
A Transactional Model for Long-Running Activities 

Umeshwar Dayal Meichun Hsu Rivka Ladin 
Digital Equipment Corp. Digital Equipment Corp. Digital Equipment Corp. 

1 Kendall Square, Bldg 700 800 West El Camino Real 1 Kendall Square, Bldg 700 
Cambridge, MA 02139 Mountain View, CA 94040 Cambridge, MA 02139 

dayal@crl.dec.com hsuQocea.n.dec.com rivkaQcrl.dec.com 

Abstract 

Many computer-supported applications are of long 
duration and consist of multiple steps that are exe- 
cuted over possibly heterogeneous servers. Such activ- 
ities have weaker atomicity requirements than trans- 
actions. Previously, we illustrated how to organize the 
execution of such activities using triggers and transac- 
tions. In this paper, we describe an execution model 
in .which activities may consist recursively of steps 
that may be subactivities or transactions. The model 
defines precisely the semantics of activities: commu- 
nication between steps and the failure semantics of 
activities including compensation and exception han- 
dling. The model also supports querying the status of 
activities. We also propose an implementation of the 
model using recoverable queues for reliably chaining 
the steps according to the semantics of the model. 

1 Introduction 

Many computer-supported applications are of long 
duration, and involve multiple steps of processing. 
The steps may be executed by different servers, per- 
haps on different nodes of a heterogeneous service 
network. For example, a purchase order may be is- 
sued from an inventory clerk, then passed to a man- 
ager who approves it, and then passed to an accoun- 
tant who makes proper accounting entries. Because 
the steps of such an activity access shared, persistent 
data, they need to be synchronized among themselves 
and with the steps of other activities. Also, since the 
applications or the servers may fail, the failure seman- 
tics of activities need to be defined. 

In conventional database management systems, the 
only unit of work supported is the transaction. How- 
ever, activities have weaker concurrency and failure 
atomicity requirements than transactions. Executing 
a long-running activity as a single transaction is not 
strictly necessary in most cases. and can significantly 
delay the execution of short transactions. For exam- 
ple, if purchase order processing is run as a single 
transaction, locks on the inventory records and the 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

budget records may be held for a long time, severely 
limiting database concurrency. When these steps in- 
volve several distributed servers, commit processing is 
also expensive, and the transaction can run only when 
all servers are available simultaneously. Moreover, in 
a heterogeneous system, some of the servers might not 
even be capable of participating in distributed commit 
processing. 

One approach to handling long-running activities, 
therefore, is to have each step run as a transaction; 
thus, an activity consists of multiple transactions. 
In conventional transaction processing systems, the 
control flow among the steps is embedded in appli- 
cation programs (e.g. [McGe78]). There is no eys- 
tern support for handling failures or exceptions across 
the steps of an activity. Several extended transac- 
tion models to support activities have been proposed 
[GS87, KR88, Reut89, GarcSO]. These models sup- 
port declarative specification of control flow, and an 
automatic compensation capability that offers some 
level of failure atomicity for the activity. These mod- 
els ate all based on the conventional “flat” transaction 
model in which transactions are strictly sequential. 

In this paper we describe ATM, a transactional 
model of activities that is based on an extended nested 
transaction model that we introduced in [HLM88, 
Chak89). Like the original nested transaction model 
of [Lisk85, Moss81], our extended model is especially 
suitable for distributed systems because it supports 
intra-transaction parallelism by allowing a transac- 
tion to spawn nested lransaclions that execute con- 
currently. Bowever, in the original nested transac- 
tion model, all the nested transactions are immediate 
in that they can be scheduled for execution as soon 
as they are spawned. Our extended model provides 
greater flexibility in specifying the scope of execution 
of a nested transaction: de/erred nested transactions 
are executed at the end of a transaction; and de- 
coupled nested transactions are executed concurrently 
with the spawning transaction. 

Previously, we showed how to use this generalized 
transaction model and rules to organize and control 
long-running activities [DHLSO]. Each step of an ac- 
tivity was modelled by a transaction. The control flow 

113 
Barcelona, September, 1991 



among the steps was expressed implicitly by rules. 
Thus, to start a step S2 after another step Sl, we 
would write a rule that spawned a decoupled nested 
transaction to execute S2. The rule would be trig- 
gered either by Sl signalling an event or by the rule 
system detecting that some specified event had oc- 
curred in the database. Thus, in that model. an activ- 
ity tacitly consisted of a single top transaction and all 
of the nested transactions (including decoupled trans- 
actions) spawned from it. We argued that the use of 
rules allowed the control flow to be dynamically mod- 
ified based on the database state or the history of 
events that had occurred. Activities. thus, were not. a 
first class concept in the model. For instance, activi- 
ties could not be nested within other activities. The 
model did not include mechanisms for compensation 
or exception handling. Instead, rules were written to 
invoke alternate actions when exceptional conditions 
were detected. 

In this paper, we develop ATM, a transactional ac- 
tivity model in which activities are treated explicitly 
as execution units in their own right. An activity spec- 
ifies a computation structure that may consist recur- 
sively of other (sub)activities or of (top) transactions. 
(These transactions may contain immediate, deferred, 
and decoupled nested transactions.) 

Control flow and data flow between the steps of an 
activity may be specified statically in the activity’s 
scrip!, or may be dynamically modified through the 
execution of rules triggered by events that occur as 
the activity progresses. While rules are not strictly 
necessary, they are still useful for checking constraints, 
triggering additional tasks, or modifying the flow in 
response to unanticipated conditions. We believe that 
scripts and rules provide a powerful combination of 
mechanisms for building activities, whose semantics 
are described by ATM. 

