Efficiency of Nested Relational Document Database Systems

Justin Zobel

James A. Thom

Ron Sacks-Davis

Key Centre for Knowledge Based Systems
Department of Computer Science, RMIT
GPO Box 2476V, Melbourne 3001, Australia

Abstract

Systems designed for efficient retrieval of
conventional data can be very inefficient
at retrieving documents. Documents have
more complex structure than conventional
data, and the kinds of queries made to
document databases are unlike those made
to conventional databases. This paper
discusses how document storage and re-
trieval can be effectively supported in a
nested relational database system with
signature file indexing, and gives a de-
tailed analysis of the space requirements
and retrieval times of different document
schemas in such a database system.

Keywords: document database, document manage-
ment, nested relation, query optimisation.

1 Introduction

Conventional relational database systems are designed
to support retrieval of information that has simple,
repetitive structure. Documents, however, are usu-
ally large and have a hierarchical internal structure,
as most documents contain several sections, each of
which may contain several subsections or other log-
ical units such as paragraphs or tables. Such struc-
tures are difficult to efficiently store and retrieve in
conventional relational database systems. This is
why many systems that support text retrieval, in-
cluding MINOS (Christodoulakis et al., 1986), MUL-
TOS (Bertino et al., 1988), AIM (Dadam and Linde-
mann, 1989), and TI1TAN+ (Thom et al., 1991), are
not based on the relational model.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

One effective approach to storing documents is
in nested (non-first-normal-form) relational database
systems (Desai et al., 1987; Roth et al., 1988; Schek
and Pistor, 1982). Nested relational systems permit
hierarchically structured objects such as documents
to be represented in a natural way. Bit-sliced signa-
ture file indexing can be used to provide fast access
by document content (Kent et al., 1990; Sacks-Davis
et al., 1987).

We propose that documents should be further
broken into fragments, blocks of text holding logi-
cal units such as a paragraph. Because fragments
are small, they are cheap to retrieve from disc. Use
of fragments can increase the size of databases, how-
ever, and makes some kinds of queries more expensive
to evaluate. In this paper we consider in detail the
relative costs of some fragmented and unfragmented
nested relational schemes for storing documents, and
give formulas by which space and time requirements
can be assessed. We use these formulas to estimate
optimal fragment sizes for an example document col-
lection.

In Section 2 we discuss fragmentation and de-
scribe three ways in which documents can be stored
in nested relations. In Section 3 we analyse the space
requirements of each of these structures. In Sec-
tion 4 we discuss the types of queries we expect to
encounter, and in Section 5 we discuss costs of these
types of queries for each database schema. Related
work on document databases is reviewed in Section 6.
For reference, a glossary of notation is included at the
end of the paper.

2 Storing documents in nested rela-
tions

The architecture of any database system should be
tailored to the kinds of data to be stored in the sys-
tem and tailored to how data is to be accessed. For
example, in many database systems data access is

Barcelona, September, 1991

91

based on key values, and consequently indexes are
designed to facilitate fast key lookup. Data stored
in such database systems must have a simple, repet-
itive structure and each item of the same kind must
have the same format. On retrieval. such database
systems typically return the tuples with the specified
key.

Documents, however, are more loosely structured
than conventional data. Even within a document

class, individual documents can vary greatly in length.

number of sections, number and frequencey of terms,
and so on. Retrieval is often based on finding docu-
ments containing specified terms (that is, retrieval is
on content of the document) rather than on primary
keys such as document identifiers or secondary keys
such as subject codes.

Hierarchically structured objects such as docu-
ments can effectively be stored in nested relational
database systems (Desai et al., 1987. Roth et al,,
1988; Schek and Pistor, 1982). Signature file index-
ing schemes can be used to index on terms and term
pairs occurring in the body of the document, per-
mitting queries on document content; for relations
with large numbers of tuples, bit-sliced indexes can
be used to minimise index look-up costs (Keut et al.,
1990; Sacks-Davis et al., 1987). Siguature file indexes
consist of a signature for each tuple in the database
to be indexed; the length of each signature is pro-
portional to the largest number of distinct terms in
a tuple in the database. In this paper we assume
a bit-sliced signature file scheme based on multiple
organisations (Kent et al., 1990). For such an in-
dexing scheme, unlike inverted file indexing schemes,
answering queries does not become more costly as
the number of query terms increases.

Documents might be stored in a nested relational
database as follows: each document could be repre-
sented as a single tuple in which the set of sections
is a nested table and each section contains a nested
table of subsections. In such a scheme, however,
if the unit of retrieval is a tuple, entire documents
must be retrieved in response to queries. Moreover,
queries on more than one term can match documents
in which those terms are widely separated and are
probably unrelated. Thus some queries will lead to
large amounts of irrelevant material being retrieved.
Most importantly, because of the range of document
sizes that can occur in a large document collection,
bit-sliced signature file indexes can become unaccept-
ably large, making this approach to document stor-
age impractical.

