
Adaptive Load Control in Transaction Processing Systems

Hans-Ulrich Heiss
University of Karlsruhe

Germany

Abstract
Thrashing in transaction processing systems can
be prevented by controlling the number of
concurrently running transactions. Because the
optimal concurrency level strongly depends on
the workload characteristics which may change in
time, two algorithms for adaptive adjustment of
an upper bound for the concurrency level are
proposed and compared by simulation.

1 Introduction
It is well known that transaction processing systems can
be subject to thrashing. The term thrashing, coined by
Denning [Denning, 19681 for overload effects in virtual
storage systems, generally describes a phenomenon where
an increase of the load results in a decrease of throughput
(or another related performance measure). Systems with
such a behaviour show a load-throughput function as in
figure 1.

throughput

A- -__-__-__- J- --~~~~-~~ J - __- __._________ smJrationbound. --

Figure 1: Typical shape of the throughput function with
thrashing

Usually, three phases can be distinguished:

I. Underload
At light loads with sufficient resources availab!e, the
throughput grows almost linearly making use of
possible parallelism in the system.

Proceedings of the 17th International
Conference on Very Large Data Bases

II.

III.

Roger Wagner
University of Karlsruhe

Germany

Saturation
When the finite capacity of the system becomes
effective, the throughput function flattens out.

Overload (thrashing)
Further increasing the load will not lead to an
asymptotic approach to the saturation bound but will
cause a sometimes sudden drop in throughput.

Generally speaking, at least two classes of factors
contribute to this overload effect:

- the management of the load units to be processed (e.g.
transactions) causes an algorithmic overhead (e.g. list
operations, sorting, searching etc.) that in many cases
is overlinear with respect to the load.

- dependent on the type of the system, the load units
start to hamper each other due to insufficient resource
capacity.

In transaction processing systems, these mutual
impediments are known to stem from contention for either
physical resources (memory, processors) or logical
resources (data granules). The former is usually called
resource contention (PC), the latter data contention (DC).
To describe the effect of contention in more detail, we
have to distinguish between two major classes of
concurrency control (CC) algorithms [Bernstein et al.,
19871:

1. Blocking CC algorithms (e.g. Two Phase Locking)
Analytic models show [Tay et al., 19851 that the mean
number of blocked transactions b is a quadratic
function of the total number of transactions n. This
means that beyond a critical point (db(n) / dn > l), the
result of adding one more transaction (n:=n+l) will be
that the number of blocked transactions b increases by
more than one which in turn means that the number of
active transactions Q (a En-b) will decrease.

2. Non-blocking CC algorithms (e.g. timestamp
ordering, optimistic CC)
In non-blocking CC schemes, conflicts are resolved by
aborting and restarting one of the involved

47
Barcelona, September, 1991

transactions. The mean number of restarts - which
roughly corresponds to the number of blocked
transactions in the blocking case - is also an
overlinearly increasing function of the concurrency
level n. With growing n, the fraction of rerunning
transactions becomes larger and consumes a larger
fraction of physical resources (e.g. processor capacity),
and thereby tightens the contention. Because reruns
cannot be regarded as useful work, more and more
resource capacity is wasted resulting in a performance
decrease. Roughly speaking, in non-blocking systems,
data contention is resolved by increased resource
contention which leads to a drop in throughput as soon
as resource saturation is reached. Only in an ideal
system with unlimited capacity, thrashing can be
avoided.

Knowing that thrashing threatens in virtually every
transaction processing system, we have to think about
countermeasures that limit the load such that overload is
prevented. Several solutions are possible:

1.

2.

Do nothing
Rely on selfregulating market mechanisms: If the
service (throughput, response time) becomes worse,
fewer people want it. This approach, however, is not
universally viable.

Fixed upper bound
The maximum number of concurrent transactions is a
system parameter that is tuned by the system
administrator when the system is inStaIIed or started
up. This approach can usually be found in commercial
database systems. When the transaction load is
constant and the value is chosen appropriately, this
solution may work. However, traces from real database
systems often show large variations of the load, both
quantitative and qualitative. They also show an overlay
of variations of different periodicity, some of which are
more regular and predictable, others not.

3. Theoretically derived ‘rules of thumb’
Analytical models sometimes suggest some conditions
that must be satisfied to prevent thrashing. Tay et al.
[Tay et al., 19851, for instance, claim that k2n/D
should be less than 1.5 where k is the number of data
items accessed by each transaction, n is the
concurrency level, and D is the database size. lyer [Iyer,
19881 suggests that the mean number of conflicts per
transaction should not exceed 0.75. Although the
authors give some evidence for their results within the
framework of their respective models, the question is
whether these bounds actually apply to all possible
load situations. If so, controlling the concurrency level
to prevent thrashing could be easy. However, as long
as no detailed examinations of these rules are available,
they have to be considered with caution.