The model defines precisely the semantics of activi- 
ties, including compensation and exception handling. 
Upon failure, we allow activities to be aborted (com- 
mitted steps are compensated; e.g., if the purchase 
order processing activity fails after the accounting 
step has already debited the account, a compensating 
step is to credit the account) or to handle the fail- 
ure exception by executing an alternative step. Our 
model allows an activity to include steps that can- 
not be undone or compensated; we call these crzrical 
steps. Typically, these are steps that have external 
effects on the real world (e.g., mailing a cheque, firing 
a missile) and it is not desirable to allow their effects 
to become visible before the activity commits. An ac- 
tivity which includes critical steps is different from a 
transaction because some of this act,ivity’s steps may 
be non-critical, while all subtransactions of a transac- 
tion must be critical. 

Additional features supported by the activity 
model are communication via parameter passing 
among the steps of an activity; and querying the st.a- 
tus of an activity (i.e., whether its subactivities and 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

transaction steps are active, committed, aborted, or 
compensated). 

Our activity model can be layered on any model 
that supports atomic transactions, or even concur- 
rently on more than one transaction model (e.g., in 
a heterogeneous system, different servers may sup- 
port different transaction models). However, layering 
activities on top of our extended nested transaction 
model allows the use of the various types of nesting. 

Section 2 provides a brief comparison with related 
work. Section 3 describes ATM. Section 4 gives an ex- 
ample application of ATM based on a hospital infor- 
mation system. Section 5 proposes an implementation 
architecture based on recoverable queues [BHMgO]. 

2 Related Work 

We classify related work into four categories. The first 
category includes early workflow*models for office or 
business procedures (e.g. [Zism78], [DZ81], [Barr82], 
[(X82], [LR83], [BP83], [WL86]). All these models in- 
cluded some notion of a task (sometimes called a pro- 
cedure, action, or step). The flow of control between 
tasks was specified typically by augmented Petri nets 
or triggers. However, these early workflow models 
generally were non-transactional, and did not address 
t-he problems of data sharing, persistence, and failure 
recovery. 

The category that is closest to our work includes 
various extended transaction models for long-running 
activities [GS87, KR88, Reut89, Garc90, ELLRSO]. In 
the saga model of [GS87], an activity is a sequence of 
transactions ri, T2, .., Tn. After Ti is committed, Ti+i 
is invoked. If some Tk fails, then Tk is aborted and the 
system automatically invokes compensating transac- 
tions ck-1, . . . . Ci, in that order. The stictly sequen- 
tial saga model is generalized in the mzgraling iruns- 
octzon model to allow concurrent execution of com- 
ponent transactions (KR88]. In addition, invariants 
on the database state that must be maintained to en- 
sure the feasibility of running compensating transac- 
tions, can also be specified. In [Reut89], contracls are 
proposed as an extension to migrating transactions. 
The steps of a contract may be arbitrary sequential 
programs, not necessarily transactions. The control 
flow among the steps is specified as part of the con- 
tract definition. Context is maintained across the con- 
tract through the use of global variables. The multi- 
t,ransaction activity model of [GarcSO] uses mailboxes 
(persistent message queues) for control flow and data 
flow brt,ween steps of an activity. As in our earlier 
tnodel [DHLOO], an activity is initiated by a single 
step (transaction). Activities can be nested, and com- 
pensation can be provided for nested subactivites as 
well as for individual steps. The InterBase model of 
[ELLRSO] was developed for heterogeneus database 
systems. A global transaction in their model, which 
corresponds to an activity in our model, consists of 

114 
Barcelona, September, 1991 



one or more steps (called subtransactions), each of 
which executes at a single database server. Their 
model allows the specification of alternative steps, of 
compensation steps, of non-compensatable (i.e., criti- 
cal) steps, and of temporal constraints (which specify 
when steps are to be executed). 

All of these models are based on conventional flat 
transactions; hence, they neither support nesting nor 
concurrency within a step. Our model, on the other 
hand, is based on the extended nested transaction 
model, and gives the activity designer a lot of flex- 
ibility to specify intra- and inter-step parallelism. 
Sagas, migrating transactions, and InterBase’s global 
transactions are two-level structures (activities and 
transactions), whereas our model supports arbitrar- 
ily nested subactivities. Also, our model has richer 
failure semantics, supporting rollback (with compen- 
sation), roll forward, and alternative execution paths. 
Finally, the other models provide fixed control flow 
and a rigid compensation policy. In contrast, our 
model allows both the static specification of control 
flow (embedded in the activity’s script) and its dy- 
namic modification through rules (as we illustrated in 
[DHLSO]). The execution semantics of rules are also 
described by the extended nested transaction model; 
hence, no extensions are necessary to incorporate rule 
execution into the activity model. 

The multi-level transaction model also extends 
nested transactions (WeikSG] by allowing a child ac- 
tion to commit independently of its parent. This as- 
pect of the parent-child relationship is very similar 
to that between a parent activity and a child in our 
model. However, in the multi-level transaction model, 
the parent transaction is still serializable with its sih- 
lings at some level of data abstraction (i.e., the “com- 
mit” of the child action is in fact only a commit at a 
lower-level of abstraction). In our activity model, the 
parent activity is simply not required to preserve such 
atomicity. 

The third category of related work includes sev- 
eral extended transaction models for long-running 
cooperative activities such as engineering design 
(KLblP84, KSUW85, PKH88, FZ89,Kais90, NZ90, 
KS90, RRDSO] and text editing [EG89]. These mod- 
els also support weaker notions of atomicity than the 
traditional transaction model. Their goal is to pro- 
vide more sharing so that members of a design group 
can see one another’s work in progress. while isolat- 
ing one group from another. Our goal is somewhat 
orthogonal: to improve throughput by breaking up a 
long-running activity into short transactions. 

Finally, there is work on generalized transaction 
frameworks, such as ACTA [CR90, KleiSl]. This work 
is aimed at describing and comparing existing transac- 
tion models in terms of a small number of constraint~s. 
These frameworks as yet do not deal with the seman- 
tics of activities. 

3 The Model 

Our model consists of activities and transactions. An 
activity .consists of multiple application steps each of 
which is either an activity or a transaction. Activities 
can be further nested. Thus, children of an activity 
may be activities or transactions or a combination of 
these. 

