Management Of Schema Evolution In Databases

José Andany

Michel Léonard
CuUl Cul

Carole Palisser
LIST

Université de Genéve Universilé de Gen¢ve Université de Nantes
12 rue du Lac 12 rue du Lac Faculté des Sciences
CH-1207 Genéve CH-1207 Geneve 2 rue de la Houssiniére
Switzerland Switzerland 44072 Nantes cedex
Tel. (22) 787.65.82 Tel. (22) 787.65.82 France

Abstract

This paper presents a version model which
handles database schema changes and which
takes evolution into account. Its originality
is in allowing the development of partial
schema versions, or views of a schema.
These versions are created in the samec
database from a common schema. We define
the set of authorised modifications on a
schema and the rules which guarantee its
coherence after transformation. Mechanisms
allowing data to be associated with each
version are also integrated in the model.

1. Introduction.

In the database life cycle, the schema evolution
problem first comes up during the design phase.
However, its evolutive aspect is not specific to this
phase. During the post-design phase, a schema can be
modified, for example after a significant evolution of
the application domain, or again in refining the
application description. Finally, this kind of
transformation is somelimes necessary for performance
reasons. Schema evolution handling during the
operational phase of a database is a complex problem,
During this stage, each schema change needs to take
into account previously stored data. In particular, such
transformations usually require storing previous schema
in order to retain accessibility to the associated data.
This leads at the same time to the problem of
managing different schema versions and that of the
correspondences between these versions and the data.

Software producers were undoubltedly the first to
meet the need of taking data evolution into account.
Numerous version managers were implemented in the
sofiware engineering field, in order to manage the
different states generated during the design and
maintenance of a program [Rochkind,75], [Tichy,85],
[Kaiser,83), [Estublier,84]. The last few years have
seen the version control problem in new application
fields of DataBase Management Systems (DBMS) such
as Computer Aided Design (CAD). It is an important
direction for research and development in the field
(Katz,84], [Katz,86], [Katz,87], [Kim,85], [Batory,85],

Tel. 40.37.49.02

{Chou,86}, [Klahold,86], [Autran,87), [Fauvet,88],
(Palisser,89], [Palisser,90a]. {Palisser,89] conlains a
synthesis of projects based on the version problem in
software engineering and in CAD.

In the DBMS field, at the present time, existing
version management systems are generally dedicated to
particular applications, principally around CAD. Little
research has been done on database version management
systems independently of specific application fields.
Notably, the study of database schema evolution
control is a recent subject of investigation. Our research
is situated in this area. A version schema model
[Palisser,90b] has been defined for the Farandole 2
DBMS (Estier,89], [Falquet,89]. This system is based
on a data semantics model close to the extended Entity
Relationship and the object oriented ones. But the
principles of the version model are general and can be
applied to every model which allows the concept of
context (§3.2) to be defined.

In this paper, we start (§2) by describing our
motives for taking into account schema modifications
and we present the principle methods of approach for
the management of such modifications. §3 explains the
data model used as a basis for the version model of §4.
§5 introduces the set of transformations authorised on a
schema. §6 explains the mechanisms defined in order to
manage data corresponding to versions of schema.

2. Schema Modification Management.

2.1. Motivations, Principal Directions.

The motives behind schema modifications stem
from having to reconsider the database structure, the
needs to be satisfied and the computing environment.
As an cxample, consider a database specification for a
limited set of applications. It may be possible to extend
the application domain by transforming the schema.
Furthermore, running certain applications may also be
100 expensive in terms of time because of bad data
organisation. Again, access o required information may
be difficult because certain useful access paths are not
available.

The organisational environment can also change:
new administrative procedures are created, new
information circuits are put in place. Certain

This work is part of the Rebirth project supported by the Swiss Research Fundation (FNRS no 1.603-0.87)

Proceedings of the 17th Intemnational 161 Barcelona, September, 1991

Conference on Very Large Data Bases

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

applications use the same information in new ways, or
need new information. Information modelling is
changed, the schema following in order to remain
conform with the application field. Finally, the
computing environment in which the database is run
can evolve: new versions of systems, new DBMS, new
distributions of applications on different sites in the
case of distributed databases. The schema must be
~adapted to these changes.

These different points show that a schema is rarely
totally static and illustrate the need for evolution
mechanisms. To fill this need, there are three principal
lines of approach.

The first consists of allowing schema modifications,
without retaining the pre-modification state. Each
schema change is applied irreversibly to the database,
without taking into account possible consequences 1o
the data, With the second approach, the method adopted
is close to that used during the database design phase.
At the start, the schema evolves independently of the
data. Then, after stabilisation, transformations are
reflected on the data. This means that they are converted
in order to correspond to the new schema. With this
technique, as with the preceeding one, the evolution of
the database is not controlled. The validation of a new
schema leads to the destruction of its predecessor,
together with the corresponding data.

In the third approach, the state of the schema before
modification is conserved. This means managing a sct
of schema versions. Therc are two ways of organising
this, leading to two types of version: historical and
parallel,

In the historical approach, any modification having
important repercussions on the schema generates a new
version, Each version is kept, along with its associated
data. This allows the constitution of database archives.
These versions, stored in separale memory regions, are
independent. Old versions are only accessible in
consultation mode. Any changes arc carricd out on the
current version. The historical approach consists of
managing as many copies of the database as there are
versions.

In contrast to the preceeding approach, with parallel
versions the different versions of schema are stored in a
common zone. They evolve in parallel and operate on
the same data collection, All the versions coexist and
the same set of operations is applicable to each of
them, They are accessible in consultation or in update
mode. Considering this approach to be the more
interesting, we will develop it in the paragraphs which
follow.

