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Abstract 
Thrashing in transaction processing systems can 
be prevented by controlling the number of 
concurrently running transactions. Because the 
optimal concurrency level strongly depends on 
the workload characteristics which may change in 
time, two algorithms for adaptive adjustment of 
an upper bound for the concurrency level are 
proposed and compared by simulation. 

1 Introduction 
It is well known that transaction processing systems can 
be subject to thrashing. The term thrashing, coined by 
Denning [Denning, 19681 for overload effects in virtual 
storage systems, generally describes a phenomenon where 
an increase of the load results in a decrease of throughput 
(or another related performance measure). Systems with 
such a behaviour show a load-throughput function as in 
figure 1. 

throughput 
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Figure 1: Typical shape of the throughput function with 
thrashing 

Usually, three phases can be distinguished: 

I. Underload 
At light loads with sufficient resources availab!e, the 
throughput grows almost linearly making use of 
possible parallelism in the system. 
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Saturation 
When the finite capacity of the system becomes 
effective, the throughput function flattens out. 

Overload (thrashing) 
Further increasing the load will not lead to an 
asymptotic approach to the saturation bound but will 
cause a sometimes sudden drop in throughput. 

Generally speaking, at least two classes of factors 
contribute to this overload effect: 

- the management of the load units to be processed (e.g. 
transactions) causes an algorithmic overhead (e.g. list 
operations, sorting, searching etc.) that in many cases 
is overlinear with respect to the load. 

- dependent on the type of the system, the load units 
start to hamper each other due to insufficient resource 
capacity. 

In transaction processing systems, these mutual 
impediments are known to stem from contention for either 
physical resources (memory, processors) or logical 
resources (data granules). The former is usually called 
resource contention (PC), the latter data contention (DC). 
To describe the effect of contention in more detail, we 
have to distinguish between two major classes of 
concurrency control (CC) algorithms [Bernstein et al., 
19871: 

1. Blocking CC algorithms (e.g. Two Phase Locking) 
Analytic models show [Tay et al., 19851 that the mean 
number of blocked transactions b is a quadratic 
function of the total number of transactions n. This 
means that beyond a critical point (db(n) / dn > l), the 
result of adding one more transaction (n:=n+l) will be 
that the number of blocked transactions b increases by 
more than one which in turn means that the number of 
active transactions Q (a En-b) will decrease. 

2. Non-blocking CC algorithms (e.g. timestamp 
ordering, optimistic CC) 
In non-blocking CC schemes, conflicts are resolved by 
aborting and restarting one of the involved 
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transactions. The mean number of restarts - which 
roughly corresponds to the number of blocked 
transactions in the blocking case - is also an 
overlinearly increasing function of the concurrency 
level n. With growing n, the fraction of rerunning 
transactions becomes larger and consumes a larger 
fraction of physical resources (e.g. processor capacity), 
and thereby tightens the contention. Because reruns 
cannot be regarded as useful work, more and more 
resource capacity is wasted resulting in a performance 
decrease. Roughly speaking, in non-blocking systems, 
data contention is resolved by increased resource 
contention which leads to a drop in throughput as soon 
as resource saturation is reached. Only in an ideal 
system with unlimited capacity, thrashing can be 
avoided. 

Knowing that thrashing threatens in virtually every 
transaction processing system, we have to think about 
countermeasures that limit the load such that overload is 
prevented. Several solutions are possible: 

1. 

2. 

Do nothing 
Rely on selfregulating market mechanisms: If the 
service (throughput, response time) becomes worse, 
fewer people want it. This approach, however, is not 
universally viable. 

Fixed upper bound 
The maximum number of concurrent transactions is a 
system parameter that is tuned by the system 
administrator when the system is inStaIIed or started 
up. This approach can usually be found in commercial 
database systems. When the transaction load is 
constant and the value is chosen appropriately, this 
solution may work. However, traces from real database 
systems often show large variations of the load, both 
quantitative and qualitative. They also show an overlay 
of variations of different periodicity, some of which are 
more regular and predictable, others not. 

