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ABSTRACT - In this paper, we address the problem of buffer 
management in a DBMS when the workload consists of transac- 
tions of different priority levels. We present Priority-Hints. a 
new buffer management algorithm that uses hints provided by the 
DBMS access methods. The performance of Priority-Hints is 
compared to that of priority buffer management schemes intro- 
duced earlier for a variety of workloads. Our simulation results 
indicate that Priority-Hints performs consistently better than sim- 
ple LRU-based algorithms. Furthermore, our algorithm 
approaches (and in some cases surpasses) the performance of 
highly sophisticated algorithms that require much more informa- 
tion to be provided to the buffer manager. 

1. INTRODUCTION 

1.1. Motivation 
Priority scheduling has recently become an area of increased 

interest to the database community [SIGM88, Abbo88, Abbo89, 
Care89, Hari90]. Applications that require different levels of 
system response for different transactions (for example, a system 
that is designed to provide faster service to interactive jobs than 
to batch jobs) can benefit from priority scheduling at the DBMS 
resources, as shown in [Care89]. Several data-intensive applica- 
tions such as computer-aided manufacturing, stock trading, and 
command and control systems may require real-time response, 
which can also be supported with the help of priority scheduling 
at the resources of the DBMS [SIGM88, Abbo89]. 

The use of priority in DBMS resource scheduling may lead to 
an increase in the extent to which buffer management impacts 
system performance compared to its impact in conventional data- 
base systems. Unpredictable bursty arrivals of high-priority tran- 
sactions may force a priority-oriented DBMS to operate in 
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regions where the total load on the buffer pool (i.e., the sum of 
the buffering requirements of transactions of all priority levels) 
exceeds the buffer pool capacity. In these operating regions, 
priority-based load control and buffer allocation policies will be 
required, as the use of conventional load control and allocation 
techniques may lead to situations of priority-inversion,” where 
high-priority transactions are forced to wait while low-priority 
transactions are allowed to make progress. Furthermore, the set 
of concurrently active transactions in these operating regions may 
include transactions of different priority levels. In this scenario, 
then, priority-based buffer replacement policies may also be 
required in order to provide preferential service to high-priority 
transactions. We anticipate that all aspects of buffer management 
(load control, allocation, and replacement) will become both 
more complex and more significant when priority is used in 

scheduling DBMS resources.’ 

Several interesting new issues arise when buffer management 
decisions have to include priority considerations. One such issue 
is the tradeoff between the overheads introduced as a conse- 
quence of the use of priority and the advantages provided to 
high-priority transactions. If a buffer containing data accessed by 
a transaction is replaced as a consequence of priority, its data 
may have to be re-read from disk once the transaction resumes 
execution. The total load on the system may increase purely as a 
consequence of the use of priority in buffer management, and 
alternative priority-based buffer replacement and allocation poli- 
cies may result in different relative increases in system load. 

A second issue of interest is the extent to which information 
about the workload can be used by the buffer manager to improve 
system performance in the presence of priority. Existing buffer 
management schemes assume different levels of information 
about transactions’ data access patterns [Effe84, Teng84, 
Chou85, Sacc86]. In this paper, we introduce a new buffer 
management algorithm that makes use of hints provided by the 
database access methods (as in the Starburst buffer manager 
[Haa&O] and DB2 [Teng84]). This new algorithm, called 
‘Priority-Hints,” uses these hints to make priority-based buffer 
management decisions while trying to minimize the priority 
induced overhead on the system. 

A third issue in priority-based buffer management is inter- 
transaction buffering interference across priority levels. For 

‘This is in contrast to the trends in conventional database systems, 
where it may be argued that by increasing the buffer pool size with 
respect to the database size, and by keeping the multiprogramming level 
under a certain threshold, buffer management policies can be made esseu 
tially irrelevant. 
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example, update-intensive transactions may quickly make large 
numbers of buffers “dirty,” making them unavailable for replace- 
ment until they are written out to disk. The performance of 
high-priority transactions can thus be affected adversely by low- 
priority updates. Another example of inter-transaction effects in 
the presence of priority may occur when high-priority sequential 
scans quickly replace a large number of buffers with pages that 
are accessed just once, unnecessarily depriving lower priority 
non-sequential transactions of buffers that need to be accessed 
repeatedly. Priority-based buffer management policies should be 
designed to minimize these effects. 

Finally, the importance of using priority-based buffer 
management in a DBMS that already uses priority at the CPUs 
and the disks may itself be open to question. In this paper, we 
investigate all of these issues. 

1.2. Related Work 
A number of buffer management strategies for conventional 

database systems have been proposed in the literature [Effe84, 
Chou85, Sacc86]. Simple techniques such as Global-LRU 
assume no knowledge of the data access patterns, while algo- 
rithms such as Hot Set [Sacc86] and DBMIN [Chou85] attempt 
to take advantage of the limited number of ways in which queries 
access data in relational database systems. In [Chou85], it was 
shown that DBMIN. a relatively sophisticated buffer manage- 
ment strategy in which data access pattern information is sup- 
plied to the buffer manager on a per-file basis by the DBMS 
optimizer, performs better than most other existing buffer 
management strategies. 

In [Teng84], the design of IBM’s DB2 buffer manager is 
described, and several techniques used to maximize buffer pool 
performance are discussed. For example, DB2’s buffer manager 
distinguishes between sequential accesses and random accesses, 
and buffered pages that are part of sequential accesses are chosen 
as replacement victims in Preference to randomly accessed pages. 
The LRU replacement policy is used within each group of buffers 
(sequential or random). Other performance-enhancing tech- 
niques used in DB2 include the use of prefetch for sequential 
scans and the use of deferred-write mechanisms for writing 
updated pages to disk. In the Starburst system, as described 
briefly in [Haas90], access methods can provide hints to the 
buffer manager about their expected future reuse of each buf- 
fered page in order to guide replacement decisions. 

Aninitial investigation of the problem of priority scheduling 
at the physical resources of a DBMS was described in [Care89]. 
Algorithms for priority-based disk scheduling and CPU schedul- 
ing were presented, and priority-oriented modifications of two 
existing buffer management algorithms (Global-LRU and 
DBMIN) were described. It was shown that a single priority 
scheduler does not suffice to meet the goals of priority scheduling 
in a DBMS due to the heterogeneity and the multiplicity of its 
resources. Priority scheduling at the admission control com- 
ponent of the DBMS (the part of the system that determines 
whether an arriving transaction is to be allowed to enter the sys- 
tem, or is to be blocked outside the system until sufficient buffer 
resources become available) was shown to be particularly 

important in order to keep the system stable from the point of 
view of high-priority transactions as system load is increased A 
homogeneous workload model was used to compare the perfor- 
mance of the priority-scheduling algorithms, and Priority- 
DBMIN (the priority version of DBMIN) was shown to perform 
as well as or better than PriorityLRU (the priority version of 
Global LRU). 

In [Abbo89], priority scheduling at the CPU and the disk, as 
well as for concurrency control, was shown to be effective in 
reducing the number of transactions that miss their deadlines in a 
real-time DBMS. Transactions were modeled as random 
sequences of page accesses, and the buffer pool was modeled 
simply by computing the probability of linding a page in main 
memory assuming a uniform probability of access to the entire 
database. Finally, it was shown in [Hari90] that in a real-time 
environment, priority scheduling at the CPU and the disks may 
help optimistic concurrency control algorithms outperform lock- 
ing schemes. Issues of buffer replacement strategies and work- 
loads with non-random data access patterns were not included in 
either [Abbo89] or [HarBO]. 

1.3. Our Work 
The design of the Priority-Hints algorithm was motivated by 

the intuition that the use of simple page-level information by the 
buffer manager (as in [Teng84, Haas90]) may improve system 
performance over that provided by simple LRU-based 
approaches. Such a performance improvement acquires great 
importance in priority-based systems, where significant I/O over- 
heads may result as a consequence of using priority in buffer 
management decisions. Improvements in performance (relative 
to simple LRU-based approaches) may also be obtained by using 
sophisticated DBMIN-like algorithms, as shown in [Care89], but 
only at the cost of added system complexity; our goal is to exam 
ine whether such complexity is really required. 