2.2. Previous Work.

The problem of schema version control is a recent
research topic. As far as we know, the principal work
done in the field has been carried out in the systems
Orion [Kim,88), {Kim,89] and Encore [Zdonik,86],
[Skarra,86]. In the system Charly [Palisser,89],
[Palisser,90a) versions of schema are also taken inlo
account, although the approach adopted is not
comparable to that of the other two projects. Each
author proposes a different solution for managing
schema changes.

162

In Orion [Kim,89], the versions of schema are
conserved. Any change 1o the database structure creates
a new version of the complete schema. Accessible
objects are associated with cach version. A version thus
corresponds to the complete state of the database at a
given moment, This means that testing the
consequences on the data of transforming parts of
schema cannot be carried out by developping partial,
parallel versions. For this type of experiment, a version
of the entire schema must be derived. This aspect is
problematic, since it can lead to managing a
considerable number of versions. In practice it is often
not necessary Lo generate such versions, particularly
when the modifications are minor and only concern a
small part of the schema.

The Encore approach manages versions of classes (or
of types). Any modification of a class creates a new
version of the class and of its sub-classes. A version of
the global schema is subsequently created virtually by
taking advantage of the relationships between the
versions of different classes. This last point is
problematic. To represent the state of the schema at a
given moment, the user must choose a particular
version for each of the classes defined for the state and
establish links between the different versions. In
addition, the derivation of a version of a class requires
generation of new versions of all its sub-classes. This
creates a problem when the schema contains a large
number of classes and when minor changes are made to
the root of the lattice. In this case, a new version must
be generated of cach class derived from that modified.

In the two preceeding approaches, versions of
schema and of objects are considered and treated
independently. For each version of a schema or of a
class, there exist several versions of objects. This
means that links must be cstablished and maintained
between the versions of schema and those of
corresponding objects, The solution proposed in Charly
(a DBMS for CAD applications) [Palisser,89] consists
of not separating the treatment of versions of schema
and objects. An object version contains its complete
description. It does not correspond to a particular
instance of a fixed schema. In this way, versions of
schema and of objects are treated uniformly. This
means, in particular, that schema modifications are
handled in exacily the same way as those of objects.
Each modificalion generates a new version of an object,
made up of the schema and object values. This
approach, "version of schema by object”, gives rise,
however, to a problem. Different schema versions
cannot be recovered. To do this requires considering the
sct of versions of the data-base objects.

In [Kim,88] a fourth approach is indicated. This
consists of handling schema modifications by view
definitions. Any number of views may be defined on
the schema. From any given view, several others can
be derived, each corresponding to schema changes. Each
one operales on the same data collection. It will be seen
that this method is close to that adopted in the system
Farandole 2.

Barcelona, September, 1991

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

3. The Data Model.

The data semantics model of Farandole 2, which
supported the version model defined here, can be
considercd as an extension of the Entity Relationship
model. It is based on the concepts of object, class, role
and generalisation/specialisation.

3.1. Basic Concepts.

In this model, objects of the same type are grouped
in a same named class. There exist two types of class:
atomic and composite. The former are terminal classes,
such as strings, integers, booleans, etc. Objects of
these classes are identified by their value. Thus, the
integer 6 is identified by the value 6.

A role has a name and a degree. It corresponds to a
function defined between two classes, an origin and a
domain. A role establishes a link between objects of
these classes. The origin class of a role is always
composite. The domain of a role can be composite or
atomic.

Objects of composite classes are each represented by
an identifier independent of their value. The value of an
object of a composite class is a tuple made up of
objects linked to it by roles. Thus, as shown in
figure 1, the value of an object of the class Vehicle is a
tuple made up of a licence number, its horse-power and
its chassis number, which are respectively objects of
the classes String, Integer and Chassis, the latter being
itself a composite class.

Horse-Power

Chassis-Num

Figure 1: Origins and Domains of Classes

The roles Lic-Num, Horse-Power and Chassis-Num
lead to atomic classes and can be considered as
attributes. The role Chassis represents a link between
two composite classes: Vehicle and Chassis.

The generalisation/specialisation mechanism allows
specialisation of a class into sub-classes. We definc the
super-class of a sub-class C as the class from which it
is directly derived and ancestors of C as being all
classes higher up in the derivation hierarchy of C. A
sub-class inherits all the roles of its super-class, and
thus, by recursion, those of all its ancestors. The
objects of a sub-class are those objects of its supcr-
class about which particular information is desired.

A sub-class is defined by a specialisation condition.
A specialisation condition is expressed as a triplet of
the form (r, 0, v), where r is a conditional role based on
an ancestor class, o the condition operator and v its
value. A sub-class is made up uniquely of the object set
of its super-class verifying this condition. Every sub-
class has a unique, direct super-class. This means that
multiple inheritance is not authorised in Farandole 2.

Figure 2 presents an example which will be referred
1o in what follows. It describes the structure of an
airline company. To improve readability, only those

163

roles which link composite classes are shown in the
figure.

Person

(———

Class Role 1sa

Figure 2: Airline Company

Reclangles represent classes, and arrows, roles. Sub-
classes are contained one inside the other. Thus the sub-
classes of Person are Passenger and Staff. Those of
Staff are Pilot and Radio, etc. A crew associates a pilot
and a radio operator. A flight is the association of a
crew, an airplane, a departure airport and an arrival
airport. Finally, a booking associates a passenger with
a flight.

3.2. Contexts.

The data model of Farandole 2 was created 10 manage
complex databases. In this field, it is often difficult for
a user to understand a schema globally. The definition
of partial views of the schema must also be allowed.
The nolion of semantic context [Falquet,89],
(Falquet,91] is introduced for this reason.

A semanlic context is an abstraction which allows
the regrouping of certain elements of the schema while
masking others. A context is used primarily to
facilitate database querying. It corresponds to the
particular semantics of links between constituant
classes. The semantics come from the connection
function [Maier,84] of the context. A connection
funcuon of a context is defined over the set of its
classes. It delivers all the object tuples linked to the
context, Consider a context Ct and a set C of classes
{C1, ..., Cp) of Cu The connection function of Ct
over C delivers all the object tuples ocy of instances of
C1, ..., Cp which are associated with the roles of Ct.

