
A Probabilistic Framework for Vague Queries and Imprecise

Information in Databases

Norbert Fuhr
Technische Hochschule Darmstadt, Fachbereich Informatik

Karolinenplatz 5, D-6100 Darmstadt, West Germany

Abstract

A probabilistic learning model for vague queries and
missing or imprecise information in databases is de-
scribed. Instead of retrieving only a set of answers,
our approach yields a ranking of objects from the
database in response to a query. By using rele-
vance judgements from the user about the objects
retrieved, the ranking for the actual query as well
as the overall retrieval quality of the system can be
further improved. For specifying different kinds of
conditions in vague queries, the notion of vague pred-
icates is introduced. Based on the underlying prob-
abilistic model, also imprecise or missing attribute
values can be treated easily. In addition, the cor-
responding formulas can be applied in combination
with standard predicates (from two-valued logic),
thus extending standard database systems for cop-
ing with missing or imprecise data.

1 Introduction

In most of today’s data base management systems
(DBMSS), the query language is based on two-valued
logic (e.g. relational algebra). This concept implies
that for every object stored in a data base, a binary
decision can be made by the system whether the ob-
ject is an answer to the current request or not. Based

Proceedings of the 16th VLDB C‘ontcrencc
Brisbane. Australia IYYO

on this feature, efficient query processing strategies
are possible.

On the other hand, handling of user requests that
cannot be expressed in two-valued logic is difficult
with current DBMSs:

- In engineering applications, when a new part
has to be developed, it is often more effective to
start with a similar part already constructed, in-
stead of developing the new part from scratch.
If the parts are stored in a database, it should
be possible to search for parts similar to a
given specification. The system described in
[Schneider et, al. 891 for this purpose is based on
a relational database for the retrieval of a set
of candidate objects. Then for each object in
this set its similarity to the specification is com-
puted.

- In materials data systems
[We&brook & Rumble 831, a large number of
requests either seek for materials similar to a
known material or for materials that are opti-
mum with respect to a number of criteria. As
there is also a large number of missing values
for the materials attributes, systems based on
Boolean query logic rarely can provide satisfac-
tory answers [Ammersbach et al. 881.

- Business decision making very often means to
find an optimum solution with respect to a num-
ber of criteria. If the decision relates to items
stored in a database, then there should be a
method that retrieves items- close to the opti-
mum (see the example below).

In all these applications, the query languages of
current DBMSs offer little support. Mostly, users
are forced to submit a series of queries in order to
retrieve some objects that are possible solutions to
their problem. Moreover, they often cannot be sure
if they tried the query that retrieves the optimum
solution.

In the field of information retrieval, similar prob-

696

MODEL CPU MEMORY CLOCK-RATE DISK-SIZE ACCESS-TIME PRICE
A 80386 4 20 40 40 1500
B 80386 4 25 80 28 2000
C 80386 4 25 75 26 2000
D 80386 4 25 80 24 3000
E 80386 4 25 85 28 2500

Table 1: Example database about PCs

lems have been investigated for a long time.’ For
this kind of queries, ranking methods have been de-
veloped which yield a ranked list instead of a fixed
set of documents as an answer to a query. It has
been shown in experiments that ranking methods
yield significantly better results than search methods
based on Boolean logic [Salton et al. 831 [Fuhr 861.

Text retrieval systems with ranking first seek for
documents that contain terms from the query. A
relevance status value (RSV) is computed for each
document, and then documents are ranked accord-
ing to descending RSVs. For this task, two major
theoretical models have been developed:

- In the vector space model [Salton 711
[Wong et al. 871, documents and queries are
represented as vectors in a vector space spanned
by the terms of the database. For a query-
document pair, the RSV is computed by means
of a similarity coefficient (e.g. dot product or
cosine) of the corresponding vectors.