In order to take a detailed look at the issues involved in 
priority-based buffer management in the presence of mixed work- 
loads, we have implemented a simulation model of a DBMS that 
uses priority scheduling. In this paper, we use this simulation 
model to compare the performance of our new algorithm with 
Priority-LRU and PriorityDBMIN. Our primary objective in 
this analysis is to explore the extent to which our algorithm can 
surpass the performance of Priority-LRU, and how close we can 
get to the performance of Priority-DBMIN. We also conduct 
experiments that shed light on the other priority-related buffer 
management issues raised earlier. 

The remainder of this paper is organized as follows: In Set- 
tion 2, we describe Priority-Hints, our new buffer management 
algorithm, and review the Priority-LRU and Priority-DBMIN 
policies introduced in [Care89]. Section 3 describes our simula- 
tion model of a priority-oriented DBMS. Section 4 presents a 
series of performance experiments that help us to understand the 
tradeoffs involved in using priority in buffer management. 
Finally, Section 5 summarizes our contributions and describes 
our plans for future work. 
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2. PRIORITY-BASED BUFFER MANAGEMENT 
ALGORITHMS 

In this section we present the Priority-Hints algorithm. Our 
assumptions about buffer management are outlined first. We then 
describe Priority-Hints and briefly review Priority-LRU and 
Priority-DBMIN, the two algorithms presented in [Care89]. Our 
scheme for handling dirty data, which is common to the three 
algorithms, is described next; and we conclude the section with a 
summary of the key differences between the three algorithms. 

2.1. Buffer Management Assumptions 
A page is assumed to be fixed (or pinned) in the buffer pool 

during the interval when a transaction is processing the data on 
the page. As soon as the transaction has finished processing the 
page, it unfixes it. Fixed pages cannot be chosen as buffer 
replacement victims. The owner of a resident page is the transac- 
tion with the highest priority among the executing transactions 
that have accessed the page since it was brought into memory. 
The buffer manager associates a timestamp with each resident 
page in order to keep track of the recency of usage of pages. 
Each time the data in a buffer is accessed or updated, a global 
counter is incremented and its new value is inserted as the times- 
tamp of the page. Thus, the larger the value of the timestamp of a 
page, the more recently the page was accessed. Pages in the free 
list (and the dirty list, described at the end of this section) are 
kept in LRU order using their timestamps. 

Based on the number of buffers available, a transaction may 
be admitted to the system right away, or it may be blocked ini- 
tially. Transactions blocked outside the system are queued in 
order of priority. Once a transaction is allowed to begin execu- 
tion, it continues until it commits, is aborted as a result of con- 

currency control, or is suspended.’ A transaction is said to be 

suspended by the buffer manager if it is temporarily prohibited 
from makiig further buffer requests; the buffers owned by the 
transaction are freed. The buffer manager considers reactivating 
suspended transactions at the same decision point that it consid- 
ers admitting blocked transactions, which is whenever a running 
transaction completes or aborts. A reactivated transaction 
resumes its execution at the point where it was suspended. 

A transaction checks whether it has been chosen as a suspen- 
sion victim at instants when it has no pages fixed. We call such 
instants “suspension-safe” points. At suspension-safe points, the 
transaction “volunteers” to let all of its buffers be stolen by tran- 
sactions of higher priority. Such instants occur normally during 
the execution of a transaction. In a sequential scan, for example, 
they occur at the point when the transaction unfixes one page and 
is about to request that another be fixed. In addition, a priority 
DBMS should be designed so that transactions periodically 
“come up for air” and check if they need to give up their buffers. 

‘A aping transaction may also be blocked temporarily if there are 
no free buffers available, and all of the in-use buffers are either pinned or 
dirty. The transaction’s buffer request is then enqueued in a queue called 
the Buffer Waiting Queue. Queued buffer requests are served in priority 
order. 

2.2. The Priority-Hints Algorithm 

As its name suggests, Priority-Hints makes use of hints (pro- 
vided by the DBMS access methods) that indicate whether a par- 
ticular data page should be retained in memory in preference to 
other data pages. The basic ideas underlying Priority-Hints are 
the following: 
l As discussed in [Teng84, Haas901, it is Possible to classify the 
pages referenced by a transaction into two groups: pages that are 
likely to be re-referenced by the same uansaction (such as the 
pages of the inner file in a nested-loops join), and pages that are 
likely to be referenced just once (such as the pages of a file being 
scanned sequentially). The pages that are likely to be re- 
referenced are called favored pages, and the others are called 
normal pages. We assume that whenever a request for a page is 
made to the buffer manager, the buffer manager is informed 
whether the requested page is favored or normal. 
l The favored pages of a transaction should be kept in the buffer 
pool as long as the transaction needs to reaccess them; each nor- 
mal page should be made available for replacement as soon as the 
transaction untixes it. When searching for replacement victims, 
normal pages should therefore be considered before favored 
pages. 
l If it becomes necessary to choose a favored page as a replace- 
ment victim, the most-recently-used (MRU) policy should be 
used to shoose the victim. As discussed in [Chou85], MRU is a 
better approach than LRU when choosing replacement victims 
from a set of pages that are being repeatedly.looped over, and 
favored pages are likely to fall into this category. 

The Priority-Hints algorithm combines these ideas with the 
notion of priority as follows. 

Buffer Pool Organization: Buffers are organized into “transac- 
tion sets,” where a transaction set consists of all of the buffers 

owned by a single transaction.3 Transaction sets are arranged in 
priority order, with recency of arrival of the owner transaction 
being used to break ties if there are multiple transactions of the 
same priority. In the buffer pool configuration shown in Figure 
2.1, there are three transactions (Tl. T3, and T2), three priority 
levels, and no free buffers. 

A transaction set consists of two kinds of buffers: the buffers 
currently fixed by the owner (marked by the letter “F” in Figure 
2.1). and buffers containing unlixed favored pages of the owner 
(marked by the letter “U” in Figure 2.1). The unfixed favored 
pages are maintained in MRU order with the help of buffer times- 
tamps. Note that a transaction set contains no unfixed normal 
pages; whenever a normal page is unfixed, it is freed. 

Transaction Admission: Transactions are required to estimate 
the maximum number of pages that they will need to fix con- 
currently, and the buffer manager keeps track of the sum of these 
“fixing requirements” for all active transactions. If admitting a 
newly arrived transaction does not cause this sum to exceed the 

‘Buffers containing pages shared by more. than one transaction are 
owned by the transaction with the highest priority among the sharers. 
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--------------------_ 

Figure 2.1: Example of Priority-Hints Buffer Pool Organization. 

size of the buffer pool, the transaction is admitted. Otherwise, if 
there are running transactions of lower priority than that of the 
new arrival, the one(s) with the lowest priority among them are 
suspended until there are enough buffers for the new arrival, or 

until no lower priority transactions remain4 If no remaining tran- 
sactions are of a priority less than the new arrival, then the new 
arrival is forced to wait outside the DBMS. 

Buffer Replacement and Allocation: When a buffer miss 
occurs and there is no free page available, the buffer manager 
lirst attempts to get a replacement victim from among the unfixed 
favored pages of transactions of lower priority than the request- 
ing transaction. The buffer pool searches its transaction sets in 
inverse priority order, starting from the lowest priority transac- 
tion, looking for unfixed favored pages. It stops searching on 
either of the following conditions: 
(1) It finds a transaction of lower Priority than the requesting 
transaction with an unfixed favored page; or 
(2) it has reached a transaction of a priority equal to or greater 
than that of the requesting transaction. 

