
A Metadata Approach to Resolving Semantic Conflicts

Michael Siegel
Sloan School of Management, E53-323
Massachusetts Institute of Technology

Cambridge, MA 02139
msiegelQsloan.mit.edu

Abstract

In this paper we describe a rule-based ap-
proach to semantic specification that can
be used to establish semantic agreement be-
tween a source and receiver. Query process-
ing techniques use these specifications along
with conversion routines and query modifi-
cation to guarantee correct data semantics.
This work also examines the effect of chang-
ing data semantics. These changes may oc-
cur at the source of the data or they may
be changes in the specifications of the dat,a
semantics for the application, Methods are
described for detecting these changes and for
determining if the database can continue to
supply meaningful data to the application.
These methods for semanlic reconcilia2ion
are necessary for determining logical connec-
tivity between a data source (database) and
a data receiver (application). Though de-
scribed in terms of the source-receiver model,
these techniques can also be used for seman-
tic reconciliation and schema integration for
multidatabase systems.

Keywords[data dictionaries, heterogeneous databases,
metadata, query modification, schema integration, seman-
tic conflicts]

1 Introduction

With the development of complex information sys-
tems, the need for the integration of heterogeneous
information systems, and the availability of numerous
online computer data sources, it has become increas-
ingly important that methods be developed that con-
sider the meaning of the data used in t,hese systems.
For example, if an application requires financial data
in French francs it is important that it not receive data
from a source that reports in another currency. This
problem is further complicated by the fact t,hat. thp
source meaning may change over time; a source that,
once supplied financial data in French francs might,
decide to change to reporting t.hat c1at.a in European
Currency Units (ECUs).

Proceedings of the 17th International
Conference on Very Large Data Bases

Stuart E. Madnick
Sloan School of Management, E53-321
Massachusetts Institute of Technology

Cambridge, MA 02139
smadnickQeagle.mit.edu

To deal with this problem, these systems must have
the ability to represent data semantics and detect and
automatically resolve conflicts in data semantics. This
requirement goes beyond existing database schema
and data dictionary technology. It must allow for sys-
tems to represent and examine detailed data semantics
in both static and dynamic (i.e., allowing changes to
the data semantics) environments.

This research examines the specification and use of
metadata in a simple source-receiver model. The
source (database) supplies data used by the rweiver
(application). The source and receiver may be at the
same physical location, as in a local database manage-
ment system accessed by an application program, or
the source may be in a different location, such as an
online data service.

We describe a rule-based representation language for
both the database semantic specification and the ap-
plication’s semantic view of the data. Initially, we ex-
amine query processing strategies that use this seman-
tic representation language to determine if the data
source can provide the application with meaningful
data. Then, we examine query modification techniques
that guarantee correct data semantics by adding re-
strictions to the application query.

The methods proposed for semantic reconciliation
allow for changes in data semantics in the database
or changes in the application’s data semantic re-
quirements. These methods can be used to track
changes automatically and determine, as a result of
any changes, if the database can still supply meaning-
ful data. Additionally, we describe methods that per-
mit the system to resolve semantic conflicts between
the source and the receiver.

This paper is organized as follows. In the next sec-
tion we examine related work in the area of meta-
data representation. In Section 3 we present examples
of the problems that can occur in the source-receiver
model when methods for semantic reconciliation are
not available. In Section 4 we introduce a model for
defining data semantics for use in identifying and re-
solving semantic conflicts. In Section 5 we describe
the use of metadata in semantic reconciliation. In Set-
tion 6 we examine the use of semantic reconciliation
in a dynamic system environment where changes oc-
cur in the application or database semantics. Finally,

133
Barcelona, September, 1991

Section 7 presents our conclusions and describe areas
of future research including the the use of metadata
and semantic reconciliation and schema integrat.ion in
multidatabase systems.

2 Metadata

Metadata refers to data about the meaning, content,
organization, or purpose of data. Metadata may be
as simple as a relational schema or as complicated as
information describing the source, derivation, units,
accuracy, and history of individual data itsems.

In [McC82], McCarthy describes a metadata reprc-
sentation and manipulation language where the meta-
data is part of the data files. The representation allows
for the inclusion of a wide range of metadata acces-
sible through a set of specially defined operators. In
[McC87] he demonstrates the use of metadata in a Ma-
terial Properties Database. The development of t.he
Information Resource Dictionary System (IRDS) for
handling metadata is described in (GK88,Law88]. Thr
IRDS allows the user to develop an ent~ity-relationship
model description of the metadata. The IRDS includes
a set of primitive entities and relationships, and a set of
operations to build new entities and relationships for
describing metadata. [GSdB88] describes addit,ional
knowledge-baaed representations for metadata. How-
ever, none of these approaches include a well-defined
methodology for utilizing this metadata for semantic
reconciliation. [YSDKSO] describes the use of con-
cept hierarchies for comparing attributes from differ-
ent schemas. However, practical means for defining
comparable concept hierarchies are not discussed and
these methods deal with attribnt,e comparisons not
data comparisons.

It is important to provide a representation that is
rich enough to describe the significant data semantics
and can be used in methods to identify and reconcile
semantic heterogeneities between the source and the
receiver. We intend to use metadata to resolve the
following questions in the source-receiver model:

1. Can the database provide data that is semanti-
cally meaningful to the application?

2. Is the application affected by a change in the
database semantics? (or a change in its own data
semantics requirements?)

In the next section we describe a sample database
and application and consider problems that can occur.

3 Semantic Reconciliation: An
Example

Consider a data source that provides the trade price
for a variety of financial instruments. The schema of
the relation containing this data is shown in Figure 1
along with two sample records. Each rec.ord contains
the type and name of the instrument being traded, the
exchange that the instrument was traded on, and t,he
trade price.

Proceedings of the 17th International
Conference on Very Large Data Bases

A query that requests the trade price of Telecom SP
will return the value 1107.25. Even in this simple rela-
tion, the natural interpretation of this value might not
provide a complete understanding of the data. For ex-
ample, this relation does not report all trade prices in
US currency. Bather, prices are given in the currency
of the exchange. The trade price for moat equities rep-
resents the latest trade price except for equities traded
on the Madrid Stock Exchange where trade price rep-
resents the latest nominal price. Because of these se-
mantic complications, there should be a means for rep-
resentation of and access to both the trade price value
and its associated metadata. Then, given an applica-
tion’s semantic view (i.e., data semantics specification)
methods can be provided to determine if the seman-
tics associated with the data are those expected by the
application.

