
Priority-Hints: An Algorithm for Priority-Based Buffer Management

Rajiv Jauhari, Michael J. Carey, and Mu-on Livny

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT - In this paper, we address the problem of buffer
management in a DBMS when the workload consists of transac-
tions of different priority levels. We present Priority-Hints. a
new buffer management algorithm that uses hints provided by the
DBMS access methods. The performance of Priority-Hints is
compared to that of priority buffer management schemes intro-
duced earlier for a variety of workloads. Our simulation results
indicate that Priority-Hints performs consistently better than sim-
ple LRU-based algorithms. Furthermore, our algorithm
approaches (and in some cases surpasses) the performance of
highly sophisticated algorithms that require much more informa-
tion to be provided to the buffer manager.

1. INTRODUCTION

1.1. Motivation
Priority scheduling has recently become an area of increased

interest to the database community [SIGM88, Abbo88, Abbo89,
Care89, Hari90]. Applications that require different levels of
system response for different transactions (for example, a system
that is designed to provide faster service to interactive jobs than
to batch jobs) can benefit from priority scheduling at the DBMS
resources, as shown in [Care89]. Several data-intensive applica-
tions such as computer-aided manufacturing, stock trading, and
command and control systems may require real-time response,
which can also be supported with the help of priority scheduling
at the resources of the DBMS [SIGM88, Abbo89].

The use of priority in DBMS resource scheduling may lead to
an increase in the extent to which buffer management impacts
system performance compared to its impact in conventional data-
base systems. Unpredictable bursty arrivals of high-priority tran-
sactions may force a priority-oriented DBMS to operate in

This research was supported in part by the National Science Foun-
dation under grant IRI-8657323 and by the Digital Equipment Corpora-
tion through its Initiatives for Excellence program.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commerical advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base En-
dowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

regions where the total load on the buffer pool (i.e., the sum of
the buffering requirements of transactions of all priority levels)
exceeds the buffer pool capacity. In these operating regions,
priority-based load control and buffer allocation policies will be
required, as the use of conventional load control and allocation
techniques may lead to situations of priority-inversion,” where
high-priority transactions are forced to wait while low-priority
transactions are allowed to make progress. Furthermore, the set
of concurrently active transactions in these operating regions may
include transactions of different priority levels. In this scenario,
then, priority-based buffer replacement policies may also be
required in order to provide preferential service to high-priority
transactions. We anticipate that all aspects of buffer management
(load control, allocation, and replacement) will become both
more complex and more significant when priority is used in

scheduling DBMS resources.’

Several interesting new issues arise when buffer management
decisions have to include priority considerations. One such issue
is the tradeoff between the overheads introduced as a conse-
quence of the use of priority and the advantages provided to
high-priority transactions. If a buffer containing data accessed by
a transaction is replaced as a consequence of priority, its data
may have to be re-read from disk once the transaction resumes
execution. The total load on the system may increase purely as a
consequence of the use of priority in buffer management, and
alternative priority-based buffer replacement and allocation poli-
cies may result in different relative increases in system load.

A second issue of interest is the extent to which information
about the workload can be used by the buffer manager to improve
system performance in the presence of priority. Existing buffer
management schemes assume different levels of information
about transactions’ data access patterns [Effe84, Teng84,
Chou85, Sacc86]. In this paper, we introduce a new buffer
management algorithm that makes use of hints provided by the
database access methods (as in the Starburst buffer manager
[Haa&O] and DB2 [Teng84]). This new algorithm, called
‘Priority-Hints,” uses these hints to make priority-based buffer
management decisions while trying to minimize the priority
induced overhead on the system.

A third issue in priority-based buffer management is inter-
transaction buffering interference across priority levels. For

‘This is in contrast to the trends in conventional database systems,
where it may be argued that by increasing the buffer pool size with
respect to the database size, and by keeping the multiprogramming level
under a certain threshold, buffer management policies can be made esseu
tially irrelevant.

708

example, update-intensive transactions may quickly make large
numbers of buffers “dirty,” making them unavailable for replace-
ment until they are written out to disk. The performance of
high-priority transactions can thus be affected adversely by low-
priority updates. Another example of inter-transaction effects in
the presence of priority may occur when high-priority sequential
scans quickly replace a large number of buffers with pages that
are accessed just once, unnecessarily depriving lower priority
non-sequential transactions of buffers that need to be accessed
repeatedly. Priority-based buffer management policies should be
designed to minimize these effects.

Finally, the importance of using priority-based buffer
management in a DBMS that already uses priority at the CPUs
and the disks may itself be open to question. In this paper, we
investigate all of these issues.

1.2. Related Work
A number of buffer management strategies for conventional

database systems have been proposed in the literature [Effe84,
Chou85, Sacc86]. Simple techniques such as Global-LRU
assume no knowledge of the data access patterns, while algo-
rithms such as Hot Set [Sacc86] and DBMIN [Chou85] attempt
to take advantage of the limited number of ways in which queries
access data in relational database systems. In [Chou85], it was
shown that DBMIN. a relatively sophisticated buffer manage-
ment strategy in which data access pattern information is sup-
plied to the buffer manager on a per-file basis by the DBMS
optimizer, performs better than most other existing buffer
management strategies.

In [Teng84], the design of IBM’s DB2 buffer manager is
described, and several techniques used to maximize buffer pool
performance are discussed. For example, DB2’s buffer manager
distinguishes between sequential accesses and random accesses,
and buffered pages that are part of sequential accesses are chosen
as replacement victims in Preference to randomly accessed pages.
The LRU replacement policy is used within each group of buffers
(sequential or random). Other performance-enhancing tech-
niques used in DB2 include the use of prefetch for sequential
scans and the use of deferred-write mechanisms for writing
updated pages to disk. In the Starburst system, as described
briefly in [Haas90], access methods can provide hints to the
buffer manager about their expected future reuse of each buf-
fered page in order to guide replacement decisions.

Aninitial investigation of the problem of priority scheduling
at the physical resources of a DBMS was described in [Care89].
Algorithms for priority-based disk scheduling and CPU schedul-
ing were presented, and priority-oriented modifications of two
existing buffer management algorithms (Global-LRU and
DBMIN) were described. It was shown that a single priority
scheduler does not suffice to meet the goals of priority scheduling
in a DBMS due to the heterogeneity and the multiplicity of its
resources. Priority scheduling at the admission control com-
ponent of the DBMS (the part of the system that determines
whether an arriving transaction is to be allowed to enter the sys-
tem, or is to be blocked outside the system until sufficient buffer
resources become available) was shown to be particularly

important in order to keep the system stable from the point of
view of high-priority transactions as system load is increased A
homogeneous workload model was used to compare the perfor-
mance of the priority-scheduling algorithms, and Priority-
DBMIN (the priority version of DBMIN) was shown to perform
as well as or better than PriorityLRU (the priority version of
Global LRU).

In [Abbo89], priority scheduling at the CPU and the disk, as
well as for concurrency control, was shown to be effective in
reducing the number of transactions that miss their deadlines in a
real-time DBMS. Transactions were modeled as random
sequences of page accesses, and the buffer pool was modeled
simply by computing the probability of linding a page in main
memory assuming a uniform probability of access to the entire
database. Finally, it was shown in [Hari90] that in a real-time
environment, priority scheduling at the CPU and the disks may
help optimistic concurrency control algorithms outperform lock-
ing schemes. Issues of buffer replacement strategies and work-
loads with non-random data access patterns were not included in
either [Abbo89] or [HarBO].

1.3. Our Work
The design of the Priority-Hints algorithm was motivated by

the intuition that the use of simple page-level information by the
buffer manager (as in [Teng84, Haas90]) may improve system
performance over that provided by simple LRU-based
approaches. Such a performance improvement acquires great
importance in priority-based systems, where significant I/O over-
heads may result as a consequence of using priority in buffer
management decisions. Improvements in performance (relative
to simple LRU-based approaches) may also be obtained by using
sophisticated DBMIN-like algorithms, as shown in [Care89], but
only at the cost of added system complexity; our goal is to exam
ine whether such complexity is really required.

In order to take a detailed look at the issues involved in
priority-based buffer management in the presence of mixed work-
loads, we have implemented a simulation model of a DBMS that
uses priority scheduling. In this paper, we use this simulation
model to compare the performance of our new algorithm with
Priority-LRU and PriorityDBMIN. Our primary objective in
this analysis is to explore the extent to which our algorithm can
surpass the performance of Priority-LRU, and how close we can
get to the performance of Priority-DBMIN. We also conduct
experiments that shed light on the other priority-related buffer
management issues raised earlier.