In case (l), it chooses the most recently unfixed favored page 
of the lower-priority transaction as the replacement victim. In 
case (2). it chooses the most recently unfixed favored page (if 
any) of the requesting tramuction itself. Note that this means 
that transactions cannot steal buffers from other transactions of 
the same priority; thus the replacement policy for favored pages 
is focal rather than global. If no replacement victim is available, 
then the outstanding request is queued in the Buffer Waiting 
Queue. Furthermore, if there are running transactions of lower 
priority, the transaction with the lowest priority among them is 

‘In choosing suspension victims from among transactions of the 
same priority, later anivals are chosen for suspension in preference to ear- 
lier arrivals. Also, earliest arrival time is the criterion for choosing the 
transaction (from among a group of waiting transactions of the same 
priority) that should first attempt to enter the system. 

suspended. Continuing the example of Figure 2.1, if Tl makes a 
buffer request for page P6, which is not in the buffer pool, the 
buffer manager will start its search for replacement at T2. Find- 
ing no unfixed buffer in T2’s transaction se< it will look at T3’s 
transaction set and find P63 as the replacement victim. Had there 
been no unfixed pages of priority 1 or 2, then PlOO would have 
been chosen as the replacement victim. 

To summarize, Priority-Hints has a focal MRU replacement 
policy for favored pages, and a global LRU replacement policy 
for normal pages. (Recall that normal pages are placed on the 
free lit at unfix time, and that the free list is maintained in LRU 
or&r.) 

2.3. The Priority-LRU Algorithm 
In Priority-LRU, the prioritized version of Global LRU, the 

buffer pool is organized dynamically into priority levels as 
described in [Care89]. Each priority level consists of pages 
whose owners have the same priority, and the pages within a 
level are arranged in LRU order. The transaction admission po- 
icy for Priority-LRU is the same as that for Priority-Hints. The 
key idea of the Priority-LRU replacement policy is that the least 
recently unlixed page of the lowest priority should be chosen as 
the victim. If there are no free buffers, the search for a replace- 
ment victim starts at the lowest priority queue, where we check 
whether unfixed candidates are available. If such candidates are 
found, the least-recently-used candidate is chosen as the victim. 
If no candidate is found at this priority level, we move up one 
level, and we repeat the process until we have either found a vic- 
tim, reached a priority level that exceeds that of the requesting 
transaction, or exhausted the search. If no victim is found, and 
there are transactions of lower -priority running, the lowest- 
priority transaction is suspended as in Priority-Hints. 

2.4. The Priority-DBMIN Algorithm 
As discussed in [Chou85], the primitive operations (e.g., 

selections, joins) of transactions in a relational DBMS can be 
described as a composition of a set of regular reference patterns 
such as sequential scans and hierarchical index lookups. These 
patterns are known to the query optimizer. The DBMIN buffer 
management policy makes use of this information in the follow- 
ing way: A set of buffers (called a “locality set”) is allocated to 
each transaction for each file accessed by it. The optimum size of 
each locality set and the optimum replacement pohcy to be ‘used 
within a locality set are supplied to the buffer manager by the 
optimizer. DBMIN guarantees that each transaction that is 
allowed to enter the system has the optimum number of buffers 
available to it. and the optimum replacement policy is used 
within each locality set. 

Priority-DBMIN, the prioritized version of DBMIN, also allo- 
cates buffers to transactions in locality sets. A transaction is 
allowed to enter the system only if its optimal-sized locality sets 
can be accommodated in the buffer pool. Otherwise, if there are 
transactions of lower priority than that of the arriving transaction 
in the system, they are suspended in reverse priority order until 
sufficient buffers become available for the new arrival. As in the 
original DBMIN algorithm, Priority-DBMIN uses the optimizer- 
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supplied optimum replacement policy within each locality set. 

2.5. Dirty Data 

In all three algorithms, a process called the asynchronous 
write engine [Teng84] is responsible for Rushing dirty buffers to 
disk. When a transaction frees a buffer, the buffer is inserted into 
the free list if it is clean (i.e., if it has no update that has not been 
written to disk). If the data in the buffer has been updated, the 
buffer is placed in a queue called the dirty list. The write engine 
is activated periodically; it also wakes up whenever a buffer miss 
OCCUTS and the free list is empty. The engine flushes each page in 
the dirty list that is sufficiently “old” in terms of its recency of 

use.’ 

Requests to write dirty buffers are asynchronous. This may 
result in some buffer requests having to wait until a buffer is 
flushed to disk. Write requests to the disk are therefore assigned 
a priority equal to the highest possible transaction priority. When 
its I/O is completed, a dirty buffer is marked clean and placed on 
the free list, and if there are any buffer requests pending, the 
highest-priority request is serviced. When choosing replacement 
victims, dirty data is avoided as long as possible. That is, if a 
buffer that would normally be a candidate for replacement is 
dirty, we ignore it in our search for replacement victims unless all 

candidate buffers are dirty.6 

2.6. Discussion 
In summary, the key features of Priority-Hints that distinguish 

it from the other algorithms discussed are the following: 
l By realizing which pages are normal, Priority-Hints is able to 
free more buffers earlier in the course of a transaction’s execution 
than Priority-LRU. In this respect, Priority-Hints behaves simi- 
larly to Priority-DBMIN. 
l When choosing replacement victims from among non-free 
pages, Priority-LRU chooses the least-recently-unfixed page; 
Priority-Hints chooses the most-recently-unfixed page. MRU is 
likely to be a better policy when the replacement victim is part of 
a set of pages that are being looped over; in cases where pages 
are reaccessed randomly, the performance differences between 
MRU and any other replacement policy are negligible [Chou85]. 
Note that Priority-Hints uses MRU only for favored pages, where 
it may be advantageous to do so; LRU is still used for normal 
pages, since normal pages are placed in LRU order in the free list 
as soon as they are unfixed. 
l Priority-Hints’ replacement policy ensures that the favored 
pages of a transaction can be stolen only by a transaction of 
higher priority: in Priority-LRU, transactions of the same priority 

‘Timestamp information is used IO determine whether a dirty page 
is “old” enough; this check is performed to prevent unnecessary writes of 
pages that are. frequently updated. 

6Potential deadlocks caused by the entire set of possible replace- 
ment candidates being dirry are avoided by synchronously writing dirty 
buffers to disk in this exceptional situation. 

can steal each other’s pages.7 In Priority-DBMIN, in contrast, a 
transaction protects its favored pages throughout its execution; if 
it is not possible to protect them, the transaction is suspended. 
Note that Priority-Hints allows a transaction to execute even 
when it does not have an optimum number of favored pages, 
while Priority-DBMIN does not. 
l Priority-LRU does not discriminate between transactions of the 
same priority when choosing replacement victims. The local 
replacement search strategy of Priority-Hints, however, ensures 
that among transactions of the same priority, all but the latest 
arrival will execute undisturbed as long as the latest arrival has 
some unfixed favored buffers. Thus, the performance degrada- 
tion caused by stealing favored buffers is limited to one transac- 
tion at a time in Priority-Hints. 
l Priority-Hints does not require that information such as 
optimum locality set sizes be provided by the optimizer, as 
Priority-DBMIN does. It merely requires that hints be provided 
to distinguish between normal and favored pages; similar hints 
are provided in existing DBMSs such as DB2 [Teng84] and Star 
burst [Haas90]. Thus, Priority-Hints requires less information 
than Priority-DBMKN. 
l Finally, note that while the information supplied to the buffer 
manager is similar in Priority-Hints, DB2, and Starburst, 
Priority-Hints differs from the DB2 and Starburst buffer manage- 
ment algorithms in two significant respects. Firstly, it groups 
buffers on a per-transaction basis in order to allow a local 
replacement search strategy. Secondly, unfixed buffers are 
arranged in MRU order in Priority-Hints, unlike in DB2 or Star- 
burst. These two factors may have a significant impact on perfor- 
mance, as will become clear in Section 4. 

3. MODELING A PRIORITY-ORIENTED DBMS 
In this section, we describe our performance model of a 

priority-oriented DBMS. The model, which we implemented 
using the DeNet simulation language [Livn89], consists of five 
components: the database itself; a Source, which generates the 
workload of the system; a Transacfion Manager, which models 
the execution behavior of transactions; a Resource Manager, 
which models the CPU, I/O, and buffer resources of the system; 
and a Concurrency Control Manager, which implements the 
details of a particular concurrency control algorithm. Since we 
will be using workloads where concurrency control is not an 
issue, we will not discuss the Concurrency Control Manager 
further. (As described in Section 4, our workloads consist either 
of read-only transactions with data sharing, or updates without 
data sharing.) In most respects, our model is similar to the model 
described in [Care89]. Therefore, we describe its components 
very briefly here; see [Care891 for more details. 

