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Abstract 

A probabilistic learning model for vague queries and 
missing or imprecise information in databases is de- 
scribed. Instead of retrieving only a set of answers, 
our approach yields a ranking of objects from the 
database in response to a query. By using rele- 
vance judgements from the user about the objects 
retrieved, the ranking for the actual query as well 
as the overall retrieval quality of the system can be 
further improved. For specifying different kinds of 
conditions in vague queries, the notion of vague pred- 
icates is introduced. Based on the underlying prob- 
abilistic model, also imprecise or missing attribute 
values can be treated easily. In addition, the cor- 
responding formulas can be applied in combination 
with standard predicates (from two-valued logic), 
thus extending standard database systems for cop- 
ing with missing or imprecise data. 

1 Introduction 

In most of today’s data base management systems 
(DBMSS), the query language is based on two-valued 
logic (e.g. relational algebra). This concept implies 
that for every object stored in a data base, a binary 
decision can be made by the system whether the ob- 
ject is an answer to the current request or not. Based 
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on this feature, efficient query processing strategies 
are possible. 

On the other hand, handling of user requests that 
cannot be expressed in two-valued logic is difficult 
with current DBMSs: 

- In engineering applications, when a new part 
has to be developed, it is often more effective to 
start with a similar part already constructed, in- 
stead of developing the new part from scratch. 
If the parts are stored in a database, it should 
be possible to search for parts similar to a 
given specification. The system described in 
[Schneider et, al. 891 for this purpose is based on 
a relational database for the retrieval of a set 
of candidate objects. Then for each object in 
this set its similarity to the specification is com- 
puted. 

- In materials data systems 
[We&brook & Rumble 831, a large number of 
requests either seek for materials similar to a 
known material or for materials that are opti- 
mum with respect to a number of criteria. As 
there is also a large number of missing values 
for the materials attributes, systems based on 
Boolean query logic rarely can provide satisfac- 
tory answers [Ammersbach et al. 881. 

- Business decision making very often means to 
find an optimum solution with respect to a num- 
ber of criteria. If the decision relates to items 
stored in a database, then there should be a 
method that retrieves items- close to the opti- 
mum (see the example below). 

In all these applications, the query languages of 
current DBMSs offer little support. Mostly, users 
are forced to submit a series of queries in order to 
retrieve some objects that are possible solutions to 
their problem. Moreover, they often cannot be sure 
if they tried the query that retrieves the optimum 
solution. 

In the field of information retrieval, similar prob- 
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MODEL CPU MEMORY CLOCK-RATE DISK-SIZE ACCESS-TIME PRICE 
A 80386 4 20 40 40 1500 
B 80386 4 25 80 28 2000 
C 80386 4 25 75 26 2000 
D 80386 4 25 80 24 3000 
E 80386 4 25 85 28 2500 

Table 1: Example database about PCs 

lems have been investigated for a long time.’ For 
this kind of queries, ranking methods have been de- 
veloped which yield a ranked list instead of a fixed 
set of documents as an answer to a query. It has 
been shown in experiments that ranking methods 
yield significantly better results than search methods 
based on Boolean logic [Salton et al. 831 [Fuhr 861. 

Text retrieval systems with ranking first seek for 
documents that contain terms from the query. A 
relevance status value (RSV) is computed for each 
document, and then documents are ranked accord- 
ing to descending RSVs. For this task, two major 
theoretical models have been developed: 

- In the vector space model [Salton 711 
[Wong et al. 871, documents and queries are 
represented as vectors in a vector space spanned 
by the terms of the database. For a query- 
document pair, the RSV is computed by means 
of a similarity coefficient (e.g. dot product or 
cosine) of the corresponding vectors. 

- In the probabilistic approach [Rijsbergen 791 
[Fuhr 881, retrieval is regarded as a stochastic 
process. So documents are ranked according to 
their probability of being relevant to the cur- 
rent request. It can be shown that this kind of 
ranking is optimum [Robertson 771. The prob- 
ability of relevance of a document is computed 
from probabilistic weights of the terms, which 
in turn are derived from relevance information 
about (other) query-document pairs. 

In this paper we describe how the probabilistic 
approach can be applied for retrieval of facts from 
databases. For a vague query, a system based on our 
approach first will yield an initial ranking of possible 
answers. Then the user is asked to give relevance 
judgements for some of the answers, that is, he must 
decide whether an answer is an acceptable solution 
to his problem. From this relevance feedback data, 
the system can derive an improved ranking of the 
answers for the current request. In addition to this 
kind of short-term learning, a major new concept of 

‘A general discussion of the similarities and differences be- 
tween information retrieval and database management sys- 
tems is presented in [Eastman 891, where the issues of evalu- 
ation, matching, interaction and clustering are considered. 

our approach is the collection of feedback data for 
a long-term learning process: Based on feedback in- 
formation, an improved weighting of attribute values 
with respect to query conditions can be derived. This 
way, better retrieval results for future queries can be 
achieved. 

