
Data Management for Large Rule Systems
Arie Segev and J, Leon Zhao

Haas School of Business, Univ. of California at Berkeley, and
Information and Computing Sciences Division, Lawrence Berkeley Laboratory,

Berkeley, California 94720

Abstract

Managing data in large rule systems is a
critical issue, and DBMS systems are being
extended for the support of rule-based,
data-intensive decision making such as in
expert system applications. We suggest to
selectively materialize the rule-generated
data in relations so that rule-based decisions
can be made incrementally and automati-
cally when the collected data are updated,
An algorithm is developed to select derived
relations for materialization so that the
overall cost of processing the inference
rules is minimized while satisfying require-
ments on query response time.

1. Introduction
Expert Systems (ESs) are being applied to many

business operations, including accounting (Shim & Rice,
1988), finance (Srinivasan & Kim, 1988; Duchcssi,
Shawky & Seagle, 1988 and Shaw & Gentry, 1988),
human resource (Extejt & Lynn, 1988), and production
(Rae & Lingarai, 1988). One of the problems ES
developers are facing is that access to large amounts of
business data is difficult because current ES technology
lacks necessary data management functions found in
database management systems (DBMSs).

To support decision making while using large
amounts of data, DBMS and ES technologies are being
integrated into expert darabase syslems (EDSs), New
DBMS systems are being designed with EDS features,
that is, managing both rules and data in a unified sys-
tem. Relational DBMSs are not designed to handle
inference rules and their functions must bc extended lo
address several important issues.

Rules are symbolic data with special internal and
external structure. They must be- managed in a special
way so that they can be defined, stored, and accessed
efficiently. This is the rule sforage issue.

This world ~88 suppomd by the Applied Mathematical Sci-
ences Research Program of Ihe OrAce of Energy Resurrch, U.S.
Depanment of Energy under Conmct DE-AC03.76SKXKQ8.

Proceedings of the 17th International
Conference on Vety Large Data Bases

When data are insened or modified by an transaction,
certain rules may be called upon to act on the change of
situation. Therefore, relevant rules must be identified
quickly. This ‘is the rule awakening issue.

When rules are awakened, data must be derived and
stored efficiently. This process can be complex if the
rule derived data affect other rules. For relevant rules
that are conditional on join expressions, appropriate
techniques must be us&l lo ensure efficient rule execu-
tion. This is the rule execution issue, and is addressed
in this paper.

Current research and prototype systems deal with the
above issues. Among those systems are POSTGRES
(Stonebraker, Hason & Potarninos, 1988), Starburst
(Haas et al,, 1990), Iris (Wilkinson, Lyngbek & Hasan,
1990), LDL (Chimenti et al., 1990), RDLl (ICiernan,
Maindreville & Simon, 1989), DIPS (Sellis, Lin &
Raschid, 1989), and Ariel (Hanson, 1989). Currently,
most rule systems in these prototypes focus on support-
ing database services such as triggers, integrity con-
straints, data se.curity and relational views (e-g,, Widom
& Finkelstein, 1989 and Ceri 8: Widom, 1990). In this
paper, we focus on processing inference rules that
derive data based on existing data. Such data derivation
rules and their interaction are likely to be complex in a
large ES, Among the derived data, some may be
materialized in order to reduce processing costs or
query response times.

Materialization of rule-derived data in an EDS is
related to materialization of user-defined views in a con-
ventional DBMS, which has been studied previously in
(Blakeley, Larson & Tompa, 1986; Hanson, 1987 and
Segev & Park, 1989). Our research is different from
these previous studies in two major aspects. First, in an
EDS, inference rules are usually chained to one another
so that decisions on whether or not to materialize a
derived relation must be made by considering the chain-
ing effect among rules. Previous work on view materi-
alization (and also work on materializing rule data, such
as in (Sellis, Lin & Raschid, 1989 and Segev & Zhao,
1991a,b) did not consider this chaining effect. Second,
we introduce auxiliary data consrmcts that give rise to
new opportunities in improving system performance.

297 Barcelona, September, 1991

The rest of the paper is ,organized as follows. Sec- The first set of rules (Bankruptcy rules) predicts
tion 2 illustrates the relationship between inference rules financial performance based on the given data in the
and relations through a hypothetical application. Sec- COMPANY relation, deriving the PERFORM relation.
tion 3 analyzes the characteristics of data propagation The second set of rules (Approval rules) approves or
through inference rules. Section 4 defines the optlmiza- disapproves the loan application of a company based on
tion problem of materializing derived data, presents the its PERFORM data and the type of loan for which it
rule materialization structures, and develops a applies. The resulting data of the rule is placed in
decomposition-based algorithm. Section 5 gives an another derived relation, the APPROVAL relation. Fig-
example of the algorithm and presents some computa- ure 2.2 illustrates the derivation of the data objects with
tional results, and Section 6 concludes the paper with a the two sets of rules. The meaning of each rule is as
summary and future research. follows.

2. Inference Rules
Much of the collected data can not be used directly

as decision making variables. Therefore, these data
must be preprocessed before they can be used in a deci-
sion model. This preprocessing of data can be done by
means of inference rules. An inference rule is an If-
Then statement that applies constraints to some existing
data and derives new data or nigger an action when the
If-side is satisfied. The If-side of a rule is called rule
antecedenf, or rule body, and the Then-side is called
rule consequent, or rule head. In general, we distin-
guish between data rules and action rules; the former
are rules that directly affect existing data or derive new
data and the latter are rules that activate DBMS com-
mands or procedures such as ABORT a transaction or
PRINT a report.

0 : Derived Dsu
D : Rule AmtovhL

Figure 2.2. Data derivation through rules
Bankruptcy Rules

A hyporhetical EDS application is illustrated next
through two sets of rules and four relations by extend-
ing an example in (Turban, 1989). Suppose a commer-
cial bank uses an expert database system to support
decision making in the evaluation of financial perfor-
mance and loan approval. The relevant relation sche-
mas are shown in Figure 2,1, where COMPANY con-
tains the financial statements of loan applicants, LOAN
contains the information about the types of loans, and
PERFORM and APPROVAL contain the data derived
from COMPANY and LOAN through the inference
rules described next.