Activities and transactions can be nested to arbi- 
trary levels with the exception that activities cannot 
he created from within transactions. When our dis- 
cussion is applicable to both transactions and activi- 
ties, we refer to activities and transactions as aclions. 

Nested actions form a tree. An action may contain 
any number of nested actions or subactions, some of 
which may be performed sequentially, some concur- 
rently. For convenience, we assume that there exists 
a distinguished system root, Sys, for activities and 
transactions. A top transaction is a transaction that 
is at the root of a transaction tree, i.e., a maximal tree 
that consists only of transactions. A top activity is an 
activity that is at the root of an activity tree, i.e., a 
maximal tree that consists of transactions and activi- 
ties. An activity node is a super-root linking a forest 
of transaction trees into a single tree. Thus, below 
the activity node, subactivities and top transactions 
may exist. 

We use standard tree terminology in referring to 
the relationship between actions, for example, parent, 
child, ancestor and descendant. 

In order to define the relationship between a child 
action and its parent action, let S be an action with 
P as its parent action. Then we can specify a child- 
parent relation between S and P based on whether or 
not S and P satisfy the following properties: 

TERM : P commits only after S terminates. 

CD : S is commit dependent on the commit of P. 

SR : S is serializable with respect to P’s other chil- 
dren. 

VIS : S has access to all the objects that P has, e.g., 
it can read objects P has modified. 

We assume that each activity class has a predefined 
activity description, which describes the sequence of 
actions contained in the activities in this class. Each 
action item is described as either the name of an ac- 
t,ivity class. or the name of a top transaction class. 
The activity description also includes a specification 
of the data froru involved in the activity execution. 

For the purpose of this discussion, we assume that a 
program which creates an activity is given a handle for 
the activity. After an activity is created, the program 
may query the status of the activity by presenting the 
activity handle to the system. The program may also 
ask the system to cancel the activity. 

In the rest of this section we describe precisely 
the semantics of our Activities/lkansactions Model, 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

11.5 Barcelona, September, 1991 



or ATM for short. Our presentation consists of three 
parts: transactions, activities and failure handling. 
We start by describing the transaction part of the 
ATM. Then we present activities, and finally, we de- 
scribe how we handle failures. 

3.1 Transactions 

Suppose that P and S are two transactions such that 
S is created by P. Then we say that P is the creator 
and S is the createe. 

To give the programmer fine control over the scope 
in which a child transaction is executed, we allow the 
createe to be performed not as a child of its creator, 
but as a child of another parent which we denote as 
the child’s proper-parent. 

Let S be a nested transaction with P as its proper- 
parent. Then the child-parent relation between P and 
S satisfies the TERM, CD, SR and the VIS properites. 

The CD condition indicates that if a subtransac- 
tion commits and its proper-parent aborts, the effects 
of the subtransaction will be undone. When a sub- 
transaction S and all its ancestors up to, but not in- 
cluding, the top transaction commit, we say that S 
has commttted lo the lop. When S’s top transaction 
then commits we say that S has committed through 
the fop. The top transaction commits only after all of 
its subtransactions have terminated 

A subtransaction may be aborted without causing 
its proper-parent transaction to abort. Thus, upon 
the failure of its subtransaction, t,he proper-parent 
can either go on with other computation or create 
another subtransaction to retry the computation that 
was aborted. 

Concurrency within a transaction is obtained by 
allowing the proper-parent to start concurrent sub- 
transactions. While a child is running, its proper- 
parent is suspended. However, sibling suhtjransnctions 
may execute concurrently. Siblings are serializable at 
each level of the transaction tree. Thus. there is no 
problem with concurrent siblings interfering with one 
another. Sequential siblings are ordered according to 
when they run. This structure can’t be observed from 
the outside; i.e., the overall transaction still satisfies 
the atomicity properties. 

In our model, the child-parent relation is always 
held with respect to the proper-parent. Between the 
createe and the creator, however, only a commit de- 
pendency specification is allowed. If such a commit 
dependency is specified, then the abort of a creator 
wilt cause the child created by it to be aborted. 

Our model distinguishes three execution scopes: 
immediate, deferred and decoupled. If S’s scope is 
immediate, then S is executed within P immediately 
upon its invocation, thus, its creator is also its proper- 
parent. (Note, that if all subtransactions execute in 
the immediate mode then our model is identical to the 
traditional nested transaction model.) If the mode is 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

deferred or decoupled, then the creator is different from 
the proper-parent. 

The execution of deferred subtransactions is expiic- 
itly delayed until the end of the user’s top transaction 
T and before any deferred subtransaction is executed, 
a point we shall refer to as the cycle-0 end. Let P 
be the creator of S. Then, instead of executing S as a 
child of P, T is made S’s proper-parent. The execu- 
tion of S is explicitly delayed until T reaches cycle-0 
end. 

In addition to satisfying the child-parent relation 
with T, S is commit dependent on its creator, P. If 
more than one deferred subtransactions are created 
before T reaches its cycle-0 end, then all these sub- 
transactions are started as concurrent subtransactions 
in cycle 1 at cycle-0 end. If the processing of subtrans- 
actions in cycle 1 causes more deferred transactions to 
be created, the tatter are started when all subtrans- 
actions in cycle 1 have finished, and are started as 
concurrent subtransactions of T in Cycle 2. The cy- 
cles of execution of T continue until the last cycle fin- 
ishes in which no more deferred subtransactions are 
created. For example, in Figure 1, T3 is a deferred 
subtransaction created by T1. 

A separate top transaction S can be created from 
inside another transaction. Such a “nested” lop frans- 
&ion is called a decoupled Iransacrion. A decoupled 
top transaction will be represented by its own tree. 
In this case, S’s proper-parent is T’s proper-parent, 
which might be an activity or Sys. 