A semantic context, defined on a database Db, can be
symbolised by a connected graph (N, E), where N is a
sct ol nodes and E a set of edges. Each node is a couple
of the form (n, C), where n is the name of the node and
C a class of Db. So the same class may appear in
different nodes. An edge is a pair of nodes (nj, nj)
labelled by a role Rj, such that Rj links the classes
corresponding to nj and nj. The connectivity of the
graph is seen through the edges and specialisation
links. Any number of contexts can be defined on Db.

For example, in the schema of the airline company
(figure 2), the context flight planning can be defined, as
illustrated in figure 3, by the association of the
following nodes and edges: Nodes: (p,Person), (st,Staff),
(pi,Pilot), (r,Radio), (s,Student), (gr,Graduate), (c,Crew),
(f,Flight), (a,Airplane), (a_dep,Airport), (a_ar,Airport).

Barcelona, September, 1991

Edges: {(c,Crew), (pi,Pilot)}, {(c,Crew), (gr,Graduate}},
{(c,Crew), (f,Flight)}, {(f,Flight)), (a,Airplane)},
{(f,Flight), (a_dep,Airport), (air_dep)}, {(f Flight),
(a_ar,Airport), (air_arrival)}.

p:Person

Figure 3: The Flight Planning Context

Note that if there exists only one role linking the
nodes of an edge, it nccessarily constitutes the implicit
label of the edge and is thus not declared. This is the
case of the edges ((c,Crew), (pi,Pilot}}, {(c,Crew),
(gr,Graduate)}, {(c,Crew, (f,Flight)}, {(f,Flight),
(a,Airplane)}.

In addition, the nodes (p,Person), (st,Staff),
(r,Radio), (s,Student) are not to be found in the
definitions of edges. They are however united by
specialisation links to at least one node on a context
edge, (pi,Pilot) and (gr,Graduate), thus assuring graph
connectivity. Note finally that the class Airport
participates in two nodes. This allows the rupture of
the loop generated by the roles air_depart and
air_arrival.

4, The Version Model.

In this paragraph, we present our version model.
This model aims at managing changes made to a
schema and storing its different versions.

4.1, Changeable Units.

The units which can be changed are the elements of
the schema to which version management applies. In
§2.2, four types of changeable units were given
(versions of: schema, classes, objects with schema,
views). These result in four methods of managing
schema modifications.

Our approach can be considered as being the fourth
one, which as far as we know has been little
developped. The changeable units selected are contexts,
notion close to that of vicws. A context corresponds to
a portion of the schema. A context is made up of a set
of classes associated by roles chosen among those
defined in the database. It allows consultation, while
masking the set of classes and roles which are not
useful. It is thus versions of contexts which are to be
considered in what follows.

4.2. Definition Of The Concept Of Version.

In this model, a version is defined as a stable and
coherent state which the administrator or the designer
desires to keep. Generating a new version of a context
is a process which results from a human decision. This

means that all context modifications do not necessarily
generate new versions.

From a given context version several other versions
of the same context can be derived. A context version
may also be considered as derived from several versions,
This means that the derivation organisation of versions
can be symbolised by a directed graph. As in [Kim,88]
and (Palisser,89], we introduce the notion of generic
context to be able to globally apprehend the set of
versions of a context.

4.3, The Different Types Of Versions.

We distinguish two version types, working and
stable versions. Changes are always carried out on a
working version. A stable version cannot be updated or
deleted. A working version can be transformed into a
stable one and vice versa This means that a stable
version has to return to the working state in order to be
madified or deleted. Queries concern stable and working
versions,

Furthermore, at any time there exists one default
version for each context. The default version is that
which is selected when the user refers to the context
without specifying a particular version. It corresponds
to any version (working or stable) previously
determined by the user.

4.4. Generic Contexts And Versions.

As shown in §4.2, with each version is associated a
generic context. It is described as follows:

[id, name, first_version, default, [working_versions],

[stable_versions}, next_version, root_class]

Id is the internal identifier of the context calculated
by the system, Name is an external identificr given by
the designer. First_version delivers the identification of
the first version of the version derivation graph. Default
indicates the default version of the context.
Working_versions and stable_versions correspond
respectively to the working and stable versions.
next_version gives the number of the next version
derived for the context, Root_class indicates the root
class of the generic context (¢f §6).

A version is thus described as follows:

{id, gen_id, name, number,[successors}, {previous],

date, state, {[nodes], [edges]]]

Id is the calculated internal version identifier, Gen_id
identifying its generic context. Name is the external
name of the version. Number corresponds to its
number: each version has a specific number which
allows it 1o be relerenced. Successors indicales the set
of its successors, Previous identifies the set of versions
from which it is derived. Date is the date of the last
modification of the version. Staie says whether it is
working or stable. Nodes and Edges correspond
respectively to the lists of nodes and edges in the
version,

5. Evolution Of The DataBase Schema.

5.1, Possible Transformation Types.

Within the adopted approach, a schema consists of a
set of contexts. Each context can evolve individually
into a set of versions. The transformations authorised

Proceedings of the 17th Intemational 164 Barcelona, September, 1991

Conference on Very Large Data Bases

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

o emered i

Yy Or }cuuduy in
of transformation are
t on the complete
schema and those operating on a conlext version.
Among the former arc considercd the addition and
suppression of context versions. Among the latter are
considered the modifications of a context version. As
seen in §3.2, a context is represented by a graph in
which nodes correspond to classcs and edges 1o links

beiween Qldbbe. AS a cunscqucncc, iwo Lypbb of
modification affecting the graph are again distinguished:

those which affect eraph structure (urllhlunn or
LIV OWw Yriliwil “Uiivwvw i blu 13 Vi Mwiulw NABL VAL

suppression of a node or edge) and those whnch apply to
the contents of the graph (modification of a node or
edge).