Rule 1: PERFORM(Name, BYear=“5”. Solvent=“n”, Type):-
COMPANY(Name, CFTD>.1309, TDTb.6975, Type).

Rule 1 says that if the ratio of cash flow to total debt
is greater than .1309 and the ratio of total debt to total
assets is greater than .6975, then the company could go
bankrupt within 5 years.
Rule 2: PERFORMName, _, Solvent=“y”, Type):-

COMPANY(Name. CFTD>.1309, TDTIU.6975. Type).
Rule 2 says that if the ratio of cash flow to total debt

is greater than .1309 and the ratio of total debt to total
assets is less than or equal to .6975, then the company
is financially solvent.
APPROVAL rules
Rule 3: APPROVAL(Name. Type, BYear, Solvent, Appr=“y”):-

LOAN(Type, Ten-&, Sizec50,000, J,
PERFORhWame, BYear, Solvent=“y”, Type).

If the company is solvent, the loan term is less than
five years and the loan size is less than 50,000, then
Rule 3 recommends to approve the loan.
Rule 4: APPROVAL(Name, Type, BYear, Solvent, Appr=“?“):-

LOAN(‘Type, TermcBYear, Size<20,000, -),
PERFORM(Name, BYear>3, Solvent=%“, Type).

If the company could be bankrupt within more than 3
years, the loan term is less than the bankruptcy horizon,
and the loan size is smaller than 20,000, then Rule 4
makes uncertain recommendation.

COMPANY(Name,CFTD,TDTA,Type)
LOAN(Type,Term,Size,RiskFactor)
PERFORM(Name,BYear,Solvent,Type)
APPROVAL(Name,Type,BYear,Solvent,Appr)

Am
Byear
CFTD
Name
RiskFactor
Size
Solvent
Term
Tvoe

decision about loan approval
projected number of @rs to bankruptcy
the ratio of cash flow to total debt
company name
measure of risk level of a loan type
loan amount
predicted financial status
loan period
loan tvDe

TijTA the ralb of total debt to total assets

Figure 2.1. The relational schemas.

Proceedings of the 17th International
Conference on Very Large Data Bases

Rule 5: APPROVAL(Name, Type, BYear, Solvent, Appr=“n”):-
LoAN(Type, TermlBYear, * -1,
PERFORM(Name, BYear, Solvent=%“, Type).

If the company could be bankrupt within less than
the number of years that the loan spans, then Rule 5
disapproves the loan.

298
Barcelona, September, 1991

The Bankruptcy and Approval rules derive data
objects as consequent& and the derived relations PER-
FORM and APPROVAL may be kept materialized as a
way to support data propagation in the rule system.
Notice that materializing rule data, such as PERFORM
in Figure 2.2 serves two objectives. First, user queries
to the rule data itself will realize better performance,
and, second, subsequent rules on the chain (the Appro-
val rules in this example) will be processed more
efficiently. The chaining effect of such rules is a major
focus of our work, and is elaborated in the next section.

3. Characteristics of Data Propagation
Next, we investigate the characteristics of data propa-

gation in an EDS using the example in Figure 3.1. In
the figure, double-lined boxes denote base relations,
single-lined boxes illustrate derived relations, and trian-
gles indicate rules that derive data from antecedent rela-
tions into consequent relations. Also shown in the
figure are the transactions to the base relations and user
queries to some of the derived relations. We ignore
user queries to base relations since their optimization is
independent of the materialization decisions. The figure
also illustrates the possibility of storing derived data
explicitly with base data in the same relation (This
scheme will be described in Section 4.2.1).

@j$~~~, R4 r’

a-----*

A+0
D7 Q3

m
bsc data set (rclalion) i @: cxlcrnal query set i

I: dcrivcd data set (relation) i [4 : rule se1 i

c ! : same physical relation 0: extcmel lransaction scl i

Figure 3.1. A hypothetical rule data graph
The analysis in this paper is done by constructing a

graph G (D R ,T* ,Q'), where
denotes the graph.
denotes the data sets. In Figure 3.1, D = (Dl, D2,
D3, IX, D5, D6, D7, D8) where Di, i=l to 4 are
base relations, while the others are derived relations.
denotes the rule sets in the graph, namely, [Rl , R2,
R3, R4). Of those rules, Rl and R3 are select-
project-join rules, whereas the other rules are select-
project rules. The rule sets define the edges that
conneCt the data sets D. The direction of arrows of
the rules define the propagation direction of transac-
tions.

Proceedings of the 17th International
Conference on Very Large Data Bases

T' denotes the external transactions arriving at the base
relations, (Tl, T2,T3, T4). Each transaction set Ti
is defined by its arrival rate, its target relation, and
the mean number of tuples it updatest. Notice that
in Figure 3.1, only external transactions are shown.
We use the superscript e to distinguish external tran-
sactions from internal ones. Internal transactions
result from the propagation of external transactions
to update materialized derived data, e.g., if D7 in
Figure 3.1 was materialized, internal transactions for
its update would be generated for any of the external
transactions shown.

Qc denotes the external queries arriving at the derived
relations, namely (Ql, Q2, 43). An external query
set Qi is defined by its arrival rate, its target relation,
and its query selectivity. As for the case of external
transactions, external queries may generate internal
queries. For example, if none of the derived rela-
tions in Figure 3.1 is materialized, 43 will generate
internal queries propagated all the way back to the
base relations. Note that intemal queries may also
be generated by update transactions. To illustrate
this, suppose that D6 is the only materialized derived
relation in Figure 3.1. In this case, transactions T4
will propagate internal transactions to D6, but since
R3 is a join rule, data from D5 is needed, thus pro-
pagating internal queries back to Rl.
As a result of propagation of transactions and

queries, data are derived and rederived within the rule
data system, and we call this process the propagafion of
data, In principle, a derived relation should be materi-
alized if the cost of maintaining and querying the
materialization is less than the cost of recomputing the
relation for all its queries. However, application of this
principle to specific problems is complicated by what
we call the chaining effect of materialization decisions.