3.1. Modeling the Database 
The database is modeled as a collection of relations. Each 

relation in turn is modeled as a collection of pages. Indices 
(clustered or unclustered B+ Trees) on the base relations are 

‘lt is advisable to allow Priority-LRU to do this, as many of the 
pages owned by a transaction are likely to be accessed just once. 
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included in the database model. The parameters for the database 
model are summarized in Table 3.1. 

3.2. The Source Module 
The Source module is the component responsible for model- 

ing the workload of the DBMS. Table 3.2 summarizes the key 
parameters of the workload model. A transaction may belong to 
any one of NumClasses classes, and it may have any one of 
NumPriorities priority levels. The model is that of an open sys- 
tem, and transactions of each <classi, pri&yj> combination 
arrive at the system in a Poisson process with a mean arrival rate 
of ArrRateij. Transactions can be single-relation selects, single- 
relation select-updates, or two-relation select-joins; the type of a 
transaction of class i and priority j is controlled by TrmTypei,. 
Selections can be performed via sequential scans or index scans, 
and we model three join methods: nested-loops joins, classic 
hash joins, and index joins. 

For each transaction type (selection, join, or update) of a par- 
ticular priority level, an execution plan is provided in the form of 
a set of parameters. For selections, the access path and the mean 
selectivity are provided as parameters. The actual selectivity is 
varied uniformly over the range [Selectivityijk/2, 
3*Selectivityjjk/2]. For select-joins, the join method and the inner 
and outer relations are provided in addition to the selection 
parameters. For select-updates, the probability of updating a 
page is specified as the parameter UpdateProbijk. Finally, times 
spent at the CPU for processing or updating a page are uniformly 
distributed: the CPU time per data page of relation k varies uni- 
formly over the range [DataPageCPU,jk12, 

NumRelations 
RelSizei 
Indexedi 
IndexType; 

Number of relations in database 
Number of pages in relation i 
Whether relation i has an index 
Type of index (clustered/nonclustered) 
Fanout of internal nodes of index , 

Table 3.1: Database Model Parameters. 

Overall Arriva! Pattern Parameters 
NumClasses Number of transaction classes 
NumPriorities Number of transaction priority levels 

Per (Class, Priority) Parameters 
(1 <iaumClawes, Kj<GVumPriorities) 

ArrRateij Transaction Arrival Rate 
TramTypeij Transaction Type 
Joinhfethodij Join algorithm used 
OUttTij Outer relation 
I?UU?rij Inner relation 
AccessPathijk Access path used to access &th relation 
Selectivityij, Fraction of kth relation selected 
UpdateProb+ Probability of page update 
I&PCl~t?CPUij~ CPU time for processing an index page 
DataPageCPU+ CPU tune for processing a data page 
UpdateCPU, CPU time for page update 

Table 3.2: Workload Model Parameters. 

3*DataPageCPU+/2], and similar distributions are used for 
IndexPageCPU;jk and UpdateCPU,. Given a plan, the Source 
module generates a list of page accesses that models the sequence 
in which pages will be accessed by the transaction. 

3.3. The Transaction Manager Module 
The Transaction Manager is responsible for accepting transac- 

tions from the Source and modeling their execution. For each 
page accessed by the transaction, the Transaction Manager sends 
a read (or write) request to the Resource Manager; the Resource 
Manager informs the Transaction Manager when the request is 
completed. The Resource Manager also informs the Transaction 
Manager when a transaction is suspended or reactivated. When 
the Resource Manager decides to reactivate a suspended transac- 
tion, the Transaction Manager ensures that the reactivated tran 
saction resumes execution at the point where it was suspended. 

3.4. The Resource Manager Module 
The Resource Manager controls the physical resources of the 

DBMS, including the CPU, the disk, and the buffer pool in main 
memory. Three versions of the Resource Manager have been 
implemented, supporting the Priority-LRU, Priority-DBMIN. and 

Priority-Hints algorithms, respectively.’ Resource Manager 
parameters are summarized in Table 3.3. 

CPU and Disk Models: The DBMS has MumCPUs CPUs and a 

single priority queue for outstanding CPU requests. The actual 
CPU where a request is processed is selected at random from 
among the idle CPUs, if any. The length of each CPU request 
from a transaction is its per-page CPU processing time; each trar- 
saction voluntarily gives up the CPU after processing or updating 
one page, as in the priority-based round robin CPU scheduling 
scheme described in [Care89]. There are NumDisks disks in the 
system, with requests at each disk being priority-scheduled 
according to the prioritized elevator algorithm [Care89]. We 
model the data as being uniformly distributed across all disks and 
across all tracks within a disk. The total time required to com- 
plete a disk access is computed as the sum of its seek time, rota- 
tional latency, and transfer time components. As in [Bitt88, 
Care89], there is a square root relationship relating seek time to 
seek distance, and the rotational latency and transfer time are 
together modeled as a single parameter called DiskConFt. 

Buffer Manager Models: The Buffer Manager component of 
the resource manager encapsulates the details of the buffer 
management scheme employed. The number of page frames in 
the buffer pool is specified as NumBuffers. A separate buffer 
manager component has been implemented for each buffer 
management algorithm studied. 

*In addition, Kesource Managers supporting Global-LRU and 
Global-Hims (an algorithm introduced in Section 4) have also been im- 
plemented. 
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51 
Sum of rotattonal and transfer delays 
Factor relating seek time to seek distance 
Number of buffer frames in buffer pool 

Table 3.3: Parameters of the Resource Manager. 

4. EXPERIMENTS AND RESULTS 
In this section, we present performance results for the priority 

buffer management algorithms described earlier. In [Care891 it 
was shown that results for two priority levels can be generalized 
to multiple priority levels, so we consider just two priority levels: 
“low” versus “high” priority. In addition, our workload consists 
of three types of single-query transactions: “looping”, “random 
reaccess (RR)“, and “scamting” transactions. As their names sug- 
gest, looping transactions (such as nested-loops joins) reaccess 
some of their pages sequentially a number of times, RR transac- 
tions (such as hash joins) randomly reaccess some of their pages, 
and scanning transactions (such as clustered-index selections) 
touch each page just once. Looping transactions and scanning 
transactions represent two ends of the spectrum of buffer access 
characteristics typical in relational databases, while RR transac- 
tions represent the middle. 

4.1. Performance Metrics 
As discussed earlier, we use an open queuing system to model 

the DBMS. Our primary performance metric will be the average 
response time ratio (RTRatio) for transactions at each priority 
level. We define the RTRatio of a transaction as the ratio of the 
actual response time of the transaction to its estimated response 
time on an unloaded system with an infinitely large buffer pool. 
A transaction’s response time is computed by subtracting the 
time at which the transaction commits from the time at which it 
was submitted to the DBMS. The response time of the transac- 
tion in an unloaded system is estimated by summing the CPU 
requirements associated with the page accesses of the transaction 
and by assuming one I/O per distinct page referenced by the tran- 

saction.g That is, only one I/O is assumed for a page, whether it is 
touched just once by a transaction or accessed repeatedly. The 
RTRatio of a transaction, then, reflects the effects of the finite 
size of the buffer pool and the presence of competing transactions 
on the response time of the transaction. As the load on the sys- 
tem increases, contention for buffers causes increased I/O (and an 
increase in the time spent waiting outside the system) while con- 
tention for disks and CPUs causes increased disk and CPU wait- 
ing times. These factors tend to increase the RTRatio of transac- 
tions. On the other hand, if there is significant data sharing, the 
RTRatio of a transaction would tend to be reduced because part 
of the transaction’s read and write sets would already be in main 

9he cost of writing dirty data LO disk is not included in his sum, 
since the asynchronous write engine operates independently of transac- 
tions. 

memory. When the workload consists of a mix of transactions 
with different data access patterns and different sizes, the RTRa- 
tio provides a performance measure that is equally valid for all 
transactions, independent of the transaction mix. 

