
Adaptive Locking Strategies in a Multi-node
Data Sharing Environment

Ashok M. Joshi
Digital Equipment Corporation

Database Systems Engineering group
Nashua, New Hampshire 03062

Abstract

This paper describes some of the
concurrency control

1”
lgorithms used in

RdMVMS RdbIVMS uses the ,fac.ilities
provided by the VMS lock manager in order
to perform locking among concurrent
processes. The locking algorithms adapt to
the contention among concurrent users by
adjusting the number of locks required as
well as the number of lock requests that are
required per transaction. l‘his makes it
possible to reduce the 1ockinR overhead
considerably without sacrificing correctness
or concurrency in a data sharing
environment. These algorithms indicate that
it is possible to achieve substantial
improvements in certain situations.

1. Introduction

Locking is perhaps the most widely used concurrency
control technique today. Locking ensures that concur-
rent transactions are able to perfnrm updates to the
database correctly and consistently. There is a wealth
of literature on the subject of locking and concur-
rency control [Bems87, Carey84, Eswar76, Gray78,
LehmaBl].

Locking is a pessimistic method of concurrency con-
trol: a transaction has to acquire several locks on data
objects during its execution including record locks,
table locks, page locks and file locks, The number of
locks acquired and released by a transaction is de-
pendent on the number of objects accessed (and/or
updated) by the transaction as well as other factors
such as the locking granularity used by the DBMS.

In a typical database management system, the num-

ber of locks requested by the transaction is independ-
ent of the actual number of conflicts that occur
among concurient transactions. Hence, even if the
concurrent transactions access non-intersecting sets
of data, they will continue to incur the same overhead
of locking for each transaction. The concumncy con-
trol sub-system of the DBMS is unable to detect the
degree of conflict and adjust the number of locks re-
quested by the transaction, without sacrificing cor-
rectness and the degree of concurrency in the system.
Locking can impose ;t9 much as 10% overhead for in-
teractive transactions [Dale83]. In a data sharing sys-
tem that uses distributed lock management services,
the locking overhead may increase substantially due
to inter-node messages. It is desirable to minimize
this overhead in a high performance database man-
agement system.

Rdb/VMS is a high performance relational database
management system that uses locking algorithms that
are sensitive to the contention in the system. The al-
gorithms use lock de-escalation [IAma86,
Lehma89] in order to reduce the number of locks re-
quired per transaction under low contention situ-
ations. The algorithms, which first appeared in Digi-
tal’s database products in 1984, are also able to
detect situations of low contention and automatically
reduce the number of lock requests per transaction. If
contention increases, the number of locks automati-
cally increases to the appropriate level required to
maintain the correctness and consistency of the data.
In this sense, the algorithms are adaptive to the con-
tention in the system. This adaptive nature can lead
to a significant reduction in the number of lock re-
quests made by a transaction. This is particularly sig-
nificant in a distributed environment, where it is criti-
cal to reduce the number of inter-node lock request
messages per transaction. Rdb/VMS has achieved
significant performance gains using these techniques.

1The following are trademarks of Digital Equipment Corporation: Rdb/VMS, VAX, VAXClusters, VMS

Proceedings of the 17th International
Conference on Very Large Data Bases

181
Barcelona, September, 1991

We start with a description of the relevant features of
the VMS distributed lock manager. This is followed
by a description of the use of these features in
Rdb/VMS. We describe some of the record locking
algorithms that use lock de-escalation techniques in
order to reduce the total number of locks requested,
followed by a description of the adaptive strategies
that take the actual contention into account in order to
reduce lock traffic. We indicate some performance
improvements and conclude with a discussion and
comparisons of related work on lock de-escalation.

2. The VAXCluster and VMS Distributed
Lock Manager (DLM)

Rdb/VMS is a full-function relational database man-
agement system developed by Digital Equipment
Corporation that provides access to the database in a
VAXcluster. A VAXcluster system is a “closely cou-
pled” structure of standard VAX computers (nodes)
that has characteristics of both loosely coupled and
tightly coupled systems. The system has separate
processors and memories that are connected by a
message-oriented interconnect, running the
VAXJVMS operating system. However. the concept
of VAXclusters relies on close physical proximity, a
single physical and logical security domain, shared
physical access to disk storage and high-speed
memory-to-memory block transfers between nodes.
The VAXcluster system provides a high availability,
easily extendible system to customers. This model of
data sharing has been referred to as the shared-disk
paradigm in the the literature [Bhide87]. Refer to
[K.rone87] for more details on the VAXcluster con-
cept.