- In the probabilistic approach [Rijsbergen 791
[Fuhr 881, retrieval is regarded as a stochastic
process. So documents are ranked according to
their probability of being relevant to the cur-
rent request. It can be shown that this kind of
ranking is optimum [Robertson 771. The prob-
ability of relevance of a document is computed
from probabilistic weights of the terms, which
in turn are derived from relevance information
about (other) query-document pairs.

In this paper we describe how the probabilistic
approach can be applied for retrieval of facts from
databases. For a vague query, a system based on our
approach first will yield an initial ranking of possible
answers. Then the user is asked to give relevance
judgements for some of the answers, that is, he must
decide whether an answer is an acceptable solution
to his problem. From this relevance feedback data,
the system can derive an improved ranking of the
answers for the current request. In addition to this
kind of short-term learning, a major new concept of

‘A general discussion of the similarities and differences be-
tween information retrieval and database management sys-
tems is presented in [Eastman 891, where the issues of evalu-
ation, matching, interaction and clustering are considered.

our approach is the collection of feedback data for
a long-term learning process: Based on feedback in-
formation, an improved weighting of attribute values
with respect to query conditions can be derived. This
way, better retrieval results for future queries can be
achieved.

In order to illustrate the concepts of our approach,
we will use an example of a database about personal
computers throughout this paper. The database con-
tains information about PCs and consists of a sin-
gle relation with the attributes processor type, CPU
clock rate, memory size, disk size, disk access time
and price (see table 1). Now a user may seek for a
PC with an 80386 processor with a clock rate of at
least 25 MHz, 4 MB of main memory and an 80 MB
hard disk with an access time of less than 25 ms.
Of course, he is interested in a cheap offer. This ex-
ample illustrates the close relationship of this kind
of problem to the field of information retrieval: It
is obvious that the goal of the user, namely to se-
lect a single model for purchase, cannot be fully ex-
pressed in a query. His final decision will depend
on a number of additional factors, which cannot be
represented completely in the database. This means
that the representation is uncertain and incomplete
with respect to the application - the same situation
as in text retrieval.

Now look at the sample data set in table 1. Here
only model D fulfills all the criteria specified in the
query. On the other hand, there are three more
models (B, C, E) which do not fully meet the re-
quirements, but which are significantly cheaper than
model D. For this reason, the user should be informed
about these models, too. It is obvious that interpret-
ing all the criteria specified by the user as predicates
in a two-valued logic would yield inappropriate re-
sults. Instead, at least some of the criteria should be
regarded as vague predicates which can be fulfilled
to a certain degree by attribute values.2 This degree
of fulfillment will be called indexing weights in the
following.

A second kind of weighting (called query condition

2 An approach based on ranking instead of Boolean logic,
but using predicates from two-valuedlogic would e.g. not allow
to distinguish between the access times of model B and C.

697

weighting below) refers to the different criteria spec-
ified by the user, which may not be of equal impor-
tance for him. For example, disk size may be more
important than access time, so the answers should
be ranked accordingly. We will describe two proba-
bilistic retrieval models for this purpose which allow
either an explicit weighting as specified by the user
or an implicit one derived from his relevance judge-
ments.

In addition to these two kinds of probabilistic
weighting, our approach has the following features:

- Different vague predicates can be considered,
like e.g. “about”, “at most”, “high”, “low”,
” some” .

- The approach can be applied to arbitrary data
types, ranging from numbers or strings to com-
plex objects like e.g. the shape of a geometric
object.

- With the probabilistic foundation of our ap-
proach, imprecise data (e.g. disjunctive informa-
tion) or missing data (i.e. null values) also can
be handled easily, even for predicates from two-
valued logic.

The paper is structured in the following manner.
First, we present the foundations of our approach
(section 2) and describe the extension to imprecise
data (section 3). Two different retrieval functions
for the computation of the RSVs are presented in
section 4. Finally, our approach is compared with
similar work (section 5).