In all the experiments described here, low-priority transac- 
tions are assumed to be running in the background, and we inves- 
tigate the performance impact of the arrivals of foreground high- 
priority transactions on the system. The arrival rate of high- 
priority transactions is thus varied while keeping the arrival rate 
of low-priority transactions fixed. As shown in [Care89], a 
priority-oriented DBMS can remain stable for high-priority tran- 
sactions long after the combined arrival rate has become high 
enough to make the system unstable for low-priority transactions. 
Consequently, we present response time results for low-priority 
and high-priority transactions separately for each experiment. 
Each simulation was run long enough so that the 95% confidence 
intervals of the RTRatios of the high-priority transactions were 
within 10% of the mean. 

4.2. Base Parameter Settings 
We Iirst present the parameters that were used in our base 

experiment. As subsequent experiments are discussed, we 
describe the variations in the parameters for each experiment. 
The workload-independent parameters and the mix of transac- 
tions for each priority level in the base experiment are listed in 
Table 4.1. Details of the parameters for each type of transaction 
are presented in Table 4.2. 

. 

Workload-Independent Parameters: The database is modeled 
as a collection of 50 relations. We use five different relation 
sizes in our experiments - 1000 pages, 500 pages, 5 pages, 4 
pages, and 3 pages - with the database containing 10 relations 
of each size. The 1000.page and 500-page relations each have a 
clustered index available, while the smaller relations are not 
indexed. There are four CPUs and four disks in the system. 

Each disk has 1000 tracks, and the sum of the rotational latency 
and the transfer time per disk access is 15 milliseconds. The 

NumRelations 50 
RelSizei 1000,500,5,4,3 pages 

(10 relations of each size) 
Indexedi YES (lOOO- & 500-page relations) 

NO (3- ,4- , and 5-page relations) 
IndexType, Clustered (lOOO- & 500-page relations) 
Fanouti 20 (lOOf- & 500-page relations) 
NumCPUs 4 
NumDisks 4 
NumTrach 1000 
DiskConst 15 ms 
SeekFactor 0.6 ms 
NumBuffers 50 
Transaction Mix 50% looping, 50% scanning 
Arrival Rate O-15 translsec (high priority) 

5 trans/sec (low priority) 

Table 4.1: Base Parameter Settings. 
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prioritized elevator disk scheduler has two priority queues, one 
for each priority level. The factor relating seek distance to seek 
time is 0.6 milliseconds, so the expected disk access time is 
between 15 and 30 milliseconds. 

As stated in Section 1, the operating region of greatest interest 
to us is when the combined buffer requirements of all transac- 
tions exceeds the capacity of the buffer pool. In order to simulate 
the behavior of the system in this region of operation without 
incurring excessive simulation costs, we kept the buffer pool rela- 
tively small in our experiments. Thus, there are 50 buffer frames 
in the buffer pool in the base experiment. One point that should 
be noted here is that, from a performance perspective, it is not the 
actual size of the buffer pool that is most significant. Instead, two 
ratios are more important: the ratio of the combined buffering 
requirements of concurrent transactions to the size of the buffer 

pool’O, and the ratio of the size of the buffer pool to the size of 
the database. For this study, we vary the first of these ratios by 
varying the arrival rate of high-priority transactions in all our 
experiments. We study the effects of varying the second ratio in 
Experiment 2 by changing the database size. 

Workload Parameter Settings: The workload for the base 
experiment consists of two types of eansactions. Looping tran- 
sactions consist of select-joins, with the result of a selection using 
a clustered index on a 500-page outer relation being joined to a 
smaller inner relation. The selectivity of the outer relation selec- 
tion varies uniformly between 0.5% and 1.5%. The inner relation 
is chosen uniformly from among the 30 small relations of sizes 
between 3 and 5 pages. Page Accesses is the expected number of 
page accesses for the transaction, with repeated references being 

counted as one access each time.” Scanning transactions are 

Parameter 1 Looping 1 Scanning 
TramType I Select-tom I scan 
JoinMethod 
RelSize 1 (outer) 
RelSize 2 (inner) 
AccessPath 1 

Nested Loops - 
500-page lOOO-page 
3-5 pages 
Cl. Idx. Scan Cl. Idx. Scan 

AccessPath 
Selectivily 1 
IruiexPageCPU 
DataPageCPU 
Page Accesses 
Locality Set Sizes 

Seq. Scan 
1% 
4ms 
4ms 
43 
1, 1,3-5 

1% 
4ms 
4 ms 
13 
1. 1 

(index, outer, inner) 
Repl. Policies ) MRU,MRU.MRU 1 MRU,MRU,- 

1 Fixing Requirements 1 3 1 2 

Table 4.2: Workload Parameter Settings. 

‘here the ferm “buffering requirements” of a transaction refers to 
Ihe optimum number of buffers needed by the transaction. 

“For example, for a 1% select of a SOO-page outer relation (using 
an index with three levels) followed by a nested-loops join with a 4-page 
inner relation, 43 pages are accessed: 3 to traverse the index, and then 20 
pairs of (outer, inner) pages. In our model of a nested-loops join, we 
unfix the outer page when we unfix each inner page in order to have fre- 

clustered-index scans on a lOOO-page relation, with the selec- 

tivity varying uniformly between 0.5% and 1.5%.” For each rela- 
tion accessed by a transaction, the actual relation accessed is 
chosen uniformly from among the 10 relations of that size. The 
locality set sizes and replacement policies for Priority-DBMIN 
are also listed in Table 4.2, as are the fixing requirements for the 
two types of transactions. Note that the pages of the inner rela- 
tions in looping transactions will be “favored” in the Priority- 
Hints algorithm. The parameters for the base experiment were 
chosen to provide a moderate background load. (In the absence 
of any high-priority transactions, and with a low-priority arrival 
rate of 5 transactions/second, the disk utilization was in the range 
of 40%-50% for the different algorithms and the CPU utilization 
was below 20%.) 

4.3. Buffer Management Without Priority 
We precede the description of the base experiment by the 

analysis of an experiment in which priority does not affect buffer 
management decisions. This will help us to separate the effects 
of buffer management algorithms per se on system performance 
from the impact of using priority in subsequent experiments. The 
workload in this experiment is the same as that described in 
Tables 4.1 and 4.2 (except that foreground and background tran- 
sactions have the same priority). In Figure 4.1, we show the 
RTRatios of the foreground transactions when Priority-LRU, 

Priority-DBMIN, and Priority-Hints are use$.13 In order to under- 
stand the behavior of Priority-Hints relative to Priority-LRU, we 
also present the results for an algorithm we call “Global-Hints.” 
Global-Hints differs from Priority-Hints in that when a buffer 
miss occurs and there are no free pages, the buffer manager 
searches the buffer pool for the globally most-recently-unfixed 
page and chooses it as the replacement victim. In contrast, under 
the same conditions in Priority-Hints, the buffer manager 
attempts to find unfixed pages of lower priority to choose as 
replacement victims, as explained in Section 2. Finding no pages 
of lower priority (since all transactions have the same priority in 
this experiment), Priority-Hints chooses the most-recently- 
unfixed page of the requesting transaction as the replacement 
victim. Thus, Priority-Hints’ replacement policy is local, while 
Global-Hints’ replacement policy is global. 

In Figure 4.1, we see that Priority-DBMIN provides the best 
performance. The performance of Priority-Hints is close to that 
of Priority-DBMIN over a wide range of arrival rates, although 
with Priority-Hints, the system saturates at a lower arrival rate 

quent suspension-safe points (see Section 2.1). This is why there are 20 
(outer,inner) page pairs, witi each of five outer pages looping over the set 
of four inner pages. 

“In our study of the impact of updates on priority-based buffer 
management, non-key attributes of Ihe tuples selected by rhe clustered in- 
dex scans are updated. In all other experiments, the workload consists of 
read-only transactions, since we are interested here primarily in buffering 
issues rather than concurrency control. 