When S is decoupled, S can execute concurrently 
with T, and therefore, S might be serialized before 
T. This, however, may violate causality: T may see 
the results of S. Also, T may abort after S commit- 
ted. Therefore, we allow the database programmer to 
specify whether the decoupled transaction is causally 
dependent. Let T be the top transaction and let S be 
the causally-dependent transaction, CDtop for short, 
created either by T or by one of its descendents. Then 
S is causally dependent on T iff S is serialized after T 
and S is commit dependent on its creator to commit 
through the top. 

The execution of a causally independent decoupled 
transaction S has no special privileges relative to its 
creator T. 

It is important to note that CDtop transactions 
whose commited creators have committed must be 
scheduled for execution. Therefore, CDtop transac- 
tions that are interrupted by a system failure should 
be automatically restarted as part of system recovery. 

In Figure 1, a commit dependency is specified be- 
tween T4 and Tz, represented by the dotted arc be- 
tween them. Therefore if Tz aborts, then T4 will be 
aborted. In Figure 1, the commit and serializability 
semantics of transactions in the solid tree (i.e., the 
proper-parent tree) is identical to that in a conven- 
tional nested transaction tree. In essence, the exten- 
sion allows a nested transaction to be created from 
one spot in the tree and “grafted” somewhere else in 

116 
Barcelona. September, 1991 



Figure 1: The Activity/Transactions Execution 
Tree 

the tree, and it specifies the semantics of such “graft- 
ing”. 

So far, we have not restricted the serialization or- 
der among concurrent siblings. Sometimes, however, 
a particular serialization order might be desired. For 
this purpose, priorities can be assigned t.o t,ransac- 
tions. The system guarantees that the serialization 
order of concurrent siblings of a proper-parent is con- 
sistent with their priority order 

The cycling mechanism interacts with the priority 
mechanism: within each cycle, the subtransactions 
are executed in priority order. 

To constrain possible execut.ion orders of concur- 
rent CDtop transactions, we support a pzpelinlng 
mechanism. We say that a decoupled t.ransaction T’ 
created by transaction T satisfies the pipelining prop- 
erty if for all transactions P that are serialized before 
(after) T, any decoupled transaction P’ created by P 
is serialized before (respectively, after) T’. 

3.2 Activities 

Like a transaction, an activity can also be active, com- 
mitted or aborted. The relationship between an activ- 
ity and its children satisfies only the TERM and the 
VIS properties. Thus a a parent activity is committed 
only after all its children have terminated, and a child 
has access to all the objects that its parent has. Bow- 
ever, the other two properties. CD and SR, are not 
satisfied. The commit of the children is independent 
of the commit of the parent activity. Therefore, if a 
parent activity is aborted, then all its acrave children 
are aborted; committed children, however, are com- 
pensated for. Sibling activities are not serializable; 
their effects on the database may be interleaved. 

Aborting an activity is defined as follows. All chil- 
dren activities are aborted; all active top transactions 
are aborted. Committed top transactions cannot be 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

aborted, their effects persist. Therefore, to support 
cancellation after an activity or a top transaction has 
committed, we provide an additional system facility 
which invokes compensation activities or transactions. 
When the abort of all the active parts of the activity 
has been completed, the compensation for committed 
transactions or activites is performed by executing the 
corresponding compensations in a an order that is the 
reverse of the orginal execution order. 

The status of an activity can be derived from the 
nctgon tree spawned by the activity. By preserving the 
action tree information in some form, the system can 
allow the users to query and display the status of the 
the different steps of the activity. 

Assuming that some top transactions might be im- 
possible to compensate for and hence should com- 
mit only if the parent activity commits, we allow the 
programmer to define whether a top transaction is 
critical or not. The commit of a critical transaction 
is only tentative and therefore its effects cannot be vis-. 
ible to its parent activity. To bound the duration in 
which critical transactions are tentatively committed 
we can specify whether activities are critical or not. 
All critical children of a critical activity stay tenta- 
tively committed; noncritical children commit inde- 
pendently of the fate of the parent activity. All crit- 
ical children of a noncritical activity commit if the 
parent commits. This assumes that the parent can 
compensate at that level for their effects. For exam- 
ple, suppose that in Figure 1 the only critical actions 
are transaction Ts and activity Al. And suppose also 
that A aborts after A1 has committed to it. Then in 
aborting A,, Al’s compensation action needs to con- 
sider only the effects of TG and T7 since T5 is simply 
aborted. In summary, the actual commit of a critical 
action takes place when its parent commits through 
its closest noncritical ancestor (CNA). 

3.3 Exceptions 

Requiring that every failure of a step cause an activ- 
ity to be aborted is expensive, because rolling back 
an activity to its beginning could potentially undo a 
lot of work. As an alternative to aborting, our model 
supports exception handling. The goal is to allow non- 
fatal failed steps to be replaced by alternative steps, 
so that a transaction or activity can continue to make 
forward progress. One or more exception handlers 
can be associated with every (top) transaction, sub- 
transaction, or subactivity, i.e., with every node in an 
activity tree. 

When a child node, C, returns to its parent, P, with 
an exception condition (and aborts), the appropriate 
exception handler, E, (if one has been defined) is in- 
voked. The exception handler is executed as a sibling 
of the failed node C. Note that E executes concur- 
rently with any concurrent siblings of C that are still 
executing. However, sequential steps that are sup- 
posed to follow C are not initiated until exception 

117 
Barcelona, September, 1991 



handling terminates. E, in fact, can be thought of as 
performing an alternative task to that, performed by 
C. 

If E terminates successfully, then P can continue 
with its forward execution. 

If E aborts or fails to perform the alternative task 
(in which case, too, it is aborted), or if no exception 
handler had been defined for C, then P has two ,op- 
tions. The first option is that P itself aborts, possi- 
bly returning an exception condition up to its parent 
(thus, failure handling moves recursively up the activ- 
ity tree). The second option is that P branches to an 
alternative computation path. Note that this requires 
no additional mechanisms. The conditional branches 
can be coded into P’s logic, or implicitly invoked via 
rules. 