3. Theoretically derived ‘rules of thumb’ 
Analytical models sometimes suggest some conditions 
that must be satisfied to prevent thrashing. Tay et al. 
[Tay et al., 19851, for instance, claim that k2n/D 
should be less than 1.5 where k is the number of data 
items accessed by each transaction, n is the 
concurrency level, and D is the database size. lyer [Iyer, 
19881 suggests that the mean number of conflicts per 
transaction should not exceed 0.75. Although the 
authors give some evidence for their results within the 
framework of their respective models, the question is 
whether these bounds actually apply to all possible 
load situations. If so, controlling the concurrency level 
to prevent thrashing could be easy. However, as long 
as no detailed examinations of these rules are available, 
they have to be considered with caution. 
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4. Feedback control mechanisms 
If we do not believe those rules of thumb or do not 
want to completely rely on them, we may look for 
more direct, i.e. model independent control 
mechanisms that only need a few and weak 
assumptions. This kind of solution can be provided by 
a control-theoretic approach. The dynamically changing 
optimal concurrency level requires an adaptive load 
control. Based on recent measurements of system 
quantities, an upper bound of the concurrency level has 
to be adjusted. This approach is the subject of our 
paper. 

2 Related work 
Thrashing as a phenomenon was first reported in 
[Denning, 19681. A survey of different approaches for 
dynamic load control in virtual storage systems was given 
in [Denning et al., 19761 and in [Denning, 1980). 
Thrashing phenomena in database systems with locking 
were brought to major attention by Tay et al. [Tay et al., 
19851 using an analytical closed mean value transaction 
flow model. A similar model was used by Dan et al. [Dan 
et al., 19881 to analyze optimistic protocols. Franaszek 
and Robinson [Franaszek and Robinson, 19851 apply a 
nndom graph model that also reveals thrashing behaviour. 
A comprehensive analytical framework for data and 
resource contention in database systems was recently 
presented by Thomasian and Ryu [Thomasian and Ryu, 
19901 who also report thrashing. Most of the results of 
these analytic models, including thrashing, were confmned 
through simulation studies conducted by Agrawal et al. 
[Agrawal et al., 19871. The main subject of all these 
contributions, however, is not to propose a mechanism 
for controlling the concurrency level, they rather are 
concerned with the possibility of modeling per se or with 
the comparison of different classes of concurrency control 
protocols. They just say that control of the concurrency 
level is necessary but don’t say how that should be done. 
Only Tay et al. [Tay et al., 19851 and Iyer [Iyer, 19881 
more concretely suggest criteria for such a control 
mechanism. While these two proposals are limited to 
blocking CC algorithms, our approach is more generally 
applicable. 

3 Our Approach 
We consider the problem of controlling the concurrency 
level in transaction processing systems as a dynamic 
optimum search problem [Heiss, 19891. We are not 
concerned about any internal details of the system, we are 
solely interested in the functional relationship of the 
concurrency level n as the input and the resulting 
performance P as the output of the system. Generally, the 
throughput T is used as the performance index P. As we 
will see below, however, alternative quantities with 
similar shape are eligible. We assume that this function 
P(n) at each time has a shape like figure 1 or - more 
precisely - that P(n) is monotically increasing up to a 
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maximum at nopt, and then decreasing, In other words, we 
assume the existence of a local maximum that is also a 
global one. 

The performance is assumed to be also a function of the 
time allowing for almost arbitrary changes of the load 
characteristics (figure 2). The dynamic behaviour, 
however, should have some locality in the sense that the 
shape of the curve at time ti is a good estimate for its 
shape at time ti+l. In other words, the sample interval 
should be small enough that within an interval, 
stationary behaviour of a constant parameter stochastic 
process is a reasonable assumption. On the other hand, the 
sample interval should be large enough that the relevant 
quantities can be estimated with sufficient accuracy. 

