generate
automatically all possible “inherited” events. For
instance, the events (postgraduate,put-age, before)
and (undergraduate,put-age,before) would be gen-
erated, providing that postgraduate and under-
graduate are subclasses of student. It is worth
mentioning that some of the generated events may
already be defined (e.g. an integrity rule con-
straining postgraduate students to be older that
twenty). In this case, instead of creating a new
event, the set of rules activated by this event has
to be extended by the identifier of the younger-
than-ninety rule. Moreover, if a new subclass is
introduced, the appropriate events have to be gen-
erated. For instance, if phd-studenf is introduced
as a subclass of postgraduafe, all the events for
postgraduate students have to be “inherited” by
PhD students. This process can be quite cumber-
some and expensive to maintain. In our opinion,
the rule identification process should make use of
the class hierarchy itself, rather than making use
of some additional mechanism.

3.- The rule definition is extended with an active-
class attribute. Previous work either does not
consider explicitly the role played by the active
class, or provides a local mechanism for “inherit-
ing” events. Since rules are truly objects, the ex-
tra active-class attribute can be implemented as
a two-way relationship between rules and classes.
The inverse of active-class is declared to the sys-
tem to be held in the class-rules attribute of a
class. For instance, the younger-than-ninety rule
would have student as the value of its active-class
attribute, and thus the studenf class would have
the object identifier of this rule as the value of its
class-rules attribute. Two important advantages
can be drawn from this approach:

l Rules are indexed by class. The class-rules
attribute has as its value the set of rules to

Wings of the 17th International
Conference on Very Large Data Bases

320

be verified when a message is sent to any
instance of this class. In this way the search
for applicable rules is considerably reduced.

l The “inheritance” of rules has been moved
to the class hierarchy, without defining any
additional mechanism. As discussed above,
the rules affecting a given instance are not
just the ones attached to its immediate class,
but also those attached to its superclasses.
For example, if the message put-age is sent
to an instance of the class posfgraduate,
the rules applicable (e.g. representing in-
tegrity constraints on the oge attribute) are
those attached to postgraduate itself together
those attached to student and person. To
handle t.his situation, the definition of each
class has been enlarged with the attribute:
activated-by. This attribute is defined just
like any other attribute:

attribute(att,tuple(activatad,by,
global,set,optional,rule-class,
[activated-by aof class ::

class,rules of class
union

activated-by of is-a of class] 1)

This definition states that acthated-by con-
tains objects of t,ype rule-class. The con-
straint, enclosed between brackets and spec-
ified using a constraint equation approach
[Morgens 841, enforces that the value of the
activated-by attribute for a given class has
to be equal to the union of the rules of the
class-rules attribute attached to the class
and the rules obtained from the activafed-
by attribute attached to its superclasses. It
is worth noticing the recursive nature of this
constraint. Together with the idea of weak
bound 1 proposed in [Morgens $41, this ac-
complishes the right behaviour: when an up-

’ A weak bound -syntactically representedas wo/- can be seen
as the link to be broken to preserve the constraint in case the
equality is violated

Barcelona, September, 1991

date is done to the class-rules attribute of
any class, the update is propagated to the
a&vale&by attribute of all its subclasses.
This is done automatically by the system
as a result of the enforcement of the above
constraint, without any further mechanism
being required. Further, when a new sub-
class is introduced, the appropriate rules are
“smoothly inherited”.

The latter approach is described in detail in the next
section, where a rule manager is described for ADAM,
an OODB implemented in PROLOG.

5 A uniform approach to rule
management in ADAM

5.1 A brief review of ADAM

The 00 paradigm encourages reuse and modularity
through the subclass mechanism. When a new class
has to be introduced in the system, the designer thinks
about the differences between, and similarities with ex-
isting classes, pointing out what is really new and what
can be reused. Although this philosophy has been
broadly utilised user-applications, few systems apply
it to the definition of the system itself. In ADAM this
philosophy is also applied to the definition of the sys-
tem by the use of metaclasses. A metaclass is a class
the instances of which are all classes. Metaclasses not
only permit classes to be stored and accessed using
the facilities of the data model, but make it possible
to refine the default behaviour for class creation using
specialization and inheritance. In this way, uniformit,y
and extensibility are greatly increased. As a case in
point, this paper is about extending ADAM with a
rule manager. The use of metaclasses in ADAM is de-
scribed in more detail in [Paton 901.