The exception handling semantics described above 
are almost identical for activities and for transactions. 
The only difference is that if an activity node is to be 
aborted, then its already committed subactivities and 
top transactions must first be compensated for. 

3.4 Summary 

To summarize, we present in Figure 2, a state machine 
diagram that captures the behavior of our model. The 
multiple paths correspond to the executions of differ- 
ent types of actions. The diagram consists of nodes, 
arrows and labels: The nodes describe the different 
states in which an action might be, the arrows de- 
scribe the legal transitions between states, and the 
labels on the arrows correspond to the conditions re- 
quired by the respective transitions. The initial state 
is the active state and the final states are done, aborfed 
and compensated. 

We start by describing a failure-free execution. An 
action starts in the active state from which it exits by 
either reaching the end of its computation or a fail- 
ure. Upon normal termination, the action enters the 
finish state. Note that an action stays in the active 
state until all its children terminate. Noncritical ac- 
tions that, commit move into the comrnllted state; all 
critical actions move upon commit to the self-commit 
state. The self-commit state represents the state in 
which an action is only tentatively committed and 
can be simply aborted if its parent aborts. The com- 
mitled state, on the other hand, corresponds to the 
state in which the effects of the action have already 
been committed to the “outside world”, and there- 
fore, the action can only be compensated for shollld 
its parent abort. When the effects of a,n action cannot 
be revoked by simply aborting it or compensating for 
it, the action moves into the done state. Noncritical 
actions move into the done state when their parent 
commits; critical actions move into this state when 
they commit through their CNA. 

Next we consider non-failure-free executions. An 
abort of an uncommitted action (an action in t,he 
following states active, finish, or ezcepllon-handling 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

Figure 2: Action State Diagram 

.:.:.:::,, :::::, ,., 
czi3 
.: ..:I ..> ,.,., .,. ated . . . ,,. 

t parent rbort 

slate) moves it into the aborted state. The abort of the 
parent of an uncommitted or tentatively commited ac- 
tion will also cause the abort of the action and thus 
move it into the aborted state. As a result of an abort 
of the parent of a noncritical action that in is the com- 
mtt2ed state, the action moves into the compensaied 
state. 

Upon the failure of a child, the active action moves 
into an ezception-handling state, in which it makes an 
attempt to accomplish the tasks of the failed child. 
It creates a child to perform the exception handling, 
and if the child terminates normally, it (the parent) 
moves back to the active state; otherwise, it aborts 
and therefore ends up in the aborted state. 

4 An Example Application 

This section outlines a patient information system 
for a hospital. This example is an adaptation of 
an example offered in [DHLSO]. The example in 
[DHLSO] focused on deferred and decoupled transac- 
tions spawned from database rules. In this section, we 
show how a mixture of the activity constructs and the 
database rules can be used to model the application. 
The database rules are expressed using the same syn- 
tax as that used in [DHLSO]. The syntax used here 
for describing activities is self-explanatory. 

The example models a long running activity that 
starts when a patient arrives at the hospital, contin- 
ues through stages of examination and tests, until the 
patient is discharged from the hospital. For brevity 
we omit many details. However, through the simple 
example, we illustrate sequential and parallel control 
flow of activities and transactions, nested subactivi- 
ties and subtransactions, simple data flow, critical ac- 

118 Barcelona, September, 1991 



tions, exception handling, and deferred and decoupled 
CD-top subtransactions spawned by database rules. 

As in [DHLSO], we assume that all pertinent in- 
formation about the patient is recorded in a database 
that is shared by all the organizations involved. When 
a patient arrives, an event containing the patient’s 
social security number is signaled which causes the 
Treat-Patient activity to be invoked. Treat-Patient 
in turn invokes subactions Admit, Notify-Doctor, Ex- 
amine, Test and Discharge. The relevant activity de- 
scriptions are shown in figure 3. 

Admit itself is an activity and consists of two subac- 
tions, Create-AdmRecord and Assign-Doctor. Cre- 
ateAdm-ftecord returns an admission number AdNo. 
AdNo is sufficient to locate the patient’s folder in 
the database. Assign-Doctor is itself an activity, 
consisting of a critical subaction. Schedule-Doctor, 
and another subaction Confirm. (‘onfirm consults 
the patient to confirm the doctor assignment. II 
Confirm fails, the activity Assign-Doctor is aborted. 
Since Schedule-Doctor is a critical subaction, abort 
of Assign-Doctor will automatically cause it to be 
aborted. Abort of Assign-Doctor is reported as a fail- 
ure signal to its parent Admit which in turn “abort’s” 
itself by applying a compensation subaction Csn- 
celAdmJEecord. Abort of Admit is reported to its 
parent Treat-Patient which simply terminates. 

Activity Treat-Patient (SSIo) 
Admit (SSIo,AdIo,Ieed_teet) 
repeat until not Iced,test 

Notify-Doctor (Adlo) 
01 Doctor-Ack(AdIo) 
DO 

Examine (Adlo. Yeed-test) 
if Iced-test 

Test (AdIo,Test-list) 
endrepeat 

Discharge(AdHo) 
On Failure(Admit) /* exception l / 

Terminate(Signa1 Failure) 
End Activity 

If the patient is admitted successfully, s/he goes 
through an examination-test loop. For examination, 
the doctor is notified, and when the doctor acknowl- 
edges (by signaling DoctorAck), the Examine action 
takes place. If tests are prescribed as a result of Ex- 
amine, then the Test activity is invoked, and when 
Test is done, the doctor is notified again as part of 
the examine-test loop. Otherwise, the patient exits 
the examination-test loop and is discharged. 