The remainder of this paper is organized as follows: In Set-
tion 2, we describe Priority-Hints, our new buffer management
algorithm, and review the Priority-LRU and Priority-DBMIN
policies introduced in [Care89]. Section 3 describes our simula-
tion model of a priority-oriented DBMS. Section 4 presents a
series of performance experiments that help us to understand the
tradeoffs involved in using priority in buffer management.
Finally, Section 5 summarizes our contributions and describes
our plans for future work.

709

2. PRIORITY-BASED BUFFER MANAGEMENT
ALGORITHMS

In this section we present the Priority-Hints algorithm. Our
assumptions about buffer management are outlined first. We then
describe Priority-Hints and briefly review Priority-LRU and
Priority-DBMIN, the two algorithms presented in [Care89]. Our
scheme for handling dirty data, which is common to the three
algorithms, is described next; and we conclude the section with a
summary of the key differences between the three algorithms.

2.1. Buffer Management Assumptions
A page is assumed to be fixed (or pinned) in the buffer pool

during the interval when a transaction is processing the data on
the page. As soon as the transaction has finished processing the
page, it unfixes it. Fixed pages cannot be chosen as buffer
replacement victims. The owner of a resident page is the transac-
tion with the highest priority among the executing transactions
that have accessed the page since it was brought into memory.
The buffer manager associates a timestamp with each resident
page in order to keep track of the recency of usage of pages.
Each time the data in a buffer is accessed or updated, a global
counter is incremented and its new value is inserted as the times-
tamp of the page. Thus, the larger the value of the timestamp of a
page, the more recently the page was accessed. Pages in the free
list (and the dirty list, described at the end of this section) are
kept in LRU order using their timestamps.

Based on the number of buffers available, a transaction may
be admitted to the system right away, or it may be blocked ini-
tially. Transactions blocked outside the system are queued in
order of priority. Once a transaction is allowed to begin execu-
tion, it continues until it commits, is aborted as a result of con-

currency control, or is suspended.’ A transaction is said to be

suspended by the buffer manager if it is temporarily prohibited
from makiig further buffer requests; the buffers owned by the
transaction are freed. The buffer manager considers reactivating
suspended transactions at the same decision point that it consid-
ers admitting blocked transactions, which is whenever a running
transaction completes or aborts. A reactivated transaction
resumes its execution at the point where it was suspended.

A transaction checks whether it has been chosen as a suspen-
sion victim at instants when it has no pages fixed. We call such
instants “suspension-safe” points. At suspension-safe points, the
transaction “volunteers” to let all of its buffers be stolen by tran-
sactions of higher priority. Such instants occur normally during
the execution of a transaction. In a sequential scan, for example,
they occur at the point when the transaction unfixes one page and
is about to request that another be fixed. In addition, a priority
DBMS should be designed so that transactions periodically
“come up for air” and check if they need to give up their buffers.

‘A aping transaction may also be blocked temporarily if there are
no free buffers available, and all of the in-use buffers are either pinned or
dirty. The transaction’s buffer request is then enqueued in a queue called
the Buffer Waiting Queue. Queued buffer requests are served in priority
order.

2.2. The Priority-Hints Algorithm

As its name suggests, Priority-Hints makes use of hints (pro-
vided by the DBMS access methods) that indicate whether a par-
ticular data page should be retained in memory in preference to
other data pages. The basic ideas underlying Priority-Hints are
the following:
l As discussed in [Teng84, Haas901, it is Possible to classify the
pages referenced by a transaction into two groups: pages that are
likely to be re-referenced by the same uansaction (such as the
pages of the inner file in a nested-loops join), and pages that are
likely to be referenced just once (such as the pages of a file being
scanned sequentially). The pages that are likely to be re-
referenced are called favored pages, and the others are called
normal pages. We assume that whenever a request for a page is
made to the buffer manager, the buffer manager is informed
whether the requested page is favored or normal.
l The favored pages of a transaction should be kept in the buffer
pool as long as the transaction needs to reaccess them; each nor-
mal page should be made available for replacement as soon as the
transaction untixes it. When searching for replacement victims,
normal pages should therefore be considered before favored
pages.
l If it becomes necessary to choose a favored page as a replace-
ment victim, the most-recently-used (MRU) policy should be
used to shoose the victim. As discussed in [Chou85], MRU is a
better approach than LRU when choosing replacement victims
from a set of pages that are being repeatedly.looped over, and
favored pages are likely to fall into this category.

The Priority-Hints algorithm combines these ideas with the
notion of priority as follows.

Buffer Pool Organization: Buffers are organized into “transac-
tion sets,” where a transaction set consists of all of the buffers

owned by a single transaction.3 Transaction sets are arranged in
priority order, with recency of arrival of the owner transaction
being used to break ties if there are multiple transactions of the
same priority. In the buffer pool configuration shown in Figure
2.1, there are three transactions (Tl. T3, and T2), three priority
levels, and no free buffers.

A transaction set consists of two kinds of buffers: the buffers
currently fixed by the owner (marked by the letter “F” in Figure
2.1). and buffers containing unlixed favored pages of the owner
(marked by the letter “U” in Figure 2.1). The unfixed favored
pages are maintained in MRU order with the help of buffer times-
tamps. Note that a transaction set contains no unfixed normal
pages; whenever a normal page is unfixed, it is freed.

Transaction Admission: Transactions are required to estimate
the maximum number of pages that they will need to fix con-
currently, and the buffer manager keeps track of the sum of these
“fixing requirements” for all active transactions. If admitting a
newly arrived transaction does not cause this sum to exceed the

‘Buffers containing pages shared by more. than one transaction are
owned by the transaction with the highest priority among the sharers.

710

--------------------_

--------------------_

Figure 2.1: Example of Priority-Hints Buffer Pool Organization.

size of the buffer pool, the transaction is admitted. Otherwise, if
there are running transactions of lower priority than that of the
new arrival, the one(s) with the lowest priority among them are
suspended until there are enough buffers for the new arrival, or

until no lower priority transactions remain4 If no remaining tran-
sactions are of a priority less than the new arrival, then the new
arrival is forced to wait outside the DBMS.

Buffer Replacement and Allocation: When a buffer miss
occurs and there is no free page available, the buffer manager
lirst attempts to get a replacement victim from among the unfixed
favored pages of transactions of lower priority than the request-
ing transaction. The buffer pool searches its transaction sets in
inverse priority order, starting from the lowest priority transac-
tion, looking for unfixed favored pages. It stops searching on
either of the following conditions:
(1) It finds a transaction of lower Priority than the requesting
transaction with an unfixed favored page; or
(2) it has reached a transaction of a priority equal to or greater
than that of the requesting transaction.

In case (l), it chooses the most recently unfixed favored page
of the lower-priority transaction as the replacement victim. In
case (2). it chooses the most recently unfixed favored page (if
any) of the requesting tramuction itself. Note that this means
that transactions cannot steal buffers from other transactions of
the same priority; thus the replacement policy for favored pages
is focal rather than global. If no replacement victim is available,
then the outstanding request is queued in the Buffer Waiting
Queue. Furthermore, if there are running transactions of lower
priority, the transaction with the lowest priority among them is

‘In choosing suspension victims from among transactions of the
same priority, later anivals are chosen for suspension in preference to ear-
lier arrivals. Also, earliest arrival time is the criterion for choosing the
transaction (from among a group of waiting transactions of the same
priority) that should first attempt to enter the system.

suspended. Continuing the example of Figure 2.1, if Tl makes a
buffer request for page P6, which is not in the buffer pool, the
buffer manager will start its search for replacement at T2. Find-
ing no unfixed buffer in T2’s transaction se< it will look at T3’s
transaction set and find P63 as the replacement victim. Had there
been no unfixed pages of priority 1 or 2, then PlOO would have
been chosen as the replacement victim.

To summarize, Priority-Hints has a focal MRU replacement
policy for favored pages, and a global LRU replacement policy
for normal pages. (Recall that normal pages are placed on the
free lit at unfix time, and that the free list is maintained in LRU
or&r.)