The VMS distributed lock manager (DLM) is the
foundation of all resource sharing in clustered as well
as single node VMS systems. 11 provides services for
naming, locking and unlocking cluster-wide re-
sources and clusterwide synchronization. Since the
DLM is heavily used, it is designed to minimize the
number of messages that must be exchanged between
nodes in order to manage locks. Secondly, the DLM
is able to recover from failures of nodes holding
locks so that surviving nodes can continue to access
shared data in a consistent manner. [Renga89] dis-
cusses some of the high availability mechanisms in
Digital’s database products that utilize the services of
the DLM. Rdb/VMS utilizes the services of the DLM
in order to provide concurrency control, mutual ex-
clusion and certain types of event notification. The
decision to use the DLM was based primarily on its

Proceedings of the 17th International
Conference on Very Large Data Bases

ability to support VAXclusters as well as its robust-
ness and flexibility. This decision has strongly influ-
enced the architecture of the database management
system.

The DLM allows cooperating processes to define
shared resources and synchronize access to these re-
sources. The DLM does not recognize the concept of
a transaction holding or requesting locks; lock con-
flicts are resolved on an inter-process basis. This fea-
ture of the lock manager has resulted in a process-
per-user architecture for the database management
system.

Resource names are user-defined. In addition, the
DLM allows users to define a resource hierarchy like
database, table, records etc. The DLM provides a va-
riety of lock modes. These lock modes are a superset
of the intention lock modes described in [Date83].

The DLM provides for synchronous as well as asyn-
chronous completion of lock requests. This allows
the caller to post a request for a lock and continue
processing without having to wait for the request to
complete. This mechanism is used for event notifica-
tion by Rdb/VMS. This is described in more detail
later.

2.1 Blocking ASTs

A very useful feature of the DLM is the notion of
blocking asynchronous system traps (ASTs). ASTs
are software traps that are generated by the operating
system to notify processes of the occurrence of asyn-
chronous events. Whenever a lock request is made
for a resource, the caller can optionally specify the
address of a routine (blocking AST routine) that is to
be invoked whenever there is a conflicting request for
this lock. When another process requests a conflict-
ing lock on the same resource anywhere in the clus-
ter, the DLM notifies the process holding the lock by
transferring control to the blocking AST routine asso-
ciated with the lock. The blocking AST routine that is
thus invoked has the option of either giving up the
lock immediately, ignoring the conflict, or deferring
handling of this request till some later time. The
DLM guarantees that the blocking ASTs will be de-
livered reliably to all the processes that have blocking
ASTs enabled.

If a lock request cannot be granted immediately, the
process requesting the lock may (optionally) choose
not to enqueue the request (bounce locks), This fea-

182
Barcelona, September. 1991

ture is useful if a process wishes to determine
whether there is contention for a resource before at-
tempting to acquire a lock. This is most often used in
situations where users do not wish to wait for a high
contention resource, but may prefer to try the request
later. Refer to [Snama87] for additional details of the
internals of the VMS distributed lock manager.

3. Use of the VMS Distributed Lock Man-
ager by Rdb/VMS

The decision to provide transparent access to the da-
tabase in a VAXcluster environment influenced the
design of the concurrency control algorithms. In par-
ticular, it was decided to use the DLM for almost all
types of synchronization, including page locks, table
locks and record locks. In addition, we decided to
support a shared data model (instead of a partitioned
data model), due to the lack of fast inter-node com-

munication primitives. Figure 1 shows the architec-
ture of Rdb/VMS running in a two node VAXcluster.
The DLM provided several advantages since con-
flicts can be detected and resolved on a cluster-wide
basis. This permits access to the data from any node
in a VAXcluster, regardless of how many other nodes
are accessing the database. However, there are high
costs associated with performing cluster-wide loclc-
ing. As a crude approximation, inter-node lock re-
quests are about eight to ten times more expensive (in
terms of the number of instructions) than an inaa-
node lock request. This has several implications.
Firstly, the database system has to minimize the use
of locks as much as possible. This is achieved in
Rdb/VMS by using lock de-escalation techniques,
similar to those proposed in [Lehma86], [Leluna89],
for page locks and record locks.