In order to illustrate the concepts of our approach, 
we will use an example of a database about personal 
computers throughout this paper. The database con- 
tains information about PCs and consists of a sin- 
gle relation with the attributes processor type, CPU 
clock rate, memory size, disk size, disk access time 
and price (see table 1). Now a user may seek for a 
PC with an 80386 processor with a clock rate of at 
least 25 MHz, 4 MB of main memory and an 80 MB 
hard disk with an access time of less than 25 ms. 
Of course, he is interested in a cheap offer. This ex- 
ample illustrates the close relationship of this kind 
of problem to the field of information retrieval: It 
is obvious that the goal of the user, namely to se- 
lect a single model for purchase, cannot be fully ex- 
pressed in a query. His final decision will depend 
on a number of additional factors, which cannot be 
represented completely in the database. This means 
that the representation is uncertain and incomplete 
with respect to the application - the same situation 
as in text retrieval. 

Now look at the sample data set in table 1. Here 
only model D fulfills all the criteria specified in the 
query. On the other hand, there are three more 
models (B, C, E) which do not fully meet the re- 
quirements, but which are significantly cheaper than 
model D. For this reason, the user should be informed 
about these models, too. It is obvious that interpret- 
ing all the criteria specified by the user as predicates 
in a two-valued logic would yield inappropriate re- 
sults. Instead, at least some of the criteria should be 
regarded as vague predicates which can be fulfilled 
to a certain degree by attribute values.2 This degree 
of fulfillment will be called indexing weights in the 
following. 

A second kind of weighting (called query condition 

2 An approach based on ranking instead of Boolean logic, 
but using predicates from two-valuedlogic would e.g. not allow 
to distinguish between the access times of model B and C. 
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weighting below) refers to the different criteria spec- 
ified by the user, which may not be of equal impor- 
tance for him. For example, disk size may be more 
important than access time, so the answers should 
be ranked accordingly. We will describe two proba- 
bilistic retrieval models for this purpose which allow 
either an explicit weighting as specified by the user 
or an implicit one derived from his relevance judge- 
ments. 

In addition to these two kinds of probabilistic 
weighting, our approach has the following features: 

- Different vague predicates can be considered, 
like e.g. “about”, “at most”, “high”, “low”, 
” some” . 

- The approach can be applied to arbitrary data 
types, ranging from numbers or strings to com- 
plex objects like e.g. the shape of a geometric 
object. 

- With the probabilistic foundation of our ap- 
proach, imprecise data (e.g. disjunctive informa- 
tion) or missing data (i.e. null values) also can 
be handled easily, even for predicates from two- 
valued logic. 

The paper is structured in the following manner. 
First, we present the foundations of our approach 
(section 2) and describe the extension to imprecise 
data (section 3). Two different retrieval functions 
for the computation of the RSVs are presented in 
section 4. Finally, our approach is compared with 
similar work (section 5). 

2 Foundations of the proba- 
bilist ic model 

We propose our approach as an extension of database 
systems based on two-valued logic. A user query in 
such a system can be extended by a part in which 
one or more vague criteria can be specified. 

Definition 1 An extended query is a combinataon 
of a Boolean query and a vague query. The answer 
for the Boolean query is a set of objects from the 
database called preselected objects. The answer to 
the extended query is a ranked list of the preselected 
objects. 

In the following discussion, unless stated oth- 
erwise, we will restrict to the vague part of the 
query. Furthermore, no distinction between the 
whole database and the set of preselected objects will 
be made. 

For our PC example, an extended query in a SQL- 
like notation could be specified as follows: 

SELECT * FROM PC 
WHERE CPU = '80386' 
AND MEMORY = 4 
RANK-BY CLOCK-RATE >= 25, 

DISK-SIZE >= 80, 
ACCESS-TIME < 25, 
PRICE LOW. 

Definition 2 A database is a set of objects 0. Let 
A= {al,...,a,} d enote the set of attributes in the 
database, and Di the domain for attribute ai. Then 
each object o, E 0 is represented by a tuple t, =< 
&(a&. . , &(a,) > with tm(ai) E Di. 

For an extension of the linear data model assumed 
here, see the discussion of probabilistic databases in 
section 5. It should be emphasized that our approach 
makes no assumptions about the domain of an at- 
tribute, so attribute values can be of a complex data 
type. 

Now we give the definitions for the vague queries. 

Definition 3 A vague (or fuzzy) predicate f is ei- 
ther a unary predicate or a binary predicate. For 
each attnbute ai E A in h database, there is a set F) 
of unary attributes defined and a set F,? of binary 
attributes defined. 

Note that a predicate is not a mapping of attribute 
values (or pairs of values) onto numbers, like e.g. in 
fuzzy logic [Zadeh 651. I n our approach, the weight- 
ing of attribute values takes place in a later stage 
of the indexing process. Examples for unary predi- 
cates are “low”, “high”, “medium” and also so-called 
fuzzy quantifiers like “some”, “several”, “many” (e.g. 
a user might ask for a PC with “several” I/O-ports). 
Most binary vague predicates will be vague interpre- 
tations of the standard predicates like e.g. “=“, ” <“, 
” 2” . 