2.3. The Priority-LRU Algorithm
In Priority-LRU, the prioritized version of Global LRU, the

buffer pool is organized dynamically into priority levels as
described in [Care89]. Each priority level consists of pages
whose owners have the same priority, and the pages within a
level are arranged in LRU order. The transaction admission po-
icy for Priority-LRU is the same as that for Priority-Hints. The
key idea of the Priority-LRU replacement policy is that the least
recently unlixed page of the lowest priority should be chosen as
the victim. If there are no free buffers, the search for a replace-
ment victim starts at the lowest priority queue, where we check
whether unfixed candidates are available. If such candidates are
found, the least-recently-used candidate is chosen as the victim.
If no candidate is found at this priority level, we move up one
level, and we repeat the process until we have either found a vic-
tim, reached a priority level that exceeds that of the requesting
transaction, or exhausted the search. If no victim is found, and
there are transactions of lower -priority running, the lowest-
priority transaction is suspended as in Priority-Hints.

2.4. The Priority-DBMIN Algorithm
As discussed in [Chou85], the primitive operations (e.g.,

selections, joins) of transactions in a relational DBMS can be
described as a composition of a set of regular reference patterns
such as sequential scans and hierarchical index lookups. These
patterns are known to the query optimizer. The DBMIN buffer
management policy makes use of this information in the follow-
ing way: A set of buffers (called a “locality set”) is allocated to
each transaction for each file accessed by it. The optimum size of
each locality set and the optimum replacement pohcy to be ‘used
within a locality set are supplied to the buffer manager by the
optimizer. DBMIN guarantees that each transaction that is
allowed to enter the system has the optimum number of buffers
available to it. and the optimum replacement policy is used
within each locality set.

Priority-DBMIN, the prioritized version of DBMIN, also allo-
cates buffers to transactions in locality sets. A transaction is
allowed to enter the system only if its optimal-sized locality sets
can be accommodated in the buffer pool. Otherwise, if there are
transactions of lower priority than that of the arriving transaction
in the system, they are suspended in reverse priority order until
sufficient buffers become available for the new arrival. As in the
original DBMIN algorithm, Priority-DBMIN uses the optimizer-

711

supplied optimum replacement policy within each locality set.

2.5. Dirty Data

In all three algorithms, a process called the asynchronous
write engine [Teng84] is responsible for Rushing dirty buffers to
disk. When a transaction frees a buffer, the buffer is inserted into
the free list if it is clean (i.e., if it has no update that has not been
written to disk). If the data in the buffer has been updated, the
buffer is placed in a queue called the dirty list. The write engine
is activated periodically; it also wakes up whenever a buffer miss
OCCUTS and the free list is empty. The engine flushes each page in
the dirty list that is sufficiently “old” in terms of its recency of

use.’

Requests to write dirty buffers are asynchronous. This may
result in some buffer requests having to wait until a buffer is
flushed to disk. Write requests to the disk are therefore assigned
a priority equal to the highest possible transaction priority. When
its I/O is completed, a dirty buffer is marked clean and placed on
the free list, and if there are any buffer requests pending, the
highest-priority request is serviced. When choosing replacement
victims, dirty data is avoided as long as possible. That is, if a
buffer that would normally be a candidate for replacement is
dirty, we ignore it in our search for replacement victims unless all

candidate buffers are dirty.6

2.6. Discussion
In summary, the key features of Priority-Hints that distinguish

it from the other algorithms discussed are the following:
l By realizing which pages are normal, Priority-Hints is able to
free more buffers earlier in the course of a transaction’s execution
than Priority-LRU. In this respect, Priority-Hints behaves simi-
larly to Priority-DBMIN.
l When choosing replacement victims from among non-free
pages, Priority-LRU chooses the least-recently-unfixed page;
Priority-Hints chooses the most-recently-unfixed page. MRU is
likely to be a better policy when the replacement victim is part of
a set of pages that are being looped over; in cases where pages
are reaccessed randomly, the performance differences between
MRU and any other replacement policy are negligible [Chou85].
Note that Priority-Hints uses MRU only for favored pages, where
it may be advantageous to do so; LRU is still used for normal
pages, since normal pages are placed in LRU order in the free list
as soon as they are unfixed.
l Priority-Hints’ replacement policy ensures that the favored
pages of a transaction can be stolen only by a transaction of
higher priority: in Priority-LRU, transactions of the same priority

‘Timestamp information is used IO determine whether a dirty page
is “old” enough; this check is performed to prevent unnecessary writes of
pages that are. frequently updated.

6Potential deadlocks caused by the entire set of possible replace-
ment candidates being dirry are avoided by synchronously writing dirty
buffers to disk in this exceptional situation.

can steal each other’s pages.7 In Priority-DBMIN, in contrast, a
transaction protects its favored pages throughout its execution; if
it is not possible to protect them, the transaction is suspended.
Note that Priority-Hints allows a transaction to execute even
when it does not have an optimum number of favored pages,
while Priority-DBMIN does not.
l Priority-LRU does not discriminate between transactions of the
same priority when choosing replacement victims. The local
replacement search strategy of Priority-Hints, however, ensures
that among transactions of the same priority, all but the latest
arrival will execute undisturbed as long as the latest arrival has
some unfixed favored buffers. Thus, the performance degrada-
tion caused by stealing favored buffers is limited to one transac-
tion at a time in Priority-Hints.
l Priority-Hints does not require that information such as
optimum locality set sizes be provided by the optimizer, as
Priority-DBMIN does. It merely requires that hints be provided
to distinguish between normal and favored pages; similar hints
are provided in existing DBMSs such as DB2 [Teng84] and Star
burst [Haas90]. Thus, Priority-Hints requires less information
than Priority-DBMKN.
l Finally, note that while the information supplied to the buffer
manager is similar in Priority-Hints, DB2, and Starburst,
Priority-Hints differs from the DB2 and Starburst buffer manage-
ment algorithms in two significant respects. Firstly, it groups
buffers on a per-transaction basis in order to allow a local
replacement search strategy. Secondly, unfixed buffers are
arranged in MRU order in Priority-Hints, unlike in DB2 or Star-
burst. These two factors may have a significant impact on perfor-
mance, as will become clear in Section 4.

3. MODELING A PRIORITY-ORIENTED DBMS
In this section, we describe our performance model of a

priority-oriented DBMS. The model, which we implemented
using the DeNet simulation language [Livn89], consists of five
components: the database itself; a Source, which generates the
workload of the system; a Transacfion Manager, which models
the execution behavior of transactions; a Resource Manager,
which models the CPU, I/O, and buffer resources of the system;
and a Concurrency Control Manager, which implements the
details of a particular concurrency control algorithm. Since we
will be using workloads where concurrency control is not an
issue, we will not discuss the Concurrency Control Manager
further. (As described in Section 4, our workloads consist either
of read-only transactions with data sharing, or updates without
data sharing.) In most respects, our model is similar to the model
described in [Care89]. Therefore, we describe its components
very briefly here; see [Care891 for more details.

3.1. Modeling the Database
The database is modeled as a collection of relations. Each

relation in turn is modeled as a collection of pages. Indices
(clustered or unclustered B+ Trees) on the base relations are

‘lt is advisable to allow Priority-LRU to do this, as many of the
pages owned by a transaction are likely to be accessed just once.

712

included in the database model. The parameters for the database
model are summarized in Table 3.1.

3.2. The Source Module
The Source module is the component responsible for model-

ing the workload of the DBMS. Table 3.2 summarizes the key
parameters of the workload model. A transaction may belong to
any one of NumClasses classes, and it may have any one of
NumPriorities priority levels. The model is that of an open sys-
tem, and transactions of each <classi, pri&yj> combination
arrive at the system in a Poisson process with a mean arrival rate
of ArrRateij. Transactions can be single-relation selects, single-
relation select-updates, or two-relation select-joins; the type of a
transaction of class i and priority j is controlled by TrmTypei,.
Selections can be performed via sequential scans or index scans,
and we model three join methods: nested-loops joins, classic
hash joins, and index joins.

For each transaction type (selection, join, or update) of a par-
ticular priority level, an execution plan is provided in the form of
a set of parameters. For selections, the access path and the mean
selectivity are provided as parameters. The actual selectivity is
varied uniformly over the range [Selectivityijk/2,
3*Selectivityjjk/2]. For select-joins, the join method and the inner
and outer relations are provided in addition to the selection
parameters. For select-updates, the probability of updating a
page is specified as the parameter UpdateProbijk. Finally, times
spent at the CPU for processing or updating a page are uniformly
distributed: the CPU time per data page of relation k varies uni-
formly over the range [DataPageCPU,jk12,

NumRelations
RelSizei
Indexedi
IndexType;

Number of relations in database
Number of pages in relation i
Whether relation i has an index
Type of index (clustered/nonclustered)
Fanout of internal nodes of index ,

Table 3.1: Database Model Parameters.