The Examine action is executed as an (interac- 
tive) transaction. The doctor prescribes medications 
and tests during this transaction. J\ database rule, 
Check-Conflicts, is triggered whenever prescriptions 
are inserted into a patient’s folder to check for con- 
flicts of medications and tests. It is spawned as a 
deferred subtransaction within the Examine transac- 
tion. The rule is shown in figure 3. 

The Test action is an activity that consists of 
Schedule-Test followed by parallel performance of 
Schedule-Lab, Notify-Lab, and Execute-Test subac- 
tions for each test subscribed. \Vhen all tests are 
done, the Test activity terminates, and the doctor is 
notified. However, if any test reveals life-threatening 
condition, a database rule High-Priority-Notification 
is triggered which immediately notifies the doctor 
without waiting for other tests to finish. This rule 
is triggered as a causally dependent decoupled top 
transaction (CD-top) spawned from the Execute-Test 
transaction. This rule is shown in figure 3. 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

Activity Admit (SSIo,AdIo,Peed,te8t) 
Create,Adm,Record (SSIo,AdIo) 
Assign-Doctor (AdIo,Activr) 
OI Faiiure(Asaign,Doctor) /* exception l / 

DO 
Cancel-AdmJlecord (AdJo) 
TerminatI(Signa1 Failure) 

End Activity 

Activity Assign-Doctor(AdIo,Active) 
critical Schedule,Doctor(AdIo) 
Confirm(AdIo,Active) 
01 Failure(Confin) 

Abort (Signal Failure) 
End Activity 

Activity Test (Adlo) 
Schedule-Test (AdIo,Test,llrt) 
parfor T in Test-list 

Schedule,Lab(AdIo,T) 
Iotify,Lab(AdIo,T) 
01 Lab_Ack(AdIo,T) 

Executa,Test(AdIo ,T) 
endparfor 

End Activity 

Rule Check-Conflicts 
01 (insert Prescriptions (Adlo))* ; EOT 
DO 

begin-transaction 
prrsc-check (AdIo); 

end-transaction 
begin-transaction 

notify,doctor(AdIo,D); 
get-input (D, op); 
if op = “Abort” then abort-top; 

else: execute op; 
end-transaction 

Rule High-Priority,Iotification 
011 insert Procedure-Result (Adlo) 
DO 

begin,CDtop 
if Dangerous(AdIo) 
then 

begin-rubtransaction (priority high) 
notify-doctor(AdIo); 

end-rubtransaction 
end,CDtop 

Figure 3: Activity and Rule Descriptions 

119 
Barcelona, September, 1991 



5 A Proposed Implementation 
Architecture 

In this section we propose a simple implementation 
of the ATM model. The implementation described in 
this section is to illustrate one particular way of ma- 
terializing the model. It is not intended to address 
efficiency or optimality tradeoffs among several pos- 
sible implementations. In particular, we have opted 
for a design which builds on top of two other service 
abstractions which are either already available or well 
understood. 

The proposed implementation assumes that a sim- 
ple nested transaction service [Lisk85. JIoss81) is 
available. Additionally, it uses services of a reliable 
queueing facility. The queueing facility is based on 
the queue abstraction as described in [BHMSO], with 
additional primitives to allow for dynamic creation of 
queues. In essence, the nested transaction implemen- 
tation constitutes the backbone of thr system that of- 
fers atomic and persistent computations. The reliable 
queueing facility, which itself relies on the availability 
of an underlying transaction system, offers the ability 
for the system to connect the atomic computations to- 
gether in a reliable and persistent manner. Together, 
they enable us to devise a simple implementation for 
our activity/transaction model. For brevity, we do 
not consider critical actions in this proposed imple- 
mentation. 

5.1 Overview 

Activities execute as a sequence of top transactions or 
a sequence of concurrent blocks of top transactions. 
Every top transaction creates an input queue and is 
given a handle to an output queue. The input queue 
is used to capture the original top transaction request 
as well as deferred subactions requested during exe- 
cution of the transaction. The output queue is used 
to synchronize with, or communicate the result to, 
subsequent top transactions in an activity. 

A top transaction executes a sequence of subtrans- 
actions. Each subtransaction removes an element 
from the input queue and performs the work described 
by the element. A subtransaction may request de- 
ferred actions by inserting the request into the input 
queue of the top transaction. A subtransaction may 
also request a decoupled action by inserting the re- 
quest into a system queue SYSQ. Every element in 
SYSQ will cause a top transaction to be spawned by 
the system. A top transaction finishes when it,s input 
queue is empty (i.e., when all deferred subtransactions 
are executed). Upon linishing, based on its “activity 
context” (to be explained later) it may create and in- 
sert additional queue elements into SYSQ to generate 
subsequent top transactions that belong in the activ- 
ity that it is embedded in. 

All operations on queues participate in nested 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

transaction semantics. By the use of transac- 
tional queues, subactivities and decoupled transac- 
tions are reliably chained together to ensure persis- 
tent progress. Upon system recovery, the queue ele- 
ments in SYSQ are automatically recovered, and the 
processing continues. The status of a running activ- 
ity can be determined by recursively tracing through 
the input and output queues of the top transactions 
involved in the activity. 

5.2 The Reliable Queuing Services 

A reliable queue is an abstract data type that stores 
queue elements. The component of the system which 
manages queues and execute operations on queues is 
called a queue manager. Operations on queues are in 
general issued from within transactions. Queue man- 
agers therefore participate in transaction execution as 
conventional database managers. 

Reliable queues have been described in [BHMSO] as 
a vehicle for implementing reliable request processing 
in a transaction processing system where the client 
may use the queue operations to reliably capture its 
(simple) state and to recover properly from failures. 
We briefly summarize the queue operations below. 

Unless otherwise specified, every queue operation 
is transactional: its effect persists if and only if the 
invoking transaction commits. We first define the fol- 
lowing operations for creating and destroying queues: 

9 = create-queue(): creates a queue and returns a 
queue handle q for the queue. 

destroy-queue(q): destroys the queue designated by 
the queue handle q. 