Definition 4 A vaque querv condition c; can have 
one 

I _ 1 
of the two forms 

- 
(ai, ji) with ai E A and ji E Fil 

(ai, fi, di) with ai E A, ji E F,” 
where di is called the comparison 

and di E Di, 
value. 

Definition 5 A ‘vague query formulation q; is a set 
of vague conditions c;. Furthermore, each attrrbute 
ai E .4 may occur in, at most one condition ci E qf. 

For our PC example, the vague query formulation 
is 

698 



qc = {(CLOCK-RATE, 2, 25), 
(DISK-SIZE, 2, 80), 
(ACCESS-TIME, <, 25), 
(PRICE, low)} 

The restriction that an attribute may occur in at 
most one query condition is due to the independence 
assumptions of the underlying probabilistic models 
(see [Fuhr 89a]). W e d o not allow Boolean operators 
in the query formulation, for two reasons: 

- A Boolean structure would lead to rather com- 
plex probabilistic formulas, with parameters 
that could not be estimated in most cases. 

- In the field of text retrieval, there is no ex- 
perimental evidence that the consideration of 
a Boolean query structure yields any improve- 
ment over a pure linear structure [Croft 861 
[Salton & Voorhees 851 [Fuhr & Miiller 871. On 
the other hand, it can be shown that many pro- 
posals for ranking in combination with Boolean 
queries yield significantly worse retrieval results 
than ranking for linear queries [Salton et al. 831 
[Fuhr 861 [Fuhr 881. 

However, we can extend our model to allow for the 
disjunction or conjunction of conditions for the same 
attribute (see next section). 

Definition 6 Le2 R = {R,z} (relevant/nonrele- 
vant) denote the set of possible relevance judgements 
for query-object pairs. Then a vague query qk is a 
pairqk=(q;,qkJ) withq;COxR. 

For databases, the notion of relevance judgements 
may be inconvenient. Furthermore, in many applica- 
tions a user may seek only for a single object as the 
optimum solution to his problem. Considering only 
this object as being relevant would prevent the appli- 
cation of relevance feedback techniques, at least for 
the weighting of query conditions. For this reason, 
it is more appropriate to use a concept like ‘accept- 
ability’ for the user’s judgements: In general, there 
will be several acceptable objects for a query, among 
which the user may finally decide for one (or more) 
as being the optimum solution. So we will assume 
that the users give binary judgements about the ac- 
ceptability of objects. For convenience, however, we 
will keep on using the term ‘relevance’ for this event. 

The event space of our probabilistic model is Q x 0 
where Q denotes the set of all queries submitted to 
the database system. A single element of this event 
space is a query-object pair (Qk, 0,) with a binary3 
relevance judgement E R, a set q; of query condi- 
tions and a tupel t, of object attributes. Now we 

3For the discussion of multivalued relevance scales, see sec- 
tion 5. 

seek for an estimate of the probability P(Rjqk, t,,,) 
that an object with the attribute tuple4 t, will be 
judged relevant with respect to query qI;. The es- 
timation of this probability by means of a retrieval 
function (as a basis for the ranking of the objects) is 
described in section 4. 

The retrieval function needs indexing weights for 
all the conditions in q; for this purpose. For the 
probabilistic definition of these weights, we introduce 
the additional concept of correctness as an attribute 
of an object-condition relationship: An object may 
be a correct answer to a single condition, or may not. 
We will denote these events by the symbols C and 
C, respectively. The decision about the correctness 
of an object-condition pair can be specified explic- 
itly, that is, in addition to the relevance jugdement, 
the user will have to judge an object with respect 
to each condition. However, it is also possible to 
derive these decisions from the relevance judgement 
of a query-object pair: If the pair is relevant, then 
the object is correct with respect to all query condi- 
tions. In the opposite case, the object is not a correct 
answer for any of the query conditions. The latter 
definition forms the basis of the binary independence 
indexing (BII) model [Fuhr 89aj. The retrieval-with- 
probabilistic-indexing (RPI) model described in the 
same paper - which we apply for the task of query 
condition weighting based on relevance’feedback data 
(see section 4) - can be combined with both def- 
initions. The RPI model only assumes a positive 
correlation between the events of relevance and cor- 
rectness. Experiments in the field of automatic text 
indexing have shown that both definitions of the con- 
cept of correctness can be applied successfully and 
lead to similar results [Fuhr 89a]. Further exper- 
iments with the second definition can be found in 
[Fuhr & Buckley 901. 

With the event of correctness defined in either of 
the two ways, we seek for estimates of the probability 
f’(Clci,hn(ai)) th a an object with attribute value t 
tm(ai) is a correct answer to the query condition ci. 
The estimation of this probability is performed by 
the indexing task. 