On the other hand, name changes are not allowed.
This means that it is not possible to change the name
of a context, a node or a role. This restriction is
established for manipulation reasons. In fact, one of the
objectives of the version model dcfinition presenied

hara ic that data maninulatian cancarnineg a contaxt
1iviw D LvilAy vava lllulll}lulullvll VVIIUVIIIIIIE Q wuliLlwvAL

should be as mdependem as possible of its versions.
Name invariance is necessary to guarantee the
invariance of the manipulation programs applicd to
several versions of a same context, By forbidding name
changes, the connection function of a gencric context

remains the same for all its versions (cf. §3.2).

9 1
1050 Lailitil LU

5.2. Sharing Version Elements.

Versions of the same or different contexts are not
devclopped in scparate databases but in thc same one,
from a common schema. They are not disjoint and thus
often share common elements. So when an opcration is

tried out on a version the pr\gclhlo consequences on

VUl Uil @ Yuioaun VaoiUiv Vs

other versions must be clearly circumscribed. No
modification of a version should repercute on others.

In the considered model, a version is a set of nodes
and edges. A node is a named class and an edge is a role
associated with a pair of nodes. Each elecment which has
just been enumcrated can occur in more than onc
version. For example, consider two generic contexts
C1j and Ctp, which each possess versions Vi, V2 and
V3. The same nodes and edges can occur at ihe same
time in versions V1 and V2 of Ct} and V] and V3 of
Ciz.

What is more, even if a node or edge is not shared,

their elements (classes and roles) may be, .An\/ action

VAMGIVIILS (VAAOSVS Qi AETS) A i

carried out on a set of nodes and eds,es of a given
version thus requires verification of whether they or
their elements are present in other versions. We define a
set of general rules which regulate the operations of
addition (R1), suppression (R2) and modification (R3)
when an element (or a sct of elements) is shared. By
element is understood node, cdge, class or role.

o R1. Adding an clement E to a version V
constitutes either an addition or a crcation, depending
on whether E was or was not already defincd in the
schema. In the first case, E is integrated in V and is
thus shared by several versions. In the second case, E
must be created. The creation of an element is local to

V. Addition of an element also requires application of
the same procedure (o its elements. For example, for a

165

erla arn maict ha varifiratinn that tha nconeciatad nlace
HUAUL, U1V HHTUODL UV VUL LLILALUIULIL LA LIV GddVviditvud viados
is alrcady defined
a DM Cunneaceing an alamant B in a4 varcinan U
v N4, \Jullillbbblllb GV L Ml a YWiDLUNE Y
simply removes the clement from V. Furthermore, after
this, if E is not shared by another version and is

isolated, then E is effec uvcly deleted. This process is
applied recursively to the clements which constitute E.
The mechanism used is thus that of garbage collection.

¢ R3. Modification of an element shared by other
versions is done on a copy and has thus no effect on the
other versions. For example, the modification, in a
version V, of a class C figuring in several versions is
carried out on a copy of C.

5.3. Modification Of The Database Schema.
5.3.1. Adding A Version.

Addition of.a version can be done either by creation
in the initialisation phase, or by derivation from a
version of the same context.

Creation of a version automatically creates the link
with the associated generic context. A name must be
attributed 10 the version and a list of its nodes and edges
must be added or created. A node is either simple or the

rixcyt oof 2 unecialication tree An adoe correenonde to an
Iuw v a ;’}Iv\rlullou\-l\lll WA £ Vu&\l \I\Ill\/ﬂ}l\llluo WWodus

association between two nodes or to an attribute, In the
former case, lwo composite classes are linked and, in
the latler, a composite class and an atomic one. Note
that a specialisation link is not an edge. This type of
link is not defined at the level of edges of the graph but
appears in the definition of a node (class).

The creation of the first version of a conicxi also
necessitates a choice, among the sct of context classes,
of a narticular class, the root of the context. This (‘Iacc

paduvuial Liass, L WL e LU AL

whnch corresponds 10 a scmantically dominant node,
must be defined for each generic context. It is the entry
point to the context and is associated with all its
versions, Its functions will be detailed in §6.

As an example, suppose that the first version of the
generic context Flight planning has been created (cf.
Figure 3, §3.2). A version of a new gencric context
{figure 4) can be created 1o manage reservations for the

aielin

ainine,

| p:Person I

pd Passenger E

| a:Airplanel

r - ’i a-dep:Airport I
| b:Booking]—Hl’:FlighLL

4a-ar:Airpon

Figure 4: Version 1 Of The Context Rescrvation

Note that the nodes (p:Person), ([:Flight),
(a:Alrplanc), (a_dep:Airport) and (a_ar:Airport), already
defined in version 1 of the context Fiight planning
(hg,ure, 3, §3.2), arc shared by this new versron But the
nodes \pd rasacugCI') and (b: DOOng; did not exist in
the schema and were thus created.

Derivation of a new version is nlwdys done from a
previous version, A name must be given to the new
version. It inherits by default the set of nodes and edges

of the version from which it is derived.

Barcelona, September, 1991

5.3.2. Suppression Of A Version.

When a version is suppressed, all its elements
become inactive. The suppression rule R2 (cf. §5.2)
must be respected. The version elements are effectively
suppressed if they are not linked to any other element
of ihe version set of the database. Suppressing a
version V leads to the suppression of the links with all

e A s MY hinh H
its derived versions which are linked now to the

versions from which V was derived.