As an alternative, we propose that documents be
broken into fragments. A fragment is a block of text
from a document of a size suitable [or display on a
terminal, and should consist of a logical unit of text

Proceedings of the 17th International
Conference on Very Large Data Bases

such as a sentence, paragraph, or table. There are
several advantages to using fragments. First, the size
variation between fragments can be constraed to be
far less than the size variation between documents,
thus minimising the size of signature files. Second,
if a user looks for tuples containing a set of terns,
there is some guarantee that the terms occur close
together in the retrieved text. Third, use of frag-
ments reduces the volue of disc traffic: retrieving
a fragnient is considerably cheaper than retrieving
an entire document. Fourth, in many applications
it is natural to consider documients as consisting of
parts rather than as a whole: for example, in hyper-
text systems documents are represented as parts that
are Joined by structure, sequence. citation, aud other
kinds of links (Conklin, 1987; Fuller et al., 1991).

Oue disadvantage of fragmenting documents is
that it can beconie difficult to find information about
the document from which a given fragment was drawn.
It is therefore useful to associate title information
(document title, author name, and so on) with cach
fragient. If title information will usually be re-
trieved with each fragmeut, it is probably simplest
to store the title information with each fragment. If
fragmented documents are to be stored in a mininum
of space, however, title information should not be re-
peated. The simplest way to effect this is to store the
text it one table and title information in another. To
allow a fragment to be joined to its header, and to
allow documents to be reconstructed, unique tuple
identifiers must be stored with each fragment and
each title. loreign key occurrences of these identi-
fiers can usefully be thought of as pointers to tuples.

As an example of different possible document sche-
mas, consider a document database that holds au-
topsy reports. The structure of an autopsy report
is as follows. The report consists of a case number,
the name of the deceased, and several sections with
headings and conteuts. Bach section can have several
subsections. Three possible schemas for representing
autopsy reports are as follows.

Monolithic schema: each document is represented
by a single tuple with a nested table of sections,
and each section has a nested table of subsec-
tions. The text in cach section and subsection
18 stored i a nested table of fragments. This
schema is illustrated in Figure 1. In terms of
time and space requirements, this is very simi-
lar to having no fragmentation.

Segmented schema: each document is represented
by a number of tuples, each containing title
mformation, the current section and subsection
name, and a single fragment. This schema is
illustrated in Figure 2. As can be scen, title

92

Barcelona, September, 1991

information is repeated but the use of foreign
keys is avoided.

Dupler schema: each document is represented by a
titbta? $rinmla Aantaining tibla tfmiiiiatian ansd o
LiviT bu}JlC \‘Ullbdlllllls LviLIcT itiuliliavivl alild a
nested table of sections and subsections. Each

enthanction

ahla A
dosCiuion

s table of foreign
keys of fragments containing the text of that
subsection. This schema is shown in Figure 3.
Pointers {foreign keys) have been introduced to
facilitate movement between {ragtients and ti-

tles.

imerlndes o nactad
1IGCIUGES a Nesivca

The separation of text and other information in the
duplex schema means that the structure of docu-
ments can be explored without any text having to be
retrieved: in the monolithic schema. document struc-
ture was embedded. We will refer to Jdatabases with
a segmented or duplex schema as fragmented. Note
that the duplex schema is similar to a monolithic
schema in a database system in which documents
are represented as complex objects, and parts and
subparts of objects can be accessed independently.

The schemas described above assume that each
document in a collection will have a given structure,
More flexible nested relational scheimnas can also be
designed, permitting storage of document collections
containing documents of arbitrary structure. The use
of fragments can be incorporated into such schemas,
but we do not consider them in this paper.

3 Space analysis

In this section we compare the space requirements
of the schemas described in Section 2. We assume
that words are distributed in text according to the
clustering model (Thom and Zobel, 1991). In this
model, the probability that a docuiment or fragment
of w words contains a given word { with occurrence
probability p(t) is given by

pu(t) =1 — e xwP®

The parameters o and § are dependent on the docu-
ment collection being stored; typical values are 1.03
and 0.937 respectively (these values are derived from
the King James version of the Bible). [nitial investi-
gations extending this model indicate that the prob-
ability that a document or fragment of w words con-

tains all of the terms t1,...,t,, can be approximated
by

m
pulty, o tm) = [pults)
1=1

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

where the terms ty,1, are assumed to be inde-
pendent. An approximation to the number of dis-
tinet terms in a document or fragment of w teris is
given by

Wa
Wr(w) =) pults)
i=1
where [V is the nuimnber of distinct terms in the data-
base aud the probability p(¢;) of the ith-ranked term
is assuimed to follow the Zipf distribution

1

!)(\L) = ——

(logeWq + v}
where 9 = 0.5772 is the Euler-Mascheroni constant
{Witten and Bell, 1990). Throughout this paper we
asstine that Wy is 50,000, a typical vocabulary for a
large document collection. For the reader’s reference,
sonie typical values of W, (w) are shown in Table 1.

100
62.6

No. of terms w 10
Wy (w) 8.49

1,000
419

10,000
2,540

Table 1: Typical values of Wy (w)

Document databases can be described by several
paraimeters.