In ADAM, objects are considered to be metaclasses,
classes or instances. When the system is compiled, the
metaclass called me&class already exists. All subse-
quent classes are created by sending messages to meta-
classes such as melu-class, which define methods such
as new, put-slot and put-method.

New objects, whether they are metaclasses, classes or
instances, are created in ADAM by sending the mes-
sage new to the class of which the object is to be an
instance. For example, to create a new class called
person which is an instance of the metaclass entity-
metaclass, the call shown in figure 3 is made: The
argument of new is a PROLOG list, the first element
of which is the name of the object, and the second el-
ement of which is a list of the attributes of the object.
An attribute has a name and it is described by sev-
eral facets: the visibility, the cardinality, the status,
the type and the constraints attached to this attribute
(empty list in the above example). Methods to retrieve

Proceedings Of the 17th International
Conference on Very Large Data Bases

321

(get-), to delete (delete-) and to change (update-, put-)
attribute values are automatically created by the sys-
tem, so that attributes are always handled by these
methods.

When new is used to create an instance rather than
a class, the first element in the list passed to new is
unified with the system-generated unique identifier of
the object, e.g. 4Qperson 2. For example, to create an
instance of the class person in the variable OID, the
following message is sent:

new([OID, [

cname(Codile]),
sex(Cfemalel>,
born-in([usurbil] >

II> => person.

In this way, the same paradigm is used to handle both
data and meta-data.

5.2 The event object

Events are not always seen as first-class objects. In
[Bauz 901, events are seen as rule attributes, aud
hence they cannot have attributes or methods of their
owu. Although this approach may result in perfor-
malice gains, it can compromise the extensibility of
the system for coping with events coming from differ-
ent places, or which need special treatment.

As with other objects in the system, event definition
involves the description ofstructure (i.e. attributes) as
well as behaviour (i.e. methods). An event can be seen
as specifying the moment, when a rule is to be fired.
l’his moment can be described by the message firing
the rule (the active-method attribute of the event)
and the status of the message (the when attribute of
the event).

Unlike some previous approaches, a richer and more
complex event definition can be created as a result of
working in an 00 environment, namely:

1 .-

2.-

Events are not restricted to be update operations
but can be any message defined in the system (e.g.
display, create a new class, move, get-cname).

The possible values describing the status of a mes-
sage can be enlarged. Previous work has consid-
ered just two values: before and after operation
execution. In the 00 context, operations are ma-
terialized by methods. Besides, before and u&r,
the range of values has now been extended to take
into account situations where the method cannot
be found, or other options which reflect the nature
of method invocation supported by the underlying

2Tlle identifier 4@perso11 ia an internal identifier. In practice
one would use a variable Baby, which had been instantiated
by another goal, e.g. get-by-cname([odile],Baby) => peraon,
instantiates Baby with the object identifier of the person whose
name is o&/e

Barcelona, September, 1991

new([person,[

attribute(att_tuple(cname,global,single,total,string,[I),
attribute(att_tuple(sex,global,single,total,string,[]),
attribute(att_tuple(bom_in,global,single,optional,string,D)

11) => entity-metaclass,

Figure 3: The definition of the class PERSON in ADAM.

PROLOG evaluation strategy (e.g. backtracking
into a method). [Diaz 91a] This broader spectrum
of situations attempts to reflect the core role that
methods play in 00 systems and the variety of
situations that can arise during message sending.

In other approaches, the event description includes
the arguments to be passed when a rule is fired. In
our approach, all the methods’ arguments, regard-
less of whether they are input or output parame-
ters, are passed by the system without any previ-
ous declaration. The rule manager makes these ar-
guments available to the condition and action part of
the rule through the system-defined predicate currenf-
arguments. Examples are given in the next section.
Being objects, events can be related to other objects
(e.g. with the rules that a given event activates), or
arranged in hierarchies. This allows the system to be
enlarged to cope with later extensions. In figure 4 a hi-
erarchy is shown where events can be classified into DB
events, clock events or application events, depending
on the event source. New attributes or specializations
of existing methods can be included if required.