5.4. Modification Of A Version.

This paragraph presents the set
which can be made to a context vers
t n
by

PO S,
UL

ion.

ramamharad th the definition a nn
a ¢on

1
AVIBVILUVI VG IR R A IR ViV SRR S A

(cf. §4.2), 2

a new versior

n nf
uia Ui

modification does not necessanly generate
n,

5.4.1. Modification Of The Graph Structure,
¢ Addition Of A Node.

Following rule R1 (cf. §5.2), if the node exists in
the database, it is added to the considered version,
otherwise it is created. A node can correspond (o a
super-class or a sub-class of a specialisation tree. In the
first case, only this node is intcgrated into the version.
In the second case, all its ancestors must also be added.
To create a node, it must be given a name and be
associated with a class, which has to be created if it
does not exist. If ii is a sub-class, its super-class must
be specified together with a specialisation condition.

» Adding An Edge.

The procedure for adding an edge is simifar to that
for a node. It respects the sharing rule (R1). A role and
a pair of nodes must be associated with the edge. The
nodes must have been previously defined for the
considered version. If the role docs not exist, it is
created by gwmg it a name and assocmum> an origin
and a domain and SpﬁCh‘y‘ii‘lg its uCgl'CC of valuation.
The two classes of the role must correspond to those
o nn tha nadag nf tha ados

iguring on il NOGES O it CGELC,

Consider the case in which the airline company
needs to take into account hnnlnno onnde on flmhrc A

neegs (Y LWV Qvv Uiy Uvuaase:

new version (n°2) of the reservanon context is dcnved.
To this version are added the following nodes: g:
Goods, f: Freight and pb: Pas-Book. They correspond,
respectively, to the description of goods, the booking
of these on a flight and the booking of passcngers on
the flight. The classes Goods, Freight and Pas-Book,
which did not exist in the schema, arc crcated as in
figure 5. The edge defined between the two nodes is
made up of a new role. It is crcated by the attribution of
a name (goods book), an origm class (Freight), a
domain (U()O(l&) and a valuation uCglCC of 1.

=g

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

(=)

l a:Airplane|

a-dep:Airport

f:Flight
a-ar:Airport

p:Person

Figure 5: Version 2 Of The Context Reservation.

» Suppression Of A Node.

Supprcssmg, a node consists of taking it out of the

11 vnlknr uulh all
logCin i}

Vers 1y n

rsion its

ail 11s assnnnnlnr‘ adoac Thicg

ociated edges. This
opcration also removes the class associated with the
node, as long as it is not shared by other nodes of the
version (rule R?.).

If this class is the super-class of a specialisation
tree, then all its derived classes are also removed from
the version. For example, in figure S, if the node g:
Goods is removed (rom the version, the edge between
2: Goods and f: Freight is also removed, as is the role
goods_book. They are, however, effectively deleted
only if they are no longer linked to any element of the
sct of versions of the database.

® Suppression O An Edge.

SupprcssmL an cdge cuts the link between two
nodes. That is it removes the role figuring on the edge.
This latter operation only affects other version elements
if the role is conditional, that is defines a sub-class C.
In this case C and all its derived classes are removed
from the version. This operation must not invalidate
the connectivity of the graph or the rule R2.

5.4.2, Modification Of Graph Contents.
® Modification Of A Node.

Name changes not being allowed, node
modifications are equivalent to those of classes.
Amongst these are considered the redefinition of the
supu»(lass of a class and of a sub-class.

For reasons connected with objects, rc"e’ning the
super-ctass of a class C can only be carried out inside a
5{)%{&‘153!”\'\ tree. Ina &an'xhcmmn tree, all objects

arc defined at the lcvcl of the ancestor class, Thus the
transfer of a sub-class C of one tree 10 another would
lead (o the suppression of all the objects of C. What is
more, this modilication must not introduce a loop. The
new super-class of C must not be derived from C. For
example, consider the specialisation tree of figure 6.

ptember, 1991

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

Figure 6: Modification Of A Super-class.

In this example, the super-class of C3 is redelined.
This operation breaks the link between C2 and C3 and
creates a new link between C3 and Cs. The new super-
class of C3 cannot be situated outside the tree and must
not be a sub-class of C3.

Following rule R3, if the class to be modified is
shared, the modification is donc on a copy.
Furthermore, copies of all classes down the
specialisation hierarchy must be generated. In the
preceeding example this comes down to copying classes
C3 and C4.

In the flight planning context (figure 3, §3.2),
widening the concept of student to all members of stalt
could be required. As is illustraied by figure 7, this
comes down to modifying the super-class of the class
Student which passes from Radio to Staff. This
transformation requires the derivation of a ncw version
(n°2) of the context.

p:Person

s:Student

QF

Figure 7: Version 2 of Flight Planning ContexL.

The modification of a sub-class applies to its
specialisation condition, that is to the conditional role,
the operator or the value. If a new conditional role is
attributed to a sub-class C, the role must have been
previously defined in one of the ancestor classes of C.
In the preceeding example (figure 7) the classes Person,
Staff and Pilot are defined as follows:

Person(Name:string; Age:integer; TypePerson:string)
Staff sub-class of Person

if TypePerson = "employee”
(Salary: integer; Function: string)
Pilot sub-class of Suaff if Function = "pilot”
(NbFlightHours: integer)

The conditional role Function of the class Pilol can
be changed by choosing TypePerson as a new
conditional role, since it is defined in the ancestor class
Person.

167

¢ Modilication Of An Edge.

Changes allowed on edges can affect their origin and
terminal nodes, as well as the valuation degree of their
roles. Because of name invariance, this operation is
cquivalent to a role modification.

Modification of the origin or terminal nodes of an
edge can only be done inside a specialisation tree, for
rcasons similar to those discussed for classes. The
operation must respect rule R3. Consider a role Ry
having as origin and terminal nodes respectively N3 and
Ng, illustrated in figure 8.

Figure 8: Modification Of Nodes Of A Role.

The only possible new origin nodes of Rq are Ny,
N7, N4 or Ns. Replacing N3 by a node outside the tree
comes down Lo suppressing all the object associations
supported by Ry. The samc is true for the terminal
nodes. From this, the new terminal node of R can
only be N7.