¢ The number of documents stored is denoted by
N, assumed to be 100,000, the number of words
of title information is Ny, assumed to be 50,
the number of section and subsection headings
is I, assumed to be 10, the number of terms
in each heading is Ny, assumed to be 5, the
depth of nesting of headings is D, which is 2 in
outr example, and the average number of words
in the text of each document is Ny, assumed to
be 10,000. Each term is Ny bits long, assumed
to be 50. This implies that 5.88 gigabytes of
data 1s to be stored.

o In segmented and duplex databases, documents
are divided into F fragments. Each fragment
contains on average Ny, = NFL terms.

o Multi-organisational bit-sliced signature file meth-

ods are used to index data, and all fields (other
than foreign keys) are indexed. The number of
index terms in a relation is the average number
of distinct terms in each tuple times the num-
her of tuples in the relation. The size in bits of
the signature file for a relation is R times the
mumber of index terms in the relation, where R
is assuined to be 32.

o Foreign keys occupy P bits, assumed to be 32.

93

Barcelona, September, 1991

In such a collection p(¢) would typically range [rom
about 10~%, for words that only occur a few timmes
(note that Zipf’s formula substantially overestimates
this value), to about 5 x 1072, for words such as
the. Query terms tend to be less common terms,
so that the most common query terms wounld have
pit) = 1074,

Approximate space requirements are given by the
following formulas.

Tuple size (bits):
Monolithic
Segmented

Duplex—titles

Duplex—fragments Sy =Ny Ny+2.P

Data size (bits):

Monolithic SV
Segmented SN E
Duplez—iitles SN
Duplez—fragments Sp. N

Index size (bits):

Monolithie
Segmented

RNWH(Ny + H Ny + N))

Duplex—titles
Duplex—fragments

RNW (Np+ H.Ny)
RN.FW (N

Note that these approximations assume that each
document is of roughly the same size. A more accu-
rate estimate of the size of indexes would be based on
the largest number of distinct terms in a tuple in a re-
lation rather than on the average nuiber of distinet
terms, so that the formulas given above will tend
to underestimate the size of indexes, and in particu-
lar the size of indexes of monolithic databases. For
example, if documents ranged up to 100,000 terms
in length with an average length of 10.000 terms. the
size of the monolithic index would be ahout five times
greater than that given by the above formula.

In Figure 5 we show how the estimated sizes of
indexes and databases varies as fragment size varies.
Segmented databases are the largest, but. not sur-
prisingly, the difference decreases as the size of frag-
ments grows. One of the main differences in the space
requirements is in the size of the indexes. Recall,
however, that this estimate optimistically assumes
that each document in the collection is of the same
size.

Space requirements can be reduced if data is com-
pressed (Moffat and Zobel, 1991; Witten et al., 1991).
However, compression does not affect index size: it

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

Sm = (Np+ H. Ny + V)N,
Sy = (‘NT + DNy + ‘\"ft)..Ve
Se =(Np+ U Nyg). Ny + PF

RN FWHNp + D Ny + Nyo)

teduces Ny only, to perhiaps 15 in our exaniple. We
do not show results for compressed databases in this
paper. but compression favours monolithic structur-
ing in space and fragmented structuring in time.

4 Types of queries

There are many ways in which users might search
for documents in a document database system. For
example, users may request documents pertaining to
a subject or set of terms, or may request Lhe doc-
ument with a given title and set of authors. More-
over. for imprecise queries neither ‘all solutions’ nor
first solution” query evaluation strategles are appro-
priate: some documents will closely match the query
whercas others will only be a poor fit. For example,
one appropriate query evaluation technique for im-
precisc queries is to rank retrieved items on the basis
of relevance to the query and return the most closely
matched items in order of importance {Salton. 1989).

We will analyse three ways in which documents
might be accessed:

By content of document: users can search for a doc-
ument on the basis of terms occurring in the
document. Such queries could be exact match
(“find all documents containing the terms fe-
male and caucasian’y, or they could be impre-
cise (lind documents about ceucastan femalcs’).
Docuinents retrieved in response to inprecise
queries must be ranked as discussed above.

By content of fragment: rather than the system re-
turning entire docunients that match a (exact
or imprecise) query. it can return the appro-
priate parts of the document. In this strat-
egy, monolithic documents which contain all of
the query terms, but in which the terms are
widely separated, should not be returned. We
helieve that this kind of query will be the most
comnon: users who request text containing the
terms female and caucasian are likely to only be
interested in documents in which these terms
are in, say, the same sentence or paragraph.

By title: users can search for title information on
the basis of terms occurring in a title or au-
thors® names. (A similar query type that we
do not analyse is queries on section or subsec-
tion headings.)

We do not analyse other kinds of queries, such as
access by browsing, that a document retrieval system
would provide.

94

Barcelona, September, 1991

5 Query costs

In this section we compare costs of queries on mono-
lithic, segmented, and duplex databases. Query costs
for fragmented databases are very different to query
costs for monolithic databases. In monolithic data-
hases each retrieved tuple is large. and in general
more irrelevant tuples are retrieved since the query
terms may not occur close together in the retrieved
text. On the other hand, in fragmented databases
each retrieved tuple is small, and fewer irrelevant tu-
ples are retrieved. However, some queries on frag-
mented databases will have join costs that would not
exist in monolithic databases.