2 Foundations of the proba-
bilist ic model

We propose our approach as an extension of database
systems based on two-valued logic. A user query in
such a system can be extended by a part in which
one or more vague criteria can be specified.

Definition 1 An extended query is a combinataon
of a Boolean query and a vague query. The answer
for the Boolean query is a set of objects from the
database called preselected objects. The answer to
the extended query is a ranked list of the preselected
objects.

In the following discussion, unless stated oth-
erwise, we will restrict to the vague part of the
query. Furthermore, no distinction between the
whole database and the set of preselected objects will
be made.

For our PC example, an extended query in a SQL-
like notation could be specified as follows:

SELECT * FROM PC
WHERE CPU = '80386'
AND MEMORY = 4
RANK-BY CLOCK-RATE >= 25,

DISK-SIZE >= 80,
ACCESS-TIME < 25,
PRICE LOW.

Definition 2 A database is a set of objects 0. Let
A= {al,...,a,} d enote the set of attributes in the
database, and Di the domain for attribute ai. Then
each object o, E 0 is represented by a tuple t, =<
&(a&. . , &(a,) > with tm(ai) E Di.

For an extension of the linear data model assumed
here, see the discussion of probabilistic databases in
section 5. It should be emphasized that our approach
makes no assumptions about the domain of an at-
tribute, so attribute values can be of a complex data
type.

Now we give the definitions for the vague queries.

Definition 3 A vague (or fuzzy) predicate f is ei-
ther a unary predicate or a binary predicate. For
each attnbute ai E A in h database, there is a set F)
of unary attributes defined and a set F,? of binary
attributes defined.

Note that a predicate is not a mapping of attribute
values (or pairs of values) onto numbers, like e.g. in
fuzzy logic [Zadeh 651. I n our approach, the weight-
ing of attribute values takes place in a later stage
of the indexing process. Examples for unary predi-
cates are “low”, “high”, “medium” and also so-called
fuzzy quantifiers like “some”, “several”, “many” (e.g.
a user might ask for a PC with “several” I/O-ports).
Most binary vague predicates will be vague interpre-
tations of the standard predicates like e.g. “=“, ” <“,
” 2” .

Definition 4 A vaque querv condition c; can have
one

I _ 1
of the two forms

-
(ai, ji) with ai E A and ji E Fil

(ai, fi, di) with ai E A, ji E F,”
where di is called the comparison

and di E Di,
value.

Definition 5 A ‘vague query formulation q; is a set
of vague conditions c;. Furthermore, each attrrbute
ai E .4 may occur in, at most one condition ci E qf.

For our PC example, the vague query formulation
is

698

qc = {(CLOCK-RATE, 2, 25),
(DISK-SIZE, 2, 80),
(ACCESS-TIME, <, 25),
(PRICE, low)}

The restriction that an attribute may occur in at
most one query condition is due to the independence
assumptions of the underlying probabilistic models
(see [Fuhr 89a]). W e d o not allow Boolean operators
in the query formulation, for two reasons:

- A Boolean structure would lead to rather com-
plex probabilistic formulas, with parameters
that could not be estimated in most cases.

- In the field of text retrieval, there is no ex-
perimental evidence that the consideration of
a Boolean query structure yields any improve-
ment over a pure linear structure [Croft 861
[Salton & Voorhees 851 [Fuhr & Miiller 871. On
the other hand, it can be shown that many pro-
posals for ranking in combination with Boolean
queries yield significantly worse retrieval results
than ranking for linear queries [Salton et al. 831
[Fuhr 861 [Fuhr 881.

However, we can extend our model to allow for the
disjunction or conjunction of conditions for the same
attribute (see next section).

Definition 6 Le2 R = {R,z} (relevant/nonrele-
vant) denote the set of possible relevance judgements
for query-object pairs. Then a vague query qk is a
pairqk=(q;,qkJ) withq;COxR.