For example, the edge associated with nodes
b: booking and pa: Passenger of version 1 of the
context reservation (¢f, figure 4) goes through the role
pass_book, which has the class Booking as origin.
After the specialisation of this class in sub-classes
Freight and Pas-Book (cf. figure 5), the role pass_book
can be modilied and a new origin class, Pas-Book,
attributed.

While increasing the valuation degree of a role
creates no problem, its diminution has consequences on
the data. If, in an object, the number of values of a role
is greater than the new valuation degree, the object
receives an unknown value for the role. Let o1 be an
object to which a role R associates the values {v1, v2,
v3}. If the valuation degree of Ry is changed to 2, then
01 receives an unknown value for Ry.

5.5. Rules Associated With Modifications.

We define a sct of rules which must always be
followed when the database schema is transformed. The
operations presented in §§5.3 and 5.4 can thus only be
carried out if they do not violate these rules. This
guarantees the coherence of a schema after modification.

® R4. The sct of nodes and edges of a version
must {form a connccted graph. There are thus no isolated
nodes in the graph and each of them can be reached
from the root node or class.

® R5. If a node belongs to a version, then all its
ancestors must also belong to the same version.

® R6. The role of an edge must necessarily link the
two classes defined in the nodes.

¢ R7. The root class of a gencric context can
neither be suppressed nor modificd.

Barcelona, September, 1991

5.6. Schema Of A Database.

With the defined model, a user can consider a schema
either as a set of context versions or as a view of the
set of versions. In this latter case it is defined by
choosing a set of context versions. In the prececding
paragraphs two generic contexts were defined which
have each two versions (Flight planning (Version I,
figure 3 (§3.2), Version 2, figure 7 (§5.4.2)) and
Reservation (Version 1, figure 4 (§5.3.1), Version 2,
figure 5 (§5.4.1))). A schema of the database Airline
can be defined by choosing version 1 of Flight
planning and version 2 of Reservation.

Note that different versions of the same generic
context can figure in the same schema. For example, a
schema can be made up from versions 1 and 2 of the
context Flight planning.

Version selection is done statically or dynamicaily.
In the first case versions are referenced by their
identifiers and those of their respective generic contexts.
In the second case, only the identifiers of the generic
contexts are specified, Version selection is carried out
by choosing default versions (cf. §4.3).

6. Object Management In A Version.

As was already underlined in the introduction, an
important problem in schema version management is
the establishment and maintenance of correct links
between different versions of the schema and the
objects. In particular, schema modification must not
lcad to the loss of data. Mcchanisms have therefore
been defined which allow the association with cach
context version of the objects pertinent to that version.
It should be remembered that the subject covered here is
not object version management but only schema
version control. For this reason, no account is taken of
the evolution of objects in a context version,

6.1. The Root Class Of A Context.

As seen previously (§5.3.1), with each generic
context is associated a unique root class. It corresponds
to a node of the context. This notion exists in order to
determine whether an object belongs 1o a given version,
The class is specified by the user. It is part of the
information common to the different versions of a
generic context. This means that it is associated with
its set of versions and can neither be modified nor
suppressed between one version and the next. From a
semantic point of view, it is an entry point in the
context which corresponds to a semanticatly dominant
node.

In the case where no specialisation tree exists in the
context, the root is any class. Otherwise, it must not
be a sub-class. For example, for the generic context
reservation the root class is chosen to be Booking (cf.
§5.3.1, figure 4) and in the context flight planning, the
class Flight (cf. §3.2. figure 3).

6.2. Context Versions And Objects.
6.2.1. Objects Of The Root Class.

The notion of root class allows determination of
which objects belongs to a context version. With each

object of this class is associated the set of versions in
which it appears. For example, let C1 be the root class
of a context CT1 which owns the version set {V1, V2,
V3, V4} and let 01 be an object of Cy. If o1 appears in
versions Vi and V9 of CTy and not in V3 or Vg, then
the set {V], V2} is associated with the object 01. By
default, the context versions in which an object does
not participate are those which are not specified for the
object.

For example, the root class Booking of the generic
context reservation owns, in addition to its roles, a
multi-valued role (versions) which associates with each
object the list of versions to which it belongs.

Booking
id |} versions| booking-nb flights
34 {1} 678 [sw789,af235]
57 (2] 879 [bc564,ib672]
891 [1,2] 345 [ba234]

Figure 9: The Root Class Of The Context Reservation.

6.2.2. Objects Belonging To A Version.

An object o of a class (different from the root class),
which is a component of a version V, belongs to V if
an object oc of the context version V can be built from
o by applying the conncction function and after
verifying the integrity rules.

For cxample, figure 10 shows the objects of
version 1 of the context reservation. Thus, Paris
airport belongs to this version since it is linked to
Mlight ba234, which is linked in turn to the object of
the root class, the booking 345, which is declared as
belonging 10 the version. The airplane DC10 also
belongs to this version because even if it is not linked
lo any object of the root class at present, it will belong
to the result obtained by applying the connection
function to this version,

Airport

Geneva
New-York
New-Delhi

[sw789 af235
ib572 ba23

Booking
345

Figure 10: Objects Belonging To A Version.

Now let Flight-Passenger and Military-Flight be
two exclusive sub-classes of Flight. Let the new
version V' of the context reservation contain the classes
Booking, Flight-Passenger, Flight, Airplane and
Airport. Then all the objects of Military-Flight are also
objects of Flight, but they cannot be part of a V' object
obtained by applying the connection function. Thus
they do not belong to V'

6.3. Sharing A Root Class,

In a dalabase, dilferent generic contexts can share the
same root class. In this case, it is necessary to indicate
for each object of the class and for each generic context

Proceedings of the 17th Intemational

168 Barcelona, September, 1991
Conference on Very Large Data Bases

the versions in which they appear. This comes (o
associating with each object of the root class a pair,
whose first member is a context identifier and the
second a set of versions.