Figure 2: Dynamic behavior of a thrashing system 

Looking at figure 2, the prcblem can be informaily 
described as follows: Starting at time t=O with an arbitrary 
load value, the algorithm has to find the ‘ridge’ of the 
‘mountain’ and to track it along the time axis. Note that 
our moves in the control plane are limited to the direction 
of the positive time axis. Additionally, we do not know 
the shape of the mountain in total but all information we 
can obtain is the series of realized load/performance pairs 
from the past. 

4 The Algorithms 
We describe two algorithms for this dynamic optimum 
search problem: (1) the Method of Incremental Steps (IS) 
and (2) the Parabola Approximation (PA) where the 
performance-function P(n) is approximated as a 
polynomial of degree 2. 

4.1 Incremental Steps (IS) 

In its simplest variant, the Method of Incremental Steps 
works as follows: Starting with an arbitrary value of the 
load bound n* as the control variable, we increase it by 
one at each time step and measure the resulting 
performance. If the performance also increases, we 
proceed. If it becomes worse, we interpret this fact as 
having exceeded the ridge of the mountain and therefore 
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turn the direction until again the performance becomes 
worse. So we track the ridge in a zig-zag-fashion (figure 
3). 

More precisely, in each measurement interval [ti, ti+l) the 
actual concurrency level n(ti) and the performance P(ti) are 
measured. The new load bound n*(ti) is adjusted according 
to the following rule: 

?l*(tj+l) := 

’ n*fti) + /3 (P(tj) -P(ti.l)) X 

signurn (n*(tj) - n*(tj.l)), 
if ln*(tj) - tl(tj)l ZC 6 

n*(b) + “/, 
if ItI* - tl(ti)l > 6 h n*(ti) < n(ti) 

n*(h) - X 

\ if h*(tj) - n(tj)l > 6 A n*(ti) > n(ti) 
where 

I 

1 for x > 0 
Signum(x) := 

-1 forxI;O 

time 

load 

Figure 3: Example trajectory of the Method of 
Incremental Steps 

As can be seen above, the algorithm has three parameters, 
p for changing the step size proportionally to the 
performance change, and y and 6 to prevent that the 
actual load n(li) and the load bound n*(ti) are drifting apart 
too far. 
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4.2 Parabola Approximation (PA) 
The performance function P(n) is approximated as P(n) = 
ag + UJ n + a2 n2 (see figure 4.) 

means wastage of system resources this approach is 
justified only if the responsiveness of the controller 
cannot be achieved otherwise. 

perfomlance 

m measurement9 

overload function 

load 

Figure 4: Principle of the Parabola Approximation 

Based on recent measurement pairs (P,n) the coefficients ai 
are estimated using a recursive least-square estimator with 
exponentially fading memory [Young, 19841. The fading 
is controllable by a weighting parameter a. The recursive 
way the algorithm works makes it both space- and time- 
efficient. Having found the parabola, its maximum is used 
as the new load threshold. The control law is (roughly): 

I - all (2 a2). if a2 c 0 
n*(ti+ J) I= 

null , otherwise (see section 5.2) 

4.3 Realization of load control 

Once the controller has determined a new optimal load 
bound n* it has to be enforced in some way: 

- Admission control 
The admission to the transaction processing system 
is controlled by a ‘gate’ that accepts an arriving 
transaction if and only if the actual load n is below 
the current threshold n*. Otherwise the transaction has 
to wait in a FCFS-queue. Waiting transactions are 
admitted as soon as ncn* holds again. 

- Displacement 
Changing transaction behavior may lead to a situation 
where the controller suggests a new n* well below the 
current load n. Here we have two options: (i) We 
merely use admission control and hope that by normal 
departures the load n will drop below n* soon. (ii) In 
addition to admission control, we instantaneously 
enforce the new threshold n* by aborting as many 
active transaction as necessary. (Victim selection may 
be based on the same criteria as for deadlock 
breaking.) Because aborting transactions always 

Gate 

transaction flow 
easurementS 

Figure 5: Structure of load control 

Our experiments showed that admission control alone was 
responsive enough to prevent thrashing even with 
dramatically changing workloads. In addition, not 
displacing transaction has a smoothing effect on system 
behavior that supports controller stability, We therefore 
employed the load control in the way depicted in figure 5. 
Nevertheless, aborting transactions may be an additional 
measure as a last resort. 