Overall Arriva! Pattern Parameters
NumClasses Number of transaction classes
NumPriorities Number of transaction priority levels

Per (Class, Priority) Parameters
(1 <iaumClawes, Kj<GVumPriorities)

ArrRateij Transaction Arrival Rate
TramTypeij Transaction Type
Joinhfethodij Join algorithm used
OUttTij Outer relation
I?UU?rij Inner relation
AccessPathijk Access path used to access &th relation
Selectivityij, Fraction of kth relation selected
UpdateProb+ Probability of page update
I&PCl~t?CPUij~ CPU time for processing an index page
DataPageCPU+ CPU tune for processing a data page
UpdateCPU, CPU time for page update

Table 3.2: Workload Model Parameters.

3*DataPageCPU+/2], and similar distributions are used for
IndexPageCPU;jk and UpdateCPU,. Given a plan, the Source
module generates a list of page accesses that models the sequence
in which pages will be accessed by the transaction.

3.3. The Transaction Manager Module
The Transaction Manager is responsible for accepting transac-

tions from the Source and modeling their execution. For each
page accessed by the transaction, the Transaction Manager sends
a read (or write) request to the Resource Manager; the Resource
Manager informs the Transaction Manager when the request is
completed. The Resource Manager also informs the Transaction
Manager when a transaction is suspended or reactivated. When
the Resource Manager decides to reactivate a suspended transac-
tion, the Transaction Manager ensures that the reactivated tran
saction resumes execution at the point where it was suspended.

3.4. The Resource Manager Module
The Resource Manager controls the physical resources of the

DBMS, including the CPU, the disk, and the buffer pool in main
memory. Three versions of the Resource Manager have been
implemented, supporting the Priority-LRU, Priority-DBMIN. and

Priority-Hints algorithms, respectively.’ Resource Manager
parameters are summarized in Table 3.3.

CPU and Disk Models: The DBMS has MumCPUs CPUs and a

single priority queue for outstanding CPU requests. The actual
CPU where a request is processed is selected at random from
among the idle CPUs, if any. The length of each CPU request
from a transaction is its per-page CPU processing time; each trar-
saction voluntarily gives up the CPU after processing or updating
one page, as in the priority-based round robin CPU scheduling
scheme described in [Care89]. There are NumDisks disks in the
system, with requests at each disk being priority-scheduled
according to the prioritized elevator algorithm [Care89]. We
model the data as being uniformly distributed across all disks and
across all tracks within a disk. The total time required to com-
plete a disk access is computed as the sum of its seek time, rota-
tional latency, and transfer time components. As in [Bitt88,
Care89], there is a square root relationship relating seek time to
seek distance, and the rotational latency and transfer time are
together modeled as a single parameter called DiskConFt.

Buffer Manager Models: The Buffer Manager component of
the resource manager encapsulates the details of the buffer
management scheme employed. The number of page frames in
the buffer pool is specified as NumBuffers. A separate buffer
manager component has been implemented for each buffer
management algorithm studied.

*In addition, Kesource Managers supporting Global-LRU and
Global-Hims (an algorithm introduced in Section 4) have also been im-
plemented.

713

51
Sum of rotattonal and transfer delays
Factor relating seek time to seek distance
Number of buffer frames in buffer pool

Table 3.3: Parameters of the Resource Manager.

4. EXPERIMENTS AND RESULTS
In this section, we present performance results for the priority

buffer management algorithms described earlier. In [Care891 it
was shown that results for two priority levels can be generalized
to multiple priority levels, so we consider just two priority levels:
“low” versus “high” priority. In addition, our workload consists
of three types of single-query transactions: “looping”, “random
reaccess (RR)“, and “scamting” transactions. As their names sug-
gest, looping transactions (such as nested-loops joins) reaccess
some of their pages sequentially a number of times, RR transac-
tions (such as hash joins) randomly reaccess some of their pages,
and scanning transactions (such as clustered-index selections)
touch each page just once. Looping transactions and scanning
transactions represent two ends of the spectrum of buffer access
characteristics typical in relational databases, while RR transac-
tions represent the middle.

4.1. Performance Metrics
As discussed earlier, we use an open queuing system to model

the DBMS. Our primary performance metric will be the average
response time ratio (RTRatio) for transactions at each priority
level. We define the RTRatio of a transaction as the ratio of the
actual response time of the transaction to its estimated response
time on an unloaded system with an infinitely large buffer pool.
A transaction’s response time is computed by subtracting the
time at which the transaction commits from the time at which it
was submitted to the DBMS. The response time of the transac-
tion in an unloaded system is estimated by summing the CPU
requirements associated with the page accesses of the transaction
and by assuming one I/O per distinct page referenced by the tran-

saction.g That is, only one I/O is assumed for a page, whether it is
touched just once by a transaction or accessed repeatedly. The
RTRatio of a transaction, then, reflects the effects of the finite
size of the buffer pool and the presence of competing transactions
on the response time of the transaction. As the load on the sys-
tem increases, contention for buffers causes increased I/O (and an
increase in the time spent waiting outside the system) while con-
tention for disks and CPUs causes increased disk and CPU wait-
ing times. These factors tend to increase the RTRatio of transac-
tions. On the other hand, if there is significant data sharing, the
RTRatio of a transaction would tend to be reduced because part
of the transaction’s read and write sets would already be in main

9he cost of writing dirty data LO disk is not included in his sum,
since the asynchronous write engine operates independently of transac-
tions.

memory. When the workload consists of a mix of transactions
with different data access patterns and different sizes, the RTRa-
tio provides a performance measure that is equally valid for all
transactions, independent of the transaction mix.

In all the experiments described here, low-priority transac-
tions are assumed to be running in the background, and we inves-
tigate the performance impact of the arrivals of foreground high-
priority transactions on the system. The arrival rate of high-
priority transactions is thus varied while keeping the arrival rate
of low-priority transactions fixed. As shown in [Care89], a
priority-oriented DBMS can remain stable for high-priority tran-
sactions long after the combined arrival rate has become high
enough to make the system unstable for low-priority transactions.
Consequently, we present response time results for low-priority
and high-priority transactions separately for each experiment.
Each simulation was run long enough so that the 95% confidence
intervals of the RTRatios of the high-priority transactions were
within 10% of the mean.

4.2. Base Parameter Settings
We Iirst present the parameters that were used in our base

experiment. As subsequent experiments are discussed, we
describe the variations in the parameters for each experiment.
The workload-independent parameters and the mix of transac-
tions for each priority level in the base experiment are listed in
Table 4.1. Details of the parameters for each type of transaction
are presented in Table 4.2.

.

Workload-Independent Parameters: The database is modeled
as a collection of 50 relations. We use five different relation
sizes in our experiments - 1000 pages, 500 pages, 5 pages, 4
pages, and 3 pages - with the database containing 10 relations
of each size. The 1000.page and 500-page relations each have a
clustered index available, while the smaller relations are not
indexed. There are four CPUs and four disks in the system.

Each disk has 1000 tracks, and the sum of the rotational latency
and the transfer time per disk access is 15 milliseconds. The

NumRelations 50
RelSizei 1000,500,5,4,3 pages

(10 relations of each size)
Indexedi YES (lOOO- & 500-page relations)

NO (3- ,4- , and 5-page relations)
IndexType, Clustered (lOOO- & 500-page relations)
Fanouti 20 (lOOf- & 500-page relations)
NumCPUs 4
NumDisks 4
NumTrach 1000
DiskConst 15 ms
SeekFactor 0.6 ms
NumBuffers 50
Transaction Mix 50% looping, 50% scanning
Arrival Rate O-15 translsec (high priority)

5 trans/sec (low priority)

Table 4.1: Base Parameter Settings.

714

prioritized elevator disk scheduler has two priority queues, one
for each priority level. The factor relating seek distance to seek
time is 0.6 milliseconds, so the expected disk access time is
between 15 and 30 milliseconds.

As stated in Section 1, the operating region of greatest interest
to us is when the combined buffer requirements of all transac-
tions exceeds the capacity of the buffer pool. In order to simulate
the behavior of the system in this region of operation without
incurring excessive simulation costs, we kept the buffer pool rela-
tively small in our experiments. Thus, there are 50 buffer frames
in the buffer pool in the base experiment. One point that should
be noted here is that, from a performance perspective, it is not the
actual size of the buffer pool that is most significant. Instead, two
ratios are more important: the ratio of the combined buffering
requirements of concurrent transactions to the size of the buffer

pool’O, and the ratio of the size of the buffer pool to the size of
the database. For this study, we vary the first of these ratios by
varying the arrival rate of high-priority transactions in all our
experiments. We study the effects of varying the second ratio in
Experiment 2 by changing the database size.