“The RTRatios of the background transactions are (as one would 
expect) almost exactly the same as rhe RTRatios of the foreground tran- 
sactions, and are thus not presented here. 
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than with Priority-DBMIN. Finally, Global-Hints provides better 
performance than Priority-LRU, but is significantly worse than 
Priority-Hints. 

Priority-DBMIN provides better performance than Priority- 
Hints because the admission control policy of Priority-DBMIN 
uses its knowledge of the optimum number of buffers required 
for each transaction, while Priority-Hints’ admission control pol- 
icy cannot distinguish between the buffer requirements of looping 
transactions and those of scanning transactions. Consequently, 
Priority-Hints allows looping transactions to enter the system 
even when their loops cannot be guaranteed to fit in the buffer 
pool. This results in a higher buffer miss ratio for Priority-Hints 
than for Priority-DBMIN, and causes the system to become 
unstable at a lower arrival rate. 

When we move to the Global-Hints algorithm from Priority- 
Hints, the local search for MRU replacement victims is replaced 
by a global search. This change results in a significant perfor- 
mance degradation for the following reason: In Priority-Hints, for 
looping transactions, once a transaction is able to obtain enough 
buffers to keep its loop (the inner relation in the nested-loops 
join) in memory, it proceeds quickly since it never has to give up 
any buffers. (Recall that no transaction can steal buffers from 
any other transaction in Priority-Hints for this workload.) In con- 
trast, Global-Hints steals buffers indiscriminately from all tran- 
sactions, often depriving looping transactions that have their 
entire working set in memory of some of their favored buffers. 
This causes a significant increase in disk activity for Global-Hints 
as compared to Priority-Hints. As a result, the system becomes 
unstable for Global-Hints at a foreground arrival rate of approxi- 
mately 5 transactions/second, while Priority-Hints keeps the sys- 
tem stable until an arrival rate of about 7.5 transactions/second. 

Finally, the difference between the curves for Global-Hints 
and PriorityLRU is caused by two features of Global-Hints. 
Firstly, MRU is a better search strategy for buffer replacement 
than LRU when the workload contains looping transactions. 
Secondly, Global-Hints frees normal pages as soon as it unfixes 
them; Priority-LRU does not. Thii results in favored pages being 
chosen as replacement victims more frequently in Priority-LRU 
than in Global-Hints. 

This experiment shows that even in the absence of priority, 
Priority-Hints’ local MRU replacement strategy for favored 
pages provides significantly better performance than Priority- 
LRU for our base workload, and matches the performance of 
Priority-DBMIN over a wide range of arrival rates. It also iso- 
lates the relative impact of the following buffer management 
features: admission control, which causes the difference between 
Priority-DBMIN and Priority-Hints; local vs. global search for 
replacement victims, which causes the difference between 
Priority-Hints and Global-Hints; and the use of MRU vs. LRU 
search strategies in a looping workload, which is the major factor 
causing the gap between the curves for Global-MRU and 
Priority-LRU. We can now begin our investigate the perfor- 
mance of the system when the workload consists of transactions 
of different priority levels. 

4.4. Experiment 1: The Base Experiment 

In this experiment, we study the impact of using priority in 
buffer management for our base workload. Figure 4.2 shows the 
RTRatios for high-priority transactions for five buffer manage- 
ment algorithms: Priority-DBMIN. Priority-Hints, Priority-LRU. 
Global-Hints, and Global-LRU. RTRatios for low-priority trar- 
sactions are shown in Figure 4.3. We explain the results of the 
base experiment in detail in order to provide insights into the 
important issues involved; this will allow us to present the 
results of subsequent experiments more briefly. 

Comparing the curves for each algorithm in Figure 4.1 with 
the corresponding curves in Figure 4.2, we see that we have 
achieved the primary goal of priority scheduling, which is to pro- 
vide a higher level of performance for high-priority transactions. 
For example, the system remains stable for a foreground arrival 
rate of up to 12 transactions/second in Figure 4.2 for Priority- 
Hints, while the system saturates at a foreground arrival rate of 
about 6 transactions/second in Figure 4.1 for the same algorithm. 
Of course, there is a corresponding price which is paid by low- 
priority transactions, as is made clear by comparing Figures 4.1 
and 4.3. A secondary goal of priority scheduling is to minimize 
the penalty imposed on low-priority transactions; distinctions 
between the different algorithms in this respect will become clear 
as we describe subsequent experiments. 

From Figure 4.2, we see that the behavior of Priority-Hints for 
high-priority transactions is very close to that of Priority- 
DBMIN, and both are superior to the other three algorithms. An 
interesting feature of the behavior of these two algorithms is the 
tradeoff between the time spent by transactions waiting outside 
the system in Priority-DBMIN and the time spent inside the sys- 
tem competing for resources in Priority-Hints. Priority- 
DBMlN’s conservative admission policy causes the transactions’ 
mean time spent waiting outside the system to increase more as 
the load on the system is increased than does Priority-Hints’ 
liberal admission policy. However, since there are more transac- 
tions within the system in Priority-Hints than in Priority-DBMIN, 
the buffer miss ratios and the mean waiting times at the disks are 

higher for Priority-Hints than for Priority-DBMIN.i4 This trade- 
off will be referred to again in the following sections, where we 
will refer to it as the “conservative-liberal (C-L)” tradeoff. In 
Figure 4.4, we present the mean number of transactions (both 
total and high-priority) that are allowed to run concurrently by 
the two algorithms. Figure 4.5 shows the mean normalized Disk- 
Time and the mean normalized OutWaitTime for high-priority 
transactions for the two algorithms. DiskTime is the time spent 
by a transaction at the disks, including the actual l/O service time 
and time spent waiting for disk service; OutWaitTime is the time 
spent by a transaction waiting outside the system. DiskTime and 
OutWaitTime for a transaction are normalized by dividing each 
of them by the expected response time of the transaction in an 
unloaded system. 

“Contention for the CPU is not a significant factor here. 
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Figure 4.4 indicates that Priority-Hints allows up to 18 high- 
priority transactions into the system, while Priority-DBMIN lim- 
its the number of concurrent high-priority transactions to 12. 
Pigure 4.5 shows the consequences of this. The DiskTime curves 
reflect the relative disk contention in the two algorithms, and 
Priority-DBMIN is the clear winner in limiting disk contention; 
both the average buffer miss ratio and the average disk waiting 
times per transaction are higher in Priority-Hints than in 
Priority-DBMIN. In contrast, Priority-Hints is the winner in lim- 
iting OutWaitTime up to an arrival rate of up to 11 
transactions/second. As the load is increased beyond this, how- 
ever, the disk utilization nears 100% for Priority-Hints, causing 
the system to saturate and Priority-Hints’ OutWaitTime to exceed 
that of Priority-DBMIN. Priority-DBMIN’s conservative admis- 
sion control policy enables it to keep the system stable for arrival 
rates of up to 13 transactions/second. 

Figure 4.4 also reveals an important point about the range of 
operation of greatest interest to us. There is a gap between the 
total number of concurrent transactions and the number of high- 
priority transactions for most arrival rates shown; this gap 
corresponds to the number of low-priority transactions running in 
the system. When the curves for the total number of transactions 
in the system flatten out, the buffer pool has become fully util- 
ized, but Figure 4.4 shows that there are still significant numbers 
of low-priority transactions running in the system. It should be 
clear that priority-based buffer replacement policies will be most 
useful in this range of operation, since buffers owned by low- 
priority transactions can be stolen by high-priority transactions. 
In Figure 4.4 we also see that as the arrival rate of high-priority 
transactions increases, low-priority transactions are gradually dis- 
placed by high-priority transactions (due to the use of priority- 
based admission control policies) until finally only high-priority 
transactions remain active. Thus, both priority-based admission 
control and priority-based buffer replacement have an important 
role in determining performance over a fairly wide range of 
arrival rates. 