Secondly, it is desirable to reduce the inter-node lock

Figure 1: Process architecture in a two node VAXcluster environment.
Processes Pl, P2, P3 are accessing the database from node I
Processes P4, P5, P6 are accessing the same database from node 2

Proceedings of the 17th International
Conference on Very Large Data Bases

183 Barcelona, September, 1991

traffic. This can be done by ensuring that data are
partitioned on a per-node basis, in order to minimize
inter-node contention. Since RdblVMS supports a
shared data mode!, this has to be done at the applica-
tion level by carefully partitioning the data sets that
the programs access. Note that this partitioning can
be dynamic and completely at the discretion of the
application developer. In order to improve perform-
ance in such situations, we have developed the adap-
tive algorithms described below.

The algorithms are intended to exploit the partitioned
nature of application programs. In other words, the
enhancements most benefit those applications that
work against disjoint partitions of the database and
have little sharing. In addition, the algorithms do not
penalize applications that do not use these enhance-
ments. In other words, applications that do not ex-
hibit a high degree of data partitioning wi!! run at
about the same (or slightly improved) performance
levels as without the optimization.

3.1 Rdb/VMS Lock De-Escalation

In order to explain the concept of lock de-escalation,
it is necessary to distinguish between strong and
weak lock modes. A strong read (write) lock on an
object only allows readers (a single writer) to access
(write) the object. Weak locks are similar to intention
locks; however, an important distinction is that in-
tention locks are typically held in a two-phase man-
ner, whereas we permit strong locks to be demoted to
weak locks within a transaction. When a set of ob-
jects can be organized into a tree-structured granular-
ity hierarchy, the weak locks are usually held at the
coarse granularity level to indicate read or write in-
tentions of the transaction.

The de-escalation algorithm works as fo!!ows. Ac-
quire a strong lock at the root of the resource hierar-
chy. This lock dominates a!! the objects in the hierar-
chy and hence, al! the descendants of the root are
implicitly locked. No further explicit locking is re-
quired. It is also necessary to remember the leaf level
entities that are accessed, should it become necessary
to perform de-escalation at a later time.

When there is conflict at the root of the hierarchy, the
transaction acquires a strong lock on the appropriate
nodes at the next level in the hierarchy and demotes
the parent lock to a weak lock. This pairwise acquir-
ing/demotion of locks continues towards the leaves of
the tree as long as there is contention or we reach the

Pmceedhgs of the 17th International
Conference on Very Large Data Bases

leaf level, at which point, no further nfirxmeat is
possible.

Lock de-escalation is most useful when an applica-
tion accesses severa! objects that belong to the same
parent in the resource Merarchy because a small num-
ber of locks is sufficient to implicitly lock a large
number of objects. We now describe how this tech-
nique is used in Rdb/VMS, beginning with a descrip-
tion of the lock de-escalation feature for page locks.

3.2 Buffer Locking

An Rdb/VMS database is made up of a number of
files containing database pages. Each page is an inte-
gral number of 512 byte blocks, the actual size of a
page is DBA-defined and can vary from one database
file to the other. Files are allocated as contiguous
groups of blocks. Contiguous pages are grouped Into
sets: a set is the unit of data transfer when lleading
from the disk into database buffers. The number of
pages per set is determined at database definition
time based on the size of buffers in main memory.
For example, if a buffer is defined to be 12 disk
blocks and each page is 4 disk blocks, then each set
contains three pages. It is possible to determine the
set boundaries by knowing the page size and buffer
size. In this example, the set boundaries are page 1,
page 4, page 7, . . . as shown in Figure 2.

buffer with
3 paw 4 block
from file 1 page

buffer with
4 pages
from file 2

3 block
page

12 blocks per buffer

Figure 2: Buffer organization showing
4 block pages and 3 block pages

As mentioned before, a read IO is performed on a set
of pages. By defining a large buffer size (and conse-
quently a large set), the buffer manager provides
some read-ahead capability, by fetching the requested
page as we!! as the neighboring pages that belong to

184

the set. This has influenced some of the algorithms quests for any page in this set of pages. Figure 3
for storing related records on near-by pages to shows an example of the de-escalation technique ap
achieve clustering. plied to page locks.