Workload Parameter Settings: The workload for the base
experiment consists of two types of eansactions. Looping tran-
sactions consist of select-joins, with the result of a selection using
a clustered index on a 500-page outer relation being joined to a
smaller inner relation. The selectivity of the outer relation selec-
tion varies uniformly between 0.5% and 1.5%. The inner relation
is chosen uniformly from among the 30 small relations of sizes
between 3 and 5 pages. Page Accesses is the expected number of
page accesses for the transaction, with repeated references being

counted as one access each time.” Scanning transactions are

Parameter 1 Looping 1 Scanning
TramType I Select-tom I scan
JoinMethod
RelSize 1 (outer)
RelSize 2 (inner)
AccessPath 1

Nested Loops -
500-page lOOO-page
3-5 pages
Cl. Idx. Scan Cl. Idx. Scan

AccessPath
Selectivily 1
IruiexPageCPU
DataPageCPU
Page Accesses
Locality Set Sizes

Seq. Scan
1%
4ms
4ms
43
1, 1,3-5

1%
4ms
4 ms
13
1. 1

(index, outer, inner)
Repl. Policies) MRU,MRU.MRU 1 MRU,MRU,-

1 Fixing Requirements 1 3 1 2

Table 4.2: Workload Parameter Settings.

‘here the ferm “buffering requirements” of a transaction refers to
Ihe optimum number of buffers needed by the transaction.

“For example, for a 1% select of a SOO-page outer relation (using
an index with three levels) followed by a nested-loops join with a 4-page
inner relation, 43 pages are accessed: 3 to traverse the index, and then 20
pairs of (outer, inner) pages. In our model of a nested-loops join, we
unfix the outer page when we unfix each inner page in order to have fre-

clustered-index scans on a lOOO-page relation, with the selec-

tivity varying uniformly between 0.5% and 1.5%.” For each rela-
tion accessed by a transaction, the actual relation accessed is
chosen uniformly from among the 10 relations of that size. The
locality set sizes and replacement policies for Priority-DBMIN
are also listed in Table 4.2, as are the fixing requirements for the
two types of transactions. Note that the pages of the inner rela-
tions in looping transactions will be “favored” in the Priority-
Hints algorithm. The parameters for the base experiment were
chosen to provide a moderate background load. (In the absence
of any high-priority transactions, and with a low-priority arrival
rate of 5 transactions/second, the disk utilization was in the range
of 40%-50% for the different algorithms and the CPU utilization
was below 20%.)

4.3. Buffer Management Without Priority
We precede the description of the base experiment by the

analysis of an experiment in which priority does not affect buffer
management decisions. This will help us to separate the effects
of buffer management algorithms per se on system performance
from the impact of using priority in subsequent experiments. The
workload in this experiment is the same as that described in
Tables 4.1 and 4.2 (except that foreground and background tran-
sactions have the same priority). In Figure 4.1, we show the
RTRatios of the foreground transactions when Priority-LRU,

Priority-DBMIN, and Priority-Hints are use$.13 In order to under-
stand the behavior of Priority-Hints relative to Priority-LRU, we
also present the results for an algorithm we call “Global-Hints.”
Global-Hints differs from Priority-Hints in that when a buffer
miss occurs and there are no free pages, the buffer manager
searches the buffer pool for the globally most-recently-unfixed
page and chooses it as the replacement victim. In contrast, under
the same conditions in Priority-Hints, the buffer manager
attempts to find unfixed pages of lower priority to choose as
replacement victims, as explained in Section 2. Finding no pages
of lower priority (since all transactions have the same priority in
this experiment), Priority-Hints chooses the most-recently-
unfixed page of the requesting transaction as the replacement
victim. Thus, Priority-Hints’ replacement policy is local, while
Global-Hints’ replacement policy is global.

In Figure 4.1, we see that Priority-DBMIN provides the best
performance. The performance of Priority-Hints is close to that
of Priority-DBMIN over a wide range of arrival rates, although
with Priority-Hints, the system saturates at a lower arrival rate

quent suspension-safe points (see Section 2.1). This is why there are 20
(outer,inner) page pairs, witi each of five outer pages looping over the set
of four inner pages.

“In our study of the impact of updates on priority-based buffer
management, non-key attributes of Ihe tuples selected by rhe clustered in-
dex scans are updated. In all other experiments, the workload consists of
read-only transactions, since we are interested here primarily in buffering
issues rather than concurrency control.

“The RTRatios of the background transactions are (as one would
expect) almost exactly the same as rhe RTRatios of the foreground tran-
sactions, and are thus not presented here.

715

than with Priority-DBMIN. Finally, Global-Hints provides better
performance than Priority-LRU, but is significantly worse than
Priority-Hints.

Priority-DBMIN provides better performance than Priority-
Hints because the admission control policy of Priority-DBMIN
uses its knowledge of the optimum number of buffers required
for each transaction, while Priority-Hints’ admission control pol-
icy cannot distinguish between the buffer requirements of looping
transactions and those of scanning transactions. Consequently,
Priority-Hints allows looping transactions to enter the system
even when their loops cannot be guaranteed to fit in the buffer
pool. This results in a higher buffer miss ratio for Priority-Hints
than for Priority-DBMIN, and causes the system to become
unstable at a lower arrival rate.

When we move to the Global-Hints algorithm from Priority-
Hints, the local search for MRU replacement victims is replaced
by a global search. This change results in a significant perfor-
mance degradation for the following reason: In Priority-Hints, for
looping transactions, once a transaction is able to obtain enough
buffers to keep its loop (the inner relation in the nested-loops
join) in memory, it proceeds quickly since it never has to give up
any buffers. (Recall that no transaction can steal buffers from
any other transaction in Priority-Hints for this workload.) In con-
trast, Global-Hints steals buffers indiscriminately from all tran-
sactions, often depriving looping transactions that have their
entire working set in memory of some of their favored buffers.
This causes a significant increase in disk activity for Global-Hints
as compared to Priority-Hints. As a result, the system becomes
unstable for Global-Hints at a foreground arrival rate of approxi-
mately 5 transactions/second, while Priority-Hints keeps the sys-
tem stable until an arrival rate of about 7.5 transactions/second.

Finally, the difference between the curves for Global-Hints
and PriorityLRU is caused by two features of Global-Hints.
Firstly, MRU is a better search strategy for buffer replacement
than LRU when the workload contains looping transactions.
Secondly, Global-Hints frees normal pages as soon as it unfixes
them; Priority-LRU does not. Thii results in favored pages being
chosen as replacement victims more frequently in Priority-LRU
than in Global-Hints.

This experiment shows that even in the absence of priority,
Priority-Hints’ local MRU replacement strategy for favored
pages provides significantly better performance than Priority-
LRU for our base workload, and matches the performance of
Priority-DBMIN over a wide range of arrival rates. It also iso-
lates the relative impact of the following buffer management
features: admission control, which causes the difference between
Priority-DBMIN and Priority-Hints; local vs. global search for
replacement victims, which causes the difference between
Priority-Hints and Global-Hints; and the use of MRU vs. LRU
search strategies in a looping workload, which is the major factor
causing the gap between the curves for Global-MRU and
Priority-LRU. We can now begin our investigate the perfor-
mance of the system when the workload consists of transactions
of different priority levels.

4.4. Experiment 1: The Base Experiment

In this experiment, we study the impact of using priority in
buffer management for our base workload. Figure 4.2 shows the
RTRatios for high-priority transactions for five buffer manage-
ment algorithms: Priority-DBMIN. Priority-Hints, Priority-LRU.
Global-Hints, and Global-LRU. RTRatios for low-priority trar-
sactions are shown in Figure 4.3. We explain the results of the
base experiment in detail in order to provide insights into the
important issues involved; this will allow us to present the
results of subsequent experiments more briefly.

Comparing the curves for each algorithm in Figure 4.1 with
the corresponding curves in Figure 4.2, we see that we have
achieved the primary goal of priority scheduling, which is to pro-
vide a higher level of performance for high-priority transactions.
For example, the system remains stable for a foreground arrival
rate of up to 12 transactions/second in Figure 4.2 for Priority-
Hints, while the system saturates at a foreground arrival rate of
about 6 transactions/second in Figure 4.1 for the same algorithm.
Of course, there is a corresponding price which is paid by low-
priority transactions, as is made clear by comparing Figures 4.1
and 4.3. A secondary goal of priority scheduling is to minimize
the penalty imposed on low-priority transactions; distinctions
between the different algorithms in this respect will become clear
as we describe subsequent experiments.