The indexing task consists of two steps, a de- 
scription step and a decision step. In the first 
step, all information available about the relation- 
ship between the condition ci and the attribute 
value tm(ai) is collected in the so-called relevance 
description z(ci, t,(ai)). Based on this data, the 
decision step yields an estimate of the probability 
P(Clx(ci, tm(ai))) th a an object-condition pair de- t 

4 As the probabilistic model is not able to make a difference 
between two objects having the same tuple of attribute values, 
we use the notation tm instead of om in P(RIqk, t,). 
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scribed by relevance description z will be judged cor- 
rect 

In both steps, the different vague predicates have 
to be treated separately (specific relevance descrip- 
tions and estimation of indexing weights for each 
predicate). To keep the following explanations sim- 
ple, we assume that we always regard only a single 
predicate in the indexing process, and that this pro- 
cess has to be repeated for each predicate. 

Definition 7 A relevance description x(c;, &(a;)) 
is a data structure that describes properties of the re- 
lationship between the condition q and the attribute 
value &(a;). 

Here no specific assumptions about the structure 
and the elements of a relevance description are nec- 
essary. However, some algorithms used in the deci- 
sion step are restricted to certain types of relevance 
descriptions. Furthermore, it is essential that only 
those properties are useful as elements of the rele- 
vance description for which there is a significant cor- 
relation with the event of correctness. 

This concept of relevance description yields an 
abstraction from specific pairs (condition, attribute 
value). For the binary predicates in the PC example, 
one could define 

+(ciJtm(ui)> = 
tm(ui) - 4 

d, 
I 

This way, all pairs with the same relative difference 
between comparison value and attribute value would 
have identical relevance descriptions. For unary 
predicates, the relevance description can be defined 
with respect to the distribution of the attribute val- 
ues in the database, e.g. the percentage of values 
smaller than tm(ai). 

The actual definition of the relevance description 
depends strongly on the application. Its elements 
can be values from interval scales as well as from or- 
dinal or nominal scales (e.g. for string comparison a 
marker indicating whether there is a phonetic match 
between the two strings or not). Especially distances 
based on the different metrics described in [Motro 881 
will provide useful information for relevance descrip- 
tions. It should be noted that a relevance description 
may consist of several components, that is, we can 
cope also with multi-dimensional metrics. This fea- 
ture is important when dealing with complex data 
types. 

In the decision step, estimates of the probabilities 
P(CIX(ci, L(Q)>) are computed. For this purpose, 
we need a learning sample of relevance descriptions 

and corresponding decisions about the correctness 
from previous user queries. 

Now, one could estimate the probability 
P(Cl~(ci,trn(G))) as relative frequency from those 
elements of the learning sample that have the same 
relevance description (components of z with contin- 
uous values would have to be discretized before, see 
e.g. [Wong & Chiu 871). At this point, we introduce 
the concept of an indexing function: 

Definition 8 Let X denote the set of relevance de- 
scriptions and R the set of real numbers. Then a 
probabilistic indexing function is a mapping e : X -+ 
R such that e(x) is an approximation of P(CIx). 
We call W(ci,t,(ai)) = e(x(ci,t,(ai))) the indexing 
weight of the attribute value t,,,(ai) with respect to 
the condition ci. 

As indexing function, different probabilistic classi- 
fication (or learning) algorithms can be applied. The 
general advantage of these probabilistic algorithms 
over simple estimation from relative frequencies is 
that they yield better estimates from a learning sam- 
ple given, because they use additional (plausible) as- 
sumptions about the indexing function. 

Here we list some probabilistic algorithms that 
can be used as indexing functions. All. these algo- 
rithms have been applied successfully to relevance 
descriptions in the field of text retrieval for the task 
of automatic indexing with a controlled vocabulary 
[Biebricher et al. 881. With the exception of the first 
algorithm, these methods are restricted to a vector 
form I of the relevance description. For the first 
three algorithms, all the elements of the relevance 
description must have discrete values. 

- The so-called Boolean approach developed by 
Lustig [Beinke-Geiser et al. 861 exploits prior 
knowledge about the relationship between sin- 
gle elements of the relevance description x and 
the corresponding probability P(C]Z) for the de- 
velopment of a discrete indexing function (e.g. 
in our PC example, it can be assumed that the 
probability for the predicate 1 is a monotonic 
function of the relative difference between di and 
&n(G)>). 

- The probabilistic learning algorithm ID3 devel- 
oped by Quinlan [Q uinlan 861 seeks for signifi- 
cant components of Z that form a probabilistic 
classification tree [FaiI3t 901. 

- By assuming only pair-wise dependencies among 
the components of I, one can apply the tree de 
pendence model described in [Chow & Liu 681 
[Rijsbergen 771 Tyu et al. 831 as indexing func- 
tion [Tietze 891. 