One way t,o represent this metadata is to extend the
traditional database schema definition to include addi-
tional fields (real or virtual). For example, the relation
in Figure 1 could be extended to include attributes
such as Trade Price Status and Currency. However, it
is our intention to make the representation and meth-
ods for semantic reconciliation transparent to the user.
Separating the metadata from the data has the advan-
tage that the metadata system is non-intrusive in that
it does not require changes to the data source.

In the next, section we describe a rule-based repre-
sentation to associate (i.e., tag data with) metadata
with a given attribute. Through an examination of a
number of applications we have determined that this
representation can be used to describe much of the
data semantics in existing databases while also being
useful in defining the application’s semantic view of
the data.

4 Representing Data Semantics

In this section we present a model that provides both
a representation of data semantics and the range of
applicability of our methods for semantic reconcili&
tion. We begin by defining the semantic domain of an
attribute T as the set of attributes used to define the
semantics of T and note this as

sem(r) = <YI, Yz, Y3, Y,> where each Y; is an at-
tribute.

For each value 1 in the domain of T the semantics of
that value can be defined in terms of the semantic do
main as

sem(t) = <Yl, YZ, y3, *.. yn> where yicdomain(X).

As an example, we may think of the semantic domain
of the Trade-Price attribute in terms of the status and
currency of the trade price. The semantic domain is
then defined as

134
Barcelona, September, 1991

Instrument-Type Instrument-Name Exchange Trade-Price
Equw IBM nyse 115.25

syhultY Telecom SP ma&d 1107.25

Figure 1: The FINANCE Relation

sem(Trade-Price) = <Trade-Price-Status, Currency>

and the semantics of a particular trade price may be
defined as

sem(115.25) = < latest-trade-price, US-dollars>

where the value 115.25 represents t.he latest trade price
in US dollars.

The basis for our model of data semantics is the
assignability of values to the semantic domain. An at-
tribute is semantically assignable if there is some func-
tion that can determine sem(t) for each Icdomain(7’).
The assignment domain of attribute T is defined ss

assign(T) = <:X1,X2,X3,..., X,> where each A’, is an at-
tribute.

The assignment domain for a particular value 2 in the
domain of T is defined as

assign(t) = <z~,Q,z~ ,... z,> and z,cdomain(X,).

As an example of semantic assignability consider the
following assignment and semantic domains:

sem(TradePrice) = <‘l+ade-Price-Status, Currency>
aasign(Trade-Price) = <Instrument-Type, Exchange>

We want some function F that maps values in the
assignment domain to values in the semantic domain:

F:<Instrument,Type, Exchange> -
<Trade-PriceStatus, Currency>

Then, for a given trade price, the instrument type be-
ing traded and the exchange that it is traded on, one
can determine the status and currency of I hat t ratle
price.

Different classes of semantic assignability exist.
We say that attribute T is primitive (i.e., InzGally
assignable) if sem(T) is empty. For example, prim-
itive attributes might include Instrument-Type, Ex-
change, Currency and Trade-Price-Status as shown
in Figure 2. The values in the domain of these at-
tributes require no additional semantic qualifications.
The semantics of a value for Currency, say, 11s tloi-
lars, is a complete description among all syst.ems that
share this primitive concept. The exist,ence of primi-
tive attributes provides a common language by which
the semantics of other attributes can be defined. In
Section 5.1 we describe the establishment of primitive

Pmeediigs of the 17th International
conference on Very Large Data Bases

concepts for use in these systems.
We say that attribute T is semantically definable if

either it is primitive or it is semantically assignable
and for all Xicasign(T), Xi is semantically definable
and for all Yicsem(T), Yi is semantically definable.

In this paper we use sets of rules as procedures for
assigning semantics to each semantically definable at-
tribute. A semantic assignment rule for attribute T
has the following form:

Cl,CZ,*.*, Ci are constraints on the attributes
x1,52,. . , Xica.4gn(T) and Ci+l, Ci+z,. . . , C, are
constraints on the attributes Y1, Ya, . . . , Y,Esem(T).

Examples of rules that the data designer might use
to define the database semantic specification for the
Trade-Price attribute are shown in Figure 3. The first
rule says that if an instrument is an equity traded on
the Madrid Stock Exchange then the trade price is
reported as the latest nominal price in pesetas. In the
next section we show how this representation can be
used in semantic reconciliation.

5 Using Metadata for Semantic
Reconciliation

Figure 4 shows the proposed architecture for a sys-
tem that. uses metadata for semantic reconciliation.
The database meladala dictionary (DMD) defines the
semantic and assignment domains for each attribute
and the set of rules that define the semantic assign-
ments for each of these attributes. The application
semantic view (ASV) contains the application’s defini-
tion of the semantic and assignment domain and the
set of rules defining the application’s data semantic re-
quirements. While a conventional database view defi-
nition defines the application’s structural view of the
database, the ASV contains the complete specification
of the semantic requirements for the application. The
metadaia manager creates and maintains data on the
results from comparisons between the semantic speci-
fications in the ASV and the DMD and deals with the
location of available conversion routines for resolving
semantic conflicts (Section 5.2.1).

‘I’hc rules shown in Figure 3 will act as an example
DMD. Other attributes in the example relation (Fig-
ure 1) are primitive and thus do not require semantic
assignment rules. An example of an ASV is shown in
Figure 5. The specification contains two rules. The
antecedents of these rules define the domain for val-

Barcelona, September, 1991
135

domain(Instrument-Type) = <equity, future>.
domain(Exchange) = <nyse, madrid>.
domain(Currency) = <US dollars, French francs, pesetas>.
domain(Trade-PriceStatus) = <latest-trade-price, latestnominal-price>.

Figure 2: Examples of Primitive Attributes and their Domains

aaaign(Tkle-Price) = <Instrument-Type, Exchange>
sem(TradePrice) = < Trade-Price-Status, Currency>

1. Instrument-Type = “equity” and Exchange = “madrid” -+
Trade-PriceStatus := “latest-nominal-price” and Currency := ‘peaetas”

2. Instrument-Type = “equity” and Exchange = “nyse” -+
Trade-Price-Status := “late&trade-price” and Currency := “US dollars”

3. Instrument-Type = “future” -,
Trade-Price-Status := “latest-closing-price” and Currency := “US dollars”

Figure 3: Database Semantic Rules for Trade&ice

9 DATABASE METADATA DICTIONARY fDMDl
I

(METADATA MANAGER ‘I

APPLGATICN SEMANTIC VIEW (ASV)

Figure 4: Systems Architecture Using Metadata

ues of the Trade-Price attribute based on values of the
assignment domain. The first rule limits t,hc domain
of interest to equities traded on the Madrid Stock Ex-
change. Trade-Price values with this assignment do-
main are to be reported as the latest nominal price in
pesetas. The second rule limits the domain of interest
to instruments traded on the nyse where Trade-Price
values are to be reported as the latest’ trade price in
US dollars. Thus the total domain of int,erest of the
application is limited to any fvlure or eqzlily traded on
the nyse or any equity traded on the madrid exchange.