We now consider costs of typical queries to data-
hases with the structures described in Section 2. We
make the following assumptions 1w addition to the
assumptions made in Section 3.

o The unit of retrieval is a tuple.

¢ Monolithic documents are stored contiguously
on disc, and that the fragments of a duplex
document are stored contiguously on disc. The
latter assumption minimises seek times when
several fragments are retrieved from one doc-
ument. We denote seek+latency time by T,
and assume an average of 10~? seconds.

e There is a cost associated with retrieving and
processing each bit of data. We denote this cost
by Ty, and assume 109 seconds per bit. Pro-
cessing cost include checking that retrieved tu-
ples are valid (signature methods can return a
small percentage of false matches) and process-
ing text into a format appropriate for display.
Similarly, we assume that there is a cost T; of
retrieving and processing each bit of index, and
assume 10~7 seconds per bit.

e Each term sets A bitsin the signature of the tu-
ple containing that term, where K is assumed
to be 8, and signatures are formed for blocks
of tuples rather than individual tuples. Block
size is B, assumed to be 32. With these as-
sumptions, the cost of looking up a signature
file of a relation of 1" tuples is N .(T; + ’[;.%),
independent of the number of query terms.

Costs of queries can be estimated as described in the
rest of this section. For each query type, we assume
that documents or fragments with terms ¢y, ..
are to be retrieved, where m > 1.

tm

Query by title

Consider queries on title information such as title or
author. Each tuple in the title relation of a duplex

Proceedings of the 17th International
Conference on Very Large Data Bases

database holds all of the title information held in each
tuple in the equivalent monolithic schema, but tuples
in the title relation (whicl consist of title information
and foreign keys of fragments) are much smaller. For
segmented databases, we assume that a bitmap (of
size V. F bits) is used to indicate whether each tuple
is the first tuple of a document, so that other tuples of
the ducument can be ighored. Approximate costs for
retrieval on title are given hy the following formulas.

Monolithic
Time to look up index
I=K(T, +Ti.%)
Number of matching tuples
M=pn (b,)N
Total time

[Ty M+ Tq.5, M

Segmented
Tinie to look up index
I= KT, +T;. %)
Nuniber of matching tuples
M=pn (.) N
Total time

I +Ts M +T4.5.M

Duplex
Time to look up index
I'= K(T, + T,-.%)
Nutnber of matching tuples
M =pn. (.. ‘I’,,,,),N
Total time
L +TgM+T4.5.M

These estimates of retrieval times, for single term
queries, are illustrated in Figure 4, which shows how
retrieval time varies with fragment size for p{t) =
107" The number of tuples retrieved is the same
for each schema, and is therefore not shown. As can
be seen, for almost all fragiment sizes queries Lo the
duplex database are faster than to the segmented
structure, and much faster than to the monolithic
structure.

Query by content of fragment

We believe that in document database systemns, in
many applications the most common kind of query
will be to find documents on the basis of content.
We first consider the costs of querying on the basis of
document fragment. Note that some documents that
satisfy a query will contain no fragments that satisfy
the query, because the query terms are widely sepa-
rated in the document. Also, because fragiments are
stored contiguously, we assume that once a fragment
of a document has been retrieved, no seek is required

95

Barcelona, September, 1991

for subsequent fragments from the same document.
Thus, in fragmented databases, the number of seeks
is at most the number of documents involved in the
query, which will be at most the number of docu-
ments retrieved from the monolithic database (hence
the use of min in the following formulas).

Approximate costs for access by content of docu-
ment fragment are as follows.

Monolithic

Time to leok up index
[=K(T, +T.%)
Numnber of matching tuples

M= PN, (11“ . ,tm).N
Total time

I+T, M+Tg.5,.M

Segmented
Time to look up index
[= K(T, + 7}.-["—[‘;5)
Number of matching tuples
M = pN“(tl, contm).NF
Total time

[+ Ty.min(M,pn,(t1, ... tm).N) + T4.Ss. M

Duplex
Time to look up index
[=K (T, +T;. %)
Number of matching tuples
M= pN“(tl, oo tm) NF
Total time

I+ T, min(M pn,(t1,. . tm) N)+T4.5;. M

In a variant of this type of query, title information
as well as the retrieved text is displayed to the user,
providing contextual information about the text. In
monolithic and segmented structures, this informa-
tion is retrieved in any case, but extra operations are
needed in duplex schemas, to retrieve the tuples of
title information. The additional costs are as follows.

Duplex variant—additional costs
Time to look up index
[=K(T,+T:.%)
Number of matching tuples
M = min(pn, (t1,...,tm), PNy (t1y - tm
Total additional time
I+T,.M+T3.5.M

).F).N

Times and numbers ol matching tuples for ac-
cess by content of fragment, for single term queries
on terms with occurrence probability p(t) = 1077,
are shown in Figure 6, and, for single term queries
on terms with p(t) = 107°, are shown in Figure 7.
Times and numbers of matching tuples for access by
content of fragment, for multi-term yueries on three
terms each with p(t) = 1079, are shown in Pigure 3.
Again, it was shown that (non-variant) queries on

Proceedings of the 17th Intemnational
Conference on Very Large Data Bases

the duplex database are cheaper than queries to the
other structures, and are much cheaper than queries
to the monolithic structure. As the number of query
terms increases, the relative cost of using the mono-
lithic structure increases drastically, as illustrated by
the 10,000-fold difference in times between the frag-
mented and monolithic schemas in Figure 8. Tor
queries with a larger number of terms, the difference
is even greater.