5 Controller Performance and Stability 
Although the algorithms worked fine in a broad variety of 
cases, we can think of ‘pathological’ situations that would 
‘fool’ the algorithms and lead to poor performance. There 
are also a few parameters associated with each algorithm 
that have to be tuned carefully. This tuning requires some 
knowledge about the statistical properties of the measured 
quantities which can be regarded as stochastic processes. 
Tuning does not necessarily mean manual adjustment, it 
can also be done automatically by an overlaid, outer 
control loop that takes long-term measurements to adjust 
the parameters of the inner control loop. 

A general problem is the choice of an appropriate 
measurement interval length. Taking the departures as a 
stochastic process and assuming stationarity, it is possible 
to calculate the necessary duration of measurements to 
estimate the throughput with a given accuracy and for a 
given confidence level [Heiss, 19881. This interval length 
clearly depends on the parameters of the departure process, 
especially its second moments. The problem is that we 
have to strike a balance between the stability (not to react 
to stochastic events (‘noise’)) and responsiveness (quickly 
respond to actual changes in the workload). For that 
reason, the measurement interval should not be longer 
than required to filter out stochastic noise. To name some 
figures, an estimate should comprise rather hundreds of 
dcparturcs than some tens. 
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5.1 Incremental Steps 

The simplicity of this algorithm makes it generally prone 
to failures in specific situations. While it is relatively 
stable with regard to changes of the optimum’s position, 
it may fail when the height of the optimum is growing 
without changing the position. Because all steps lead to 
an improvement, the algorithm ‘thinks’ to be on the way 
to the top, but actually goes astray. To prevent a 
performance breakdown and to help the IS algorithm to 
recover, a static lower and upper bound for the threshold 
n* should be provided. 

5.2 Parabola Approximation 

Due to the larger amount of information used by this 
algorithm, it is generally more stable. This amount of 
information is controlled by two parameters: measurement 
interval length At and aging coefficient a. The selection 
of these parameters shapes the memory of the estimator. 
Figure 5 shows two different estimation approaches that 
use the same amount of information: the dotted line 
characterizes a long measurement interval and a=O, i.e. 
older measurements are not considered, the solid line 
means an interval length five times smaller but an aging 
coefficient of a=0.8. The area below the lines can be 
interpreted as the amount of information used. Because the 
algori!hm is based on a least squares approach, it needs 
some variations in the measurements to get useful 
estimates. It is therefore better to choose a small At and a 
large a instead of a large At and small a. 

:0 wcighl I 

long inbrval r 

04 

OS 

exponentially weighted 
shot-t intervals \ r-i- I 

I 

. * ’ ’ ’ ’ ’ ’ 
1-16 l-10 t-s l-l L 

th 

Figure 6: Alternative shapes of the estimator’s memory. 

It is essential for the parabola approach that the estimated 
parabola opens downward. There are, however, situations 
were the algorithm may find an upward open parabola: 

a) the true performance function has a broad, flat hump 
and the collected measurements suggest a convex 
course of the function (figure 7). 
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b) the true performance function changed its shape 
abruptly in a way that the current load bound is now 
deep in the thrashing region beyond the inflexion 
point where the shape of the function is actually 
convex (figure 8). 

Performance Performance 

x, x, k* k* ‘a.. ‘a.. ““...a,, ““...a,, 

measurements measurements 

overload function overload function 

Load 

Figure 7: Performance function with a flat hump 

Performance 

t 

i 
i* old overload f 
i function ’ I 

measurements 

Load 

Figure 8: Abruptly changing shape of the performance 
function 

The upward opening parabola is characterized by a positive 
value of the coefficient of the quadratic term ~22. If this is 
the case, the result of the estimation is obviously 
unreliable and useless. We have to provide some 
countermeasures to recover from this situation. There are 
several options: 
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Besides the fact that these different measures define 
slightly different optimal loads, it may also be a matter of 
numerical stability of the algorithms, which criterion 
should be used. With regard to that, the function with the 
most distinct extremum should be choosen. In our 
experiments, the throughput T turned out to be the most 
significant indicator for overload situations. We therefore 
concentrate on T as our performance measure. 