We show that the decision on materializing a derived
relation is affected by decisions about its consequent
relations. Consider the relation D5 in Figure 3.1. The
total number of queries at DS include external queries
Ql and internal queries generated by queries or by tran-
sactions at the relation D6. The number of internal
queries at D5 depends on whether D6 is materialized
(the number of queries to D6, in turn, is dependent on
D7). Internal queries at D5 will be generated by
queries arriving at D6 if D6 is not materialized, on the
other hand, internal queries at D5 will be generated by
transactions at D6 if D6 is materialized,

The decision on materializing a derived relation is
also affected by decisions on its antecedent relations
because the cost of maintaining and querying the given
relation depends on whether its antecedent relations are
materialized. For example, maintaining and querying
D6 may require recomputing D5 if D5 is not material-

t We use the generic term ‘updater’ to refer to insertions.
deletions, and modifications.

Barcelona, September. 1991
299

ized; this recomputation is unnecessary if D5 is materi-
alized.

Due to this chaining effect, the characteristics of
internal transactions and queries to a derived relation
are not known before the problem is solved. This
dependency of parameters on the solution increases the
complexity of the optimization problem significantly.

4. An Optimization Algorithm
In this paper, we assume an immediate update pol-

icy, That is, when a derived relation is materialized,
the relation will be updated immediately after the com-
pletion of transactions at the antecedent relations. For a
discussion of other policies, see (Segev & Fang, 1990).
When a derived relation is not materialized, the relation
will be computed at query times, This section defines
the problem and the procedure of selecting derived rela-
tions for materialization. Our objective is to minimize
the overall processing cost subject to query response
time constraints.

The optimization algorithm that will be presented in
this section is based on the decomposition idea. It first
identities points in the rule data graph, where local deci-
sions are optimal, The result of those decisions is a set
of derived relations whose materialization decisions has
been made and a set of optimization problems
corresponding to subgraphs of the original graph. In
this paper, we assume that the decomposed components
can be solved optimally by exhaustive search: if this is
not the case, heuristic procedures can be applied to
them. We separate the presentation of the optimization
into two parts. The first part deals with high level cost
expressions, and is intended to convey the overall logic
of the optimization procedure. The details of particular
cost expressions are dependent on numerous factors
such as the materialization structure, update methods,
data structures, join methods, etc. In the second part of
the presentation, we will make specific assumptions
about the details which are required for the computa-
tional results, but it should be kept in mind that the
objective of this paper is not to optimize every lower
level decision (existing query optimizers, for example,
can be used to evaluate the cost of different join alter-
natives and choose the best).

The notation summary below is for reference pur-
pose; it is explained (if necessary) where introduced
first. Notice that for the cost symbols below, lower-case
c is used to indicate unit costs, while upper-case C fac-
tors in the frequency of operations,

Cb = cost per block access
c,(x) = cost of screening a tuple of relation *
c,(x) = cost of generating a Nple of relation x
C,(x) = total cost due to queries at relation x
Cr(x) = total cost due to transactions at relation x
C,O(x=O) = total cost of generating relation x for internal and
external queries to x, when the antecedent relations are avail-

Proceedings of the 17th International
Conference on Very Large Data Bases

able. and e(x) = 0
C;(x*) = total cost of computing the antecedent relations of
x for external and internal queries to x, when @(x) = 0
C:(x=l) = total cost of computing the antecedent relations of
x due to transactions at x, when U)(x) = 1
C!(x=O) = total cost of reading relation x (after generatin
to process external and internal queries at x, when @(x) = %

it)

C!(x=l) = total cost of reading relation x to process external
and internal queries at x, when Wx) = 1
C:(x=l) = total cost of updating relation x due to transactions
at relation x , when Q(x) = 1
D = the set of base and derived relations in graph G
IX = ratio of transactions that are non-null during propagation
g, = rule selectivity factor to tuples of relation x
G = the rule data graph
N* = number of Nples in relation x
v, = average number of triggers a tuple invokes
P,’ = the set containing the ith generation of preceding rela-
tions of relation x
(lX = query selectivity factor at relation x
Q’ = the set of external queries in graph G
Q (x) = the set of external and internal queries at relation x
R P the set of rules in graph G
Sj = the set containing the ith-level subsequent relations of
relation x
lc (x) = the time it takes to recompute relation x
r,(x) I the response time constraint on recomputing relation x
7’ = the set of external transactions in graph G
T(x) = the set of transactions at relation x
Y(a) = the Yao function to determine the number of block
accesses
0(x) = the decision variable for materialization, Q(x) = 1 if x
is materialized, and 0 otherwise.
h, = the arrival rate of transactions at relation x
a, = the query rate at relation x including all external and
internal queries.
a: = the arrival rate of external queries at relation x
aI (x,2 1 = the query rate from x to antecedent z initiated by
transactions at relation x due to antecedents other than z .
j3* = the mean number of tuples per transaction at relation x
4 = the amplification factor, that is, the average number of
new p patterns a Nple of relation x generates.

4.1. A Decomposition-Based Algorithm
Let 0(x) be 1 if relation x is materialized and 0 oth-

erwise, C,(x) be the total cost incurred by processing
transactions to relation x, and Cc(x) be the total cost of
processing queries against relation x. The resulting
optimization problem is given as follows.

Problem P:
Given a graph G (D .R ,T* ,Q*) and
the requirements on query response time
select 0(x) for all x E D such that
CC&x) + Ccc(x) is minimized

we denote thdoptimal values of q(x) by m’(x).

Barcelona, September, 1991
300

The decomposition of the rule data graph is based on
a set of lemmas and theorems. We first introduce the
concepts of Response Time Decisions, Local Decisions,
and Decision Boundary.

Response rime decision: Let I, (x) be the time to gen-
erate a non-materialized relation x, and In be a con-
straint on that time. It(x) is the query response time
constraint less the time to answer the query if x is
materialized. If fc(x) c 0, there is no feasible solution
to Problem P, so we assume that all r,(x) 2 0. The
optimization algorithm below makes decisions at several
steps on whether or not derived relations must be
materialized to satisfy response time constraints.