In the top graph in Figure 6, it can be seen that,
in duplex databases, fragments of about 85 terms
have the minimum retrieval time for queries on terms
with probability 10=7. This minimum depends on
the probability of the query term: as can be seen in
Figure 7, for query terms with probability of 1076,
the optimal fragment size is about 25 terms. Note
that reducing fragiment size makes queries to seg-
mented structures cheaper to evaluate, but, as can
be seen in Section 3, at a considerable space penalty.

Il variaut queries are expected to be common,
then the segmented schema is preferable. However,
in many applications requests for title information
might only be made for a small proportion of the re-
turned fragments, in which case either segmented or
duplex schemas would be suitable. For example, if
returned fragments are to be ranked, only the frag-
meuts o be displayed (usually a small proportion of
the total) will require title information.

Note that, as discussed in Section 4, some re-
trieved monolithic documents may have to be dis-
carded because the query terms are not near to each
other in the text of those documents. In some cases,
as tllustrated in Figure 8. the number of documents
to be discarded can become very large. Use of a sec-
ondary index that allowed access to monolithic doc-
uments on the basis of fragments of the documents
would eliminate this problem, at the cost of extra
space to store the index. Even with this optimisa-
tion. queries to the monolithic schema would still be
slower than queries to the other schemas, because of
the larger amount of data to be retrieved.

Query by content of document

In monolithic databases, querying by content of doc-
ument is identical to querying by content of docu-
ment fragment. In fragmented databases, complex
evaluation strategies are required. One strategy is to
retrieve all fraginents that contain any of the query
terms. use them to determine which documents con-
tain all of the query terms, and then retrieve all of
the information for that document. To retrieve a
whole document, the locations of the first and last
fragments must be found. as well as the title of the
document in the duplex case. All of the data stored

96

Barcelona, September, 1991

between the first and last fragments of a document
should be retrieved, as each document is stored con-
tiguously on disc. Approximate costs are as follows,

Monolithic
As for access by content of docuinent fragment.

Segmented
Time to look up index
I=Km(T +T;.5E) + 2. K.(T, + T, 5E5)
Number of matching tuples
M= (PN“(tl) + .. +PN;:(tm))-N-F
+pN1(t1, S ,tm).N.F
Total time
I+ TS'((pNJ((tl) +...0+ pN/;(tm))'F
+pn,(t1, ... ,tm)).N +T3.5,.M

Duplez
Time to look up index
I=Km(T, + T 2E) + K(1, + 1. %)
+2.K(T, + T1. %)
Number of title tuples
M; = pN,(t1, ... tm). N
Number of fragment tuples
My = (pn, (81) + .-+ N, (80)) NF
4N, (1, .y tm) NF
Total time
I + T-"((ple(tl) + ... +pNj|(tm))'N-F +'2-A’1t)
+Td.(5¢.Mt+Sf.Mf)

Costs given by these formulas are shown in Figure 9,
for queries on three terms each with p(t) = 1074
Compared to monolithic databases, this type of query
is marginally more expensive in duplex databases,
and substantially more expensive in segmented data-
bases.

In an environment in which this kind of query
is expected to be common, a monolithic structure
would be superior. However, we believe that this
kind of query would be rare. For example, in hy-
pertext systems users deal almost exclusively with
parts of documents, and would rarely or never query
a whole document.

6 Related work

These approaches to document management have been
developed as a consequence of experience with doc-
utnent databases and TITAN+, a research prototype
nested relational database system developed at the
Key Centre for Knowledge Based Systems in Mel-
bourne, Australia (Thom et al., 1991). TITAN+ uses
multi-organisational bit-sliced signature file index-
ing to provide access by content (Kent et al., 1990;
Sacks-Davis et al., 1987). Further discussion of the
TiTaN+ features appropriate to docuinent manage-
ment can be found elsewhere (Sacks-Davis et al,,

Proceedings of the 17th International
Conference on Very Large Data Bases

1990). Faloutsos compares signature methods with
other access methods, including inverted files, and
also cousiders effects such as clustering (Faloutsos,
1985). Other nested relational database systems that
suppurt text retrieval include AIM (Dadam and Lin-
demann, 1989) and DASDRBS (Schek et al., 1990).

Methods for arriving at optimal nested relational
designs are considered by Hafez and Ozsoyoglu (Hafez
and Ozsoyoglu, 1988). For example, once a fragment
size had been chosen, their methods could be used
to derive the duplex structure given the monolithic
structure and a series of saniple queries. However,
these mmethods cannot be used to derive information
about fragment sizes, nor can they be used to iden-
tify cases in which information should be repeated.
such as in segmented schemas.