- For the application of regression methods, the 
components of I must be real numbers. Least 
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exp(bo+blr) 
l+exp(bo+blr) 

l+exp(bc,-b&) 

Figure 1: Examples of logistic indexing functions 

square polynomials [Knorz 831 [Fuhr 89b] yield 
indexing functions of the form e(Z) = b’r . i (in 
the linear case), where b’ is a coefficient vector 
that minimizes the expectation of the squared 
error ]P(C]Z) - b’ . Z]“. 

- By means of logistic regression [Freeman 871 
[Fienberg 801, indexing functions of the form 
e(i) = l~~$[b~~l) can be developed, where b(Z) 
is a polynomial, and the coefficients of b(Z) 
are estimated based on the maximum likelihood 
method [Pfeifer 901. 

Logistic functions seem to be suited best to our 
indexing task. As an example, assume that the only 
component of a relevance description is defined as the 
relative difference between di and tm(ai). Now one 
can define an indexing function for the vague predi- 
cate ‘2’ as. er(x) = a. In the case of the 
vague predicate ‘=‘, an appropriate indexing func- 

tion would be ez(x) = i~$$,~~~&. Both func- 
tions are illustrated in figure 1. As can be seen from 
this.figure, a major advantage of logistic functions is 
their asymptotic behaviour. A second advantage (in 
comparison to polynomial functions) is related to the 
problem of parameter estimation: When only small 
learning samples are available, a prior distribution 
on the coefficients of b(Z) can be considered, thus 
yielding a Bayesian estimate. 

As another nice property of logistic indexing func- 
tions, they support the view of vague predicates be- 
ing deformations of predicates from two-valued logic: 
In our example, we get for bl -+ 00 

0 ,ifx<O 
cl(x) = l--E ,ifx=O 

1 ,ifx>O 

with E = l/(1 + ezp(bo)). This result corresponds 
to the strict interpretation (from two-valued logic) 
of the predicate ‘2’. Similarly, we get for bz --+ cc in 
ez(x) the strict interpretation of the equality predi- 
cate, namely es(z) = 0, if z # 0 and ez(0) = 1 - E. 

3 Indexing for missing or im- 
precise data 

Our probabilistic indexing approach can be extended 
to handle also imprecise or missing data as attribute 
values and sets of values as comparison value. We 
first discuss the case of attribute values, then com- 
parison values, and finally we show how these meth- 
ods can be applied for predicates from two-valued 
logic, too. 

Imprecise data for attribute values can be disjunc- 
tive information (e.g. assume that we only know that 
the clock rate of a PC model is either 25 or 33 MHz). 
Another major reason for imprecise attribute val- 
ues is the limited precision of measurement values 
in technical applications. In order to handle impre- 
cise data, a probability distribution function must be 
given as attribute value. 5 For attribules with con- 
tinuous values, imprecise data can be specified e.g. 

‘Probability distributions as attribute values are also 
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as an interval range or as a pair of mean and vari- 
ance (for which a normal distribution is assumed). 
In the following we will only discuss discrete proba- 
bility distributions, since the extension to continous 
probability distributions is obvious. 

Missing data - that is, an attribute value exists, 
but is not known - is often stored as null values in 
databases. Here also an appropriate probability dis- 
tribution has to be assumed, e.g. by taking the dis- 
tribution of the corresponding attribute values from 
similar objects or from the whole database. In most 
applications, an unknown attribute value does not 
mean that nothing at all is known about this value. 
Therefore, the assumption of an appropriate distri- 
bution allows to store the information actually avail- 
able in the database, and to use this information in 
retrieval. For this reason, we regard missing values 
as a variant of imprecise data. 

We can further extend our approach to a sec- 
ond interpretation of null values discussed sometimes 
([Vassiliou 791 [Codd SS]), namely “attribute value 
not existent”. For example, in an address data base, 
a value of the attribute “telephone number” does not 
exist for persons who do not have a telephone. 

Now we show how these values can be handled by 
probabilistic indexing functions. 

Definition 9 An imprecise attribute value tm(ai) 
must be specified as a discrete probability distribution 
over Di, that is 

tm(ai) = {(zj,Pj)lzj E Diand Pj E [O, 11) 

with 

c Pj = Qim, 0 5 Ctim 2 1. 
(zj,Pj)Efvn(a;) 

This definition covers both interpretations of null 
values as well as the usual interpretation of imprecise 
data: If aim = 1, we certainly know that an attribute 
value exists, and with aim = 0, we represent the fact 
that no value exists for this attribute. In the case 
of 0 < oi, < 1, oi, gives the probability that an 
attribute value exists: For example, someone who is 
going to have a telephone soon gave us his number, 
but we are not sure if this number is valid already. 

With imprecise values specified this way, their 
probabilistic indexing weight can be derived easily: 

P(Clci,tm(%)) = c Pj . P(ClX(Ci, zj)). 
(z,,P,)Etm(a*) 

discussed in the field of numerical taxonomy, see e.g. 
[Jardine & Sibson 771. 