7 The Simulation Model 
The simulation model is composed of two parts, a 
physical model and a logical model. The physical model 
depicted in figure 11 is a closed one where N statistically 
identical transactions are circulating. It consists of a 
homogeneous multiprocessor system serving a shared 
queue, a disk subsystem with constant service times and 
no contention, and a set of N terminals where the 
transactions are started. The logical model represents the 
data access behavior of the transactions. Each transaction 
accesses a constant number k of data items. The execution 
of a transaction therefore consists of k+2 phases: an 
initialization phase, k phases with gradually increasing 
data set size, and a final phase for commit processing. The 
data items are selected randomly (i.e. no hot spots). As 
CC algorithm we use a timestamp certification scheme 
[Bernstein et al., 19871, because an optimistic protocol is 
more interesting due to its relationship between data 
contention and resource contention. The parameters used 
are roughly the same as in [Yu et al., 19871 that where 
derived from customer workload traces. 

terminals 

Figure 11: Simulation model 

The dynamic change of the load charactistic was carried 
out by varying one of the following parameters: 

- k, the number of locks per transaction 
- fraction of queries 
- fraction of write accesses for updaters 

Variation of all these parameters showed significant 
impact on both height and position of the optimum 
throughput. 

9 Simulation results 
We first tested the two control algorithms under stationary 
conditions. All parameters were kept constant. For 
different levels of concurrency a stationary simulation run 
was conducted. 

throughput 

with 
control 

IH without 
control 

I 
I I I I I I I I * 

100 200 300 400 500 600 700 800 n (load) 

Figure 12: System throughput with and without 
control in the stationary case 

Figure 12 shows that both algorithms had the desired 
property to keep the load at the point of optimum 
throughput and thus prevented thrashing. (Actually, 
figure 12 shows the resulting throughput for the PA 
algorithm. The difference between PA and IS was 
insignificant in this case.) 
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The major focus of the study, however, was on dynamic 
behavior. To that end, the above mentioned parameters 
were changed during the simulation runs in two fashions: 
(1) a jump-like variation to model abrupt changes in the 
workload and (2) a sinusoidal variation modelling more 
smooth and gradual changes. While both algorithms were 
able to follow gradual changes, the more sophisticated PA 
algorithm was clearly superior to IS in the case of jump- 
like changes: Figures 13 and 14 show examples of their 
respective behavior. The broken line indicates the position 
of the true optimum nOpt, and the solid line is the 
trajectory of the load threshold n* adjusted by the 
respective controller algorithm. IS in figure 13 reacts very 
quickly to the jump of the optimum’s position but has 
serious problems to adjust correctly to the new load 
situation, The PA algorithm (figure 14) needs some more 
time to respond but tracks the optimum more accurately 
and reliably. The oscillations of the trajectory in figure 14 
are enforced by the algorithm as explained in section 4.2. 
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Figure 13: Trajectory of the Incremental Steps when the position of the optimum changes abruptly 
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Figure 14: Trajectory of the Parabola Approach when the position of the optimum changes abruptly 

10 Conclusions approached as a dynamic optimum search problem for 

Transaction processing systems need a control of the which heuristic algorithms of different complexity and 

concurrency level to prevent thrashing effects. This quality are available. The reasonable assumption that the 

control mechanism should be adaptive to cope with the only local maximum is also a global one excludes the 

dynamically changing load. The control problem can be problem of getting stuck in a local optimum which other 
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hill climbing problems are faced with. The problems 
remaining are those of stability and reliability. We showed 
how these problems can be overcome by the two presented 
algorithms. The simulation experiment was designed to 
reveal the behavior of the algorithms in difficult 
situations. The more sophisticated PA algorithm 
outperformed the simpler IS algorithm in all cases 
examined and always avoided thrashing. 
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