Proceedings of the 17th International
Conference on Very Large Data Bases

4. Feedback control mechanisms
If we do not believe those rules of thumb or do not
want to completely rely on them, we may look for
more direct, i.e. model independent control
mechanisms that only need a few and weak
assumptions. This kind of solution can be provided by
a control-theoretic approach. The dynamically changing
optimal concurrency level requires an adaptive load
control. Based on recent measurements of system
quantities, an upper bound of the concurrency level has
to be adjusted. This approach is the subject of our
paper.

2 Related work
Thrashing as a phenomenon was first reported in
[Denning, 19681. A survey of different approaches for
dynamic load control in virtual storage systems was given
in [Denning et al., 19761 and in [Denning, 1980).
Thrashing phenomena in database systems with locking
were brought to major attention by Tay et al. [Tay et al.,
19851 using an analytical closed mean value transaction
flow model. A similar model was used by Dan et al. [Dan
et al., 19881 to analyze optimistic protocols. Franaszek
and Robinson [Franaszek and Robinson, 19851 apply a
nndom graph model that also reveals thrashing behaviour.
A comprehensive analytical framework for data and
resource contention in database systems was recently
presented by Thomasian and Ryu [Thomasian and Ryu,
19901 who also report thrashing. Most of the results of
these analytic models, including thrashing, were confmned
through simulation studies conducted by Agrawal et al.
[Agrawal et al., 19871. The main subject of all these
contributions, however, is not to propose a mechanism
for controlling the concurrency level, they rather are
concerned with the possibility of modeling per se or with
the comparison of different classes of concurrency control
protocols. They just say that control of the concurrency
level is necessary but don’t say how that should be done.
Only Tay et al. [Tay et al., 19851 and Iyer [Iyer, 19881
more concretely suggest criteria for such a control
mechanism. While these two proposals are limited to
blocking CC algorithms, our approach is more generally
applicable.

3 Our Approach
We consider the problem of controlling the concurrency
level in transaction processing systems as a dynamic
optimum search problem [Heiss, 19891. We are not
concerned about any internal details of the system, we are
solely interested in the functional relationship of the
concurrency level n as the input and the resulting
performance P as the output of the system. Generally, the
throughput T is used as the performance index P. As we
will see below, however, alternative quantities with
similar shape are eligible. We assume that this function
P(n) at each time has a shape like figure 1 or - more
precisely - that P(n) is monotically increasing up to a

48
Barcelona, September, 1991

maximum at nopt, and then decreasing, In other words, we
assume the existence of a local maximum that is also a
global one.

The performance is assumed to be also a function of the
time allowing for almost arbitrary changes of the load
characteristics (figure 2). The dynamic behaviour,
however, should have some locality in the sense that the
shape of the curve at time ti is a good estimate for its
shape at time ti+l. In other words, the sample interval
should be small enough that within an interval,
stationary behaviour of a constant parameter stochastic
process is a reasonable assumption. On the other hand, the
sample interval should be large enough that the relevant
quantities can be estimated with sufficient accuracy.

Figure 2: Dynamic behavior of a thrashing system

Looking at figure 2, the prcblem can be informaily
described as follows: Starting at time t=O with an arbitrary
load value, the algorithm has to find the ‘ridge’ of the
‘mountain’ and to track it along the time axis. Note that
our moves in the control plane are limited to the direction
of the positive time axis. Additionally, we do not know
the shape of the mountain in total but all information we
can obtain is the series of realized load/performance pairs
from the past.

4 The Algorithms
We describe two algorithms for this dynamic optimum
search problem: (1) the Method of Incremental Steps (IS)
and (2) the Parabola Approximation (PA) where the
performance-function P(n) is approximated as a
polynomial of degree 2.

4.1 Incremental Steps (IS)

In its simplest variant, the Method of Incremental Steps
works as follows: Starting with an arbitrary value of the
load bound n* as the control variable, we increase it by
one at each time step and measure the resulting
performance. If the performance also increases, we
proceed. If it becomes worse, we interpret this fact as
having exceeded the ridge of the mountain and therefore

Proceedings of the 17th International
Conference on Very Large Data Bases

turn the direction until again the performance becomes
worse. So we track the ridge in a zig-zag-fashion (figure
3).