Figure 4.2 shows us that at low loads, all the algorithms pro- 
vide similar levels of performance to high-priority transactions. 
As the high-priority load increases, the curves for Global-LRU, 
Global-Hints, and Priority-LRU soon branch away from the 
curves for Priority-Hints and Priority-DBMIN. Global-LRU per- 
forms worst of all: it does not distinguish between transactions 
of high and low priorities, and it uses the LRU criterion for 
replacement. As for Global-Hints, its ability to distinguish 
between favored and normal pages (and its use of MRU) actually 
allows it to perform better than Priority-LRU at very low high- 
priority loads. As the load is increased, however, Priority-LRU’s 
protection of high-priority buffers begins to have a greater 
impact, since more of the buffers are now owned by high-priority 
transactions. The RTRatio of high-prioricy transactions remains 
lower for Priority-LRU than for Global-Hints until the system 
becomes unstable for both algorithms at a high-priority arrival 
rate of approximately 8 transactions/second. 

In Figure 4.3, the curves for Priority-Hints and Priority- 
DBMIN are fairly close. This is because the criteria used for 
suspending low-priority transactions differ in these two algo- 
rithms, making the C-L tradeoff more even for low-priority 

transactions than it is for high-priority transactions. (High- 
priority transactions cannot be suspended in either algorithm.) 
Priority-DBMlN suspends a low-priority transaction immediately 
when one of its unfixed buffers is required by a high-priority 
transaction. In contrast, Priority-Hints does not suspend low- 
priority transactions as frequently as Priority-DBMIN does. It 
allows them to continue execution as long as their “fixing 
requirements” can be satisfied; of course, this increases the low- 
priority load on the disks. As long as there is sufficient disk 
capacity to handle this increased low-priority load in Priority- 
Hints, the two algorithms provide similar performance for low- 
priority transactions. 

Figure 4.3 also shows that there is very little difference in the 
performance provided by the LRU algorithms (Global-LRU and 
Priority-LRU) for low-priority transactions. Priority-LRU steals 
buffers from low-priority transactions in preference to depriving 
high-priority transactions of their buffers, so one might expect 
Priority-LRU to provide worse performance for low-priority tran- 
sactions. Recall, however, that the CPUs and the disks use prior- 
ity scheduling in these experiments; also, in the range of arrival 
rates for which the system is stable for low-priority transactions, 
there are relatively few high-priority transactions in the system. 
The globally least-recently-used buffer is therefore quite likely to 
belong to a low-priority transaction rather than to a high-priority 
transaction. This is why the curves for Priority-LRU and 
Global-LRU are so close to each other in Figure 4.3. 

Low-priority transactions perform better under the Global- 
Hints algorithm than under the two LRU algorithms in Figure 4.3 
because their buffer miss ratios are lower due to the use of MRU. 
The reason that Global-Hints performs worse than Priority-Hints 
there, even for low-priority transactions, is again related to the 
use of priority at the CPUs and at the disks. As the arrival rate of 
high-priority transactions increases, Global-Hints hurts high- 
priority transactions more than Priority-Hints does (since 
Global-Hints ignores priority in choosing replacement victims). 
Consequently, more and more of the system’s disk capacity is 
used to satisfy high-priority transactions in Global-Hints. This 
makes the disk waiting times of low-priority transactions higher, 
causing the system to become unstable for low-priority transac- 
tions at a lower load in Global-Hints than in Priority-Hints. 

The base experiment confirms the result of [Care891 for our 
mixed workload: the use of priority in buffer management is a 
clear win (independent of the algorithm) if the response time of 
high-priority transactions is the main criterion of system perfor- 
mance. However, the conclusions are more mixed for low- 
priority transactions: their performance may be worse for some 
priority-based buffer management algorithms (e.g., Priority- 
LRU) than for algorithms that do not consider priority in replace- 
ment decisions (Global-Hints). The base experiment also shows 
that for both low-priority and high-priority transactions, the per- 
formance provided by Priority-Hints is significantly better than 
the performance provided by Priority-LRU, and that Priority- 
Hints performs almost as well as Priority-DBMIN for both prior- 
ity levels. In subsequent experiments, we limit ourselves to 
showing the relative behavior of the three priority-based algo- 
rithms. 
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4.5. Experiment 2: Varying Relative Buffer Pool Size 

In this experiment, we reduce the size of the database while 
keeping all other parameters the same as in the base experiment. 
thus. the ratio of the size of the buffer pool to the size of the 
database is higher in thii experiment than in the base experiment. 
Increasing the relative size of the buffer pool in this manner 
results in increased data sharing: i.e., data brought into the buffer 
pool at the request of one transaction is more likely to be found in 
memory when it is accessed by other transactions. When data 
accesses are distributed uniformly over the database, the extent of 
data sharing is inversely proportional to the database size if all 
other parameters are kept fixed. In the base experiment, the data- 
base consisted of 50 relations and a total of 15,120 data pages, 
while the buffer pool had 50 buffers (see Table 4.1). This 
represents a fairly low level of data sharing (and we did not even 
take index pages into account when computing the sum of 15,120 
pages!). We consider two levels of data-sharing in this experi- 
ment: one where there are 25 relations in the database (five rela- 
tions each of 1000 pages, 500 pages, 5 pages, 4 pages, and 3 
pages), and one where there are just 5 relations (one of each size). 
When there are 25 relations in the database, the level of data 
sharing is double the level of data sharing in the base experiment; 
when there are just 5 relations, the level of data sharing is ten 
times that in the base experiment. 

In Figure 4.6, we present the RTRatios of high-priority tran- 
sactions for the three algorithms with 25 relations in the database. 
Figure 4.7 shows the RTRatios of low-priority transactions for 
the same database. As one would expect, the performance of all 
three algorithms improves over their performance in the base 
experiment. The key difference between the trends shown in Fig- 
ures 4.4 and 4.2 is the fact that Priority-Hints now provides better 
performance than Priority-DBMIN at high loads. As the level of 
data sharing increases, Priority-DBMIN’s conservative admission 
control policy proves to be more and more harmful: it simply 
underutilizes resources by failing to consider the possibility of 
data-sharing. The same conclusion holds true for low-priority 
transactions, where Priority-Hints consistently performs as well 
as or better than Priority-DBMIN. 

Figures 4.8 presents the RTRatios for high-priority transac- 
tions in the case where there are just 5 relations in the database. 
Priority-Hints and Priority-DBMIN provide the same level of 
performance for high-priority transactions until Priority- 
DBMlN’s admission control policy causes it to block transactions 
unnecessarily outside the system; beyond this point, Priority- 
Hints is better. As for Priority-LRU, one might initially expect 
that all three inner relations of the nested-loops joins (a total of 
12 pages) would always remain in memory. and that it should 
therefore perform as well as Priority-Hints. However, recall that 
there are now 1500 data pages (plus index pages) that are not part 
of inner relations. A large fraction of the page requests made to 
the buffer manager are for one of these 1500 pages. In Priority- 
Hints and Priority-DBMIN, the looping pages will remain in 
memory as long as there are some high-priority transactions that 
need them. Also, these two algorithms free normal pages as soon 
as they are unfixed, so it is quite likely that a free page will be 
available even when the load is high. In Priority-LRU, where 
transactions can steal buffers from other transactions of the same 

priority, and where looping pages are treated just like other 
pages, looping pages are frequently chosen as replacement vic- 
tii. This is why the curve for Priority-LRU diverges from the 
other two in Figure 4.8. 

This experiment shows that as the relative size of the buffer 
pool increases, the performance of Priority-Hints improves to a 
greater extent than that of Priority-DBMIN. This is a conse- 
quence of the latter’s conservative admission control policy. 
Also, both Priority-Hints and Priority-DBMIN provide better per- 
formance than Priority-LRU, even under very high data sharing. 

4.6. Experiment 3: Changing the Transaction Mix 
In the base experiment, the high-priority workload consisted 

of a mix of an equal number of looping and scanning transac- 
tions. In this experiment, we vary the proportion of looping tlrar- 
sactions in the high-priority workload while keeping all other 
parameters as in the base experiment. (The low-priority work- 
load still consists of a 50% looping, 50% scanning mix.) Figure 
4.9 shows the RTRatios for high-priority transactions when the 
high-priority workload consists entirely of scanning transactions. 
RTRatios for the low-priority transactions are shown in Figure 
4.10. In Figure 4.9, the curves for the three algorithms coincide 
almost exactly. Thii is not unexpected, since the high-priority 
workload is insensitive to buffer replacement and the admission 
control criteria for the three algorithms coincide for scanning 

transactions.15 The interesting feature of this experiment is the 
relative performance of low-priority transactions, as shown in 
Figure 4.10: here, Priority-Hints perfoi-ms far berrer than 
Priority-LRU. The reason for this is that, unlike Priority-Hints. 
Priority-LRU does not free scanning pages as soon as they are 
unfixed. High-priority transactions thus keep stealing looping 
pages from low-priority transactions in Priority-LRU. while the 
more appropriate action is to choose high-priority scanning pages 
as replacement victims. 