Local decisions: These decisions are made on Q(X),
assuming that 0(y) and a(t) are known, where y and z
are subsequent and preceding relations of x respectively.
The following notation is used. S: is the set of ith-level
subsequent relations of x. In Figure 3.1, if x = D5,
then SJJ = (D6) and SL?S = (D7). Pi is the set of ith-
level preceding relations, e.g., PA6 = (DS, D8J and PJs
= (Dl, D2, D3, D4). Given assumptions on the values
of Wy), yeuf. and of 9(z), ZEUPI, the value of Q(x)

I I
can be determined by a cost benefit analysis, The
resulting value of the local decision CD(x) may give use-
ful insights leading to a decision on the value of 0’(x).

The value of a(x) is determined by comparing the
processing cost when 0(x) is 1 and the cost when 0(x)
is 0. The processing cost when Q(x) = 1 includes the
cost of computing the nonmaterialized antecedent rela-
tions of x, the cost of updating relation x, and the cost
of reading relation z for the queries reaching relation x.

C,(x) = Ci(x=l) + CL(x=l) + cy(x=l)

and the processing cost when Q(x) = 0 includes the cost
of computing the nonmaterialized antecedent relations
of x, the cost of computing relation x, and the cost of
reading relation x for the queries reaching relation x.

Co(x) = C,o(x=o) + cq(x=O) + C,s(x=o)

The difference between C,(x) and Co(x) is

AC(x) = C;(x=l) + C:(x=l) + C;(x=l) -

C,o(x=o) - qx=Q - C!(x=O)

Consequently, Q(x) = 1 if AC(x) 5 0 and 0(x) = 0
otherwise, (The details of the above cost components
are given in Section 4.2).

Decision boundary: Given a rule data graph, those
derived relations whose antecedent relations are base
relations form the initial boundary of decisions 0(x) to
be made, and therefore, we call such relations boundary
relarions. x becomes a new boundary relation when
0((z) is determined for all z E P,‘.

Next, we present theorems and corollaries, leading to
the decomposition-based algorithm. For lack of space
we omit the proofs; they can be found in (Segev &
Zhao, 1991c).

Proceedings of the 17th International
Conference on Very Large Data Bases

Let a, (x ,t), 2 E P,’ be the query rate to 2 initiated at x
by transactions propagated to x from zk P,‘, zkz . Note
that this can occur only if the rule leading to x is a join
rule, and thus a,(x,z) = 0 if ‘Pa11 = 1. Also let a, be the
total query rate at x (both internal and external); Lem-
mas 2 and 3 in the Appendix specify that ax = min(a.)
when 0(y) =I, for all yes,‘, and a, = max(a,) when
O(y) = 0 for all yeySl. Then we have:

I
Theorem 1. Assume that (a) CD(y) = 1, for all ye&‘,
and (b) a(z) P 1, for all E E P! if a,(x,z) < min(a,) then
Q(x) = 1 for all zeP!; else, if a, (x.2) 2 min(a,), then
cp(z) = 0 for all 2 E UP:. If a local decision under these

assumptions gives 4x) = 1 6’(x) must be 1.
Corollary 1. When considering a derived relation at
the decision boundary, a’(x) must be 1 if 6(x) = 1
when assuming Wy) = 1, for all y E S,‘,
Theorem 2. Assume that (a) 0(y) = 0, for all ye&

and (b) a(z) = i, for all zeP,’ if a,(x,z) L max(a,) then
0(x) = 1 for all zePf; else, if a,(x,z) < max(a,), then

i O(z) = 0 for all ZEUP,. If a local decision under these

assumptions gives 4~) = 0 0*(x) must be 0.
Corollary 2, When considering a derived relation at
the decision boundary, CD’(x) must be 0 if @f(x) = 0,
when assuming Wy) = 0, y E US?.

Theorem 3. Given a graph ~(D,R.T’Q) and @(x) = 1
forxeX,X isasubsetofD.

If removing some of the relations x, for any xeX
will split the graph G into two graphs, G 1 and G 2, then
graph G can be separated into Gi(Di,Ri,Ti’,Qi’) for i =
1 to 2; where D l=(yP:)yX, D2=Xy(&), R =

1 I
RlyR2, Q* I= Ql*ua2’, and T’ = Tl’yT2* - T(X).
Solving Gl and G2 separately is equivalent to solving
G.

A decomposition-based algorithm:
0.
1.

2.

3,

Initialize a(x) = 0, for all XE D .
Determine T(x) by propagating the external transac-
tions T’ at the base relations, and comuute L =

Y~P,l W,1
Response time analysis (one-step): Do the following
for all derived relations x E D ,
2.1 Compute I# (x) by assuming Q(y) - 1, y E P,‘.
2.2.Set k(x) to 1 if r,(x) > I,(X) and 0 otherwise.
2.3.Insert x into Su, the set of derived relations to be

materialized.
Partition the rule data graph into smaller segments if
O’(x) = 1 for some x (by Theorem 3).

4. For each graph segment, compute min(a,) and
max(a,) for all XE D , that is, propagate the external
queries and the internal queries initiated by transac-

301
Barcelona, September, 1991

tions in Step 1.
5. Cost and benefit analysis

5.1. Local decisions:
5.1.1. For each boundary relation x E D , determine

0(x) using Corallary 1. If CMx) =I, then set
a’(x) to 1 and insertx into SM.

5.1.2. For each nonboundary relation XE D , deter-
mine a(x) using Theorem 1. If 0(x) =l, then
set 0’ (x) to 1 and insert x into SM.

5.1.3. Repartition the segmented graphs (by
Theorem 3) and go to Step 4 for all new seg-
ments if any.

5.1,4. For each boundary relation XE D , determine
0(x) using Corollary 2. If 0(x) =O, then set
CD’(x) to 0 and insert x into SN, the set of
derived relations not to be materialized.

5.1.5. For each nonboundary relation xeD, deter-
mine CD(x) using Theorem 2. If 0(x) =O, then
set 0. (x) to 0 and insert x into SN.