More precisely, in each measurement interval [ti, ti+l) the
actual concurrency level n(ti) and the performance P(ti) are
measured. The new load bound n*(ti) is adjusted according
to the following rule:

?l*(tj+l) :=

’ n*fti) + /3 (P(tj) -P(ti.l)) X

signurn (n*(tj) - n*(tj.l)),
if ln*(tj) - tl(tj)l ZC 6

n*(b) + “/,
if ItI* - tl(ti)l > 6 h n*(ti) < n(ti)

n*(h) - X

\ if h*(tj) - n(tj)l > 6 A n*(ti) > n(ti)
where

I

1 for x > 0
Signum(x) :=

-1 forxI;O

time

load

Figure 3: Example trajectory of the Method of
Incremental Steps

As can be seen above, the algorithm has three parameters,
p for changing the step size proportionally to the
performance change, and y and 6 to prevent that the
actual load n(li) and the load bound n*(ti) are drifting apart
too far.

49
Barcelona, September, 1991

4.2 Parabola Approximation (PA)
The performance function P(n) is approximated as P(n) =
ag + UJ n + a2 n2 (see figure 4.)

means wastage of system resources this approach is
justified only if the responsiveness of the controller
cannot be achieved otherwise.

perfomlance

m measurement9

overload function

load

Figure 4: Principle of the Parabola Approximation

Based on recent measurement pairs (P,n) the coefficients ai
are estimated using a recursive least-square estimator with
exponentially fading memory [Young, 19841. The fading
is controllable by a weighting parameter a. The recursive
way the algorithm works makes it both space- and time-
efficient. Having found the parabola, its maximum is used
as the new load threshold. The control law is (roughly):

I - all (2 a2). if a2 c 0
n*(ti+ J) I=

null , otherwise (see section 5.2)

4.3 Realization of load control

Once the controller has determined a new optimal load
bound n* it has to be enforced in some way:

- Admission control
The admission to the transaction processing system
is controlled by a ‘gate’ that accepts an arriving
transaction if and only if the actual load n is below
the current threshold n*. Otherwise the transaction has
to wait in a FCFS-queue. Waiting transactions are
admitted as soon as ncn* holds again.

- Displacement
Changing transaction behavior may lead to a situation
where the controller suggests a new n* well below the
current load n. Here we have two options: (i) We
merely use admission control and hope that by normal
departures the load n will drop below n* soon. (ii) In
addition to admission control, we instantaneously
enforce the new threshold n* by aborting as many
active transaction as necessary. (Victim selection may
be based on the same criteria as for deadlock
breaking.) Because aborting transactions always

Gate

transaction flow
easurementS

Figure 5: Structure of load control

Our experiments showed that admission control alone was
responsive enough to prevent thrashing even with
dramatically changing workloads. In addition, not
displacing transaction has a smoothing effect on system
behavior that supports controller stability, We therefore
employed the load control in the way depicted in figure 5.
Nevertheless, aborting transactions may be an additional
measure as a last resort.

5 Controller Performance and Stability
Although the algorithms worked fine in a broad variety of
cases, we can think of ‘pathological’ situations that would
‘fool’ the algorithms and lead to poor performance. There
are also a few parameters associated with each algorithm
that have to be tuned carefully. This tuning requires some
knowledge about the statistical properties of the measured
quantities which can be regarded as stochastic processes.
Tuning does not necessarily mean manual adjustment, it
can also be done automatically by an overlaid, outer
control loop that takes long-term measurements to adjust
the parameters of the inner control loop.

A general problem is the choice of an appropriate
measurement interval length. Taking the departures as a
stochastic process and assuming stationarity, it is possible
to calculate the necessary duration of measurements to
estimate the throughput with a given accuracy and for a
given confidence level [Heiss, 19881. This interval length
clearly depends on the parameters of the departure process,
especially its second moments. The problem is that we
have to strike a balance between the stability (not to react
to stochastic events (‘noise’)) and responsiveness (quickly
respond to actual changes in the workload). For that
reason, the measurement interval should not be longer
than required to filter out stochastic noise. To name some
figures, an estimate should comprise rather hundreds of
dcparturcs than some tens.

Proceedings of the 17th International
Conference on Very Large Data Bases

50 Barcelona, September, 1991

5.1 Incremental Steps

The simplicity of this algorithm makes it generally prone
to failures in specific situations. While it is relatively
stable with regard to changes of the optimum’s position,
it may fail when the height of the optimum is growing
without changing the position. Because all steps lead to
an improvement, the algorithm ‘thinks’ to be on the way
to the top, but actually goes astray. To prevent a
performance breakdown and to help the IS algorithm to
recover, a static lower and upper bound for the threshold
n* should be provided.