As our indexing function yields approximations of 
the probabilistic indexing weights, we can define ap- 
propriate indexing formulas for imprecise values. In 
contrast to the case of precise values, we cannot show 
that these formulas yield optimum approximations 
(with respect to certain criteria). However, it is rea- 
sonable to assume that there is no significant differ- 
ence between the approximation defined below and 
the optimum approximation. 

Definition 10 1f tm(ai) is an imprecise attribute 
value, then the indexing weight w(ci, tm(aj)) is com- 
puted by the formula 

W(Ci,tm(G)) = C Pj e(X(ci, zj)). 

Our approach can be further extended to consider 
the disjunction or conjunction of conditions for the 
same attribute. Both variants are in fact syntactic 
elements for specifying a set of values, so we call this 
imprecise data as comparison value. A major need 
for imprecise comparison values comes from technical 
applications, where very often interval ranges for cer- 
tain attributes are specified in the query [Dathe 841. 

Definition 11 An imprecise comparison value is a 
set di C Di, where Di is the domain of the corre- 
sponding attribute. 

The correct handling of imprecise data as compar- 
ison value depends on the specific predicate, the data 
type of the attribute and the type of the specification 
of the imprecise data (e.g. set of values vs. interval 
range). Two possible strategies can be applied here: 

- In many cases, the indexing function for a sin- 
gle comparison value can be applied by object- 
specific selection of an appropriate value from 
the set or range of comparison values specified 
in the condition. For example, when an inter- 
val range is specified in combination with the 
predicate ‘=‘, then the value from the interval 
closest to the current attribute value is selected. 
As a counterexample, consider the query “List 
all the PC models from the manufacturer whose 
name is similar to ‘Dandy’ or ‘Dundee”‘. For the 
manufacturer ‘Tandy’, both comparison values 
might yield nonzero indexing weights, and there 
is no simple, theoretically founded method for 
combining these weights. 

- At a closer look, it becomes obvious that impre- 
cise data is just another variant of a vague condi- 
tion: For example, there is no systematic differ- 
ence whether we specify a predicate like ‘>’ for 
an attribute with continuous values or a set of 
constants in combination with the equality pred- 
icate for a nominal-scaled attribute. This view 
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leads us to the development of special relevance 
descriptions and indexing functions for impre- 
cise data. With this method, we can also handle 
rather complex specifications of imprecise data 
(not covered by the definition from above). As 
an example, assume that a user wants a PC with 
a green or a black and white monitor, but he 
prefers black and white. However, this strategy 
is only applicable if there is enough learning data 
available, that is, imprecise comparison values 
are used frequently in query formulations. Oth- 
erwise, one can only attempt to define appro- 
priate indexing functions, without adaptation to 
the user population. 

These methods for coping with imprecise data as 
comparison or attribute value also can be applied to 
predicates from two-valued logic. For this case, a 
binary indexing function is defined: 

Definition 12 Let p denote a predicate from two- 
valued logic and di c Di an imprecise comparison 
value. Then the indexing function is defined as 

{ 

1, ifp(Z,L(ai)) for 
e((ai,p,4),L(ai)) = any z E di 

0, otherwise 

For imprecise or missing attribute values, the same 
formulas as for vague predicates can be applied. This 
strategy yields the answers that a procedure.for dis- 
junctive information in two-valued logic would re- 
trieve. For example, for the query condition ci = 
(ai,=, {zi,~}) and the attribute value tm(0i) = 
{(a, a), (% 1 - (Y)}, our procedure assigns an :n- 
dexing weight of 1 to the attribute value. But our 
approach also yields valuable results when the object 
is not an answer in two-valued logic: If the query con- 
dition is only (ai, =, zi), then in general the object 
with attribute value tm(ai) = {(zi,a),(zz, 1 - a)} 
will be ranked ahead of all objects with null values, 
which in turn are ranked ahead of objects with dif- 
ferent attribute values. 

4 Retrieval functions 

The task of the retrieval function ~(pk, 0,) is to com- 
pute relevance status values (RSVs) for query-object 
pairs (ok, 0,). Then the objects can be ranked ac- 
cording to descending RSVs for a query. This way, 
a user will find the objects probably relevant at the 
beginning of the ranked list. 

Definition 13 A retrieval function is a mapping Q : 
QxO-+IR. 

Here we will discuss two different probabilistic 
rerieval functions, one for the initial ranking and an- 
other for an improved ranking based on relevance 
feedback from the user. For both functions we give 
only a brief description, for the details of the un- 
derlying models the reader is referred to the original 
publications. 