Figures 4.11 and 4.12 show the RTRatios for high-priority 
transactions and low-priority transactions, respecrively, when the 
high-priority workload consists entirely of looping transactions. 
There is now a relatively larger difference between the perfor- 
mance of high-priority transactions for Priority-Hints and 
Priority-DBMlN than in the base experiment. The C-L tradeoff 
for high-priority transactions favors Priority-DBMIN in this 
experimenk since a larger proportion of the high-priority work- 
load now benefits from conservative admission control. How- 
ever, note that the tradeoff is still quite even for transactions of 

low priority. This is because Priority-DBMIN now prevents 
more scanning low-priority transactions from entering the system 
than Priority-Hints does, and it also suspends them more often. 

“The number of buffers required to meet the fixing requirements of 
a scanning transaction is equal to the sum of the sizes of its locality sets; 
see Table 4.2. 
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From Experiment 3. we learn that Priority-Hints tends to per- 
form as well as or better than Priority-LRU, independent of the 
proportion of looping and scanning transactions. In particular, 
when the low-priority load is insensitive to buffer management, 
Priority-Hints provides much better performance than Priority- 
LRU for low-priority transactions. As the proportion of looping 
transactions in the high-priority workload increases, Priority 
DBMIN’s admission control policy makes it perform better than 
Priority-Hints for high-priority transactions, but the two algo- 
rithms provide very similar support for low-priority transactions. 

4.7. Other Experiments 
We conducted a number of experiments in addition to the 

ones described above, in which we explored other issues related 
to priority-based buffer management [Jauh90]. Space considera- 
tions force us to summarize these results here. 

l Random Reaccess Transactions: We examined the perfor- 
mance of Priority-Hints when the workload consisted of classic 
hash-join queries [Shap90]. This workload, where a transaction 
reaccesses a number of its pages randomly, was chosen because 
its pattern of data accesses is similar to that of other types of 
hash-based joins and of non-clustered index selections. In our 
model of the classic hash-join, the inner relation is read into the 
buffer pool and a hash-table is built on its tuple identifiers in the 
private workspace of the transaction. Then, for each selected 
tuple of the outer relation, this hash table is probed for matching 
tuples in the inner relation. Note that this variant of the classic 
hash join allows pages of the inner relation to be replaced in the 
buffer pool, though such replacements should clearly be avoided 
as much as possible for performance reasons. In our experiment, 
each transaction consisted of a select-join, with the result of a 
0.2% clustered index selection on a IOOO-page relation being 
joined with a 5-page inner relation. Inner relation pages were 
“favored” in the Priority-Hints algorithm. Our experiment 
showed that even when the use of MRU is irrelevant, the 
classification of pages into “favored” and “normal” sets by 
Priority-Hints enables it to provide significantly better perfor- 
mance than Priority-LRU. Priority-DBMIN provides better per- 
formance than Priority-Hints for high-priority transactions, since 
it keeps the entire inner relation fixed in memory for the duration 
of the join. For low-priority transactions, the performance of 
Priority-Hints and Priority-DBMIN is very similar, for reasons 
closely related to those discussed in explaining Figure 4.12. 

l Low-Priority Updates: Clearly, updates result in an increased 
load on the disks, as dirty pages have to be written back to disk 
before they can be replaced in the buffer pool. As discussed in 
Section 1, the key issue from a priority standpoint is the effect (if 
any) of low-priority updates on the performance of high-priority 
transactions. We examined this issue by changing the low- 
priority workload to include scanning update transactions; a 
clustered-index scan was used to select tuples, and non-indexed 
attributes of the selected tuples were updated. The high-priority 
workload consisted of looping, read-only transactions. We 
ensured that the write sets of concurrent transactions did not 
intersect in this experiment, so concurrency control was not an 
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issue. Our experiments showed that when Priority-LRU was 
used, the RTRatios of the high-priority transactions increased 
significantly as the update probability increased, while Priority- 
Hints and Priority-DBMIN managed to keep their high-priority 
transactions almost immune to the presence of low-priority 
updates at the same load. Note that in this experiment, the 
updated pages were normal. Recall also that all three algorithms 
ignore dirty pages in their search for replacement victims. 
Priority-Hints and Priority-DBMIN place dirty normal pages in 
the dirty list as soon as they are unfixed, just as they place clean 
normal pages in the free list at unfix time. In contrast, Priority- 
LRU does not free any pages until transaction commit time 
unless all possible replacement victims are dirty, in which case a 
dirty page is synchronously written out to disk to prevent 
deadlock as explained in Section 2.5. Thii causes dirty normal 
pages to accumulate in the buffer pool in Priority-LRU. 

l Changing System CPU and I/O Capacity: We varied the 
number of CPUs and disks while keeping the buffer pool size 
fixed in order to understand the impact of different resource capa- 
cities on the relative performance provided by the three buffer 
management algorithms. We found that the performance diifer- 
ences between Priority-DBMIN and Priority-Hints occur as a 
consequence of higher disk activity when the latter policy is used; 
if the workload is CPU-bound, these two algorithms will provide 
similar performance. The results also confirmed that Priority- 
Hints’ performance is close to that of Priority-DBMIN, and supe- 
rior to that of Priority-LRU, independent of the CPU, I/O and 
main memory capacities of the system. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper, we have shown that buffer management can 
have a very significant impact on the performance of a priority- 
oriented database system, especially when the unpredictability of 
the workload forces the system to operate in regions where the 
total buffer requirements of the concurrent transactions exceed 
the system’s buffer capacity. We have introduced a new buffer 
management algorithm, called Priority-Hints, that uses page-level 
information provided by the database access methods to make 
priority-based buffer management decisions. The performance of 
our new algorithm has been compared to the performance of 
Priority-LRU and Priority-DBMIN. two algorithms proposed ear- 
lier for priority-based buffer management. A number of perfor- 
mance insights have been obtained as a result of simulation 
experiments. Priority-Hints was shown to perform better than 
Priority-LRU for all of the workloads considered here. For most 
workloads, Priority-Hints performed almost as well as Priority- 
DBMIN; for some workloads with data sharing, Priority-Hints 
actually provided better performance than Priority-DBMIN. 
Even when the workload consisted of transactions of equal prior- 
ity, Priority-Hints performed significantly better than Priority- 
LRU and almost as well as Priority-DBMIN. 

These results are significant for several reasons: First, in pre- 
vious studies [Chou85, Care891 it has been shown that DBMIN- 
Iike approaches to buffer management provide better perfor- 
mance than approaches based on simple strategies such as LRU. 
Still, most existing database systems continue to use LRU-based 

approaches because they do not require as much information as 
DBMIN does. Second, the type of information used by the buffer 
manager in Priority-Hints is already being provided to buffer 
managers in existing database systems [Teng84, Haas90]. Our 
algorithm has the advantages of both DBMIN-based approaches 
and LRU-based approaches; it provides good performance while 
requiring little information. Finally, we have also shown that 
Priority-Hints adapts itself dynamically as data sharing increases, 
while Priority-DBMIN’s more static approach to buffer alloca- 
tion can cause its performance to suffer in the presence of data 
sharing. 

We plan to continue our work in the area of priority-based 
DBMS scheduling. For example, we will extend our algorithms 
to workloads consisting of multi-query transactions. We also 
intend to study the problem of concurrency control conflicts in a 
priority-oriented DBMS. Finally, we plan to extend our perfor- 
mance study to the real-time context, where the workloads con- 
tain transactions with deadlines and importance levels. 
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