Whenever a page needs to be fetched from disk, the
buffer manager determines the set it belongs to. It
then acquires a strong lock on the set and reads the
set of pages into an available buffer. Regardless, of
the mode (read or write) of the requested page, the
lock manager always requests a strong buffer lock on
the set (exclusive mode). The strong buffer lock
dominates all the pages in the set: in other words, the
strong lock on the set implies a lock on all the pages
in the set. Associated with this lock is a blocking
AST routine that is set up to handle conflicting re-

If the buffer manager succeeds in getting this lock,
then this single lock will be sufficient to lock all the
pages in the set. This can lead to significant savings
in the number of lock requests if there is no conten-
tion for these pages and more than one page in the set
is accessed. Note that page locks are treated as short-
duration latches (semaphores or non-two phase
locks).

As each page is accessed, the buffer manager records

Case a: Strong buffer lock indicates implicit locks on pages Pl , ,,. P4.

Pages P2 and P4 have been accessed by the transaction.

Case b: Buffer lock weakened because of conflicting request for a page in

the same set. Strong locks acquired on pages P2 and P4.

Page Pn has been accessed/remembered by the transaction

Figure 3: Lock de-escalation for page locks showing the state before and after conflict

Proceedings of the 17th International
Conference on Very Large Data Bases

185
Barcelona, September, 1991

the activity for the page (whether read or write) in the
buffet. This information is used when there is a con-
flicting request for the buffer lock by another transac-
tion. The conflicting request for the buffer lock in-
vokes the blocking AST routine for the process
holding the strong buffer lock. The blocking AST
routine first acquires appropriate locks (read or write)
on the pages that have been remembered. Then it
downgrades the buffer lock to a weak mode. The
other transaction’s request for an exclusive lock fails,
and it is forced to acquire a weak lock on the buffer
and a strong lock on the page that it needs to access.
This request is granted if it is compatible with the ex-
isting lock on the page, otherwise the request is
forced to block. This mechanism hay been useful in
reducing the number of page locks (latches) that are
necessary.

Note that the second transaction needs to get a weak
buffer lock in order to prevent future requests for an
exclusive buffer lock (from other users) from being
satisfied.

3.3 Record Locking

Rdb/VMS supports two-phase locking at the record
level using lock de-escalation in order to reduce the
number of locks that may be required for accessing
disjoint sets of records. Records within a table are
grouped into a tree structure called the adjustable
lock grunulurify tree (ALG tree). This tree organizes
the records into varying levels of granularity starting
with the root of the tree being the entire table and the
leaves being individual records. The number of levels
in the tree as well as the successive refinements of
the granularity at each intermediate level can be de-
fined by the DBA. In the simplest case, it is possible
to have a two-level tree where the root represents re-
cords in the entire table and the leaf level the individ-
ual records. Figure 4 indicates the resource hierarchy
for record locks. The term hgical urea lock is ex-
plained below.

The lock de-escalation protocol for record locks is
similar to the page locking described above. When-
ever a record lock is requested, Rdb/VTvlS attempts
to acquire a strong lock on the highest ancestor of the
record (in the ALG tree). If it succeeds in obtaining
the strong lock, all descendants of that node are im-
plicitly locked. When individual records are ac-
cessed, it is necessary to remember each record that
has been accessed so that it is possible to later de-
escalate the high level lock to the leaf level if neces-

Proceedings of the 17th International
Conference on Very Large Data Bases

sary. The cost of remembering implicitly locked re-
cords is proportional to the number of records ac-
cessed.

In the low contention case, it is possible to have one
strong lock on an ancestor that implicitly locks its de-
scendants. If the amount of conflict increases, it is
possible to perform de-escalation and acquire explicit
record locks. The blocking ASTs permit de-
escalation to occur while the transaction is in pro-
gress. Figure 5 shows an example of the de-
escalation technique applied to record locks.