Just as with any other object, events can be manip-
ulated and signalled by some event generator as well
as created, modified or deleted in a uniform fashion.
For example, an event can be created by sending the
following message:

nru(COID, I:
active,method([put,agel),
when([bef ore1)

]I) => db,event.

This event is raised before the method p&age is exe-
cuted.

The classes db-event, clock-event and application-event
share some attributes and behaviour which are ab-
stracted at a higher level in event-class. Moreover, the
procedure which takes place when a new event is cre-
ated is the same as the one followed for the creation of
any other object (e.g. instances of person). Nor are the
deletion or modification methods distinguished from
those used for deleting or modifying other objects. As
a result, this behaviour can be inherited from that al-
ready provided by the system, i.e. from the entity-
metaclass.

Pmceedings of the 17th International
Conference on Very Large Data Bases

322

5.3 The rule object

Rule structure is mainly described by the event that
triggers the rule, the condition to be checked and Ihe
action to be performed if the condition is satisfied. The
condition is a set of queries to check that the state of
the database is appropriate for action execution. The
action is a set of operations that can have different
aims, e.g. enforcing of integrity constraints, user in-
tervention, propagation of methods, etc. Condition
and action definitions can refer to the current object
to which the rule is applied and to the current argu-
ments of the method firing the rule.

As discussed in the last section, the complete con-
text of invocation is described by the active-class and
event attributes. The event attribute has as its value
the object identifier of an event instance. For instance,
the younger-than-ninety rule can be defined as:

new([OID, [
event (C3@db,eventl),
active,class([student] 1,
is-it-enabled{ [true]) ,
disabled,for([l@student,230student]),
conditionc C(

current-arguments (CStudentAge] 1,
StudentAge > 90

)I),
action(C(

current,object(TheStudent),
current,arguments(CStudentAgel),
get,cname(StudentName) => TheStudent,
writeln([‘The student ’ ,StudentName,

‘with age ‘,StudentAge,
‘exceeds the expected age’]),

fail
>I>

I) => integrity-rule.

If $@db-event is the object identifier of the event shown
in the last section, this rule will fire before executing
the put-age method. The condition checks whether the
argument of the method (i.e. the age to be introduced)
is greater than ninety or not. If the condition is not
met, the rule is not applicable and the method can
continue. Otherwise, the action is executed. In this
case, the action fails after displaying a message, and

Barcelona, September, 1991

r I
new([event-class,[

attribute(att~tuple(active_method,globel,single,total,string,[]))
attribute(ett~tupIe(when,gIobaI,singIe,totaI,string,[]))

I) I> entity-metaclass.

nsw([db-•vrnt,[nrw((clock~rvent,[nrw([epplicotlon~rvrnt,[

le~s([rvrnt~clsesJ) Is~s([event~cless]) Ie~e([evont~clsse])

I) 0, rntlty~motsclass. J) 3 rntity~meteclars,]) =* entity~mrlacless.

Figure 4: Event hierarchy definition in ADAM

SPECIALJWLEJ¶ETACLASS
methods: new (rpecirlitad)

Figure 5: Rule hierarchy

then the invocation of put-age does not proceed. The
current-object and current-arguments predicates refer
to the current instance to which the rule is applied, and
to the current arguments of the method firing the rule
respectively. Also the condition result can be passed
to the action part through the condifion-resuh predi-
cate, the argument of which is instantiated with any
value required after condition evaluation.

As well as the event-action-condition description, two
more attributes are added to specify the status of the
rule itself, i.e. whether the rule is enabled or disabled.
The attribute is-it-enabled describes the status at
the level of the whole class appearing as the active-
class value, whereas the disabled-for atkibute de-

scribes the status for specific instances of the class. In
the above example, the rule is enabled for all the stu-
dents (i.e. the value of is-it-enabled is true) except for
those instances with object identifier 1Qstudent and
230student. Thus, this rule will not be fired if either

the is-it-enabled attribute is false or if the object iden-
tifier of the current object appears as one of the values
of the disabled-for attribute.