To decide whether a database can supply meaningful
data to an application we must determine if the rules
in the DMD guarantee the data semantics specified
by the rules in the ASV. In Section 5.2 we describe
methods for comparing these rule sets. The rrsu1t.s
of these comparisons are used in query processing to
test for semantically meaningful solutions. Before we
present these methods we describe restrictions on the
DMD and ASV that allow for comparison of these rule
sets.

Proceedings of the 17th International
Conference on Very Large Data Bases

5.1 Restrictions on
Representation

the Semantic

So that data semantics can be compared between sys-
tems (e.g., an application and a database) they must
share some common language [ML90]. Data standard-
ization is one method of imposing common language
requirements but this method is intrusive on the indi-
vidual systems and may not be possible if the systems
are controlled by other parties. We do not need to
impose standards on all of the data but rather use the
primitive attributes that are already shared between
these systems to define a base vocabulary (i.e., termi-
nology limited to a unique interpretation in domain
of discourse). Any system in the enterprise can use
this base vocabulary to develop rules describing the
meaning of semantically definable attributes. Termi-
nology outside of this common language must either
be converted to the common language or remain non-
comparable, making semantic reconciliation undecid-
able.

The question remains how practical is it to define
such a language and to require that metadata defini-
tions adhere to specifications of the language. A first
reaction to this question might be that this is no differ-
ent than data standardization. It is intrusive to expect
a data source to make or changes its data to comply to
a specific external organization’s standards especially
when that data may be used by any number of dif-
ferent external organizations. On the other hand, it
is non-intrusive on the data operations to require that
the source supply metadata based on a shared vocab-
ulary without having to change the underlying data.
Met,hods can be established that permit the evolution
of the shared vocabulary as required by changes in
data semantics.

In addition to sharing primitive attributes, we re-
quire that the assignment and semantic domain of an
attribute defined in the ASV be a subset of the as-

136
Barcelona, September, 1991

aasign(Trade-Price) = <Instrument, Instrument-Type, Exchange>
sem(Trade-Price) = < Trade-PriceStatus, Currency>

1. Instrument-Type = “equity” and Exchange = “madrid” 4
Trade-PriceStatus := ‘latest-nominal-price’ and Currency := ‘pesetas’

2. Exchange = “nyse” 4
Trade-PriceStatus := “latest-trade-price” and Currency := “US dollars”

Figure 5: Application Semantic View (ASV) for Trade-Price

signment and semantic domain for that attribute in
the DMD. In the case of our examples (Figures 3 and
5), the assignment and semantic domains of the ASV
must be subsets of the assignment and semantic do-
mains of the Trade&ice attribute as defined in DMD.
As described in the next section, this requirement fa-
cilitates the comparison of the procedures for seman-
tic assignment in the ASV and the DMD. Present re-
search efforts are considering less restricted relation-
ships between the semantic and assignment domains
of the ASV and the DMD.

5.2 Comparing Application and Database
Semantic Specifications

Prior to the application requesting data from the
database the metadata manager must compare the
rules in the ASV to those for the same attribute in
the DMD. The purpose of these comparisons is to de-
termine for each attribute requested by the applica-
tion whether the database can deliver meaningful data.
Later, in Section 5.3.2 we examine how these compar-
isons can be used to determine additional constraints
that guarantee correctness.

The rule set comparison begins by selecting a single
attribute whose semantics are specified in the ASV.
For each rule in the ASV that restricts the semantic
domain of that attribute we need to det,ermine those
rules in the DMD with matching antecedents. The ba-
sic types of comparisons between rule antecedents are
defined in Figure 6. The type of comparison is deter-
mined by the relationship between constraints in the
antecedent of the rules. There are only four possible
comparisons types based on this relationship: subset,
supersei, overlaps, and disjoint As an example, two
rules are said to overlap if there is at least. one common
attribute in the antecedents of the rules and t,here are
other attributes that are unique to each of the rules.
A match occurs whenever constraints for the overlap-
ping attributes are related through implication. There
is a match if the constraint for the ASV rule implies
the constraint for the DMD rule (e.g., salary > 50K
implies salary >30K). In this csse the DMD rule is
more general but still applies to the applicat,ion se-
mantic view of the data. Alternatively, t,hc constraint
in the DMD rule may imply the constraint in the ASV
rule. There is still a match because the DMD rule
specifies the semantic assignment for a portion of the

assignment domain defined in the ASV rule.
These methods for comparing the rule sets assume

that the rules in the DMD may have incomplete an-
tecedent restrictions. For example, if a rule in the
DMD is:

Instrument-Type = “equity” -+
Trade-Price-Status := ‘latestmominaI,price”
and Currency := “pesetas”

it would match the first and second rule in the ASV
in Figure 5. It matches the first rule because the
rule contains a constraint on the Instrument-Type at-
tribute. It matches the second rule even though there
are no common attributes in the antecedent. This is
because the constraint in the DMD does not exclude
constraints on other attributes in the aasignment do-
main. In this example, the database would provide
data for equities traded on the nyse with the semantic
assignment defined in this rule even though this DMD
rule only restricts the Instrument- Type attribute.

If a rule in the DMD matches the rule in the ASV
then the semantic restrictions in the consequent of
these rules must be compared to determine if they
are semantically equivalenl; where semantic equiva-
lence for each attribute is defined by the application.
Procedures for defining semantic equivalence will be
described in Section 5.2.1.

Table 1 contains the results from the comparison
of the ASV shown in Figure 5 and the DMD shown
in Figure 3. As an example from this table, the first
rule in the ASV matches the first rule in the DMD
according to the subset type of comparison shown in
Figure 6. The antecedent constraints from the ASV
and the DMD are shown along with the assignments to
the semantic domains. The methods used to determine
semantic equivalence values for Table 1 are described
in the next section.