4.0 Lock Caching: Area and File Locks

Rdb/Vh4S uses the term logical areas to refer to ta-
bles (or horizontal partitions of tables). Whenever a
transaction needs to access a logical area, it is neces-
sary to acquire an intention lock [Date831 on that area
in the requested mode. At the end of the transaction,
the logical area lock (intention lock) is demoted to al-
low other users to access the area. In other words,
logical area locks are managed in a two-phase man-
ner.

In addition, Rdb/VMS provides a wide variety of on-
line operations that aIlow a DBA to perform physical
restructuring of the database (e.g. move a database
file from one device to another). In order to support
this on-line restructuring, it is necessary for transac-
tions to maintain locks on physical files as well.
These locks are acquired at the start of the transaction

186

LT-l Logical area intention lock

Root of ALG tree

Intermediate levels in ALG tree

r‘ll Record level

Figure 4: Resource hierarchy for record locks

Barcelona, September, 1991

Root of ALG tree1 m

Record

Case a.

Record

Level 2 i’
’ I

/
level :

- \
I

l , /

Level 1 r-IL7

No other users interested in records in this table. Transaction only holds strong root
level lock and implicit locks on all the records in the table.

9
Root of ALG tree

level 1 I ; I ;
‘, , ‘, , ‘, , I I J ,

‘,

Locked by conflicting user
* *

‘m*
l

Case b: Conflicting request for a record lock from another user results in the root lock being
weakened and acquiring strong locks at intermediate levels. The right side of the resource
tree has been weakened all the way down to the record level.

m indicates a weak lock on this object -.w--. Accessed and remembered

<s> indicates a strong lock on this object objects

- ’ - ’ - ’* Implicitly locked objects $b&ct locked by conflicting

Figure 5: Lock de-escalation for record locks showing resource tree before and after conflicting request.

Proceding of the 17th International
Confemce on Very Large Data Bases

187
Barcelona, September. 1991

and held until end-of-transaction. In an unoptimized
scenario, the logical area locks and file locks can add
considerably to the overhead of locking.

4.1 Adapting to Low-Conflict Situations

Assume that application programs are designed to ac-
cess disjoint partitions of the database. Note that mul-
tiple copies of the program may be run from multiple
computer nodes in the VAXcluster; each invocation
will most often access its own set of data, and occa-
sionally access data in another partition. An impor-
tant point to note is that the partitioning need not be
statically defined; rather, it may change dynamically,
depending on the number of invocations of the appli-
cation program, number of computer nodes available
to access the database etc. This kind of disjoint pa.&
tion access is not uncommon in real-life applications.

In such a scenario, the same logical area lock and file
lock is requested and released by every transaction.
In addition, the mode of the requested lock is usually
the same as in the prior transaction. Hence, it makes
sense to avoid the unnecessary overhead of lock re-
quest (at begin transaction) and demotion (at end-of-
transaction) for each transaction: rather. the process
ccan simply hold the logical aRta locks and file locks
(since they will be immediately requested in the sub-
sequent transaction). This optimization is based on
the fact that locks are process-owned in Rdb/VMS.
Hence, locks can simply be carried over from one
transaction to the next. Note that in systems where
locks are held by transactions, it should be possible to
modify the lock manager to incorporate this concept
of lock carry-over.

The term carry-o\jer locks is used to denote those
locks that are capable of being transferred within a
process from one transaction to the next. If the trans-
actions in a process access several different logical
areas and files, it may happen that the process ac-
quires a large number of carry-over locks over a pe-
riod of time. Furthermore, any given transaction will
only need some subset of those logical areas and
files. Hence, it is useful to distinguish carry-over
locks as those being used in the current transaction
from those that are not. This is done as follows.
Every process maintains data structures that contain
information about the locks that the process owns.
Each carry-over lock has an IN-USE flag associated
with it. Before using a carry-over lock, a transaction
can set the IN-USE flag indicating that this lock is
being used in the current transaction. At end-of-

Proceedings of the 17th International
Conference on Very Large Data Bases

transaction, it is necessary to clear the IN-USE flag
for every logical area and Ale lock.

Carry-over locks have a blocking AST routine associ-
ated with them. Whenever there is a conflicting n-
quest for such a lock, the blocking AST routine is in-
voked. It works as follows. If the lock is marked as
in-use, then it is not possible to give It up at this time.
The blocking AST routine sets another flag indicating
that this lock should be given up at end-of-
transaction. The conflicting transaction has to wait.
However, if the lock is not in use, it can be released,
thus allowing the conflicting transaction to continue.