As part of their struct,ural description, rules can be
related to other objects in the system and arranged
in hierarchies. Actually, the active-class attribute is a
relationship between classes and rules that has been
used to speed up the system: the inverse of aclive-
class, i.e. class-rules attribute, is used as a class-based
index where the inverse constraint is maintained by
the system [Diaz 901. Other relationships can be de-
fined, even between rules themselves, e.g. a prece-
dence relationship in the order of execution, Arrang-
ing rules in hierarchies brings all the advantages of
inheritance into rules. In figure 5 the user-defined-
rule, inlegrily-rule and propagating-rule subclasses are
shown. User-defined rules are those defined by the
user, whereas integrity rules and propagating rules
are system-generated rules, namely rules generated

Proceedings of the 17th International
Conference on Very Large Data Bases

323
Barcelona, September, 1991

by the system from a declarative specification of in-
tegrity constraints and the operational semantics of
relationships respectively [Diaz 91a]. Rules for con-
straint maintenance are an interesting example where
several methods and classes can be involved. For in-
stance, to preserve that the age of a PhD student has
to be smaller that ihe age of his/her supervisor, meth-
ods modifying the age (i.e. put-age, delete-age and
update-age) either for a student or for a lecturer have
to be considered, assuming that the class lecturer is de-
fined and that only lecturers can supervise PhDs. An
approach to derive rules for constraint maintenance in
this context is presented in [Diaz 91b].

The next question to be addressed is the behaviour of
rules. Unlike other objects, rules can be fired, i.e. the
condition of the rule evaluated, and if accomplished
then the action undertaken. In order to be inherited
for all the instances, this rule firing method is defined
at the level of rule-class. The method fire can be
specialized to account for further requirements in any
subclass. Enabling and disabling of rules is nianaged
through modification of the is-it-enabled and disabled-
for attributes, and no special methods are required.

Finally, rule management is done using the mech-
anism already provided by the system for handling
other kinds of objects. However, special require-
ments are needed.when instances of inlegrity-rule and
propagatin.g-rule are created and hence, the method
new has to be specialized for these classes. Owing
to the metaclass mechanism available in ADAM, this
specialization can be easily and cleanly supported by
defining the special-rule-metaclass. This situation is
shown in figure 5. All rule classes are handled in the
same way. However, when the message new is sent to
the user-defined-rule class, the “standard” definilion
of new is inherited, whereas a specialized definition is
used when this message is sent to the integtity-rule or
propagating-rule classes.

5.4 Some examples

Two examples are shown in this section, illustrating
the use of rules to implement security constraints and
operations on derived classes. For legibility, the event
attribute of a rule is substituted by the attributes of
the event object that would fill this attribute.

In the first example the advantage of following a uni-
form approach can be seen. Since rules are objects,
rules can be defined on the rules themselves. In fig-
ure G a rule is shown that prevents users other than
graham from creating user defined rules. It is thus a
rule about rules. When an attempt is made to create a
rule by sending the message new to user-defined-rule,
this rule is fired, and the identity of the user checked
through current-user, a predicate which returns the
name of the current user.

Proceedings of the 17th International
Conference on Very Large Data Bases

324

condillon(((
+\ current-user(graham),
wrlleln(‘You are nol authorized IO

create user defined rules’)
)I),
acllon([(foil)))

]]) LIP user-defined-rule.