Let Cty, Ctp, Ct3 be gencric contexts, cach owning
the set of versions {Vy, V2, ..., Vi) and having the
same root class Cj. Consider the sct of objects
{01,072, ..., 0pn). For each object of the set it must be
indicated not only in which versions it appears, but
also to which generic context it belongs. For ¢xample,
if oy is defined in versions V1 and V2 of contexts Ci)
and Cl3, the following couples are associated with oj:

A Y]

€y, (V1 Va2 \\«lj {V1, V21).

& A Nhiant Craatinn Cunnraccinn And
Ue 0o AV 4 JC\—l A 1§ Call\lll, UU'J 1 Ca3d1un oxaau
Updating.

An object is aiways created, suppressed or updated in
a working version V of a context, It can ecither be
created in the root class, or in any other class. In the
first case, if the obJecL already cxists in the database, in
other versiong, it is automatically integrated into V and
marked as belonging to it. If it does not exist, it must
be created and marked as belonging to V.

When an object of the root class is suppressed, if it
appears in no other context version than V, it is
cffectively removed from the databasc. The links
between the object and objects of other cldssw arc

henlran 16 ¢ha ~hiane charad hatunan al
ULURAUILL, 11 Uiy UUJWL lD Dllﬂlw UU\-W\‘\/II ‘UV\;I‘II V\/‘ \l\)ll’,

it is marked as no longer belonging to V. Following
the possession rules between an object and a version
defmed for the root class (cf. §6.2. 1) all Ob_]CClS which
reference it no longer appear in V.

The creation and the suppression of an object in a
class other than a root class are the usual operations of
creation and suppression.

Updaling an objcct consists of modifying the valuc

Ul a IUIC ll an UUJLLL Ul a root le\b lb blldlbu U)’ bLV\/[dl

generic context versions, it can not have diffcrent
values for these versions., This means that obicct

VLU AV Lo v CISILT VUL

updating is refiected on all the versions in which it
appears. One of the primary principles announced is
that this work applies not to object versions but
uniquely to the evolution of the database schema.

7. An Evolutionary Model.

We will show briefly how this version management
model can be considered as an evolutionary database
model. Indeed it will undoubtedly improve flexibility in
the use and transformation of a database. It also opens
new perspectives in the database design process.

-1 P PRyt N P | 1 I gy AA e fencabon d -
f.1. lll cptuu nce DEtweEen ividilipuiatiul
Programs And Schema,

An originality of this model resides in the

improvement of the invariance of manipulation

ninulatinn nracrame which ares

nrAoram |V, #o8 a
MOst lllulupuluuuu piugraiis vvuu,u aic

programs.
applled to a context version V do not rcquxrc any
rewriting before being applied to another version V' of
the same context. Of course rewriting is necessary if a
class belonging to V and missing in V' is needed, This
property comes from the invariance of names (§5.1) and
the use of contexts [Falquet,89]. Indeed, schematically a

Proceedings of the 17th International
Conference on Very Large Data Bases

169

context can be considered as a large object and the
lnm(al data access can be written without knowledee of

Lall D L LAY

d” the classes and roles which compose it.

7.2.

Another originality of this model is its facilities for
designing and easlly implementing object life cycles.
Roughly speaking we consider that an object life cycle
can be divided into scveral periods [Guyot,86]. Each
period defines an object environment in terms of data,
integrity rules and processes. So a period provides the
sct of data which may be linked to the objeu the set of
illlbbl u.y rules which arc defined, the set of }JA'GCGSSCS
which may be exccuted. The object environment
changes when an object leaves a period and enters a new

one. This version management system allows an object
life cycle to be designed and easily implemented. The
various periods correspond 1o context versions and the
rool class of a context is the class of objects the life
cycle of which has to be implemented.

Object Life Cycle.

7.3. A New Solution To An Oid Probiem,
The version management system can help to solve a

concrete problem which we introduce with an example.

A student, a facully and a diplomd have rospocliVely a

Ilulllll&,l ds lklblllllli.l auu d namce., h UlplUllld lb Ubllvblw

by only one faculty. A student can be inscribed at only
one (1m1nm adand in rmlv one f\r‘nhv which must be

the lacully delivering the dlploma d. ln order to avoid
any redundancy the relational schema will be:
S1(St# St-Name) Dpl(Dpl# Dpl-Name)
Fac(Fac# Fac-Namc)
R(St# Dpi#) S(Dpl# Fac#).

In fact there are two periods. Firstly every student is
allowed to choose a faculty, without choosmg, a
diploma. Afller threc months every student has to
choose a diploma among the diplomas of the
previously chosen faculty. In order to store the facts
concerning the first period has the relation T(St# Fac#)
o be implemented? If so, it will be redundant in the
second period.

With our approach a context chistrdlion is built: it

is composed of St and Fac, St is its root class. Then

L2 SIEL 2 LRV Liass

two versions of this conlexl are built : the first one is
composed of St, Fac and T and corresponds to the first
period. The second is composed of St, Dpl, Fac, R and
S and corresponds 1o the second period. This solution
does not contain any redundancy.

(8]

[o

Conclusion.

In this paper, a version model is proposed which
allows following the evolution of the database schema.
The version management mechanism is based on the
notion of context, which can be considercd as an
extension of the concept of view, Transformations are

arricd ant an narte of tha ecchoma

Anv numher nf
b‘llll\\‘ AVAVE RV llul L Y TRAYAES A RAZ R 1~ Y

Sy nuniucr Ui

contexts can be defined on the database, cach one
corresponding 1o part of the schema. Scveral versions
can be derived from a context. The method adopted is
thus close to that which consists of managing versions
of views. We can comparce it with the "schema version”
and "class version" approaches. Roughly speaking the

Barcelona, September, 1991

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

granularity of the former seems to us to be too wide:
any schema transformation, even if it concerns only
one class, needs a version of the whole schema. In the
other hand, the granularity of the latter secems 1o us to
be too narrow: cach class is allowed to have scveral
versions and so associations in a schema between
classes must follow the various versions. The problem
becomes complex. The granularity of context seems Lo
us to be more appropriate.