5.2. Exhaustive search:
52.1. For each segment of Problem P, define

Problem PS. using the results of Steps 2 and 5
as constraints.
PS: Given a graph G (DS ,RS ,TS’ ,QS’)

s-t. Q(x) = 1, xeDSfly
a(x) = 0, xeDSmN
and r,(x) s r,(x)

select 0(x) for all x E DS such that
x&(x) + ~CQ (x) is minimized

X2.2. ‘Test for ‘response time: For each set of
values of @(x), XE DS, compute r,(x) for all x

that @(p(x) = 0, and discard the set if t,(x) >
r,(x) for any xeDS,

5.2.3. compute the values of C,(x) and C,(X) for
the sets passing the test of response time in
step 5.2.2.

5.2.4. A set of Q(x) values that minimize the
value of

1
z&(x) + CC@(x)
x z I

is a solution to Problem PS.
6. The union of the solutions to all segments PS is the

solution to Problem P.

effective in many cases, and they will be considered in
this paper to assist processing of join rules.

4.2. Cost Analysis
In (Sellis, Lin & Raschid, 1989), a data construct,

called condition relation, was devised to process join
rules. That structure requires propagating matching pat-
terns to multiple relations when the dimension of joins
is larger than two. We have developed an alternative
method based on auxiliary data constructs: condition
pattern relations and join pattern relations (Segev &
Zhao, 1991a). Performance evaluation in that study
showed that those auxiliary data constructs are very

Proceedings of the 17th International
Conference on Very Large Data Bases

4.2.1. Materialization Structures
In the following subsections, we develop cost func-

tions for analyses of response time and cost and benefit,
We classify rules into select-project rules (SP-rules) and
select-project-join rules (SPJ-rules). In the case of
SPJ-rules, the condition pattern relations Q-relations)
and the join pattern relation (JP-relation) will be utilized
to assist deriving the rule-defined data. In order to do
this in a homogeneous way, we logically decompose a
SPJ-rule into a set of SP-rules associated with the CP-
relations and a join-rule (J-rule) associated with the
derived data. As for the JP-relation, we assume that it
is a fixture of materializing the derived data. That is, a
JP-relation will be used whenever a relation derived by
a J-rule is materialized. Figure 3.1 has been expanded
as shown in Figure 4.1 to include explicitly the CP-
relations, which can be viewed as any derived relation
for materialization decisions.

Figure 4.1. The extended rule data graph
In deriving the cost functions in Section 4.2.2, we

assume that memory size is large enough to allow com-
puting joins of two relations by retrieving each relation
only once. The derived relation will be written to disk
at the end of each join computation.

We assume that execution of subsequent transactions
are initiated when their immediate preceding transac-
tions are completed. In other words, we do not consider
pipelined operation during propagation of transactions,
when estimating cost of transactions and queries. We
also assume that the characteristics of base relations,
rules, external transactions and queries are given.

Data derived by rules may be materialized in several
structures according to the rule characteristics. We
present three materialization structures as follows.

302
Barcelona. September, 1991

Case A: Rule consequent data should be materialized
in the same relation as the rule antecedent data when
the rule body is composed of a single predicate and the
selectivity of the rule is large.

Case B: Rule consequent data should be materialized
in a separate relation when the rule body is composed
of a single predicate and the selectivity of the rule is
small.

Case C: When the rule body is composed of more
than one predicate, a join operation is usually needed in
order to evaluate the rule constraints for a given set of
data elements.

We categorize the rule materialization structures into
Structure A, B, and C as shown in Figure 4.2
corresponding to Cases A, B, and C respectively.

Svucrurc A Strocturc B

cl : DU set i

; :Rulera

@ : Condition pattern i

m : Join pawm

Figure 4.2. Materialization Structures

4.2.2. Derivation of Cost Expressions
Given the materialization and auxiliary structures, we

now elaborate on the cost expressions used by the
optimization algorithm,

Response Time Analysis
The query response time r,(x) is defined iteratively

next, where I:(X) is the time needed to recompute x
when all antecedent relations are readily available for
reading, which may be base relations, or materialized
derived relations, or nonmaterialized recomputed rela-
tions.

In deriving the cost functions next, we assume that
base relations and materialized derived relations are
indexed on the constrained attributes using indirect
hashing and therefore, the cost of reading indexed rela-
tions is computed using the approximation of the Yao
function (Bernstein, 1981). We also assume that rcad-
ing a nonmaterialized relation requires a recomputation

Procefxhgs of the 17th International
Conference on Very Large Data Bases

followed by a complete scan of the computed relation.
The cost of recomputing relation x is the sum of the

cost of recomputing relation x from the antecedent rela-
tions and the cost of recomputing the antecedent rela-
tions if necessary, lI(x) = r,‘(x) + x $01).

rar;.o(rb=+J
The cost of recomputing relation x from its

antecedent relations is separated into the cost of reading
and screening the nonmaterialized relations, the cost of
reading the materialized relations using indices on the
constrained attributes, the cost of generating the tuples
of relation x, and the cost of writing the results to disk
t;(x) = c kdy + c,(YWy)

W,‘.W=O

Where Pi is the antecedent relations of x, 6, and N, are
the number of blocks and tuples of the antecedent rela-
tion of x. Notice that the cost of screening tuples and
the cost of creating tuples of the derived relation are
dependent on the particular relation due to the
difference in the number of constrainted attributes, the
tuple size and the join dimension.

Cost and Benefit Analysis
In estimating the costs of materializing derived data,

we assume an immediate update policy, i.e., the derived
data is maintained immediately after a transaction is
done at the antecedent data. We assume also that join
attributes on all materialized relations are indexed with
an indirect hashing method so that a read requires two
accesses and a write requires three.
Local decisions

Shown below are the cost functions for the local
decisions as defined in Section 4.1. We assume the cost
of recomputing a nonmaterialized relation for arriving
queries is linear with the time of computing it and the
frequency of the relevant queries and transactions.