Another database system designed for document
management is MULTOS (Bertino et al., 1988). In
contrast Lo our fragmented schemes, documents are
stored as single entities and the underlying storage
organisation is not based on the nested relational
model. In MINOS, which is also designed for doc-
ument managemment, documents are represented as
complex objects with explicit structure (Christodou-
lakis et al., 1986). However, like MULTOS, MINOS
stores documents in a monolithic structure. Mis-
tral/!1 is an early document retrieval system, and
was based on the relational model (Macleod, 1981).
Mistral/11 also uses monolithic structures.

7 Conclusion

The 1ajor conclusion of this paper is that docu-
ments should be broken into fragments, each of which
should be stored in a separately. There are several
reasons for this. First, in many applications most
queries will be on title or fragment content; fragmen-
tation permits much laster access to the data for such
queries, hecause in general nmuch less data is retrieved
from a fragimented database than from an monolithic
database. Our results indicate that for large docu-
ment collections queries to monolithic schemas are so
slow that such schemas are impractical. Second, doc-
uments can vary greatly in length, which can cause
bit-sliced signature file indexes to become unreason-
ably large. In fragmented databases, size variations
are contained so that this problem does not arise.
Third, fraginents are similar to the units of tex(han-
dled by some document database applications, for
example hypertext.

We have described two possible fragmented sche-
mas, a segmented schema and a duplex schema. For
both of these schemes, we have analysed the relation-
ship between fragment size, database size, and query
response titne. There is no fixed optimal fragment

97

Barcelona, September, 1991

size, but in general smaller fragments give better re-
trieval time. However, a good fragment size would bhe
such that each fragment contains a sentence or para-
graph. Of the two schemas for fragmented databases,
the duplex schema occupies substantially less space,
and 1s faster for most of the query classes we have
considered. Choice of schema will depend on the
application, but we expect that the duplex schema
would generally be preferred.

There are many variants of these schemes that
might be considered: use of secondary indexes to
provide access to fragmented databases on the ba-
sis of the content of documents rather than the con-
tent of fragments; merging the segmented and duplex
schemas to get better retrieval speed: and consider-
ing the costs of further query types. However, such
investigations would not extend our fundanienmal re-
sult: that fragmentation permits tuch [aster access
to data stored in large document databases.

Acknowledgments

We would like to thank Kotagari Ramamohanarao
and Alan Kent for their assistance with this paper.
This work was partly supported by an Australian
Research Council grant,.

References

Bertino, E., Rabitti, F., and Gibbs, S. (1988). Query
processing in a multimedia document system. 4ACAM
Transactions on Office Information Systems, 6(1):1-
41.

Christodoulakis, S., Theodoridou, M., Ho, F., Papa,
M., and Pathria, A. (1986). Multimedia docu-
ment presentation, information extraction, and doc-
ument formation in MINOS: A model and a system.
ACM Transactions on Office Information Systems,
4(4):345-383.

Conklin, J. (1987). Hypertext: An introduction and sur-
vey. [EEE Computer, 20(9):17-41.

Dadam, P. and Lindemarn, V. (1989). Advanced in-
formation management (AIM): Advanced database
technology for integrated applications. /BM Systems
Journal, 28(4):661-681.

Desai, B., Goyal, P., and Sadri, F.
normal universal relations:
formation retrieval systems.
12(1):49-55.

Faloutsos, C. (1985). Access methods for text.
Computing Surveys, 17(1):49-74.

Fuller, M., Kent, A., Sacks-Davis, R., Thom, J., Wilkin-
son, R., and Zobel, J. (1991). Querying in a large
hyperbase. In Second International Confcrence on
Database and Expert Systems Applications, Berlin,
Germany. (To appear).

(1987). Non first
an application to in-
Information Systems,

ACM

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

Hafez. A. and Ozsoyoglu, G. (1988). The partial nor-
malised storage model of nested relations. In Bancil-

and DeWitt, D)., editors, Proceedings of the
Fourteenth International Conference on Very Large
liatabases, pages 160G- 111

KKent, A., Sacks-Davis,

100N

/
{ 1980).

lion, I

R., and Ramamohanarao, K.

A signature file scheme based on multi-
ple organisations for indexing very large text data-
bases. Journal of the American Society for Informa-
tron Science, 41(7):508~534.

Macleod, 1. (1981). A database management system for
document retrieval applications. Information Sys-
tems, 2(1):131-137.

Moffat. A. and Zobel, J. (1991). High performance com-
pression of large document databases. Technical Re-
port 37. Key Centre for Knowledge Based Systems,
Departments of Computer Science, RMIT and the
University of Melbonrne. Melbourne, Australia.

Roth, M.. Korth, H., and Silberschatz, A. {1988). Ex-
tended algebra and calculus for nested relational
databases, ACM Transactions on Databuse Systems,
13(4):289-417.

Sacks-Davis, R., Kent, A., and Ramamohanarao, K.
{1987). Multi-key access methods based ou super-
imposed coding techniques. ACM Transactions on
Database Systems. 12(4):655-696.