For databases, the notion of relevance judgements
may be inconvenient. Furthermore, in many applica-
tions a user may seek only for a single object as the
optimum solution to his problem. Considering only
this object as being relevant would prevent the appli-
cation of relevance feedback techniques, at least for
the weighting of query conditions. For this reason,
it is more appropriate to use a concept like ‘accept-
ability’ for the user’s judgements: In general, there
will be several acceptable objects for a query, among
which the user may finally decide for one (or more)
as being the optimum solution. So we will assume
that the users give binary judgements about the ac-
ceptability of objects. For convenience, however, we
will keep on using the term ‘relevance’ for this event.

The event space of our probabilistic model is Q x 0
where Q denotes the set of all queries submitted to
the database system. A single element of this event
space is a query-object pair (Qk, 0,) with a binary3
relevance judgement E R, a set q; of query condi-
tions and a tupel t, of object attributes. Now we

3For the discussion of multivalued relevance scales, see sec-
tion 5.

seek for an estimate of the probability P(Rjqk, t,,,)
that an object with the attribute tuple4 t, will be
judged relevant with respect to query qI;. The es-
timation of this probability by means of a retrieval
function (as a basis for the ranking of the objects) is
described in section 4.

The retrieval function needs indexing weights for
all the conditions in q; for this purpose. For the
probabilistic definition of these weights, we introduce
the additional concept of correctness as an attribute
of an object-condition relationship: An object may
be a correct answer to a single condition, or may not.
We will denote these events by the symbols C and
C, respectively. The decision about the correctness
of an object-condition pair can be specified explic-
itly, that is, in addition to the relevance jugdement,
the user will have to judge an object with respect
to each condition. However, it is also possible to
derive these decisions from the relevance judgement
of a query-object pair: If the pair is relevant, then
the object is correct with respect to all query condi-
tions. In the opposite case, the object is not a correct
answer for any of the query conditions. The latter
definition forms the basis of the binary independence
indexing (BII) model [Fuhr 89aj. The retrieval-with-
probabilistic-indexing (RPI) model described in the
same paper - which we apply for the task of query
condition weighting based on relevance’feedback data
(see section 4) - can be combined with both def-
initions. The RPI model only assumes a positive
correlation between the events of relevance and cor-
rectness. Experiments in the field of automatic text
indexing have shown that both definitions of the con-
cept of correctness can be applied successfully and
lead to similar results [Fuhr 89a]. Further exper-
iments with the second definition can be found in
[Fuhr & Buckley 901.

With the event of correctness defined in either of
the two ways, we seek for estimates of the probability
f’(Clci,hn(ai)) th a an object with attribute value t
tm(ai) is a correct answer to the query condition ci.
The estimation of this probability is performed by
the indexing task.

The indexing task consists of two steps, a de-
scription step and a decision step. In the first
step, all information available about the relation-
ship between the condition ci and the attribute
value tm(ai) is collected in the so-called relevance
description z(ci, t,(ai)). Based on this data, the
decision step yields an estimate of the probability
P(Clx(ci, tm(ai))) th a an object-condition pair de- t

4 As the probabilistic model is not able to make a difference
between two objects having the same tuple of attribute values,
we use the notation tm instead of om in P(RIqk, t,).

699

scribed by relevance description z will be judged cor-
rect

In both steps, the different vague predicates have
to be treated separately (specific relevance descrip-
tions and estimation of indexing weights for each
predicate). To keep the following explanations sim-
ple, we assume that we always regard only a single
predicate in the indexing process, and that this pro-
cess has to be repeated for each predicate.

Definition 7 A relevance description x(c;, &(a;))
is a data structure that describes properties of the re-
lationship between the condition q and the attribute
value &(a;).

Here no specific assumptions about the structure
and the elements of a relevance description are nec-
essary. However, some algorithms used in the deci-
sion step are restricted to certain types of relevance
descriptions. Furthermore, it is essential that only
those properties are useful as elements of the rele-
vance description for which there is a significant cor-
relation with the event of correctness.