4.2 Carry-over optimization for record
locks

We applied a similar optimization to record locks.
Note that there are some significant differences be-
tween logical area locks and record locks with re-
spect to the notion of carry-over. First, there is almost
no temporal locality of reference for record locks.
Secondly, the number of records is typically 80 large
that it is not economical to carry-over record locks.

The carry-over optimization is applied to the root of
the ALG tree for records within a table. It works as
follows. When a transaction is ready to commit, it
checks the root-level lock for each AL0 tree. If that
lock is a weak lock, the transaction gives up all the
locks in that ALG tree. If however, the root-level
lock is a strong lock, it does not demote the lock, but
carries it over to the next transaction. Note that the
strong root-level lock means that there are only irn-
plicit locks on the internal and leaf (record level)
nodes of the ALG tree.

The reason for only carrying over strong locks is that
record locking is based on lock de-escalation. If we
also carried over weak root-level locks, that would
disable the benefits of the ALG de-escalation algo-
rithms, because it would prevent any transaction from
ever acquiring a strong root-level lock. Hence, the al-
gorithms use the heuristic that if the root level lock is
weak, it is best to give it up completely. Note that the
conflicting transactions will also release all the
(weak) root-level ALG locks at transaction end. This
makes it possible for subsequent transactions to try
for a strong ALG root-level lock.

During periods of high contention for record locks,
the blocking ASTs (associated with the locks in the
internal nodes of the ALG tree) will ensure that the

188 Barcelona, September, 1991

locks are demoted to the appropriate compatibility
mode on demand. Hence, it is not necessary to asso-
ciate any additional information with the locks in the
ALG tree. If there is a conflicting request for a car-
ried over lock, the lock will be weakened by the
blocking AST routine, and at commit time, will be re-
leased completely.

The carry-over optimization can yield substantial re-
ductionq in the number of lock requests per transac-
tion. However, this optimization can lead to starva-
tion of certain types of transactions. A notification
protocol waq designed to handle this case.

4.3 NOWAIT transactions

Rdb/VMS supports the notion of NOWAlT tramac-
tions. A user can optionally specify a NOWAIT
clause on the SET TRANSACTION statement to in-
dicate that if the transaction cannot immediately ac-
quire locks on the resources that it requests, it should
return to the user with a lock conflict message. The
user can retry the request later. This feature is most
useful in interactive applications.

If the locks that a NOWAIT transaction needs are be-
ing held by other processes as carry-over locks, it can
lead to starvation of the NOWATT transaction. In or-
der to handle this case, the presence of a NOWAIT
transaction must notify all the users in the database
system that they cannot hold area and record locks
across transactions.

This problem was solved by using the concept of
blocking ASTs and two of the lock modes, concur-
rent write (CW) and protected read (PR), provided by
the DLM. The interesting point about these lock
modes is that CW is compatible with CW, PR is com-
patible with PR, but PR is not compatible with CW.

A NOWAIT transaction broadcasts its presence to all
the users in the system. On receiving this broadcart,
every user gives up all carry-over locks (in order to
be fair to the NOWAIT transaction), and continues a5
usual.

During commit processing, every user determines
whether it is allowed to perform the carry over opti-
mization. The presence of a NOWAlT transaction in
the database indicates that the nptimization is not
possible; otherwise, it is safe to carry over locks to
the next transaction.

Proceedings of the 17th International
Conference on Vety Large Data Bases

4.3.1 Implementation Details

Every NOWAIT transaction requests a lock (called
the NOTIFICATION lock) in CW mode at @ansac-
tion start. The purpose of this lock is to broadcast the
presence of a NOWAIT transaction in the system.
Once the lock is granted to the NOWAIT transaction,
it is assured that every other user is aware of its pres-
ence and has given up all carry-over locks.