As we showed in the last paragraph, the version
model introduces a new approach for designing a
database. The concept of object life ¢ycle can be used,
the databasc design process may be cvolutionary.
Furthermore the model improves flexibility in the usc
of databases: there is real independence between data
schema and data programs.

The DBMS Farandole 2 is in fact a laboratory
written in ADA which includes a classical DBMS
(built from ECRINS {June(,86]) and a process
environment. The concept of context is implemented.
The elementary data schema transformations arc
implemented. Version mechanism implementation is in
progress.

9. Acknowledgements.

The authors thank Michacl Griffiths for his help in
translating this paper.

10. References.

J. Autran, C. Palisser; Vues ct Versions d'Objets
Complexes-Une Application a la CAO, ecn
Architecture; 3émes Journées Bases de Données
Avancées, INRIA, Port Camargue, May 1987,

D. Batory, W. Kim: Modcling Concepts for VLSI
CAD Objects; ACM TODS, Vol 10, N°3, September
1985.

H.T. Chou, W. Kim: A Unifying Framework for
Version Control in a CAD Environment; 12th VLDB
Conference, Kyoto, August 1986,

D.J. Ecklund, E.F. Ecklund, R.O. Eifrig, F.M.
Tonge: DVSS: A Distributed Version Storage Server
for CAD Applications; [3th VLDB Conference,
Brighton 1987.

J. Estublier, S. Ghoul, S. Krakowiak: Prcliminary
experience with a configuration control system for
modular programs; ACM SIGSOFT-SIGPLAN, April
1984.

T. Estier: Le Modele Farandole 2 ¢t le Dictlionnaire
du SGOOD; CUI Research Report, Geneva, Seplember
1989.

T. Estier, G. Falquet: QFE: un génératcur
d'interfaces pour l'interrogation des bases de données &
l'aide de contextes sémantiques; Inforsid, ed. Eyrolles,
Biarritz, May 1990.

G. Falquet: Interrogation de bascs de données a l'aide
d'un modele sémantique; Thesis, Geneva University,
May 1989,

G. Falquet: F2 an object-oricnted databasc model
with semantic contexts; CUI Research Report, Geneva,
January 1990.

M.C. Fauvet: ETIC, un SGBD pour la CAO dans
un environnement partagé, Thesis, Grenoble
University, September 1988.

170

J. Guyol: Un modele de traitements pour les bases
dc données: un formalisme pour la conception, la
validation ct l'exéeution de la spécification d'une
application; Thesis, Geneva University, June 1986.

MJunet, G. Falquet, M. Léonard: ECRINS/86: an
extended entity-relationship data base management
system and its semantic query language; 12th VLDB
Conference, Kyolo, Japan, August 1986.

G.E Kaiser, AN, Habermann: An Environment for
System Version Control; in Digest of papers
COMPCOM Spring 83, IEEE Computer Society, San
Francisco, 1983,

R.H. Katz, T.J. Lchmann: Database Support for
Versions and Alwernatives of Large Design Files; /IEEE
Transactions on Software Engineering Conference, Vol.
SE 10, N°2, March 1984.

R.H. Katz, E. Chang, R. Bhateja: Version
Modelling Concepts for Computer-Aided Design
Databases; ACM SIGMOD Conference on Managment
of Data, May 1986.

R.H. Katz, E. Chang: Managing Change in a
Computer-Aided Design Database; 13th VLDB
Conference, Brighton 1987,

W. Kim, D. Batory: A Model and Storage Technique
for Versions of VLSI CAD Objects; Conference on
Foundations of Data Organization, Kyoto, May 1985.

W. Kim, H.T. Chou: Versions of Schema for
Object-Oriented Databases; 14th VLDB Conference, Los
Angeles, August 1988,

W. Kim, N. Ballou, H.T. Chou, J. F. Garza, D.
Woclk: Features of the ORION Object-Oriented
Database System; in Object-Oriented Concepts,
Databases and Applications, ed. W. KIM and F, M.
Lochovsky, ACM Press Frontier Series, New York,
1989,

P. Klahold, G. Schlageter, W. Wilkes: A General
Model for Version Management in Databases; 12¢h
VLDB Conference, Kyolo, August 1986.

D. Maier, J.D. Ullman, M.Y. Vardi: On the
Foundation of the Universal Relation Model, ACM
TODS, Vol.9, N°2, 1984,

C. Palisser: Charly, un Gestionnaire de Versions
pour la CAO en Architeclure; Thesis, Aix-Marseilles
University, Marscilles, November 1989,

C. Palisscr: Le Modele de Versions du Systeme
Charly; 6émes Journées Bases de Données Avancées,
INRIA, Montpellicr, September 1990.

C. Palisser, J. Andany, M. Léonard: Un Modelc de
Versions de Schémas de Bases de Données; CUJ
Research Report, Geneva, July 1990,

M.J. Rochkind: The Source Code Control System;
IEEE Transactions on Software Engineering, Vol. SE-
1, N°4, December 1975,

A.H. Skarra, S.B. Zdonik: The Managcment of
Changing Types in an Object-Oricnted Databasc;
OOPSLA Conference, Portland, September 1986.

W.F. Tichy: RCS-A System for Version Control;
Software Pratice and experience, Vol. 15(7), July 1985.

S.B. Zdonik: Version Management in an Object-
Oriented Database; International Workshop. Trondheim,
June 1986. Ed Reidar Conradi et al. Lecture Notes in
Computer Science N°244.

Barcelona, September, 1991