5.2 Parabola Approximation

Due to the larger amount of information used by this
algorithm, it is generally more stable. This amount of
information is controlled by two parameters: measurement
interval length At and aging coefficient a. The selection
of these parameters shapes the memory of the estimator.
Figure 5 shows two different estimation approaches that
use the same amount of information: the dotted line
characterizes a long measurement interval and a=O, i.e.
older measurements are not considered, the solid line
means an interval length five times smaller but an aging
coefficient of a=0.8. The area below the lines can be
interpreted as the amount of information used. Because the
algori!hm is based on a least squares approach, it needs
some variations in the measurements to get useful
estimates. It is therefore better to choose a small At and a
large a instead of a large At and small a.

:0 wcighl I

long inbrval r

04

OS

exponentially weighted
shot-t intervals \ r-i- I

I

. * ’ ’ ’ ’ ’ ’
1-16 l-10 t-s l-l L

th

Figure 6: Alternative shapes of the estimator’s memory.

It is essential for the parabola approach that the estimated
parabola opens downward. There are, however, situations
were the algorithm may find an upward open parabola:

a) the true performance function has a broad, flat hump
and the collected measurements suggest a convex
course of the function (figure 7).

Proceedings of the 17th International
Conference on Very Large Data Bases

b) the true performance function changed its shape
abruptly in a way that the current load bound is now
deep in the thrashing region beyond the inflexion
point where the shape of the function is actually
convex (figure 8).

Performance Performance

x, x, k* k* ‘a.. ‘a.. ““...a,, ““...a,,

measurements measurements

overload function overload function

Load

Figure 7: Performance function with a flat hump

Performance

t

i
i* old overload f
i function ’ I

measurements

Load

Figure 8: Abruptly changing shape of the performance
function

The upward opening parabola is characterized by a positive
value of the coefficient of the quadratic term ~22. If this is
the case, the result of the estimation is obviously
unreliable and useless. We have to provide some
countermeasures to recover from this situation. There are
several options:

51
Barcelona. September, 1991

Besides the fact that these different measures define
slightly different optimal loads, it may also be a matter of
numerical stability of the algorithms, which criterion
should be used. With regard to that, the function with the
most distinct extremum should be choosen. In our
experiments, the throughput T turned out to be the most
significant indicator for overload situations. We therefore
concentrate on T as our performance measure.

7 The Simulation Model
The simulation model is composed of two parts, a
physical model and a logical model. The physical model
depicted in figure 11 is a closed one where N statistically
identical transactions are circulating. It consists of a
homogeneous multiprocessor system serving a shared
queue, a disk subsystem with constant service times and
no contention, and a set of N terminals where the
transactions are started. The logical model represents the
data access behavior of the transactions. Each transaction
accesses a constant number k of data items. The execution
of a transaction therefore consists of k+2 phases: an
initialization phase, k phases with gradually increasing
data set size, and a final phase for commit processing. The
data items are selected randomly (i.e. no hot spots). As
CC algorithm we use a timestamp certification scheme
[Bernstein et al., 19871, because an optimistic protocol is
more interesting due to its relationship between data
contention and resource contention. The parameters used
are roughly the same as in [Yu et al., 19871 that where
derived from customer workload traces.

terminals

Figure 11: Simulation model

The dynamic change of the load charactistic was carried
out by varying one of the following parameters:

- k, the number of locks per transaction
- fraction of queries
- fraction of write accesses for updaters

Variation of all these parameters showed significant
impact on both height and position of the optimum
throughput.

9 Simulation results
We first tested the two control algorithms under stationary
conditions. All parameters were kept constant. For
different levels of concurrency a stationary simulation run
was conducted.

throughput

with
control

IH without
control

I
I I I I I I I I *

100 200 300 400 500 600 700 800 n (load)

Figure 12: System throughput with and without
control in the stationary case

Figure 12 shows that both algorithms had the desired
property to keep the load at the point of optimum
throughput and thus prevented thrashing. (Actually,
figure 12 shows the resulting throughput for the PA
algorithm. The difference between PA and IS was
insignificant in this case.)

Proceedings of the 17th International
Conference on Very Large Data Bases

52

The major focus of the study, however, was on dynamic
behavior. To that end, the above mentioned parameters
were changed during the simulation runs in two fashions:
(1) a jump-like variation to model abrupt changes in the
workload and (2) a sinusoidal variation modelling more
smooth and gradual changes. While both algorithms were
able to follow gradual changes, the more sophisticated PA
algorithm was clearly superior to IS in the case of jump-
like changes: Figures 13 and 14 show examples of their
respective behavior. The broken line indicates the position
of the true optimum nOpt, and the solid line is the
trajectory of the load threshold n* adjusted by the
respective controller algorithm. IS in figure 13 reacts very
quickly to the jump of the optimum’s position but has
serious problems to adjust correctly to the new load
situation, The PA algorithm (figure 14) needs some more
time to respond but tracks the optimum more accurately
and reliably. The oscillations of the trajectory in figure 14
are enforced by the algorithm as explained in section 4.2.