Figure 7: Security constraint rule

The second esample illustrates the use of rules in meta-
classes. Since metaclasses are objects, the rule mech-
anism can be used to accomplish meta-behaviour. In
the SDM [Hammer 811 semantic data model, a class
can be derived from another cla.ss based on some dy-
namic criteria. For instance, the phd class can be de-
rived from the posfgraduale class where the criteria
could be that the registration is “phd”. Instances of
the phd class can be obtained from postgraduates b)
selecting those whose registration = “phd”, and op-
erations on the class postgraduafe have to be “prop-
agated” to phd. To provide this kind of behaviour a
rule can be defined for each operation to be “propa-
gated” [Amy 891. In figure 7 a rule is shown to provide
this mechanism for the message new. When a new
postgraduate is created, i.e. when the event (entity-
metaclass,new,before) is signalled, the condition part
of the rule checks if the current instance of entity-
melaclass (e.g. the postgraduate class) has any de-
rived class, If so, the action part of the rule checks if
the criteria is verified (through the message verifying-
membership that has as its argument, the attributes
of the new instance) and if satisfied, the correspond-
ing event is signalled. In this way, an improvement in
transparency is achieved: the user is unaware whether
a class is derived or not. For instance, rules can be
defined to fire when a new phd instance is creat.ed re-
gardless of whether the message tlew was driginally
sent to the postgraduate class.

6 Conclusion

Unlike current DBs, active DBs aim t.o provide auto-
matic answers to events generated internal or external
to the systeln itself. System responses are declara-
tively expressed through event-condition-a&on rules.
The research presented here is an attempt to provide
an insight into rules in an 00 context, stressing uni-
formiby.

Uniformity stems from seeing rules as “first-class” ob-
jects described using attributes and methods. In this
way, rule management operations are conceived and

Barcelona, September. 1991

new(LA
active~class([enlily_metaclessJ),
aclive-method([new]),
when([before]),
is-11 enabled([yes]),
condilion([(

current-object(StoredClass),
condltion~result(DerivedClasses),
findall(DerIvedClass,

get-by-Is-a([StoredClass],DerivedClass) =B derived-maleclass,
DerivedClasses),

DerivedClasses \== []
)I)*
action([(

% an event has been delected for a class
% the same event has lo be signalled for each of its derived subclasses
current-erguments([Args]),
Args z L,Alts],
condillon~resull(DerIvedClasses),
(member(DerivedClass, DerivedClasses),

verlfying~membership(Alls) =B DerIvedClass,
slgnal([evenl~luple(new,before,DerivedCIass),Args]),

false
)I)

; true)

II) => user-defined-rule.

Figure 6: Derived class rule

implemented as methods This brings all the advan-
tages of the 00 paradigm into rule management. As a
result, rules can be related to other objects or arranged
in hierarchies, and rules can even be defined which
are triggered by methods attached to rules themselves.
Treating rules as objects also has the advantage that
any new facilit#y introduced for objects is automatically
applicable to rules.

Although it has not been the main concern of this
paper, eflkiency plays a decisive role in active DBs.
Several benchmarks have been performed to measure
the overhead imposed by the rule management sys-
tem. The results show that the introduction of rules
makes programs on average about twice as slow as
they are when the rule mechanism is disabled. Such a
slow-down is predictable, as rule evaluation imposes an
overhead on every possible event that can be detected
by the system. Bowever, the scale up factor (i.e. how
the number of rules affects syst,em performance) has
been kept low by indexing rules by class. In this way
the search for applicable rules is considerably reduced.

Acknowledgements
The authors would like to thank to A. Illarramendi,
J.M. Blanc0 and S. Embury for useful comments in
an early draft of this paper. Thanks have also to be
given to F.J. Torrealdea for making possible the con-
tact among the different Departments. Oscar Diaz was
supported by a. grant from the Spanish Government.

Procefdings of the 17th International
Conference on Very Large Data Bases

325

References

[AmY 891 I. Amy Chen and D. hlcLeod Derived
Dulu C’pduie tn Seluaniic Databases,
15th. VLDB, pp.2252235 1989

[Bauz 90) C. Bauzer hledeiros and P. Pfeffer A
mechanism for Managing Rules in an
Object-oriented Database, Altair Techni-
cal Report

[BBBC 901 D.Beech, P. Bernstein, RI. Brodie, M.
Carey, B. Lindsay, L. Rowe and RI.
St.onebraker Third-genernfion data base
system manifesto, in Proc. IFIP TC-
2 Conf. on Object Oriented Databases,
Kent and Mersman (eds.), North-
Rolland, 1990