From Figure 4.2, we see that the behavior of Priority-Hints for
high-priority transactions is very close to that of Priority-
DBMIN, and both are superior to the other three algorithms. An
interesting feature of the behavior of these two algorithms is the
tradeoff between the time spent by transactions waiting outside
the system in Priority-DBMIN and the time spent inside the sys-
tem competing for resources in Priority-Hints. Priority-
DBMlN’s conservative admission policy causes the transactions’
mean time spent waiting outside the system to increase more as
the load on the system is increased than does Priority-Hints’
liberal admission policy. However, since there are more transac-
tions within the system in Priority-Hints than in Priority-DBMIN,
the buffer miss ratios and the mean waiting times at the disks are

higher for Priority-Hints than for Priority-DBMIN.i4 This trade-
off will be referred to again in the following sections, where we
will refer to it as the “conservative-liberal (C-L)” tradeoff. In
Figure 4.4, we present the mean number of transactions (both
total and high-priority) that are allowed to run concurrently by
the two algorithms. Figure 4.5 shows the mean normalized Disk-
Time and the mean normalized OutWaitTime for high-priority
transactions for the two algorithms. DiskTime is the time spent
by a transaction at the disks, including the actual l/O service time
and time spent waiting for disk service; OutWaitTime is the time
spent by a transaction waiting outside the system. DiskTime and
OutWaitTime for a transaction are normalized by dividing each
of them by the expected response time of the transaction in an
unloaded system.

“Contention for the CPU is not a significant factor here.

716

Figure 4.4 indicates that Priority-Hints allows up to 18 high-
priority transactions into the system, while Priority-DBMIN lim-
its the number of concurrent high-priority transactions to 12.
Pigure 4.5 shows the consequences of this. The DiskTime curves
reflect the relative disk contention in the two algorithms, and
Priority-DBMIN is the clear winner in limiting disk contention;
both the average buffer miss ratio and the average disk waiting
times per transaction are higher in Priority-Hints than in
Priority-DBMIN. In contrast, Priority-Hints is the winner in lim-
iting OutWaitTime up to an arrival rate of up to 11
transactions/second. As the load is increased beyond this, how-
ever, the disk utilization nears 100% for Priority-Hints, causing
the system to saturate and Priority-Hints’ OutWaitTime to exceed
that of Priority-DBMIN. Priority-DBMIN’s conservative admis-
sion control policy enables it to keep the system stable for arrival
rates of up to 13 transactions/second.

Figure 4.4 also reveals an important point about the range of
operation of greatest interest to us. There is a gap between the
total number of concurrent transactions and the number of high-
priority transactions for most arrival rates shown; this gap
corresponds to the number of low-priority transactions running in
the system. When the curves for the total number of transactions
in the system flatten out, the buffer pool has become fully util-
ized, but Figure 4.4 shows that there are still significant numbers
of low-priority transactions running in the system. It should be
clear that priority-based buffer replacement policies will be most
useful in this range of operation, since buffers owned by low-
priority transactions can be stolen by high-priority transactions.
In Figure 4.4 we also see that as the arrival rate of high-priority
transactions increases, low-priority transactions are gradually dis-
placed by high-priority transactions (due to the use of priority-
based admission control policies) until finally only high-priority
transactions remain active. Thus, both priority-based admission
control and priority-based buffer replacement have an important
role in determining performance over a fairly wide range of
arrival rates.

Figure 4.2 shows us that at low loads, all the algorithms pro-
vide similar levels of performance to high-priority transactions.
As the high-priority load increases, the curves for Global-LRU,
Global-Hints, and Priority-LRU soon branch away from the
curves for Priority-Hints and Priority-DBMIN. Global-LRU per-
forms worst of all: it does not distinguish between transactions
of high and low priorities, and it uses the LRU criterion for
replacement. As for Global-Hints, its ability to distinguish
between favored and normal pages (and its use of MRU) actually
allows it to perform better than Priority-LRU at very low high-
priority loads. As the load is increased, however, Priority-LRU’s
protection of high-priority buffers begins to have a greater
impact, since more of the buffers are now owned by high-priority
transactions. The RTRatio of high-prioricy transactions remains
lower for Priority-LRU than for Global-Hints until the system
becomes unstable for both algorithms at a high-priority arrival
rate of approximately 8 transactions/second.

In Figure 4.3, the curves for Priority-Hints and Priority-
DBMIN are fairly close. This is because the criteria used for
suspending low-priority transactions differ in these two algo-
rithms, making the C-L tradeoff more even for low-priority

transactions than it is for high-priority transactions. (High-
priority transactions cannot be suspended in either algorithm.)
Priority-DBMlN suspends a low-priority transaction immediately
when one of its unfixed buffers is required by a high-priority
transaction. In contrast, Priority-Hints does not suspend low-
priority transactions as frequently as Priority-DBMIN does. It
allows them to continue execution as long as their “fixing
requirements” can be satisfied; of course, this increases the low-
priority load on the disks. As long as there is sufficient disk
capacity to handle this increased low-priority load in Priority-
Hints, the two algorithms provide similar performance for low-
priority transactions.

Figure 4.3 also shows that there is very little difference in the
performance provided by the LRU algorithms (Global-LRU and
Priority-LRU) for low-priority transactions. Priority-LRU steals
buffers from low-priority transactions in preference to depriving
high-priority transactions of their buffers, so one might expect
Priority-LRU to provide worse performance for low-priority tran-
sactions. Recall, however, that the CPUs and the disks use prior-
ity scheduling in these experiments; also, in the range of arrival
rates for which the system is stable for low-priority transactions,
there are relatively few high-priority transactions in the system.
The globally least-recently-used buffer is therefore quite likely to
belong to a low-priority transaction rather than to a high-priority
transaction. This is why the curves for Priority-LRU and
Global-LRU are so close to each other in Figure 4.3.

Low-priority transactions perform better under the Global-
Hints algorithm than under the two LRU algorithms in Figure 4.3
because their buffer miss ratios are lower due to the use of MRU.
The reason that Global-Hints performs worse than Priority-Hints
there, even for low-priority transactions, is again related to the
use of priority at the CPUs and at the disks. As the arrival rate of
high-priority transactions increases, Global-Hints hurts high-
priority transactions more than Priority-Hints does (since
Global-Hints ignores priority in choosing replacement victims).
Consequently, more and more of the system’s disk capacity is
used to satisfy high-priority transactions in Global-Hints. This
makes the disk waiting times of low-priority transactions higher,
causing the system to become unstable for low-priority transac-
tions at a lower load in Global-Hints than in Priority-Hints.

The base experiment confirms the result of [Care891 for our
mixed workload: the use of priority in buffer management is a
clear win (independent of the algorithm) if the response time of
high-priority transactions is the main criterion of system perfor-
mance. However, the conclusions are more mixed for low-
priority transactions: their performance may be worse for some
priority-based buffer management algorithms (e.g., Priority-
LRU) than for algorithms that do not consider priority in replace-
ment decisions (Global-Hints). The base experiment also shows
that for both low-priority and high-priority transactions, the per-
formance provided by Priority-Hints is significantly better than
the performance provided by Priority-LRU, and that Priority-
Hints performs almost as well as Priority-DBMIN for both prior-
ity levels. In subsequent experiments, we limit ourselves to
showing the relative behavior of the three priority-based algo-
rithms.

717

- Rbrlly-DBMIN - Rbrlly-DBMIN

- Rbrlly-HInta - Rbrlly-HInta
CI Rbrlq-LRU CI Rbrlq-LRU

- Gldml-Hlatn - Gldml-Hlatn

- Gbinl-LRU - Gbinl-LRU

Rbrlty-DBMIN

Rbrlly-Hlntr
Prbrlty-LRU

Gbbal-Hlatc

CbbaCLRU

x Prbrlly-HInta
- Gidul-Hlntr

cc PrbrltpLRU

04
0.0 5.0 10.0 15.0

HP AminI Rate bm/scc)

Fx. 4.3: Low Priority.
(Base Experinmtt)

Fig. 4.1: No Rimty. Fig. 4.1: No Rimty. Rg. 4.2: High Rimi~y.