At end-of-transaction, every transaction tries to ac-
quire the NOTIFICATION lock in PR mode (note
that PR and CW are incompatible). If the PR request
is granted, then there are no NOWAIT transactions in
the system: hence, it is safe to perform lock carry-
over. If the PR request for the NOTIFICATION lock
is not granted (because another user has it in CW
mode), then it is necessary to give up all the locks at
end-of-transaction. In short, whether to carry over
locks or not is determined by whether the NOTIFI-
CATION lock can be aquised in PR mode or not.

The NOTIFICATION lock in PR mode has a block-
ing AST associated with it. If another user requests
the lock in CW mode, then the blocking AST is in-
voked, the blocking AST demotes all the carry over
locks &longing to this process and and then nleases
the NOTIFKATION lock. Thus, the NOWAIT trans-
action is able to broadcast its presence to other proc-
esses in the system.

5. Performance Improvements Due To
The Carry-over Optimidon

The enhancements discussed above do not penalize
applications that do not access disjoint partitions of
data. This is because conflicting requests wilI result
in forcing processes to give up locks at the end of the
transaction which is exactly the behavior without the
optimization.

We now present some performance data based on the
Debit/Credit benchmark [Anon851 that indicates the
performance benefits that were achieved using the
carry-over optimization for intention locks, file locks
and top-level ALG locks. These numbers are only
preliminary and suggestive of the kinds of perform-
ance improvements that may be obtained. Due to
large disk and processor requirements of the bench-
mark, we are unable to report performance numbers
for large numbers of nodes.
In terms of the number of lock requests, the optimiza-
tion was responsible for reducing more than half the

189 Barcelona, September, 1991

lock/unlock requests per Debit/Credit transaction.
The performance numbers were obtained by nmning
the Debit/Credit benchmark with and without the op-
timization for each of the configurations in a single
node, two-node and three-node VAXcluster. Since
we were interested in measuring the relative perform-
ance gains due to the carry-over optimization, the
TPS numbers reported here may not exactly match
the official reported numbers for the Debit/Credit
benchmark.

The numbers clearly indicate the performance bene-
fits of using these optimizations in a multi-node envi-
ronment. Further studies are necessary to understand
performance improvements in a VAXcluster of sev-
eral nodes. The relative performance gain for the
two-node case is significantly higher than the one-
node case. This is due to the fact that multi-node
tests generate inter-node lock manager messages.
Hence, a reduction in the number of messages signifi-
cantly impacts the performance.

6.0 Related Work

The lock de-escalation algorithms described above
have been in Digital’s database products since 1984.
The work reported in [Lehma86], [Lehma89] is most
closely related to these techniques; however, there
are some differences.

[Lehma89] uses a two level resource hierarchy; the
relation level and the tuple level. Each transaction
starts with a relation level lock. In addition, it is
necessary to keep track of the number of transactions
that are waiting on the relation-level lock, in order to
trigger de-escalation. Once the count of waiting
transactions exceeds a certain threshold, de-
escalation is performed and explicit tuple level locks
are acquired, based on the transaction’s tuple-level
write set and read predicates. This approach has the
disadvantage of blocking transactions until de-
escalation is performed. Note that these transactions
will have to wait even if they would have accessed
disjoint sets of records.

Table 1: RdbMv4S Version 4.0 performance im-
provement with lock optimization (TPS and percent)

Number of VAXcluster nodes
OtX Two Three

Our algorithms do not have this “reduced concur-
rency” problem since we permit a multi-level hierar-
thy and de-escalate immediately on detecting a con-
flict at the coarse granularity level.

7. Conclusions

Rdb/VMS 4.0
TPS with

The DLM is a highly optimized, flexible lock man-

optimization
aper that has provided the foundation for the locking

31.8 48.6 65 algorithms in Digital’s database management sys-
tems. Its fault-tolerant and distributed characteristics

Estimated percentage
improvement

are invaluable in building a database system based on
the shared data model.

due to optimization 14% 61% 67%
We have described the lock de-escalation algorithms
that are used for buffer locking and record locking.
Lock de-escalation is extremely useful when the
transaction accesses several objects that belong to the
same parent in the resource hierarchy.

Finally, we have described some of the concurrency
control techniques that have been implemented in
RdbiVMS. The locking mechanisms are unique in
the manner they adapt to varying degrees of conflicts
among concurrent transactions. This adaptability to
conflicts can result in significant reduction in the
number of lock requests per transaction, which in
turn, results in significant performance gains.