Queues are accessed using the following data ma- 
nipulation operations:’ 

a enq(q,qe): creates an element ge and stores it in a 
queue q. 

l enqimmediate(q,qe): creates an element qe and 
stores it in a queue q. Its effect is visible immedi- 
ately, regardless of whether the invoking transaction 
commits. 

l 9e = deq(q): deletes an element qe from a given 
queue 9, and returns it to the caller. If the invoking 
transaction aborts, then the element is marked with 
an abort code and returned either to the given queue 
or to a separate error queue (which can be specified 
by a parameter in the call). If gis empty, the invok- 
ing transaction is suspended until an element arrives. 
A queucing discipline can be specified by associating 
a field of a queue element as the priority. The De- 
queue operation will dequeue the next item with the 
smallest priority value. 

‘Semantics of these operations are adapted from 
[BHMSO] 

120 
Barcelona, September, 1991 



TSP(inq,outq): 
Begin Trx; /* executes as a single top trx */ 
qe - deq(SYSQ); /* qe contains sync P other info*/ 
inq = create-queued; /* need an inq l / 
outq = qe.outq; /* extracts outq handle from qe */ 
for each sq in qe.sync /e if sync needed */ 

sqe = deq(sq); /* sync with other top trx*/ 
endf or ; 

enqcinq, qe.trx); /* qe.trx is first subtrx*/ 
current-cycle = 0; 
Do while inq not empty; 

Begin-Trx; /* next subtrx l / 
sub-qe = deqcinq); 
if sub-qe.cycle > current-cycle then 

current-cycle = sub-qe.cycle; /*inc*/ 
execute sub-qe.task; 
End-Trx; 

/* finishing l / 
if qe.output-needed then 

enqcoutq, return-value); 
if qe.has-context then /*if is in an activ.context*/ 

for each pext-t in qe.context { 
cq = find-appropriate-out,quaueO; 
nextqe = packageo; enq(SYSQ,nextqe);) 

destroy,queue(inq); /I suicide l / 
End Trx; /* end top transaction e/ 

Figure 4: Pseudo-code for ‘TSP 

5.3 Transaction Service Program 

A top transaction is created when a thread is 
dispatched to service a queue element in SYSQ. 
The thread executes the transaction service program 
(TSP). The pseudo-code for a simple TSP is shown in 
figure 4. 

TSP removes a queue element qe from SYSQ and 
creates an input queue inq for itself. The element qe 
contains information about the task the top transac- 
tion is to perform, as well as other relevant informa- 
tion needed, including its activity context, require- 
ment to synchronize with other top transactions, and 
an output queue handle. We omit the details of t,he 
structure of these information. TSP ext,ractb t,he task 
(qe.trx) to be performed from qe and inserts it into 
its own input queue. It then starts a loop of subtrans- 
actions to service its input queue. 

To implement deferred actions of a transaction, the 
system translates begin-deferred-action calls into en- 
queue operations on the input queue of the top trans- 
action. To implement the cycle discipline, TSP carries 
a variable for “current cycle”. When a deferred action 
is requested, the run-time checks this number and en- 
codes the next higher number as the priority of the 
queue element representing this deferred action. This 
cycle number is incremented when the top transaction 
server detects the next element dequeued to be of a 
higher cycle number. 

To implement decoupled actions of a top trnns- 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

action, the system translates a begin-decoupled-top 
or begin-CD-TOP call. into an enqueue or en- 
queue-immediate operation on SYSQ. If it is a CD 
top< then the enqueue operation is used. If it 
is an independent top transaction, then the en- 
queue-immediate operation is used. 

It is assumed that the activity context is passed to a 
top transaction T through the queue element qe that 
T obtained from SYSQ (qe.context). If this context 
variable indicates that the top transaction is executed 
in the context of an activity, then, upon finishing 
(i.e., upon exhausting its deferred subtransactions), 
T packages and inserts a queue element in SYSQ in 
order to cause a top transaction Tl to be spawned for 
the activity. It also creates an additional output queue 
for Tl, or passes its own output queue handle along 
to Tl. To ensure that the decoupled top transactions 
spawned by T are executed before Tl, the queue ele- 
ment communicated by T to Tl optionally contains a 
list of the output queue handles (qe.sync) of the de- 
coupled transactions of T. Tl waits for termination 
of these decoupled transactions by dequeueing from 
these queues. 

The parallel activity model can be implemented by 
creating multiple subsequent top transactions upon 
finishing, and by creating an appropriate join top 
transactions which waits for termination of the paral- 
lel ones. 

6 Conclusion 

This paper addresses the problems of reliable control 
Row management for long-running activities. Such 
activities have weaker atomicity requirements than 
transactions. The contributions of the paper are the 
definition of ATM, a rich transactional activity model, 
and a proposed implementation of the model. 

In ATM, an activity consists of one or more steps, 
each of which is itself an activity or a transaction. The 
model supports communication between the steps of 
an activity; the failure semantics of activities, includ- 
ing compensation and exception handling (execution 
of alternative steps); and querying the status of an 
activity. We believe that scripts and rules provide a 
powerful combination of mechanisms for building ac- 
tivities, whose semantics are described by ATM. 

In a previous paper [DHLSO], we had illustrated 
t,he use of rules alone to implicitly chain the steps of 
an activity. We had argued that rules provided dy- 
namic flow. However, the use of rules alone makes it 
Inore difficult, to comprehend the computations per- 
formed by an activity. The ATM model introduced 
in this paper directly adds the concept of activities 
and their semantics to the extended nested transac- 
tion model. This has two benefits. First, it provides 
richer structure for activities, since they can now con- 
sist, recursively of subactivities in addition to transac- 
tions. Second, it, allows control and data flow in an 

121 
Barcelona, September, 1991 



activity to be explicitly defined via a script, without 
requiring rules. Rules are still useful for checking con- 
straints, triggering additional tasks, or modifying the 
flow in response to unanticipated conditions. 