Barcelona, September, 1991

750
700
650
600
550

3 "4:;
2 400
3 350
- 300

250
200
150
100
50

0

...

i ...

t 1 1 I 1 I I I I I 1
I iC0 200 300 400 500 600 700 800 900 1000

time

Figure 13: Trajectory of the Incremental Steps when the position of the optimum changes abruptly

750
700
650
600
550

p 500
s 450
B 400
1 350
- 300

250
200
150
100
50
0

500
time

Figure 14: Trajectory of the Parabola Approach when the position of the optimum changes abruptly

10 Conclusions approached as a dynamic optimum search problem for

Transaction processing systems need a control of the which heuristic algorithms of different complexity and

concurrency level to prevent thrashing effects. This quality are available. The reasonable assumption that the

control mechanism should be adaptive to cope with the only local maximum is also a global one excludes the

dynamically changing load. The control problem can be problem of getting stuck in a local optimum which other

Proceedings of the 17th International
Conference on Very Large Data Bases

53
Barcelona, September, 1991

hill climbing problems are faced with. The problems
remaining are those of stability and reliability. We showed
how these problems can be overcome by the two presented
algorithms. The simulation experiment was designed to
reveal the behavior of the algorithms in difficult
situations. The more sophisticated PA algorithm
outperformed the simpler IS algorithm in all cases
examined and always avoided thrashing.

References:

R. Agrawal, M.J. Carey, M. Livny: Concurrency
Control Performance Modeling: Alternatives and
Implications. ACM TODS 12,4 (Dec.1987), pp. 609-654.

P. A. Bernstein, V. Hadzilacos, N. Goodman:
Concurrency Control and Recovery in Database Systems.
Addison Wesley, 1987.

A. Dan, D. F. Towsley, W. K. Kohler: Modelling the
Effect of Data and Resource Contention on the
Performance of Optimistic Concurrency Control
Protocols. Proc.4rh Conf. on Data Engineering, Los
Angeles (Feb.1988) pp. 418-425.

P. J. Denning: Thrashing: Its Causes and Prevention.
Proc. AFlPS FJCC 33, 1968, pp, 915-922.

P. J. Denning: Working Sets Past and Present. IEEE
TOSE 6,l (Jan.1980) pp. 64-84.

P. J. Denning, K. C. Kahn, J. Leroudier, D. Potier,
R. Suri: Optimal Multiprogramming. Acta Informutica 7
(1976) pp. 197-216.

P. Franaszek, J. T. Robinson: Limitations of
Concurrency in Transaction Processing. ACM TODS
-lo,8 (March 1988) pp. 1-28.

H.-U. Heiss: Overload in Computer Systems.
Springer-Verlag, Heidelberg, 1988 (in German)

H.-U. Heiss: The Generalized Thrashing Effect and its
Prevention. IBM Research Report No.RC14667 (June
1989), IBM Res. Div., Yorktown Heights, NY 10598

H.-U. Heiss: Overload Effects and Their Prevention.
(to appear in Performance Evaluation)

B. R. Iyer: Limits in Transaction Throughput - Why
Big is Better. IBM Research Report No.RJ6584 (Nov.
1988), IBM Res. Div., Yorktown Heights, NY 10598

Y. C. Tay, N. Goodman, R. Suri: Locking
Performance in Centralized Databases. ACM TODS 10,4
(Dec. 1985) pp.415462.

A. Thomasian, I. K. Ryu: Analysis of Database
Performance with Dynamic Locking. JACM 37,3 (July
1990) pp.491-523.

R. Wagner: Adaptive Load Control in Transaction
Processing Systems, Diploma lhesis, University of
Karlsruhe, Faculty for Informatics, 1990 (in German).

P. Young: Recursive Estimation and Time-Series
Analysis. Springer-Verlag, Berlin, 1984.

P. S. Yu, D. M. Dias, J. T. Robinson, B. R. Iyer,
D. W. Cornell: On Coupling Multi-Systems Through
Data Sharing. Proc. IEEE 75,5 (May 1987) pp. 573-587.

Proceedings of the 17th International
Conference on Very Large Data Bases

54
Barcelona, September, 1991