In order to compute the RSV, the retrieval func- 
tions use the indexing weights w(ci, tm(ai)) for the 
conditions ci E 4: (the set of conditions specified in 
the query). Now a simple linear retrieval function 
can be defined as 

Qlin(Qk3Om) = C Wk ’ W(Y,tm(Qi)). 

c,cq; 

Here Uik is a factor which reflects the importance 
of the condition ci within the query qk. These factors 
can be specified explicitely by the user (For the com- 
bination with relevance feedback, see the discussion 
below). In [Wong & Yao 891, it is shown that the 
above formula can be given a utility-theoretic inter- 
pretation: If ‘Llik denotes the utility of the condition 
ci with respect to the query qk (and the underlying 
definition of correctness), then @rin(qk ) 0,) gives the 
expected utility of object o, for the.query qk. 

After the initial ranking process, the user is asked 
to give relevance judgements for the top ranking ob- 
jects. This relevance feedback data (which we re- 
gard as a part ql of a vague query qk, see Def- 
inition 6) can be used for a better weighting of 
the query conditions. In the field of text re- 
trieval, evaluations of relevance feedback methods 
have shown significant improvements over the ini- 
tial ranking (see e.g. [Robertson & Sparck Jones 761 
[yu & Salton 761 [Robertson et al. 811). For our ap- 
plication with probabilistic indexing weights, the 
RPI model described in [Fuhr 89a] is most appro- 
priate. This model yields a ranking according to 
descending values of the probability of relevance 
P(R]qk, tm). The corresponding retrieval function 
is 

@RPI(qk, %) = 

Tik(l - Sik) 

%k(l - Tik) 
- 1 

> 
w(c;, L(0i)) + 1 

I 

In this formula, Tik gives the expectation of the 
indexing weight of ci for an arbitrary object that is 
jugded relevant with respect to qk. Similarly, sik 
is the expectation of the indexing weight of ci for 
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an arbitrary object in the set of preselected objects 
for qt. These ,factors can be estimated by means 
of relevance feedback as follows: Let Ok denote the 
set of preselected objects for qk (or a representative 
sample hereof), and 0: is the set of objects judged 
relevant for qk, that is, 0: = {om](om,R) E ql}. 
Then we get 

and 

rik z 6 ’ c W(Ci,tm(%)) 
k O,EO,R 

Sik a j&j ’ c W(Ci,tm(%)) 

%EOk 

In [Croft 811, the linear retrieval function ~1;~ is 
used in combination with relevance feedback weights 
defined as 

uik = log 
Tik( 1 - sit) 

sik(l - rik) 

It can be shown theoretically that this approach 
does not yield a probabilistic ranking [Fuhr 89a]. 
However, as far as experimental comparisons are 
available [Fuhr 89a] [Salton 871, no significant differ- 
ences could be found. 

With this kind of relevance feedback, we make dou- 
ble use of the relevance data: The user enters rele- 
vance judgements in order to get a better ranking 
for his query. In addition, we collect his judgements 
for a long-term improvement of the system by devel- 
oping probabilistic indexing functions based on this 
data. 

5 Comparison with other ap- 
proaches 

There is growing interest in the issue of imprecision 
in database. The collection of articles in [IEEE 891 
gives a survey over past and current work in this 
area. In the following, we will compare some of these 
approaches with the model described in this paper. 

A similar approach for vague queries in data- 
bases is the VAGUE system developed by Motro 
[Motro 881. This approach is based on the vec- 
tor space model in information retrieval [Salton 711 
[Wong et al. 871, but extended with plausible defi- 
nitions for coping with Boolean query formulations. 
In the VAGUE system, a number of different met- 
rics for the comparison of attribute values and values 

specified in the query are available. These metrics 
can be used as elements of relevance descriptions in 
our approach. In addition, we can consider multi- 
dimensional metrics and values from nominal or or- 
dinal scales, and all these values are finally mapped 
onto probabilistic weights. The VAGUE system does 
not use any relevance information: although it could 
be extended according to the vector space model in 
order to improve query-specific ranking. However, 
there is no method for the improvement of the in- 
dexing function (i.e. the metrics) based on relevance 
information in the vector space model. Different 
predicates have not been considered explicitly in the 
VAGUE approach, but the possibility of choosing 
a metrics (for the ‘similar’ predicate) could be ex- 
tended easily for this purpose. With regard to miss- 
ing or imprecise data, the VAGUE system can handle 
null values only by defining appropriate distances. 

The issue of vague queries and imprecise or 
missing data has also been addressed in the 
context of fuzzy databases [Buckles & Petry 821 
[Prade & Testemale 841. This approach offers so- 
lutions to all the problems mentioned in this pa- 
per. Regarding the theoretical foundations, both 
approaches are orthogonal to each other: Whereas 
probability theory deals with the uncertainty about 
the occurrence of events (here: relevance and cor- 
rectness), fuzzy logic focuses on the ambiguity in 
describing events. Thus, while our approach aims 
to estimate the probability of an object being rele- 
vant to a query, fuzzy logic would compute a value 
that resembles the degree of relevance of the object 
w.r.t. the query. In [Bookstein 831, it is shown how 
both approaches can be combined in the context of 
information retrieval by regarding multivalued rele- 
vance scales within a probabilistic model. But the 
experimental results described in [Fuhr 89b] give no 
evidence that multivalued relevance scales yield any 
improvement (in terms of retrieval quality) over bi- 
nary scales. So the question remains: Which of the 
two approaches should be preferred for the kind of 
applications discussed here? We think that the fol- 
lowing two facts support the probabilistic view: 