5.2.1 Semantic Equivalence
The definition of semantic equivalence is left to the

application developer and is included as part of the
ASV. For each non-primitive attribute the application
developer must define the qualifications for semantic
equivalence over assignments to the semantic domain.
A simple example is shown in Figure 7 where the appli-
cation requires that, for the Trade-Price attribute, as-

Proceedings of the 17th International
Conference on Very Large Data Bases

137 Barcelona, September, 1991

ASV Rule Number 1 1 2
DMD Rule Number I 1 I 2 I 3
Comparison Type 2 1 1
Application Conetraint Instrument-Type = “equity” F ,xc ange = h u nyse n Exchange = “nyse”

Exchange = “madrid”
Database Constramt Instrument-Type = “equity” Instrument-Type = “equity” Instrument-Type = “future”

Exchange = ‘madrid” Exchange = “nyse” Exchange = “nyse”
ASV Semantic Currency = Upesetas” Currency = “US dollars” Currency = “US dollars”
Assignment Trade-Price-Status = Trade-PriceStatus = Trade-PriceStatus =

“latest-trade-price” ‘latestmominal-price” latestfradeprice”
DMD Semantic Currency = “pesetas” Currency = “US dollars” Currency = “US dollars”
Assignment Trade-Price-Status = TradePriceStatus = Trade-PriceStatus =

“latest-trade-price” “late&nominal-price” 9atesLclosing-price”
Semantic Equivalence Yes Yes No

Table 1: Comparisons of ASV and DMD for the Trade Price Attribute

For attribute T with Xirassign(T) and ~~sem(T)
1. Antecedent(ASV) subset Antecedent(DMD)

ASV : 4(X1 j -+ C,(Y,)
DMD : C2(X1) A c,(x,) - c,(x)

(a) if C1(X1) + C2(X1) then there is a match
(b) if C2(X1) -+ Cl(X1) then there is a match
(c) otherwise no match

2. Antecedent(ASV) superset Antecedent(DMD)

ASV : C,(X,) ACT -+ C4(Y1)
DMD : C2(X1) -+ C,(Y1)

(a) if C1(X1) --) C2(X1) then there is a match
(b) if C2(X1) + C1(X1) then there is a match
(c) otherwise no match

3. Antecedent(ASV) overlaps Antecedent(DMD)

ASV : C,(Xl) A c3(x2) - ‘%(x)
DMD : C2(X,) A C4(X3) - Cs(Y,)

(a) if C,(X,) + C&(X1) then there is a match
(b) if C2(X1) -+ C,(X,) then there is a match
(c) otherwise no match

4. Antecedent(ASV) disjoint Antecedent(DMD)

ASV : C1(X1) A c2(x2) - C3(X)

DMD : Cr(X,) + C3(Y1)
then there is a match

Figure 6: Four Types of Comparisons

signments to the semantic domain are equivalent. only
if the values for the database (i.e., subscript, D) and
those in the application (i.e., subscript A) are identi-
cal strings. According to this definition the first and
second comparisons in Table 1 are equivalent while the
last is not because la2esLlrade-price is not the same
string as the latesLclosing_price.

There are a number of advantages in allowing the
application to define semantic equality. First, not all
applications will have the same requirements for data
semantics. For example, an application may require

Proceedings of the 17th International
Conference on Very Large Data Bases

semD = < Trade-PriceStatusD, CurrencyD >
Bern,4 = < TradePriceStatusA, CurrencyA >

sem(Trade-Priceo) z sem(Trade-PriceA) if
string-equiualent(Tradel%iceStatusD,

Trade-PriceStatusA)
string-equiualent(Currencyo, Currency A)

Figure 7: Semantic Equivalence for lIadePrice

trade prices whose semantics are string-equivalent for
both Currency and Trade-Price-Status while another
application may have less strict requirements that al-
low the latest closing price in lieu of the latest trade
price. Secondly, an application specification for se-
mantic equivalence may reference routines to convert
data semantics, such as to convert one currency to
another. Then the application can define the seman-
tic equivalence of values of currency in terms of the
capabilities of this function to convert currency se-
mantics. For example, if we replace string-equivalence
with convert-currency in the specification for Currency
equivalence in Figure 7 then, the equivalence of curren-
cies is defined by this boolean function. The conueti-
currency function determines whether there is some
other function that can convert currency values pro-
vided by the database into those that are meaningful
to the application (i.e. as specified in the DMD and
ASV).

Knowing that there is a conversion function may not
assure that at query execution time the conversion can
be performed (e.g., conversion rates for certain curren-
cies may not be available at all times). The evaluation
of semantic equivalence may have to be delayed if con-
version routines need to be executed at query run-time.
In the remainder of the examples we assume that se-
mantic equivalence can be evaluated when comparing
the rule sets. In Section 5.3.4 we consider the changes
in query processing methods when the evaluation of
semantic equivalence must be done at query execution
time.

138
Barcelona. September, 1991

5.2.2 Results from Comparisons of
Application and Database Metadata

Prior to query execution time, we can use the result,s
from the comparison of the ASV and DMD rule sets
along with the definition of semantic equivalence to
determine, for a given attribute, whether the database
can supply data with the correct semantics. As a re-
sult of the comparisons the metadata manager can
determine the semantic s2alus for each non-primitive
attribute, i.e., whether data for that attribute will
never, always or may be meaningful to an appli-
cation. In this section we present an example for each
of the three possible results.

First, consider an ASV with the following single rule
for the semantics of Trade-Price:

Instrument-Type = “future” and Exchange = “nyse” -+
Trade-PriceStatus := “latest-trade-price”
and Currency := “US dollars”

and the same semantic and assignment domains de-
fined in Figure 5 and the definit,ion of semant,ic equiv-
alence shown in Figure 7. Under these specifications
the database can never supply a meaningful non-null
solution.’ In this example, the database provides the
la2esl closing price while the application requires the
latest trade price (i.e., the last column of Table 1).
Similarly, if there are no matching rules for a given at-
tribute then it can only be assumed t,hat the database
can never provided meaningful data.

Secondly, consider an ASV with the single rule:

Instrument-Type = “equity”
and Exchange = “madrid” +

Trade-PriceStatus := ‘latest-nominal-price”
and Currency := “pesetas=

and the definition of semantic equivalence in Figure 7.
In this example the database can always supply mean-
ingful data for the Trade-Price attribute. There is only
a single matching rule in the DMD and the semantic
assignment in that rule is equivalent to the semantic
assignment defined in the ASV (i.e., for this example
the table of comparison would be only the first col-
umn in Table 1). The correct semantics are always
provided because any query from the application will
refer to data with the meaning defined in the ASV and
this meaning is guaranteed by the database.

Finally, for the ASV shown in Figure 5 and the defi-
nition of semantic equivalence in Figure 7 the dat.abase
may be able to provide data with the correct scman-
tics. As shown in Table 1, the first rule in the ASV
does not conflict (i.e., semantic equivalence holds) with
the matching rule in the DMD. The second rule in
the ASV matches two rules in the DMD and con-

’ For simplicity, we will only consider meaningful non-
null solutions. In [SM91] we describe the conditions where
a null solution is meaningful in the presence of semantic
conflicts.

proceedings of the 17th International
Conference on Very Large Data Bases

flicts with the second of these rules. The conflict oc-
curs because for futures traded on the nyse the ap-
plication expects the trade price to be reported as
the latestArade_price while the database provides the
latest-closing-price. Because of this semantic conflict,
any application query that refers to Trade&ice data
on futures will return semantically incorrect data.