[Chakrav 891 S. Chakravarthy Rule j1onagentenl and

[Dayal 88)

[Dayal 891

Evaluation: an Active DBhfS Perspec-
tive SIGhfOD RECORD, Vol. 16, No.
3, pp. 20-28, 1989

U. Dayal, A.P. Buchmann and D.R. Mc-
Carthy Rules Are objects Too: A Iinowl-
edge hfodel for An Active, Object Ori-
ented Daiabase System in Proc. 2nd.
Int. Workshop on OODBS, K.R. Dit-
trish (Ed.), Spring-Verlag, pp. 129-143,
1988

U. Dayal Active Daiabase hfnnngeme7tt

Systems SlGh,lOD RECORD, Vol. lS,
Ko 3, pp, 150-169, 1989

Barcelona, September, 1991

[Diaz 901

[Diaz 91a]

[Diaz 91b]

[Ellis $91

0. Diaz and P.M.D. Gray Semanlic-
rich User-defined Relationship as a
Main Constructor in Object Oriented
Databases in Proc. IFIP TC-2 Conf on
Object Oriented Databases, Kent and
Mersman (eds.), North-Holland, 1990

0. Diaz and N.W. Paton Sharing Be-
haviour in an Object Oriented Database
using a rule-based mechanism in Proc.
9th. British National Conference on
Databases, BNCOD’91, Wolverhanip-
ton (United Kingdom), Butterworth
Publishers, 1991

0. Diaz Deriving Rules for Constraint
Maintenance in an Object Oriented
Database submitted for publication,
1991

C.A. Ellis and S.J. Gibbs Active Objects.
Realities and Possibilities in Object-
Oriented Concepts, Databases and Ap-
plications, W.Kim and F.H. Lochowsky
(ed.), ACM Press, 1989

[Eswaran 751 K.P. Eswaran and D.D. Chamberlin
Functional Specifications of a Subsys-
tem for Database Integrity in Proc. 1st
VLDB, pp. 48-68, 1975

[Gray 911 P.M.D. Gray, K.G. Kulkarni and N.W.
Paton Object Oriented Databases: A Se-
mantic Data Model Approach, Prentice-
Hall, 1991

[Hammer 811 M. Hammer and D. McLeod Database

[Hewitt 771

[Hudson 891

[Kotz 881

description with SDM: A Semantic
Database Model, ACM Transactions on
Database Systems, 6,3 (Sept), pp. 351-
386, 1981

C. Hewitt, Viewing Control Structures
as Patterns of Passing hfessages, Ar-
tificial Intelligence, Vo1.8, pp. 323-364,
1977

S. Hudson and R. King Cactis: a self-
adaptive, concurrent implementation of
an object-oriented database management
system in Proc. ACM SIGMOD, pp.
237-246, 1990

A.M. Kotz, K.R Dittrich, J.A. Mulle
Supporting Semantic Rules by a Gener-
alized Event/Trigger Mechanism in Ad-
vance in Database Technology, EDBT,
Venice, pp. 76-91, 1988

[Morgens 841 M. Morgenstern Constraant Eqvations.
Declarative Expression of Constraints

Proceedings of the 17th International
Conference on Very Large Data Bases

326

[Paton 891

[Paton 901

[Stonebr 901

with Automatic Enforcement, Proc. In-
ter. Con. on VLDB, pp. 153-299, 1984

N.W. Paton A DA M: An
ObJect-Orzenled Database Sysiem Imple-
mented ~11 Prolog, Proc. 7t,h. BNCOD,
M.H. Williams (ed.), CUP, pp. 148-161,
1989

N.W. Paton and 0. Diaz Metaclasses
in Object-Oriented Databases in Proc.
IFlP TC-2 Conf on Object Oriented
Databases, Kent and Mersman (eds.),
North-Holland, 1990

M. Stonebraker, A. Jhingram, J. Go11
and S. Potamianos On rules, procedures,
caching and views an database systems in
Proc. ACM SIGMOD, pp. 281-290, 1990

Barcelona, September, 1991