The proposed implementation of ATM is modular. 
It relies on the implementation of two abstractions: 
nested transactions and recoverable queues. Addi- 
tional work is needed to provide an implementation 
for critical actions. 

Ideally, scripts and rules should bp equally exprcs- 
sive for defining the conditions that control the ~nvo- 
cation of steps. Our rule model, Defining an expres- 
sive language for scripts and rules is the subject of 
future work. 

Acknowledgments 
We wish to thank Adel Ghomeny and Charly 

Kleissner at Digital TPwest for inspiring cliscussions 
on the notion of an activity description. and Phil 
Bernstein for many valuabel suggestions. 

[HCSS] Hsu, M. and T.E. Cheatham, ‘Rule Execution in 
CPLEX”, Proc. .2nd Internat:onai Workshop on Object 
Oriented Database Systems, West Germany, September 
1988. 

[HLM88] Hsu, M., R. Ladin, and D. McCarthy, “An Ex- 
ecution Model for Active Database Management Sys- 
tem,” Proc. 3rd International Conference on Data and 
Knowledge Bases, Jerusalem, Israel, June 1988. 

[Kais90] Kaiser, G.E., “A Flexible Transaction Model for 
Software Engineering.” Proc. IEEE Conf. on Data En- 
gmeering, Feb. 1990. 

[KLMP84] W. Kim, R. Lorie, D. McNabb, W. Plouffe, 
“A Transaction Mechanism for Engineering Design 
Databases.” Proc. VLDB Conf., August 1984. 

[KSIJW85] “Klahold, P., G. Schlageter, R. Unland, W. 
Wilkes, “A Transaction Model Supporting Complex 
;1pplications in Integrated Information Systems.” Proc. 
ACM SIGMOD Conj., May 1985. 

References 
[KleiSl] Klein, J. “Advanced Rule Driven Transaction 

Management.” Proc. IEEE COMPCON Spring 1991. 

[BHMSO] Bernstein, P.A., M. Hsu, B. Mann, “Irnplemcnt- 
ing Recoverable Requests using Queues.” Proc. t\C,\I 
SIGMOD Conf., May 1990. 

[Chak89] Chakravarthy, S., et al., “HiPAC: A Research 
Project in Active Time-Constrained Database Manage- 
ment. Final Technical Report.” Xerox Advanced Infor- 
mation Technology, Cambridge, Mass., July 1989. 

[CR901 Chrysanthis, P.K., K. Ramamritham, “ACTA: A 
Framework for Specifying and Reasoning about Trans- 
action Structure and Behavior.” hoc. ACM SIGMOD 
Conf., May 1990. 

[Daya Dayal, U., “Active Database Systems.” Proc. 
3rd International Conference on Data and Knowledge 
Bases, Jerusalem, Israel, June 1988. 

[DBM88] Dayal, U., A. Buchmann, D. McCarthy, “Rules 
are Objects Too: A Knowledge Model for an Ac- 
tive, Object-Oriented Database Management System“, 
Proc. 2nd International Workshop on Object-Oriented 
Database Systems, West Germany, September 1988. 

[DHLSO] Dayal, U., M. Hsu, R. Ladin, .‘Organizing Long- 
Running Activities with Triggers and Transactions.” 
Proc. ACM SIGMOD Conf., May 1990. 

[EG89] Ellis, C.A., S.J. Gibbs. “Concurrency Control in 
groupware Systems.” Proc. ACM SIG,CfOD Cont., June 
1989. 

[ELLRSO] Elmagarmid, A.K., Y. Len, W. Litwin, M. 
Rusinkiewicz, “A Multidatabase Transaction Model for 
InterBase.” Proc. VLDB Conf. , August 1990. 

[GarcSO] Garcia-Molina, H., et al., “Coordinating Multi- 
Transaction Activities.” Report UMIACS-TR-90-24, 
CS-TR-2412, Computer Science Technical Report Se- 
ries, University of Maryland, College Park, MD. 

[GS87] Garcia-Molina, H. and K. Salem, “Sagas,” Proc. 
ACM SIGMOD Conj., May 1987. 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

[KS901 Korth, H.F., G.D. Speegle, “Long Duration Trans- 
action in Software Design Projects.” Proc. IEEE Conf. 
on Data Engineering, Feb. 1990. 

[KR88] Klein, J. and A. Reuter, “Migrating Transac- 
tions,” Future Trends in Distributed Computer Systems 
in the ‘903, Hong Kong, 1988. 

[Lisk85] B. H. Liskov. “The Argus Language and Sys- 
tem.” Diatributed Systems: Methods and Tools for Spec- 
rfication. pp. 343-430. Springer-Verlag, Berlin 1985. 

[McGe77] McGee, W.C., “The Information Management 
System IMS/VS Part V: Transaction Processing Facil- 
ities,” IBM Sys. Journal, Vol. 16, No 2., 1977, pp. 148- 
169. 

[Moss811 J. Moss. “Nested Transactions: An Approach 
To Reliable Distributed Computing.” MIT Laboratory 
for Computer Science, MIT/LCS/TR-260 1981. 

[NZ90] Nodine, ,M.H., S.B. Zdonik. “Cooperative Trans- 
action flierarchies: A Transaction Modle to Support 
Design Applciations.” Proc. VLDB Con!., Aug. 1990. 

[RRDSO] Rauft, M.A., S. Rehm, K.R. Dittrich. “How to 
Share Work on Shared Objects in Design Databases.” 
Proc. IEEE Conf. on Data Engineering, Feb. 1990. 

[Reut89] Reuter, A., “Contracts: A Means for Extending 
Control Beyond Transaction Boundaries,” Presentation 
at 3rd Workshop on High Performance Transaction Sys- 
tems, Pacific Grove, CA, September 1989 

[Weik86] “A Theoretical Foundation of Multi-Level Con- 
currency Control”, PODS Proceedings, 1986. 

122 Barcelona, September, 1991 