In the case where the database may deliver the cor-
rect data, an application query could be modified to
eliminate any possible conflict. In this example, the
application query would have to be modified so that
the Trade-Price for futures could not be included in
the solution. As a result the application might need
to be notified because the additional constraint limits
the scope of the original query. In Section 5.3.2 we
describe the query processing strategies for restricting
application queries to guarantee semantic correctness.

The metadata management system must create and
maintain Table 1 which describes the results of com-
parisons between rules in the ASV and DMD. These
tables are created prior to the submission of applica-
tion queries. As shown in Section 5.3 these tables may
be modified by the introduction of constraints in an
application query. As described in Section 5.3.2, the
metadata manager will have to reevaluate these com-
parisons as changes are made in either the application
or the database semantics. In the next section we ex-
amine query processing strategies, baaed on the ASV
and DMD comparisons, for determining when the ap-
plication will receive meaningful data.

5.3 Query Processing and Semantic
Reconciliation

In this section we examine the use of metadata in
semantic reconciliation for application query process-
ing. Initially, we examine the stages of query pro-
cessing where the results of comparisons between the
ASV and the DMD are used to determine whether the
database can supply a meaningful solution to an ap-
plication query. Following this we describe a different
approach to query processing which uses the results of
comparisons between the ASV and the DMD to define
modifications to the application query such that the
application is guaranteed to receive a meaningful but
possibly partial solution to a query.

5.3.1 Query Processing: Stages for Detecting
Semantic Conflicts

Prior to the submission of an application query the
metadata manager has created tables similar to Ta-
ble 1 for each non-primitive attribute in the ASV.
During the compile-time stage, the query processor
must consider each attribute in the query (i.e., any
part of the projection list of attributes and any at-
tribute constrained in the query) and determine if the
database might (i.e., may or always) supply the cor-
rect semantics. For example, there may be attributes
in the database that will never be meaningful (i.e.,
eit,her all matching rules result in semantic conflict or
there are no matching rules). For a query that contains

139
Barcelona. September, 1991

such an attribute, the outcome from query processing
with semantic reconciliation is:

Query Resolution by Semantic Conflict at Compile-time -
there is a semantic conAict between the database and the
application for at least one attribute in the query. The
conflict can be determined prior to query execution based
on the results of comparisons between the ASV and the
DMD aa determined prior to query submission.

and as a result the query is aborted. The application
can be notified that an unresolvable semantic conflict
was identified prior to execution (i.e., users could ac-
tually receive detailed descriptions of the conflict so as
to permit the user to work towards a resolution).

Still prior to query execution time the constraints
in the query can be used to remove comparisons that
are no longer applicable because the constraints in the
query invalidate the compa.ison. Determining applica-
ble rules is equivalent to adding the constraints in the
query to the antecedent of each rule in the ASV. If a
contradiction occurs between these added constraints
and the constraints in the antecedent of a rule in the
ASV then the rule no longer applies. The remaining
modified rules are matched against the DMD accord-
ing to the methods for comparison defined in Figure A.
As an example consider the impact of query Q1:

select Trade&ice (91)
where Instrument-Type = “future”

on the comparisons in Table 1. The constraint on In-
strument-Type is in contradiction with the first rule
in the ASV (i.e., “future” # “equity”). The database
will not be required to supply any Trade-Price data on
equities and this test for semantic equivalence is irrel-
evant. The second rule is still applicable but only for
Instrument-Type = “future”. With this restriction the
only matching rule is the last one in the DMD. There
is a semantic conflict in this portion of the applicnt,ion
view. As a result, the database can never provide
data to this query. For such a query the outcome from
query processing with semantic reconciliation is:

Query Resolution by Semantic Conflict Compile-time
through Reduction - after reducing the number of appli-
cable comparisons there is at least one attribute that, can
never provide data with the correct semantics. Again, this
conflict can be determined prior to query execution time.

Also prior to query execution time it can be deter-
mined that an application query will always be pro-
vided with meaningful data. Query modification must
be used to include the constraints specified in the ap-
plicable rules in the ASV. Again, the comparisons be-
tween the ASV and DMD may change with the con-
sideration of constraints in the query. For example,
consider query 92:

Proceedings of the. 17th International
Conference on Very Large Data Bases

select nade-Price (92)
where Instrument-Name = “equity”

and the comparisons in Table 1. The constraint on
Instrument-Type is in contradiction with the condi-
tions of the match between the second rule in the ASV
and the third rule in the DMD (i.e., “future” # “eq-
uity”). The database will not be required to supply
any Trade-Price data on futures. This eliminates any
possible semantic conflicts for Trade-Price. For this
query, there are no conflicts and the database can al-
ways provide the correct semantics for the Trade-Price
attribute.

Finally, there is the case where no conflicts occur at
compile-time but there is at least one attribute in the
query that may provide the correct semantics. Again,
the number of qualifying comparisons is reduced to
account for constraints in the query. There may still
remain at least one attribute for which there is a com-
parison between the DMD and the ASV where there
is both semantic agreement and semantic conflict. For
example, consider query 93,

select Trade-Price (93)
where Instrument-Name = “IBM”

and the comparisons in Table 1. All of the compar-
isons in Table 1 are still valid because there is no con-
flict (i.e., known prior to run-time) between the con-
straint in the query and those in the antecedent of the
rules in the ASV or DMD. However, the solution to
this query may not be meaningful because there will
be a semantic conflict if the data retrieved is a fulurc
traded on the nyse (i.e., “latest-trade-price” # “lat-
est-closing-price”). Query execution must be followed
by a process that checks for conflicting data. In this
example, any data where the instrument is a fu2urc
would be in conflict. Query modification is used to
add constraints (i.e., from the antecedent of rules in
the ASV) and to add any attributes to the projection
list that are required for checking for semantic agree-
ment. The modified query is as follows:

select Trade&ice,
Instrument-Type, Exchange

(44)

where Instrument-Name = “IBM’
and ((Instrument-Type = “equity”
and Exchange = “madrid”)
or (Exchange = “nyse”)

At this stage of processing constraints are added
to the query in a way similar to conventional query
processing using view definitions. Rather than con-
straints being provided by the conventional view defi-
nition they are provided by the ASV based on the re-
sults of comparisons with the DMD. The query proces-
sor must: (1) identify which constraints can be added
to the query without changing the semantics of the
query, (2) determine which additional constraints must

140
Barcelona. September, 1991

be met to guarantee semantic correctness, and (3) de-
termine which attributes must be added to the projec-
tion list to facilitate checking for semantic correctness.
The procedures for identifying the correct constraints
are determine by the comparison type. For example,
in Figure 8 we show the requirements for the subset
comparison type.