The cost of computing the antecedent relations of x
for materializing x at the transaction times is equal to
the sum of the cost of computing the nonmaterialized
antecedent relations and the cost of propagating the
transactions to the antecedent relations.

tq(x=l) = c
YrP,l,*J>Q

[o”dJYwY) + w,ly)l

Where, IL, = C fJh and fi is the fraction of non-null
Y6P.l

transactions-t out of all transactions arriving at relation
y, after screening against the rule conditions. The cost

t Since transactions are propagated and their tuples are
screened, it is porsiblc that the tmnsaction becomes null at a
node because none of its tuples passes the screening.

303
Barcelona, September, 1991

of propagating transactions to an antecedent relation y,
C,(y), is defined iteratively as the cost of propagating
transactions from the antecedent relations of y to y plus
the cost of propagating transactions to the antecedent
relationsofy,C,(y)=C,‘OI)+ I3 LCp(z).

rcPJI,#rb-o
The cost of propagating transactions from the
antecedent relations of y to y consists of the cost of
reading the nonmaterialized partner relations of the join
and screening tuples read, the cost of reading material-
ized partner relations, and the cost of generating the
tuples for the transactions.

qa> = c kb (5 -fs L lb, + c, (2 Ifi 71, B, 1
I.P$W~~

The cost of computing the antecedent relations of x
for external and internal queries at relation x is equal to
the sum of the cost of computing the nonmaterialized
antecedent relations, C,((x=O) = a= C r, 0,).

YRPx’M7M
The cost of computing relation x for external and

internal queries at relation x is the product of the query
rate and the cost of computing relation x given the
antecedent relations, C;(x=O) = a.r/(x),

The cost of updating relation x at the transaction
times is equal to the sum of the cost of reading the non-
materialized antecedent relations and the cost of reading
the materialized antecedent relations, the cost of main-
taining the join pattern relation and relation x for J-
rules, the cost of maintaining relation x for SP-rules,
and the cost of generating the tuples of relation x.
Ct(x=l) = C @is (L-f, 5)by + c, (r 1% B, 1

Yrp,1.w-J

Where I(o) is an indicator function, and it is equal to 1
if true and 0 otherwise.

The cost of reading relation x after x is generated
when @(x) = 0 is Cl(x=O) = cba, b,.

The cost of reading relation x when 0((x) = 1 is We
assume that materialized relations are indexed on their
constrained attributes and that the query optimizer is
smart enough to decide whether or not to used the
index, C!(x=l) = cka. min[zY(b,.[N,q.]),b,].

Exhaustive Search Decisions

For each derived relation x, the cost of processing
the transactions and queries can be computed using the

Proceedings of the 17th International
Conference on Very Large Data Bases

formulas shown next. Notice that the query cost in the
formulas involve only the cost of processing the exter-
nal queries because the costs of internal queries are
included in the costs of processing transactions and
external queries.

Case Q(x) = 1:
In the case where a derived relation is materialized,

the transaction cost is the sum of the cost of computing
the antecedent relations of x and the cost of updating
relation x, which have been defined above.
C,(x) = Ci(x=l) + CL(x=1)

The query cost is simply the cost of reading the
materialized relation x.

Case a(x) = 0:
In the case where a derived relation is not material-

ized, the transaction cost is zero because relation x will
not be updated in this situation; G(x) = 0.

The query cost is the sum of the cost of generating
the antecedent relations of x, the cost of generating x
given the antecedent relations, and the cost of reading
x. We assume that nonmaterialized relations are not
indexed and that querying a recomputed relation
requires a complete scan of the relation.
C,(x) = CJ(x=o) + CI((x=o) + C,r(x=o)

crobx 1
5. Example and Computational Results

In this section, we use the rule data graph in Figure
4.1 as an example to demonstrate the decomposition
based algorithm developed in Section 4. We present
also some preliminary computational results to illustrate
our findings in this paper.

The following parameter values will be used in the
example and the computational results presented next
unless stated otherwise. These parameters have been
selected to cover a wide spectrum of cases; for exam-
ple, the relational sizes have been selected to range
from large to small.

5.1. An Example
Next, we demonstrate the decomposition based algo-

rithm by working through the problem represented by
Figure 4.1 using the parameter values in Table 5.1
except letting as’ equal 10 (lhin). We go through the
algorithm in the following steps.
0. Initialize cp(x) = 0, for all XE (DS, D6, D7, D8,

CPla, CPlb, CPlc, CP3a, CP3b). and 0(x) = 1, for
all x E (Dl, D2, D3, D4).

304
Barcelona, September, 1991

r 8. Q. vx W#
.s 1

T

1 1
D2 .2s 1 1 1
D3 .os 1 1 1
D4 1 1 1 I
DS s .9 1 I
D6 .5 *l

1

1 1
D7 - 1 1 1
D8 s 1 1 1

CPlr 1 1 s .5
CPlb 1 1 2 10
CPlc 1 1 1 7
CP30 1 1 .5 .s
CP3b 1 1 I 2 1.5 L

10000 100 250 500 50 0 .8
2cca 200 100 100 10 0 .9

loo00 90 225 50 20 0 1
55100 60 830 SO0 20 3 .7S
23780 70 420 420 7 5 .8
11900 20 60 340 3 2 1
10000 35 90 50 20 0 .9

lOOOO0 50 1250 10 50 0 1
2500 40 25 400 12 0 1

100 25 190 10 1
27550 100 690 380 10 0 1
moo 20 25 45 10 0 1

The units for the parameters are: E, , bytes; b,, blocks;
5, l/min; and a:, l/min. The following formulas are
used to compute the parameters for derived relations:
bx = N,B,IS, where S = 4000 bytes per block,
L= c f,S* Px= 2 5f,P,s,vx&1 Nz= I= &gpvy.

VP,1 @,I W.l
Other parameters not shown in the table are: brpl =

380 blocks and bJp, = 55 blocks.

1. Propagate the external transactions T’ at the base
relations, and the resulting values of X, and 8, are
shown in the parameter table above,

2. Compute the one-step response time TV in seconds,
assuming all antecedent relations of x are material-
ized.

X 5 6 7 8 lr lb lc 3s 3b

I&x) (SC) 254 74 39 26 207 18 4 98 11

3. In order to concentrate on the cost benefit analysis,
we assume le(x) > 300, and therefore, no partition is
possible.

4. For each graph segment, compute min(a,) and
max(a=) for all non-base relations x E D , propagating
the external and internal queries initiated by uansac-
tions.