This concept of relevance description yields an
abstraction from specific pairs (condition, attribute
value). For the binary predicates in the PC example,
one could define

+(ciJtm(ui)> =
tm(ui) - 4

d,
I

This way, all pairs with the same relative difference
between comparison value and attribute value would
have identical relevance descriptions. For unary
predicates, the relevance description can be defined
with respect to the distribution of the attribute val-
ues in the database, e.g. the percentage of values
smaller than tm(ai).

The actual definition of the relevance description
depends strongly on the application. Its elements
can be values from interval scales as well as from or-
dinal or nominal scales (e.g. for string comparison a
marker indicating whether there is a phonetic match
between the two strings or not). Especially distances
based on the different metrics described in [Motro 881
will provide useful information for relevance descrip-
tions. It should be noted that a relevance description
may consist of several components, that is, we can
cope also with multi-dimensional metrics. This fea-
ture is important when dealing with complex data
types.

In the decision step, estimates of the probabilities
P(CIX(ci, L(Q)>) are computed. For this purpose,
we need a learning sample of relevance descriptions

and corresponding decisions about the correctness
from previous user queries.

Now, one could estimate the probability
P(Cl~(ci,trn(G))) as relative frequency from those
elements of the learning sample that have the same
relevance description (components of z with contin-
uous values would have to be discretized before, see
e.g. [Wong & Chiu 871). At this point, we introduce
the concept of an indexing function:

Definition 8 Let X denote the set of relevance de-
scriptions and R the set of real numbers. Then a
probabilistic indexing function is a mapping e : X -+
R such that e(x) is an approximation of P(CIx).
We call W(ci,t,(ai)) = e(x(ci,t,(ai))) the indexing
weight of the attribute value t,,,(ai) with respect to
the condition ci.

As indexing function, different probabilistic classi-
fication (or learning) algorithms can be applied. The
general advantage of these probabilistic algorithms
over simple estimation from relative frequencies is
that they yield better estimates from a learning sam-
ple given, because they use additional (plausible) as-
sumptions about the indexing function.

Here we list some probabilistic algorithms that
can be used as indexing functions. All. these algo-
rithms have been applied successfully to relevance
descriptions in the field of text retrieval for the task
of automatic indexing with a controlled vocabulary
[Biebricher et al. 881. With the exception of the first
algorithm, these methods are restricted to a vector
form I of the relevance description. For the first
three algorithms, all the elements of the relevance
description must have discrete values.

- The so-called Boolean approach developed by
Lustig [Beinke-Geiser et al. 861 exploits prior
knowledge about the relationship between sin-
gle elements of the relevance description x and
the corresponding probability P(C]Z) for the de-
velopment of a discrete indexing function (e.g.
in our PC example, it can be assumed that the
probability for the predicate 1 is a monotonic
function of the relative difference between di and
&n(G)>).

- The probabilistic learning algorithm ID3 devel-
oped by Quinlan [Q uinlan 861 seeks for signifi-
cant components of Z that form a probabilistic
classification tree [FaiI3t 901.

- By assuming only pair-wise dependencies among
the components of I, one can apply the tree de
pendence model described in [Chow & Liu 681
[Rijsbergen 771 Tyu et al. 831 as indexing func-
tion [Tietze 891.

- For the application of regression methods, the
components of I must be real numbers. Least

700

exp(bo+blr)
l+exp(bo+blr)

l+exp(bc,-b&)

Figure 1: Examples of logistic indexing functions

square polynomials [Knorz 831 [Fuhr 89b] yield
indexing functions of the form e(Z) = b’r . i (in
the linear case), where b’ is a coefficient vector
that minimizes the expectation of the squared
error]P(C]Z) - b’ . Z]“.

- By means of logistic regression [Freeman 871
[Fienberg 801, indexing functions of the form
e(i) = l~~$[b~~l) can be developed, where b(Z)
is a polynomial, and the coefficients of b(Z)
are estimated based on the maximum likelihood
method [Pfeifer 901.