The reduction in lock requests is extremely signifi-

proceedings of the 17th International
Conference. on Vety Large Data Bases

190
Barcelona, September, 1991

cant in a multi-node shared data environment where
it is critical to minim& the number of inter-node
messages while permitting access to data from any
node. Our experiments indicate that the adaptive al-
gorithms are beneficial in a multi-computer environ-
ment.

It is important to point out that the locking techniques
mentioned here do not interfere with commit process-
ing and availability in a VAX cluster. If one of the
nodes in a VAXcluster fails while the database is be-
ing accessed from that node, the recovery manager is
able to distinguish between carry-over locks and in-
use locks. This permits recovery to proceed even
when the failed process holds carry-over locks.

Finally, in the absence of a mechanism like blocking
ASTs, the algorithms have to be modified to handle
transaction aborts due to deadlocks. This can be
done by releasing all carry-over locks at end-of-
transaction, if the abort was caused due to deadlocks.

7.1 Acknowledgments

The performance numbers could not have been re-
ported without the help of Rabah Mediouni, who
spent countless hours tuning the database and running
the tests. Jay Banerjee helped in acquiring the data
for Table 1.

Steve Klein developed the lock carryover concept.
Dave Lomet, Peter Spiro, T.K. Rengarajan, Ananth
Raghavan and others have contributed to the develop-
ment of these ideas at various stages,

Finally, we would like to acknowledge the com-
ments of the referees and Jim Gray. which helped
significantly in improving the clarity of the presenta-
tion.

7.2 References:

Anon85: Anon et& A Measure of Transaction
Processing Power, Datamation, Cahners Publishing
Co. April 1985

Bems87: Bemstien, B.A., et.a.l., Concurrency
Control and Recovery in Da!ahnse Systems, Addison
Wesley, 1987.

Bhide87: Bhide, A., Stonebraker, M., Peflorm-
ante Issues in High Performance Transaction Proc-
essing Architectures, Lecture Notes in Computer

Proceedings of the 17th International
Conference on Very Large Data Bases

191

Science, Springer Verlag, September 1987, pp 277

Carey84: Carey, M.J., Stonebmker, M. The Per-
formance of Concurrency Control Algorithms
for DBMS& Proc. 10th Intl. Conf. on Very Large
Data Bases, Singapore, August 1984, pp 107

Date83: Date C.J., An Introduction to Database
Systems, Vol2., Addison Wesley, 1983

Eswar76: Eswaran, K. et& The Notions of Con-
sistency and Predicate Locks in a Database System,
CACM, Vol 19, No, 11, November 1976.

Gray78: Gray, J.N., Notes on Database Operat-
ing Systems, Operating Systems: An Advanced
Course, Lecture Notes in Computer Science,
Springer Verlag, Berlin, 1978, pp 393

Joshi89: Joshi, A.M., Rodwell, K., A Relational
Database Management System for Production Appli-
cations, Digital Technical Journal, No 8, February
1989, pp 99

Krone87: Kronenberg, N.P., et& The VAXclus-
ter Concept: An Overview of a Distributed System,
Digital Technical Journal, No. 5, September 1987 pp
7

Lehma8 1: Lehman, P.L., Yao, S.B., Efjqcient
Locking for Concurrent Operations on B-trees, ACM
Trans. on Database systems, Vol 6, No 4, December
1981, pp 650

Lehma86: Lehman, T.L., Design and Pe$orm-
ante Evaluation of a Main Memory Relational Data-
base System, Ph.D. dissertation, University of
Wisconsin-Madison, Aug 1986.

Lehrna89: Lehman, T.J., Carey, M.J., A Concur-
rency Control Algorithm for Memory-Resident Data-
base Systems, Proceedings of Third International
Conference on Foundations of Data Organization and
Algorithms, June 1989.

Renga89: Rengarajan, T.K., et. al., High Avail-
ability Mechanisms of VAX DBMS Sofhuare, Digital
Technical Journal, No 8, February 1989, pp 88

Snama87: Snaman. W., Thiel, D.W., The
VAXIVMS Distributed Lock Manager, Digital Tech-
nical Journal, No. 5, September 1987, pp 29

Barcelona, September, 1991