As an example, consider the application query Qs
and the modified query 94. The first rule in the ASV
(Figure 5) matches the first rule in the DMD (Figure 3)
through the subset comparison type. This adds the
constraint on Instrument-Type and Exchange. The
second rule in the ASV matches the second and third
rules in the DMD. The first comparisons is an equiva-
lence and adds to the query the constraint, Exchange
= “nyse”. The second comparison results in a conflict
so the new restriction defined in Figure 8 must be
satisfied by any acceptable solution. This new restric-
tion:

noqExchange = %yse”and Instrument-Type = “future”)

must be added to the list of constraints that are used
to test for semantic conflicts at run-time. So that the
new restriction can be tested at run-time the Instru-
ment-Type and Exchange attributes must be added to
the query’s projection list.2 Should any of these con-
straints be violated then semantic reconciliation leads
to:
Query Resolution by Semantic Conflict at Run-time - at
query execution time the data retrieved from the database
is used to determine that there is a semantic conflict.

If there are no conflicts, the solution to the query is
sent to the application with the values for the addi-
tional attributes on the projection list removed.

The logic for query modification is as follows. Each
comparison between a rule in the ASV and a rule in
the DMD can contribute at most one constraint (i.e.,
may be the conjunction of restrictions on different, at,-
tributes) to the query. For a rule in the ASV with
multiple matching rules in the DMD, each one that is
an equivalence forms a disjunclion of constraints for
that ASV rule. For each non-primitive attribute, the
constraints determined by each rule in the ASV form a
disjunction of constraints (i.e., each rule represent.s an
acceptable semantic interpretation). Finally, the con-
straints for each non-primitive attribute form the con-
junclion of semantic restrictions that must be added to
the query. At the same time, for all semantic conflicts,
the negation of the conjunction of the constraints de-
fined in Figure 8 are placed on the list of constraints
that must be satisfied by any acceptable query solu-
tion.

For query 94, a conflict would occur if the solu-
tion included data on a futures instrument traded on
the nyse. In actual execution query Q4 would locate

‘Optimizations to these query modification procedures
exist but are not considered in this paper.

Proceedings of the 17th International
Conference on Very Large Data Bases

a single record in sample relation (Figure 1). Query
processing using semantic reconciliation will correctly
determine that IBM is an equiiy traded on the nyse
and return to the application the trade price reported
as the latest irude price in US dollars.

A query that is not resolved by semantic conflict
can be executed and the solution will be semantically
meaningful to the application. This method of query
processing assumes that an application does not per-
mit query modification that changes the meaning of
the original query. In the next section we describe
query processing techniques that can be used to mod-
ify a user’s query and thus guarantee semantically
meaningful results.

5.3.2 Query Processing: Adding Restrictions
to Guarantee Correctness

The approach to query processing described in this
section is identical to the previous section except that
constraints may be added to the query to guarantee
semantically meaningful partial solutions. An appli-
cation may be designed to accept partial solutions to
queries in exchange for semantic correctness. As de-
scribed in this section, queries that are not resolved
by semantic conflict at compile-time are candidates
for query modification. The constraints added to the
query eliminate the need to test the solution that is
returned by the database.

As an example of the use of constraints to pre
vide a correct partial solution, consider query Qs from
above. Under normal operations any violation of the
constraint

not(Exchange = “nyse”and Instrument-Type = Ufuture”)

would lead to query resolution by semantic conflict
at run-time. Rather than reporting that the results
are not meaningful the query processor can simply re-
move any incorrect solutions. For query Qs and the
comparisons in Table 1 the modified query Qs shown
in Figure 9 would include restrictions that remove any
tuples that are in conflict.

As in Section 5.3.1, the methods for adding con-
straints to the query are determined by the comparison
type. The constraints used in query modification for
the subset comparison type are shown in Figure 10. For
example, consider query 93 and the modified query
Qs. The second rule in the ASV (Figure 5) matches
with two rules in the DMD (Figure 3). The first is
an equivalence so according to the Figure 10 the con-
straint:

(Exchange = “nyse” and Instrument-Type = ‘equity”)

is added to the query. The second match results in a
semantic conflict and the constraint:

not(Exchange = %yse”and Instrument-Type = Yfuture”)

141
Barcelona, September. 1991

For attribute T with X,cassign(Z’) and Y,csem(T)

Antecedent(ASV) is a subset of Antecedent(DMD)
ASV : C,(X,) -* C,(x)
DMD : G(X,) A C3(Xz) * C,(Yi)

- if semantic equivalence holds then
1. if C,(Xi) - &(X1) then add C,(Xl)
2. if Cs(Xi) -+ Ci(X,) then add CZ(XI)
- if a semantic conflict occurs then

1. if C,(X,) + C&(X,) then add the new restriction not(Cl(Xl) A Cs(Xz))
2. if Cs(Xl) -+ Ci(X,) then add the new restriction not(Cs(Xl) A Cs(Xs))

Figure 8: Constraints for Subset Comparison Type

select Trade-Price (95)
where Instrument-Name = “IBM”
and (Instrument-Type = “equity” and Exchange = “madrid”)
or ((Exchange = “nyse” and Instrument-Type = ‘(equity”)
and not(Exchange = “nyse” and (Instrument-Type = “future”))

Figure 9: Query Modified to Eliminate Semantic Conflicts

must be added to the query. The negation of the con-
straint found in the DMD is added to the query to limit
the result to correct data. The addition of this con-
straint changes the meaning of the application query
by reducing the scope of the original query. The result
may be a partial solution to the original query but it is
guaranteed to be a semantically meaningful solution.
As for changes to the original query, the user can be
informed of the added restrictions, the reasons for the
added restrictions, and a list of the records that were
eliminated as a result of these restrictions.

The logic for query modification is identical to that
defined in the previous section except for what is done
with the rules that are in conflict. In the previous sec-
tion, constraints from the conflicting rules were used
in testing the solution for semantic conflicts. Here, the
the negation of the DMD constraints are added to the
query in conjunclion with any ot,her const.raints that
might be added from the comparison of a single rule
in the ASV with possibly multiple rules in the DMD.
The addition of the negated constraints assures that
query solution will be meaningful.