3

X 5 6 7 8 la lb lc 3a 3b

min(a,) 3 5 2 0 490 100 410 370 45

mu(a,) 380 7 2 52 870 480 790 377 52

5. The boundary relations include CPla, CPlb, CPlc,
and DS. By CoralIary 1, we assume the consequent
relations of these boundary relations are materialized.
Analyze CPla, CPlb, and CPlc using the cost func-
tions in Section 4.2.3, and we get AC(x) < 0 for x E
(CPla, CPlb, CPlc). Therefore, we have Q,‘(x) = 1
for XE (CPla, CPlb, CPlc). Now, we have a new
boundary relation D5. D5 and D8 are analyzed using
Corollary 1 and we get AC(S) > 0 and AC(8) > 0;
these results do not lead to the decisions on 6 (x) for

Proceedings of the 17th International
Conference on Very Large Data Bases

x = 5 and 8. The set of relations to be materialized
so far is SM = (CPla, CPlb, CPlc).
Using Theorem 1, the nonboundary relations CP3a

and CP3b are analyzed. Since min(a,,,) is 370 which is
equal to a,(3a,5), and min(ab) is 45 that is less than
a,(36,8), we assume Q(S) = 1 and a(8) = 1 in the local
analysis of CP3a and CP3b respectively. The results
turn out to be @(Cf3a) = 1 and WCP3b) = 1. By
Theorem 1, we know that Q’(Cf3a) = 1 and Q’(CP3b)
= 1. Now SM includes (CPla, CPlb, CPlc, CP3a,
CP3b).

D6 becomes a boundary relation after CP3a and
CP3b are materialized, we use Corollary 2 to confirm
the hypothesis that D6 is not to be materialized. Using
max(Q) = 7, we obtain X(6) > 0, and therefore, cp(6) -
0 for the decomposed decision. Consequently, (b’(6) is
set to 0. Similar analysis of D8 is done using a(- 0
since CP3b is materialized, resulting in (P’(8) P 0. The
set of relations not to be materialized is SN = (W, D8).

The graph G of Figure 4.1 can now be partitioned
into six smaller segments, Gl, G2, G3, G4, G5, and G6
that contain relations (Dl, CPla), (D2, CPlb), [D3,
CPlc), (CPla, CPlb, CPlc, D5, CP3a). (IX, D8,
CP3b), and (CP3a, CP3b, IX, D7) respectively.

Applying Corollary 2 to relation D5 and Theorem 2
to relation D7 does not give useful insights. Therefore,
we do an exhaustive search on graphs G4 and G6 using
the cost functions derived in Section 4.3. The resulting
decisions are 0’ (5) - 0 and 0’ (7) = 0.
6. The final results for this particular example are to

materialize relations CPla, CPlb, CPlc, CP3a. CP3b,
and to leave others nonmaterialized.

5.2. Computational Results
In this section we present preliminary computational

results using the cost model defined in Section 4 and
the parameter values in Table 5.1. The basis for
evaluating our algorithm are two straightforward stra-
tegies. The first strategy (Sl) is no materialization at
all. The second strategy (S2) is to materialize all
derived data. S3 denotes the strategy of using the
decomposition-based algorithm. The computational
results demonstrate that by materializing derived data
selectively, the cost reduction can be significant.

0 SO too 00 zoo 250 300 310 400 450 600

Xl

Figure 5.1

305 Barcelona, September, 1991

Figure 5.1 illustrates how the cost ratios of Sl to S3
and of S2 to S3 vary with the transaction arrival rate to
relation Dl. By selecting some relations to materialize
that minimizes the total processing cost, the system can
achieve cost reduction compared to either no materiali-
zation (Sl) or total materialization (S2). In the range of
Al shown in, the figure, Strategy Sl is more expensive
than S2 when the value of hi is lower while Sl is less
costly than S2 when XI becomes higher, that is, materi-
alization is more expensive. In this particular case, the
materialized relations in Strategy S3 include CPla and
CP3b, achieving the lowest cost among all three stra-
tegies.

0 10 100 150 200 260 300 350 400 450 500

Bt

Figure 5.2
Figure 5.2 shows that when the mean number of

tuples a transaction accesses at relation Dl, /3!, varies,
the cost ratios of Sl/S3 and S2/S3 approach 1 towards
the higher and lower values of g1 respectively. In this
computation, the materialized relations are D5, CPla,
CPlb, CPlc, CP3a, and CP3b When PI is at the lower
end; these relations reduce to CPla and CP3b around
the medium value of g,, and they further reduce to
CP3b when gr reaches the higher end.

6-
6.5

6,
4.6

4 ”
=*I r6uo 3.6 ”

3,
2.6 a.

0 * to 0 20 25 30 36 40 45 50

Figuar6e 5.3
The effect of q to the selection of materialized rela-

tions is the opposite of the effects of 7c, and g1 as shown
in Figure 5.3. The derived relations selected for materi-
alization vary from (CPla, CP3b), to (CPla, CPlb,
CPlc, CP3a, CP3b), and to (DS, D6, CPla, CPlb,
CPlc, CP3a, CP3b) as ub changes from low to high,

Selectivity of rules is another important factor when
selecting derived relations for materialization. As
shown in Figure 5.4, the rule selectivity (g,) affects the
cost ratios greatly. When g1 goes up, the cost of Stra-
tegy 2 rises while the cost of Strategy 1 decreases. Our
computational result indicates that the relations selected

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.0

Figu?? 5.4
for materialization are (CPla, CP3b).

In summary;Strategy 3 is always the best among the
three strategies (Strategies 1 and 2 are, in some sense,
extreme cases of Strategy 3). By selecting appropriate
derived data for materialization, the overall processing
cost can be reduced to a minimum.

6. Conclusion
To support decision making while using large

amounts of data, DBMS and ES technologies are being
integrated into expert database sysrems (EDSs) that
manage both rules and data in a unified system. When
rules are processed, data must be derived and stored
efficiently. This process can be complex if the rule
derived data affect other rules. In this paper, we have
studied the optimization problem of deriving data
through inference rules. Our main contributions include
the followings.