Logistic functions seem to be suited best to our
indexing task. As an example, assume that the only
component of a relevance description is defined as the
relative difference between di and tm(ai). Now one
can define an indexing function for the vague predi-
cate ‘2’ as. er(x) = a. In the case of the
vague predicate ‘=‘, an appropriate indexing func-

tion would be ez(x) = i~$$,~~~&. Both func-
tions are illustrated in figure 1. As can be seen from
this.figure, a major advantage of logistic functions is
their asymptotic behaviour. A second advantage (in
comparison to polynomial functions) is related to the
problem of parameter estimation: When only small
learning samples are available, a prior distribution
on the coefficients of b(Z) can be considered, thus
yielding a Bayesian estimate.

As another nice property of logistic indexing func-
tions, they support the view of vague predicates be-
ing deformations of predicates from two-valued logic:
In our example, we get for bl -+ 00

0 ,ifx<O
cl(x) = l--E ,ifx=O

1 ,ifx>O

with E = l/(1 + ezp(bo)). This result corresponds
to the strict interpretation (from two-valued logic)
of the predicate ‘2’. Similarly, we get for bz --+ cc in
ez(x) the strict interpretation of the equality predi-
cate, namely es(z) = 0, if z # 0 and ez(0) = 1 - E.

3 Indexing for missing or im-
precise data

Our probabilistic indexing approach can be extended
to handle also imprecise or missing data as attribute
values and sets of values as comparison value. We
first discuss the case of attribute values, then com-
parison values, and finally we show how these meth-
ods can be applied for predicates from two-valued
logic, too.

Imprecise data for attribute values can be disjunc-
tive information (e.g. assume that we only know that
the clock rate of a PC model is either 25 or 33 MHz).
Another major reason for imprecise attribute val-
ues is the limited precision of measurement values
in technical applications. In order to handle impre-
cise data, a probability distribution function must be
given as attribute value. 5 For attribules with con-
tinuous values, imprecise data can be specified e.g.

‘Probability distributions as attribute values are also

701

as an interval range or as a pair of mean and vari-
ance (for which a normal distribution is assumed).
In the following we will only discuss discrete proba-
bility distributions, since the extension to continous
probability distributions is obvious.

Missing data - that is, an attribute value exists,
but is not known - is often stored as null values in
databases. Here also an appropriate probability dis-
tribution has to be assumed, e.g. by taking the dis-
tribution of the corresponding attribute values from
similar objects or from the whole database. In most
applications, an unknown attribute value does not
mean that nothing at all is known about this value.
Therefore, the assumption of an appropriate distri-
bution allows to store the information actually avail-
able in the database, and to use this information in
retrieval. For this reason, we regard missing values
as a variant of imprecise data.

We can further extend our approach to a sec-
ond interpretation of null values discussed sometimes
([Vassiliou 791 [Codd SS]), namely “attribute value
not existent”. For example, in an address data base,
a value of the attribute “telephone number” does not
exist for persons who do not have a telephone.

Now we show how these values can be handled by
probabilistic indexing functions.

Definition 9 An imprecise attribute value tm(ai)
must be specified as a discrete probability distribution
over Di, that is

tm(ai) = {(zj,Pj)lzj E Diand Pj E [O, 11)

with

c Pj = Qim, 0 5 Ctim 2 1.
(zj,Pj)Efvn(a;)

This definition covers both interpretations of null
values as well as the usual interpretation of imprecise
data: If aim = 1, we certainly know that an attribute
value exists, and with aim = 0, we represent the fact
that no value exists for this attribute. In the case
of 0 < oi, < 1, oi, gives the probability that an
attribute value exists: For example, someone who is
going to have a telephone soon gave us his number,
but we are not sure if this number is valid already.