Sacks-Davis, R., Wen, W., Kent, A., and Ramamo-
hanarao, K. (1990). Complex object support for
a document database system. In Proceedings of
the Thirteenth Australian Computer Science Con-
ference, pages 322--333.

Salton, G. (1989). Automatic Text Processing. Addison-
Wesley, USA.

Schek. H.-J., Paul, H.-B., Scholl, M., and Weikum, G.
(1990). The DASDBS project: Objectives, experi-
ences, and future prospects. [EEE Transactions on
Knowledge and Data Engineering, 2:25-43.

Schek, H.-J. and Pistor, P. (1982). Data structures for an
integrated data base management and information
retrieval system. In Proceedings of the Eighth In-
ternational Conference on Very Large Data Bases,
pages 197-207.

Thom, J., Kent, A., and Sacks-Davis, R. {1991). TqQL: A
nested-relational query language. Australian Com-
puler Journal. {To appear).

Thom, J. and Zobel, J. (1991). A model for word cluster-
ing. Technical Report 39, Key Centre for Knowledge
Based Systems, Departments of Computer Science,
RMIT and the University of Melbourne, Mclbourne,
Australia.

Witten, 1. and Bell, T. (1990). Source models for nat-
ural language text. International Journal of Man-
Machine Studies, 32:545-579.

Witten, 1., Bell, T., and Nevill, C. (1991). Models for
compression in full-text retrieval systems. In Pro-
ceedings of the IEEE Data Compression Conference,
pages 23-32.

98

Barcelona, September, 1991

Glossary of notation

P CPIT BT PEPPOP S RPOTTITY
sechdr Sulbsections
Notation Definition Valye subsechdr %{"‘L—
B block size 32 1234850] NMary Autopsy NULL TASE No. 123456
. R Brown Report re MARY BROWN
D nesting depth of headings 2 deceased
JOHN SMITH
F no. of fragments per doc. bis ootk saith —1
. B am a legally
H no. of section headings 10 ualifien Medical
K no. of bits set by term in Practitioner .
signature & At 0700 houts on
. e lst day o
1 seconds to search index Januaiy 1990 .
EXTariaT NUTT s hody was that
m no. Of querv tel‘ﬂls Exawination of an elderly
A caucasian female,
M no. of matching tuples of average
nuirition,
N no. of docs 100,000 measuring 1.53
h 3 metres in height
Ny no. of bits per term 50 nd weighing a7
Ny no. of terms per frag. kilograms.
Ny no. of terms in heading 5
N, no. of terms per doc. 10,000
"VT no. of terms of title Eigns of T. An endotracheal
. . recent tube protruded
information 50 medical from the right side
intervens of the mouth.
p(t) prob. that term t occurs tion:
2. ECG electrodes
puwlti,...,tm) prob. that frag. or doc. of were present over
length w contains all of ;’;’P:f{’j: :‘,‘,‘:“
lowers teft
the terms tll’ e tm quasdrants of the
P size of foreign keys 32 chesy
R no. of bits in signaturc
per term 32
Sy fragment tuple size in bits
Sm monolithic tuple size in bits 505,000 . L
S segmented tuple size in bits Figure 1. A schema for monolithic storage of docu-
't title tuple size in bits ments
Ta seconds to process one bit
of data 1078
T, seconds to process one bit
; -7
Of lndex]0_2 [Ccaseno T leceased | sechdr tubsechdr T text 1
T, seconds per seek+latency 10 153456 | Mary Auiopsy NULL CTASE No. 123456
Wy no. of distinct term in db 50,000 Brown Report te MARY BROWN
Wy(w) no. of distinct terms in JOHN SMITH on
doc. or frag. of w terms am a legally
qualified Medical
E. ilitione
123456 Maty Autopsy NULL A:.Lr;mo ho\'u's on
Brown Report the 1st day of
January 1990 .
123456 Mary Bxtetnal NULL The body was that
Brown IExamination of an elderty
caucasian female,
of average
nutrition,
measuring 1.53
metres in height
and weighing 47
kilograms.
123450 Mary External Signs of 1. Aun endolracheal
Brown Examination recent tube protruded
madical from the right side
interven-~ of the mouth.
tion:
123456 Mary External S‘igx;u of 2. ECG eclectrodes
Brown Examination recent wete present over
medical the upper right,
interven- upper left and
tion: lower left
quadrants of the
chest
Figurc 2. A schema for segmented storage of docu-
ments
. . lona, September, 1991
Proceedings of the 17th Intemational 99 Barce p