- For the probabilistic approach, it can be shown 
theoretically that this method yields an opti- 
mum retrieval quality (under certain assump- 
tions), even for multivalued relevance scales 
[Robertson 771 [Bookstein 831. Such a proof 
does not exist for fuzzy theory. This theo- 
retic statement is supported by experimental re- 
sults from text retrieval, where the fuzzy model 
yields significantly worse results in comparison 
to the probabilistic and the vector space model 
[Salton et al. 831 [Fuhr 881. Of course, the as- 
sumptions underlying the probabilistic model 
are only approximations to reality. But as they 
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are made explicit, they can be replaced by more 
appropriate assumptions, and refined models 
can be developed. 

- The weights in the probabilistic approach all 
have the explicit notion of probabilities. This 
feature is the basis of our indexing and retrieval 
approach, where the weights are derived from 
relevance feedback information. Evaluations in 
the field of text retrieval have shown significant 
improvements of retrieval quality for relevance 
feedback methods. In contrast, this kind of 
adaptation to a single query as well as to a user 
population is not possible in the fuzzy approach. 
Similarly, the probabilistic interpretation of im- 
precise attribute values forms a guideline for the 
mapping of empirical data onto these values. 

A simple ranking scheme for relational databases 
has been proposed in [Lacroix & Lavency 871. This 
approach is based on predicates from two-valued 
logic. For the weighting of query conditions, prefer- 
ences between the different conditions can be speci- 
fied by the user: Two conditions can either have the 
same weight, or one is preferred over the other. As 
this kind of weighting can easily be considered by 
the linear retrieval function described in the previ- 
ous section, the approach from Lacroix and Lavency 
can be regarded as a special case of our model. 

For imprecise or missing data in combination with 
predicates from two-valued logic, an approachsimilar 
to ours is described in [Morrissey & Rijsbergen 871. 
This model yields the same indexing weights as in our 
approach, although no explicit probabilistic model is 
described. 

The problem of imprecise attribute ,values in the 
form of null values or disjunctive information has 
been discussed extensively in the database litera- 
ture (see e.g. [Lipski 791 [Vsssiliou 791 [Reiter 841 
[Imielinski & Lipski 841); [Imielinski 891 gives a brief 
survey over this work. As all these approaches are 
based on two-valued logic, the correct treatment 
of imprecise values is obvious (e.g. in the proof- 
theoretic approach [Reiter 841, it follows from the 
axioms of first-order logic). However, as shown 
in [Imielinski 861, the introduction of imprecise at- 
tribute values can have drastic consequences on the 
complexity of query processing. In [Codd 861, a 
three-valued logic is used instead, in order to retrieve 
‘maybe’ answers in addition to the correct answers 
of a query. This approach can be regarded as a very 
simple ranking mechanism. 

is similar to our approach. Besides (stochsstically) 
independent attributes as assumed here, Barbara 
et al. also regard interdependent attributes, which 
are not considered in the current formulation of our 
approach. In order to cope with the probabilistic 
weights, the relational operations projection, join 
and selection are redefined in the PDM, but vague 
queries are not regarded. With these features, a 
combination of both approaches seems to be feasible: 
The operations redefined for probabilistic databases 
can be used for handling imprecise data in relational 
databases and for deriving the answer relation. Then 
our probabilistic model, which can be regarded as an 
extension of the selection operation, is applied for the 
ranking of the tuples in the answer set. 

6 Conclusions 

In this paper, we have described a probabilistic ap- 
proach for handling vague queries and imprecise in- 
formation in databases. The old database paradigm 
of using two-valued logic is appropriate for the clas 
sical application areas of databases, and for the re- 
trieval interface to batch programs. For interactive 
user interfaces of database systems, new retrieval 
strategies must be implemented. In parallel, new 
evaluation criteria for database systems should be 
considered: Instead of measuring only the efficiency 
of a system in retrieving answers to well-formed 
queries, now the effectiveness of the system with re- 
gard to supporting the user in solving his problems 
should be regarded. From this point of view, a fast 
system that retrieves only sets of answers for Boolean 
queries may be of little value, because it forces the 
user to submit a whole series of queries in order to 
solve his problem. 

As new application areas for database systems 
arise, the concepts of vagueness and imprecise in- 
formation become even more important. Technical 
values are almost always of limited precision, and 
approaches based on two-valued logic are not appro- 
priate for solving the corresponding problems. When 
new technical solutions are to be developed, the con- 
cepts of vagueness and similarity play a central role 
in this search process. Database systems can offer 
an effective support for these new applications only 
when they provide the appropriate concepts. 
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