(Base Expcnmmt)

x

- Rbrlty-lihts - Rbrlty-lihts
(ToId) (ToId)

o - o o - o

X

N
”

$
c 16
r

s

c 12

::

:

: : 8

t

T

: 4
n

:,
I

0

t

p !
I

i
m4
c
.

t 3
0
"

\t
t 2

f

t l

0

l(

0

)-

I-

P

t

x Rbrlly-HInta
(DbkTlme)

o--o Prbrl -DBMM
3 (Out drrlar)

x--x Prbrl
w

-Hlnb
(Out aIrlIme)

- Rdty-DBMIN

x Rbrlty-HInta
c, Rbrlly-LRU

0.0 5.0 10.0 15.0
HPAmivalRaetmrrhss)

0.0 5.0 10.0 15.0
IiPkrivdReomrdcC)

0.0 5.0 10.0 15.0
HP Arrival Rate bwm/~)

Fig. 4.6: High Priority.
(Medium Data Sharink,

Fig. 4.5: DiskTime and ChttWaitTimc.
(Base Expcrimatt)

Fig. 4.4: Nmbz~ of Concunmt T-aims.
(B=Eq=i=4

10

0

ia

0

0-0 Prbrlty-DBMM

x PrbrlgHlnlr
- Prlndty-LRU

eo Ptbrlty-DBMIN

- Rbrlly-Hlnb
CI Prbrlly-LRU

Rbrlty-DBMIN

Rbrlly-Hhb
Rbrlq-LRU

5.0 10.0
HPAnivsl Rue @mlls/rcc)

Fig. 4.1: Low hiority.

(Medium Data Sharing)

15.0 510 10.0 15.0 20.0
HP ARival Rae (mnr/los)

Fig. 4.8: High F’riority.

(High Data Sharink)

0.0 5.0 10.0 15.0
HP Aninl Rate kmwhc)

Fi,q. 4.9: High Riotity.
(HPLoad=1OO%scamq)

718

4.5. Experiment 2: Varying Relative Buffer Pool Size

In this experiment, we reduce the size of the database while
keeping all other parameters the same as in the base experiment.
thus. the ratio of the size of the buffer pool to the size of the
database is higher in thii experiment than in the base experiment.
Increasing the relative size of the buffer pool in this manner
results in increased data sharing: i.e., data brought into the buffer
pool at the request of one transaction is more likely to be found in
memory when it is accessed by other transactions. When data
accesses are distributed uniformly over the database, the extent of
data sharing is inversely proportional to the database size if all
other parameters are kept fixed. In the base experiment, the data-
base consisted of 50 relations and a total of 15,120 data pages,
while the buffer pool had 50 buffers (see Table 4.1). This
represents a fairly low level of data sharing (and we did not even
take index pages into account when computing the sum of 15,120
pages!). We consider two levels of data-sharing in this experi-
ment: one where there are 25 relations in the database (five rela-
tions each of 1000 pages, 500 pages, 5 pages, 4 pages, and 3
pages), and one where there are just 5 relations (one of each size).
When there are 25 relations in the database, the level of data
sharing is double the level of data sharing in the base experiment;
when there are just 5 relations, the level of data sharing is ten
times that in the base experiment.

In Figure 4.6, we present the RTRatios of high-priority tran-
sactions for the three algorithms with 25 relations in the database.
Figure 4.7 shows the RTRatios of low-priority transactions for
the same database. As one would expect, the performance of all
three algorithms improves over their performance in the base
experiment. The key difference between the trends shown in Fig-
ures 4.4 and 4.2 is the fact that Priority-Hints now provides better
performance than Priority-DBMIN at high loads. As the level of
data sharing increases, Priority-DBMIN’s conservative admission
control policy proves to be more and more harmful: it simply
underutilizes resources by failing to consider the possibility of
data-sharing. The same conclusion holds true for low-priority
transactions, where Priority-Hints consistently performs as well
as or better than Priority-DBMIN.

Figures 4.8 presents the RTRatios for high-priority transac-
tions in the case where there are just 5 relations in the database.
Priority-Hints and Priority-DBMIN provide the same level of
performance for high-priority transactions until Priority-
DBMlN’s admission control policy causes it to block transactions
unnecessarily outside the system; beyond this point, Priority-
Hints is better. As for Priority-LRU, one might initially expect
that all three inner relations of the nested-loops joins (a total of
12 pages) would always remain in memory. and that it should
therefore perform as well as Priority-Hints. However, recall that
there are now 1500 data pages (plus index pages) that are not part
of inner relations. A large fraction of the page requests made to
the buffer manager are for one of these 1500 pages. In Priority-
Hints and Priority-DBMIN, the looping pages will remain in
memory as long as there are some high-priority transactions that
need them. Also, these two algorithms free normal pages as soon
as they are unfixed, so it is quite likely that a free page will be
available even when the load is high. In Priority-LRU, where
transactions can steal buffers from other transactions of the same

priority, and where looping pages are treated just like other
pages, looping pages are frequently chosen as replacement vic-
tii. This is why the curve for Priority-LRU diverges from the
other two in Figure 4.8.

This experiment shows that as the relative size of the buffer
pool increases, the performance of Priority-Hints improves to a
greater extent than that of Priority-DBMIN. This is a conse-
quence of the latter’s conservative admission control policy.
Also, both Priority-Hints and Priority-DBMIN provide better per-
formance than Priority-LRU, even under very high data sharing.

4.6. Experiment 3: Changing the Transaction Mix
In the base experiment, the high-priority workload consisted

of a mix of an equal number of looping and scanning transac-
tions. In this experiment, we vary the proportion of looping tlrar-
sactions in the high-priority workload while keeping all other
parameters as in the base experiment. (The low-priority work-
load still consists of a 50% looping, 50% scanning mix.) Figure
4.9 shows the RTRatios for high-priority transactions when the
high-priority workload consists entirely of scanning transactions.
RTRatios for the low-priority transactions are shown in Figure
4.10. In Figure 4.9, the curves for the three algorithms coincide
almost exactly. Thii is not unexpected, since the high-priority
workload is insensitive to buffer replacement and the admission
control criteria for the three algorithms coincide for scanning

transactions.15 The interesting feature of this experiment is the
relative performance of low-priority transactions, as shown in
Figure 4.10: here, Priority-Hints perfoi-ms far berrer than
Priority-LRU. The reason for this is that, unlike Priority-Hints.
Priority-LRU does not free scanning pages as soon as they are
unfixed. High-priority transactions thus keep stealing looping
pages from low-priority transactions in Priority-LRU. while the
more appropriate action is to choose high-priority scanning pages
as replacement victims.

Figures 4.11 and 4.12 show the RTRatios for high-priority
transactions and low-priority transactions, respecrively, when the
high-priority workload consists entirely of looping transactions.
There is now a relatively larger difference between the perfor-
mance of high-priority transactions for Priority-Hints and
Priority-DBMlN than in the base experiment. The C-L tradeoff
for high-priority transactions favors Priority-DBMIN in this
experimenk since a larger proportion of the high-priority work-
load now benefits from conservative admission control. How-
ever, note that the tradeoff is still quite even for transactions of

low priority. This is because Priority-DBMIN now prevents
more scanning low-priority transactions from entering the system
than Priority-Hints does, and it also suspends them more often.

“The number of buffers required to meet the fixing requirements of
a scanning transaction is equal to the sum of the sizes of its locality sets;
see Table 4.2.

719

w Prlorlty-DBMIN
- Prlorlty-Hlnta
- Rlorlty-LRU

OI
0.0 5.0 10.0

HP Alfivd RUE omm/acc~
Fig. 4.10: Low F’ricxity.

(HP Load = 100% scanning)

15.0

/ o--o Rbrlty-DBMIN
- Rlorlty.Hlnts
- Rlorlty.LRU

5:o 10.0
HP Anivd Rae (trum/Dcs)

Fig, 4.11: HighPriority.
(HP Load = 100% lcqmg)

15.0

w Rlorlty-DBMIN
- Rlorlty-Inntr
- Rlorlty-LRU

5.0 10.0
HP Amvd Rue krmv’rcc)

Fig. 4.12: Low Riozity.
&IF’ Load = 100% loopmg)

15.0

From Experiment 3. we learn that Priority-Hints tends to per-
form as well as or better than Priority-LRU, independent of the
proportion of looping and scanning transactions. In particular,
when the low-priority load is insensitive to buffer management,
Priority-Hints provides much better performance than Priority-
LRU for low-priority transactions. As the proportion of looping
transactions in the high-priority workload increases, Priority
DBMIN’s admission control policy makes it perform better than
Priority-Hints for high-priority transactions, but the two algo-
rithms provide very similar support for low-priority transactions.