We studied the chaining effect when selecting
derived data for materialization. The decision on
whether or not to materialize a derived relation
depends upon cost benefit analysis. Generally speak-
ing, materialization decision about a derived relation
which is linked by inference rules to some other rela-
tions must be made in conjunction with decisions on
all other related relations because of the interactive
nature of the chained relations.
The optimization algorithm presented in this paper is
based on the decomposition idea. It first identifies
points in the rule data graph, where local decisions
are optimal. The result of those decisions is a set of
derived relations whose materialization decisions has
been made and a set of optimization problems
corresponding to subgraphs of the original graph.
We presented some preliminary computational results
based on the decomposition-based algorithm. Results
showed that an optimization algorithm is necessary
when implementing inference rules in order to reduce
the cost of data management for large rule systems.
Moreover, selective materialization can reduce the
processing costs significantly compared to “all-
materialized” or “non-materialized” strategies.

We are interested in exploring the following issues in
future research.

Proceeding6 of the 17th International
Conference on Very Large Data Bases

306
Barcelona, September, 1991

To construct a more elaborate model that can be
used to analyze issues such as the effect of buffer
management and access methods on the materializa-
tion decisions.
To investigate the effectiveness of the
decomposition-based algorithm in various graph
topologies, arrival rates of transactions and queries,
and other important paramenters.
To study the sensitivity of materialization decisions
to various parameter values. This is an important
issue especially in more dynamic environments.
To explore issues related to the implementation of
the selective materialization strategy. For example,
the proposal by Hanson (1989) to adopt the Rete net-
work to a relational EDS can easily be applied to the
case where all derived relations are materialized, but
with selective materialization it needs to be aug
mented by information about materialization status of
specific nodes.

7. Reference
P. A. Bernstein, et al. Query processing in a sysfem

for distributed databases (SDD-I). ACM Transactions
on Database Systems, 6,4, 1981.

J. A. Blakeley, P. Larson, and F. W. Tompa.
Efficiently updating materialized views. Proceedings of
the ACM-SIGMOD conference on Management of Data,
May 1986.

S, Ceri and J. Widom. Deriving production rules for
constraint maintenance. Research Report, IBM
Almaden Research Center, RJ 7348 (68829) 3/l/90.

D. Chimenti et al. The LDL system prototype. IEEE
Trans. on Knowledge and Data Engineering, Vol 2, No
1, March 1990.

P. Duchessi, H. Shawky, and J. P. Seagle, A
knowledge-engineered system for commercial loan akci-
sions. Financial Management, Autumn 1988, pp 57-65,

M. M. Extejt and M. P. Lynn. Expert systems as
human resource management decision tools. Journal of
Systems Management, December 1988, pp 10-15.

L. Haas et al. Starburst mid-flight: as the dust
clears. IEEE Trans. on Knowledge and Data Engineer-
ing, Vol 2, No 1, March 1990.

E. R. Hanson. A performance analysis of view
materialization strategies. Proceedings of the ACM-
SIGMOD international conference on Management of
Data, May 1987.

E. R. Hanson. An initial report on the design of
Ariel. SIGMOD RECORD, Vol 18, No. 3, Sep. 1989.

J. Kieman, C. de Maindreville, and E. Simon. The
design and implementation of an extendible deductive
database system. ACM SIGMOD RECORD, Vol. 18,
No. 3, September 1989.

H. R. Rao and B. P. Lingarai. Expert systems in
production and operations management: classification

Proceedings of the 17th International
Conference on Very Large Data Bases

and prospects. Interfaces 18: 6 November-December
1988 pp 80-91,

Timos Sellis, Chih-Chen Lin, and Louiqa Raschid.
Data intensive production systems: The DIPS approach.
SIGMOD RECORD, Vol 18, No. 3, Sep. 1989.

A. Segev and W. Fang, Currency-Based Updates to
Distributed Materialized Views. IEEE 6th International
Conference on Data Engineering, pp. 512-520, 1990.

A. Segev and J. Park. Updating Distributed Materi-
alized Views. IEEE Transactions on Knowledge and
Data Engineering, Vol. 1, No. 2, June 1989.

A. Segev and J. L. Zhao. Rule Management in
Expert Database Systems. Tech Report LBL-30044,
Lawrence Berkeley Laboratory, 1991a.

A. Segev and J. L. Zhao. Evaluation of rule pro-
cessing strategies in expert databases. IEEE 7th Inter-
national Conference on Data Engineering, Kobe, Japan,
1991b.

A. Segev and J. L. Zhao. Data Management for
Large Rule Systems. Tech Report LBL-30362,
Lawrence Berkeley Laboratory, 1991c.

M. J. ,Shaw and J. A. Gentry. Using an expert sys-
tem with inductive learning lo evaluate business loans.
Financial Management, Autumn 1988, pp 45-56.

J. K. Shim and J. S. Rice. Expert systems applica-
tions to managerial accounting. Journal of Systems
Management, June 1988, pp 6-13.

V. Srinivasan and Y. H. Kim. Designing expert
financial systems: a case study of corporate credit
management. Financial Management, Autumn 1988, pp
32-44.

Michael Stonebraker, Eric N. Hanson and Spyros
Potamianos. The Postgres Rule Manager. IEEE Trans.
on Software Engineering. Vol. 14, No. 7, July 1988.

E. Turban. Decision Support and Expert Systems.
Macmillan Publishing Company, New York, 1989.

P. Valduriez. Join indices. ACM Transactions on
Database Systems, Vol. 12, No. 2, June 1987.

Jennifer Widom and Sheldon J. Finkelstein. Syntax
and semantics for set-oriented production rules in rela-
tional database systems. SIGMOD RECORD, Vol 18,
No. 3. Sep. 1989.

K. Wilkinson, P. Lyngbek, and W. Hasan. The Iris
architecture and implementation. IEEE Trans. on
Knowledge and Data Engineering, Vol 2, No 1, March
1990.

307 Barcelona, September, 1991