5.3.3 Query Resolution by Semantic
Restriction

During the process of query modification constraints
are added to the query and the query statement may
be reduced to the point where t,he only acceptable so-
lution to the query appears from logical reduction of
the constraint list. As an example, consider query Qs:

Proceedings of the 17th International
Chference on Very Large Data Bases

select Instrument-Type
where Trade&ice > 50.00
and Exchange = “madrid”

(96)

and the results of comparisons in Table 1. The con-
straints in the table are added to the query to produce
the modified query &r.

select Instrument-Type
where Trade-Price > 50.00
and Exchange = “madrid”
and (Exchange = “madrid”
and Instrument-Type = “equity”)

(Q7)

The query can be logically reduced to:

Instrument,Type = “equity”.

Unfortunately, this methods of query resolution may
not produce the same answer as executing the query.
Because there may be no data for equities with a trade
price greater than 50.00 on the Madrid Stock Exchange
(i.e., the query could return a null result). A similar
problem was found in query reduction using semantic
query optimization [CFM84,HZSO,Kin81,SSSSl]. Dur-
ing semantic query optimization integrity constraints
may be added or removed from a query and a logical
reduction of the query may lead to the only possi-
ble non-null solution to the query. But is was shown
in (SSSSI] that the null solution was feasible and there-
fore some query execution is required. Execution of

142 Barcelona, September, 1991

For attribute T with Xirassign(T) and Y,csem(T)

Antecedent(ASV) is a subset of Antecedent(DMD)
ASV : C,(X,) - C,(K)
DMD : C,(X,) A G(Xz) - G(YI)

- if semantic equivalence holds then

1. if C,(X,) + &(X1) then add C,(Xl) h C3(Xz)
2. if &(X1) -+ C,(X,) then add &(X1) A c3(x2)

- if a semantic conflict occurs then
1. if C,(X,) -+ Cz(X,) then add the new restriction not(G(Xl) A&(X,))
2. if C,(X,) -+ C,(X,) then add the new restriction not(Cs(X1) A Cz(Xz))

Figure 10: Constraints for Subset Comparison Type - Partial Solutions

these queries can be simplified because as soon as a
single solution is found in the database then the result
determined by semantic restriction will he correct..

5.3.4 Query Processing: Semantic
Equivalence

Checking for semantic equivalence includes the eval-
uation of boolean functions that define the data se-
mantics conversion capabilities. These capabilities
may have to be tested at run-time thus delaying the
evaluation of semantic equivalence. For example, de-
termining that US dollars can be converted t,o pesetas
might depend on the availability of exchange rat.e val-
ues being available for a certain date and time. 1Jnder
these circumstances, should the necessary exchange
rate not be available at run-time then the test for se-
mantic equivalence would fail.

For run-time semantic equivalence testing, the meta-
data manager must reeva1uat.e the comparisons be-
tween rules in the ASV and the DMD based on this
run-time information and the query processor must
consider this new information during semantic recon-
ciliation. Modifications to the query processing rou-
tines to include run-time semantic equivalence must
define a correct execution order for semantic equiva-
lence testing and methods for semantic reconciliat,iorl.

6 Semantic Reconciliation and
Changing Database Semantics

It is important that the methods for determining se-
mantic agreement among systems allow for changes
in data semantics. Rules defining t.he semantics of the
database and the application are likely t,o change many
times during the life-cycle of the source-receiver rela-
tionship. Most databases are not stat,ic and just as
the structure may change so may the meaning of the
data. In fact, our experience leads us to believe that
changes in the semantics of data are more common
than changes in structure.

The methods presented for query processing and SC-
mantic reconciliation can be used in such a dynamic
environment. As changes are made in the ASV or

Proceedings of the 17th International
Conference on Very Large Data Bases

DMD rules (i.e., corresponding to changes in the se-
mantics of the database or application) the metadata
manager must reevaluate any comparisons that are ef-
fected (i.e., if either the ASV or DMD rule used in
the comparison is modified) by these changes. Ad-
ditionally, rules added to the ASV or DMD must be
evaluated according to the methods described in Sec-
tion 5.2. The metadata manager can then determine
any changes in semantic status of the attributes in
the ASV. For example, an attribute that may pro-
vide meaningful data might be changed to one that
always provides meaningful data when the rules in
the DMD defining the semantics of that attribute are
modified. For the comparisons in Table 1, should the
database decide to report IatesLhude-price for futures
rather than ldesLclosing-price then the semantic sta-
tus of the Trade-Price attribute would change from
may to always. The methods for semantic reconcili-
ation permit changes to the semantics at the database
or application as long BS those changes remain inside
of restrictions for the semantic representation model.

7 Conclusions and Future Research

In this paper we described methods for using meta-
data to automatically identify and resolve semantic
conflicts between a data source and a receiver. When
data semantics change at the source or data seman-
tic requirements change at the receiver these methods
can be used to determine if the source can continue to
supply meaningful data.

We described a model for representing information
on data semantics and provide an architecture for a
system that uses this representation for semantic rec-
onciliation. Using metadata, we show how an appli-
cation can specify its requirements for data semantics
and application specific definitions for semantic equiv-
alence. Applications can reference functions, defined
in the ASV or DMD, that can be used to automatically
convert data semantics, makinj: it possible for the ap-
plication to receive meaningful data from the source
when such data could not normally be provided.

We presented methods for comparing rules that de-
scribe the application’s semantic view and the database

143 Barcelona, September, 1991

meiadata definition. The metadata manager main-
tains the results of these comparisons for use in query
processing. Prior to query presentation the metadata
manager can determine the semantic status of each
non-primitive attribute. The constraints in a query are
used to refine the comparisons between the rule sets
in the ASV and DMD. Semantic reconciliation may
result in query resolution by semantic conflict prior to
query execution. If no conflicts occur at compile-time
then the query can be executed and the solution tested
for semantic conflicts, At any stage of this process the
user may obtain information describing any conflict
that has occurred. Alternatively, query modification
can be used to guarantee semantically meaningful par-
tial solutions.

Future research will examine a more general rep-
resentation [SM89b] for data semantics that permit
the application and the database to more freely define
data semantics. This research will include a better
understanding of com:non language requirements and
the relationship between the semantic requirement,s
for applications and database semantic specifications.
The present representation model and methods ad-
dress simple data semantics, complex data semantics
(e.g., derivation formula) will require additional data
structures and algorithms if they are to be considered
in semantic reconciliation.