4.7. Other Experiments
We conducted a number of experiments in addition to the

ones described above, in which we explored other issues related
to priority-based buffer management [Jauh90]. Space considera-
tions force us to summarize these results here.

l Random Reaccess Transactions: We examined the perfor-
mance of Priority-Hints when the workload consisted of classic
hash-join queries [Shap90]. This workload, where a transaction
reaccesses a number of its pages randomly, was chosen because
its pattern of data accesses is similar to that of other types of
hash-based joins and of non-clustered index selections. In our
model of the classic hash-join, the inner relation is read into the
buffer pool and a hash-table is built on its tuple identifiers in the
private workspace of the transaction. Then, for each selected
tuple of the outer relation, this hash table is probed for matching
tuples in the inner relation. Note that this variant of the classic
hash join allows pages of the inner relation to be replaced in the
buffer pool, though such replacements should clearly be avoided
as much as possible for performance reasons. In our experiment,
each transaction consisted of a select-join, with the result of a
0.2% clustered index selection on a IOOO-page relation being
joined with a 5-page inner relation. Inner relation pages were
“favored” in the Priority-Hints algorithm. Our experiment
showed that even when the use of MRU is irrelevant, the
classification of pages into “favored” and “normal” sets by
Priority-Hints enables it to provide significantly better perfor-
mance than Priority-LRU. Priority-DBMIN provides better per-
formance than Priority-Hints for high-priority transactions, since
it keeps the entire inner relation fixed in memory for the duration
of the join. For low-priority transactions, the performance of
Priority-Hints and Priority-DBMIN is very similar, for reasons
closely related to those discussed in explaining Figure 4.12.

l Low-Priority Updates: Clearly, updates result in an increased
load on the disks, as dirty pages have to be written back to disk
before they can be replaced in the buffer pool. As discussed in
Section 1, the key issue from a priority standpoint is the effect (if
any) of low-priority updates on the performance of high-priority
transactions. We examined this issue by changing the low-
priority workload to include scanning update transactions; a
clustered-index scan was used to select tuples, and non-indexed
attributes of the selected tuples were updated. The high-priority
workload consisted of looping, read-only transactions. We
ensured that the write sets of concurrent transactions did not
intersect in this experiment, so concurrency control was not an

720

issue. Our experiments showed that when Priority-LRU was
used, the RTRatios of the high-priority transactions increased
significantly as the update probability increased, while Priority-
Hints and Priority-DBMIN managed to keep their high-priority
transactions almost immune to the presence of low-priority
updates at the same load. Note that in this experiment, the
updated pages were normal. Recall also that all three algorithms
ignore dirty pages in their search for replacement victims.
Priority-Hints and Priority-DBMIN place dirty normal pages in
the dirty list as soon as they are unfixed, just as they place clean
normal pages in the free list at unfix time. In contrast, Priority-
LRU does not free any pages until transaction commit time
unless all possible replacement victims are dirty, in which case a
dirty page is synchronously written out to disk to prevent
deadlock as explained in Section 2.5. Thii causes dirty normal
pages to accumulate in the buffer pool in Priority-LRU.

l Changing System CPU and I/O Capacity: We varied the
number of CPUs and disks while keeping the buffer pool size
fixed in order to understand the impact of different resource capa-
cities on the relative performance provided by the three buffer
management algorithms. We found that the performance diifer-
ences between Priority-DBMIN and Priority-Hints occur as a
consequence of higher disk activity when the latter policy is used;
if the workload is CPU-bound, these two algorithms will provide
similar performance. The results also confirmed that Priority-
Hints’ performance is close to that of Priority-DBMIN, and supe-
rior to that of Priority-LRU, independent of the CPU, I/O and
main memory capacities of the system.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that buffer management can
have a very significant impact on the performance of a priority-
oriented database system, especially when the unpredictability of
the workload forces the system to operate in regions where the
total buffer requirements of the concurrent transactions exceed
the system’s buffer capacity. We have introduced a new buffer
management algorithm, called Priority-Hints, that uses page-level
information provided by the database access methods to make
priority-based buffer management decisions. The performance of
our new algorithm has been compared to the performance of
Priority-LRU and Priority-DBMIN. two algorithms proposed ear-
lier for priority-based buffer management. A number of perfor-
mance insights have been obtained as a result of simulation
experiments. Priority-Hints was shown to perform better than
Priority-LRU for all of the workloads considered here. For most
workloads, Priority-Hints performed almost as well as Priority-
DBMIN; for some workloads with data sharing, Priority-Hints
actually provided better performance than Priority-DBMIN.
Even when the workload consisted of transactions of equal prior-
ity, Priority-Hints performed significantly better than Priority-
LRU and almost as well as Priority-DBMIN.

These results are significant for several reasons: First, in pre-
vious studies [Chou85, Care891 it has been shown that DBMIN-
Iike approaches to buffer management provide better perfor-
mance than approaches based on simple strategies such as LRU.
Still, most existing database systems continue to use LRU-based

approaches because they do not require as much information as
DBMIN does. Second, the type of information used by the buffer
manager in Priority-Hints is already being provided to buffer
managers in existing database systems [Teng84, Haas90]. Our
algorithm has the advantages of both DBMIN-based approaches
and LRU-based approaches; it provides good performance while
requiring little information. Finally, we have also shown that
Priority-Hints adapts itself dynamically as data sharing increases,
while Priority-DBMIN’s more static approach to buffer alloca-
tion can cause its performance to suffer in the presence of data
sharing.

We plan to continue our work in the area of priority-based
DBMS scheduling. For example, we will extend our algorithms
to workloads consisting of multi-query transactions. We also
intend to study the problem of concurrency control conflicts in a
priority-oriented DBMS. Finally, we plan to extend our perfor-
mance study to the real-time context, where the workloads con-
tain transactions with deadlines and importance levels.

REFERENCES
[AbboW] Abbott, R., and Garcia-Molina, H., “Scheduling Real-
Time Transactions: A Performance Evaluation,” Proc. 14th

VLDB Co@., Los Angeles, CA, Aug. 1988.
[Abbo89] Abbott, R.. and Garcia-Molina, H., “Scheduling Real-
Time Transactions with Disk Resident Data,” Proc. 15th VLDB

Conf., Amsterdam, Aug. 1989.
[Bitt881 Bitton. D.. and Gray, J., “Disk Shadowing,” Proc. 14th

VLDB Co@, Los Angeles, CA, Aug. 1988.
[Care891 Carey, M. J., Jauhari, R., and Livny, M.. “Priority in
DBMS Resource Scheduling,” Proc. 15th VLDB Conf.., Amster-
dam, Aug. 1989.
[Cbou85] Chou, H-T., and DeWitC D., “An Evaluation of Buffer
Management Strategies for Relational Database Systems,” Proc.
11th VLDB Conf., Stockholm, Sweden, Aug. 1985.
[Effe&l] Effelsberg. W., and Haerder, T.. “Principles of Database
Buffer Management+” ACM TODS 9(4), Dec. 1984.
[Haas90] Haas, L.. et al, “Starburst Mid-Flight: As the Dust
Clears,” IEEE Trans. on Knowledge arid Data Eng., March 1990.
[HarbOl Haritsa, I., Carey, M. J., and Livny, M., “On Being
Optimistic About Real-Time Constraints,” ACM PODS Conf.,
Nashville, TN, April 1990.
[Jauh90] Jauhari. R., Carey, M. J., and Livny, M., Priority-
Hints: An Algorithm for Priority-Based Buffer Management,

Tech. Rep. # 911; Comp. Sci. Dept., Univ. of Wisconsin-
Madison, Feb. 1990.
[Livn89] Livny, M., D&et User’s Guide, Version 1.5, Computer
Sciences Dept., Univ. of Wisconsin, Madison, 1989.
[SIGM88] SIGMOD Record 17(l), Special Issue on Real-Time
Data Base Systems, S. Son, ed., March 1988.
[Sac&] Sacco, G.M., and Schkolnick, M., “Buffer Management
in Relational Database Systems,” ACM TODS, 1 l(4), Dec. 1986.
[Shap86] Shapiro, L.D., “Join Processing in Database Systems
With Large Main Memories,” ACM TODS, 11(3), Sept. 1986.
[Teng84] Teng, J., and Gumaer, R. A., “Managing IBM Database
2 buffers to maximize performance,” IBM Sys. J. 23(2), 1984.

721