Conference on Very Large Data Bases

caseno deceased Sections

sechdr Subsestions
subsechdr Frags
pir
123456 Mary Autopsy NULL 1
Brown Report
2
External NULL 3
Examination
igns of &
recent
medical 9
interven-
tion 20000.5 7
|
. -———— Monolithic
18000.0 ‘\ - -+ Segmented
' -— — - Duplex
16000.0 |
[[caseno fragment | text 14000.0 - :‘
123456 1 CASE No. 123456 r= MARY . b
BROWN deceased Index o004
JOHN SMITH on his vath Bale ‘)
saith — | am a legally ”)
qualified Medical 100009 "‘
Practitianer i \
123456 2 At 0700 hours on the 1st §002.0 :
day of January 1990 N
123456 3 The body was that of an 5000.0
elderly caucasian fematle, of .
average nutrition, measuriag Te
1.53 metres in height and 4000.0 — Teeal L
weighing 47 kilograms. T e e — AR
2000.0 - - =
0.0 T T ' T T T T T
0 20 40 5 80 10C 120 140 160 180 200
123456 8 1. An endotracheal tuke v §
protruded from the right ragment size (rerms)
aide of Ahe maoulh
123456 9 2. ECG celectrodes wnre
preseni over the upper right,
upper left and lower left
quadrants of the chest
Figure 3: A schema for duplex storage of documents
00000 j
L8t 0 4 == - Monolithic
1£000.0 ‘1 - - - Sagmented
i ~— — - Dupiex
ie000.0
fotal 14000.0 .
database 12000.0 A _‘
size \ Thee
(Mpyte) 10000.0 4 N\ -
v ~ —
4.0 q‘\ 6000.0 T T e e
'
) - ——
b ' 6006.0 T
2.0 4 4006.0 -
Retrieval Y
time Y 2000.0
\
(sec) 1.0 7 R 0.0 T T T T T T T L — 1
(PLE)=10%-6) e A © 20 40 40 B0 100 120 140 160 180 200
4 RN Fragment size (terms)
0.4 - Tl
! S,
1 .
. ~——-—- Munelithic
0.2 - T . - Segmunted
S e el I _Duﬂl"i
L T T T T T T T T T 1
0 20 40 &0 80 100 120 140 160 180 200 : <N . h. .
Figure 5: Sizes of indexes and databases by fragment
Fragment size Nft (terms) .
si1ze
Figure 4: Queries on title by fraginent size and by
term probability
i i Barcelona, September, 1991
Proceedings of the 17th International 100 , O€P! :

Conference on Very Large Data Bases

commme T - I
\ — Monciitnic i
o :;ém;;r:; 1 ——— Monolithic
—— reneRd e Segmented
| Duplex — - - Duplex
‘ Duplex variant 100 o - == -=— Duplex variant
i 3
10 9 3
] 4\
Retrieval - Retrieval b \
4 30 4
time i cime \ B
(€L TN ses) - ~
4 Ly -~
1 10 o -
q. PR ’
2 -4 oo 1o . R o —
\ -
—
34\ e
- ~. -
- N
13 —
<
T T T T T T T T T al [T T r T T i T T T Y
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
fragment size Nft (terms; Fragment size Nft (terms)
\
N N
140.0 o \\-s___\ 1400.0 R T
120.0 o 1200.0
Humber 100.0 - Nuioen 1000.0 -
ot \ ot N
matchin, ~ ~~
g ~ matching —~
80.0 - =~ 800.0 -
tuples - e tuples — - —
60.0 £00.0
40.0 o 400.0
N ————-— Monclith:c 2050 - = Monolithiec
20.0 - — - Segmented or Duplex e - - Segmented or Duplex
= ~~ - = Duplex variant Duplex variant
0.0 T T T T T T T e —— 0.0 -t T T T T T T T T T 1
6 20 40 60 80 100 120 140 160 180 200 6 20 40 60 80 100 120 140 160 180 200
Fragment size Nft (terms) Fragment size Nft (terms)

Figure 6: Single-term queries on fragment content by Figure 7:

fragment size, p(t) = 10”7

Proceedings of the 17th International
Conference on Very Large Data Bases

Single-term queries on fragment content by

fragment size, p(t) = 10~°

101

Barcelona, September, 1991

Monolithic 100000 o, Monolith
------ Segmented ' onolithia
1000 — — - Duplex o e Segmented
- = -— Duplex variant \\ == —= - Duplex
k\
30000 3
Retrieval 100 Ret rieval \\
\
time time N
{sec) sac) |
) 16650 =
0 \ o Tl
\s 2600 i
1 N !
IR RS S
T e e s sz ez
L T e — —
T T T al T T Al i 1
o 20 40 &0 80 100 120 140 160 180 200
0 20 40 60 BD 100 120 140 16C 14C 200
Fragment size Nft (terms)
Fragment size Nft ‘teims:
Monolithic i)
— == - Segmented o1 Lupliex . o Monolithic
T = Duplex vartant LECO00CE \ — -- - Segmented or Duplex
N
1000 %
Z} ~
Number Nymber -
1000000 ~ -
of of e~
matching matching -
tuples 100 tuples
100000
- -
o e -
e P o 10000 =
_ P e
! /
=
/,__4_ ~r a
— —; I A e s o T mmme e]
1000
1
1 T T T =TT T T T T 1 0 20 40 60 B0 100 120 140 160 180 200
20 0 6 60 100 120 16 180 00
0 4 0 L4o 0 2 Fragment size Nft (terms)
Fragmant size Nft {(terms)

Figure 8: Multi-term queries on fragment content by

fragment size, each p(t) = 1074

Proceedings of the 17th International
Conference on Very Large Data Bases

Figure 9: Multi-term queries on document content
by fragment size, each p(t) = 1074

102

Barcelona, September, 1991