The need to represent and manipulate data seman-
tics or metadata is particularly important in multi-
database systems where data is taken from multiple
disparate sources. Methods for semantic reconcilia-
tion defined over the source-receiver model can also
be applied to these systems. Integration of multi-
ple systems may require the definition of a global
schema representing the composition of the compo-
nent database schema.9 [DK86,LR82,MSW9O,She87,
SMG91 ,Te87]. Typically, schema integration nlgo-
rithms have been developed for component databases
with static structure and semantics [BLN86,CRE87,
SG89]. However, to allow for greater local database
autonomy, schema integration must be considered a
dynamic problem. The global schema must be able
to evolve to reflect changes in the struct’ure [BMWSS,
McL88] and meaning of the underlying databases.
If an application is affected by these changes, it
must be alerted. Semantic reconciliation will be re-
quired between an application and a global schema
and between the component schemas and the global
schema [SM89a]. Similarly, in federated systems
[HM85,SL90] metadata can be used to describe the
import and export semantics. Methods defined in this
paper can be used to determine the semantic relation-
ship between components in the federation. Future re-
search will examine the implementation of these tech-
niques in both source-receiver and multidatabase sys-
tems.

Acknowledgments
The authors would like to thank Sandra Heiler and

Arnie Rosenthal for their helpful reviews of this pa-

per. This work was supported, in part, by Reuters and
the International Financial Services Research Center
at the Massachusetts Institute of Technology.

References
[BLN86]

[RM W86]

[CFM84]

1~~~871

[DK86]

[GK88]

[GSdB88]

(HM85]

[HZ801

[Kin811

[Law881

[LR82]

(McC82]

C. Batini, M. Lenzerini, and S. Navathe.
A comparative analysis of methodologies for
database schema integration. ACM Computing
Surveys, 18(4):323-364, 1986.

A. Borgida, T.M. Mitchell, and K. Williamson.
Learning improved integrity constraints and
schemas from exceptions in databases and
knowledge bases. In Michael Brodie and
John Mylopoulos, editors, On Knowledge
Based Management Systems, pages 259-286,
Springer-Verlag, 1986.

U. Chakravarthy, D. Fishman, and J. Minker.
Semantic query optimization in expert systems
and database systems. In Proceedings of the
First Intl. Conference on Expert Database Sya-
terns, pages 326-340, 1984.

B. Czejdo, M. Rusinkiewics, and D. Embley.
An approach to schema integration and query
formulation in federated database systems. In
Proceedings of the Third International Conjer-
ence on Data Engineering, February, 1987.

P. Dwyer and K. Kasravi. A heteroge-
neous distributed database management sys-
tem (DDTS/RAM). In Honeywell Report CSC-
86.7:8216, 1986.

A. Goldfine and P. Konig. A Technical
Overview of the Information Resource Dictio-
nary System (Second Edition). NBSIR 88-8700,
National Bureau of Standards, 1988.

P. Gray, G. Storrs, and J. du Boulay. Knowl-
edge representations for database metadata.
Arlificial Intelligence Review, 2:3-29, 1988.

D Heimbigner and D. McLeod. A federated ar-
chitecture for information management. ACM
Transaction8 on Ofice Information Systems,
3(3), 1985.

M. Hammer and S. Zdonik. Knowledge-based
query processing. In Proceedings 6th VLDB,
pages 137-146, 1980.

J. King. QUIST : A system for semantic query
optimization in relational databases. In Pro-
ceedings 7th VLDB, pages 510-517, 1981.

M. H. Law. Guide to Information Resource Dic-
tionary System Applications: General Concepta
and Strategic Systems Planning. 500.152, Na-
tional Bureau of Standards, 1988.

T. Landers and R. Rosenberg. An overview
of multibase. In Distributed Data Bases,
pages 153-183, North Holland, 1982.

J. McCarthy. Metadata management for large
statistical database. In Proceedinga of the
Eight International Conference on Very Large
Database Systems, pages 470-502, Mexico City,
1982.

Proceedings of the 17th International
Conference. on Very Large Data Bases

144
Barcelona, September, 1991

[McC87]

[McL88]

[ML901

[MSWSO]

[SG89]

[She871

[SL90]

[SM89a]

[SM89b]

[SM91]

[SMGSl]

[SSSSI]

[Te87]

J. McCarthy. Information systems design for [YSDKSO] C. Yu, W. Sun, S. Dao, and D. Keireey. Deter-
material properties data. In Proceedings of the mining relationships among attributea for inter-
First Internotionol Symposium on Computer- operability of multi-database systems. In Poai-
izotion and Networking of Material Property tion Papers: Workshop on Mu&databases and
Databases, American Society for Testing and Semantic Interoperability, November 2-4, 1990.
Materials, Philadelphia, 1987.

D. McLeod. A learning-based approach
to meta-data evolution in object-oriented
databases. In Advances in Object-Oriented
Database Systems, Springer-Verlag Lecture
Notes In Computer Science, 1988.

T. Malone and J. Lee. Partially shared views: a
scheme for communicating among groups that
use different type hierarchies. ACM Tronsoc-
tiona on Information Systems, January 1990.

S. Madnick, M. Siegel, and R. Wang. The Com-
posite Information Systems Laboratory (CISL)
project at MIT. IEEE Doto Engineering - Spe-
cial Issue on Data Connectivity, 13(2):10-15,
June 1990.

A. Sheth and S. Gala. Attribute relation-
ships: an impediment in automating schema in-
tegration. In PO&ion Papers: NSF Workshop
on Heterogeneous Databases, December 11-13,
1989.

A. Sheth. Heterogeneous distributed databases:
Issues in integration, Tutorial on heterogeneous
databases. In Proceedings of the Conference on
Data Engineering, 1987.

A. Sheth and J. Larson. Federated databases:
architectures and integration. ACM Computing
Surveys, September 1990.

M. Siegel and S. Madnick. Maintaining valid
schema integration in evolving heterogeneous
database systems. IEEE Ofice Knowledge En-
gineering - Special Issue on Information Shor-
ing in Heterogeneous Data/Knowledge Bose
Systems, 3(2):9-16, August 1989.

M. Siegel and S. Madnick. Schema Integro-
tion Using Metodoto. Technical Report #3092-
89-MS, Sloan School of Management, Mas-
sachusetts Institute of Technology, (Also NSF
Workshop on Heterogeneous Database Sys-
tems, 1989), 1989.

M. Siegel and S. Madnick. A Metodata Ap-
proach lo Resolving Semantic Conflicts. Tech-
nical Report #3252-91-MSA, Sloan School of
Management, Massachusetts Institute of Tech-
nology, 1991.

M. Siegel, S. Madnick, and A. Gupta. Com-
posite information systems: resolving semantic
heterogeneities. In International Conference on
Information Systems - IClS’91), 1991.

M. Siegel, S. Salveter, and E. Sciore. Auto-
matic rule derivation for semantic query opti-
mization. Accepted for publication to Tronsoc-
tions on Database Systems, 1991.

M. Templeton and et al. Mermaid - a front-
end to distributed heterogeneous databases. In
Proceedings of the IEEE, pages 695-708, 1987.

Proceedings of the 17th International
Conference on Very Large Data Bases

145
Barcelona, September, 1991