With imprecise values specified this way, their
probabilistic indexing weight can be derived easily:

P(Clci,tm(%)) = c Pj . P(ClX(Ci, zj)).
(z,,P,)Etm(a*)

discussed in the field of numerical taxonomy, see e.g.
[Jardine & Sibson 771.

As our indexing function yields approximations of
the probabilistic indexing weights, we can define ap-
propriate indexing formulas for imprecise values. In
contrast to the case of precise values, we cannot show
that these formulas yield optimum approximations
(with respect to certain criteria). However, it is rea-
sonable to assume that there is no significant differ-
ence between the approximation defined below and
the optimum approximation.

Definition 10 1f tm(ai) is an imprecise attribute
value, then the indexing weight w(ci, tm(aj)) is com-
puted by the formula

W(Ci,tm(G)) = C Pj e(X(ci, zj)).

Our approach can be further extended to consider
the disjunction or conjunction of conditions for the
same attribute. Both variants are in fact syntactic
elements for specifying a set of values, so we call this
imprecise data as comparison value. A major need
for imprecise comparison values comes from technical
applications, where very often interval ranges for cer-
tain attributes are specified in the query [Dathe 841.

Definition 11 An imprecise comparison value is a
set di C Di, where Di is the domain of the corre-
sponding attribute.

The correct handling of imprecise data as compar-
ison value depends on the specific predicate, the data
type of the attribute and the type of the specification
of the imprecise data (e.g. set of values vs. interval
range). Two possible strategies can be applied here:

- In many cases, the indexing function for a sin-
gle comparison value can be applied by object-
specific selection of an appropriate value from
the set or range of comparison values specified
in the condition. For example, when an inter-
val range is specified in combination with the
predicate ‘=‘, then the value from the interval
closest to the current attribute value is selected.
As a counterexample, consider the query “List
all the PC models from the manufacturer whose
name is similar to ‘Dandy’ or ‘Dundee”‘. For the
manufacturer ‘Tandy’, both comparison values
might yield nonzero indexing weights, and there
is no simple, theoretically founded method for
combining these weights.

- At a closer look, it becomes obvious that impre-
cise data is just another variant of a vague condi-
tion: For example, there is no systematic differ-
ence whether we specify a predicate like ‘>’ for
an attribute with continuous values or a set of
constants in combination with the equality pred-
icate for a nominal-scaled attribute. This view

702

leads us to the development of special relevance
descriptions and indexing functions for impre-
cise data. With this method, we can also handle
rather complex specifications of imprecise data
(not covered by the definition from above). As
an example, assume that a user wants a PC with
a green or a black and white monitor, but he
prefers black and white. However, this strategy
is only applicable if there is enough learning data
available, that is, imprecise comparison values
are used frequently in query formulations. Oth-
erwise, one can only attempt to define appro-
priate indexing functions, without adaptation to
the user population.

These methods for coping with imprecise data as
comparison or attribute value also can be applied to
predicates from two-valued logic. For this case, a
binary indexing function is defined:

Definition 12 Let p denote a predicate from two-
valued logic and di c Di an imprecise comparison
value. Then the indexing function is defined as

{

1, ifp(Z,L(ai)) for
e((ai,p,4),L(ai)) = any z E di

0, otherwise

For imprecise or missing attribute values, the same
formulas as for vague predicates can be applied. This
strategy yields the answers that a procedure.for dis-
junctive information in two-valued logic would re-
trieve. For example, for the query condition ci =
(ai,=, {zi,~}) and the attribute value tm(0i) =
{(a, a), (% 1 - (Y)}, our procedure assigns an :n-
dexing weight of 1 to the attribute value. But our
approach also yields valuable results when the object
is not an answer in two-valued logic: If the query con-
dition is only (ai, =, zi), then in general the object
with attribute value tm(ai) = {(zi,a),(zz, 1 - a)}
will be ranked ahead of all objects with null values,
which in turn are ranked ahead of objects with dif-
ferent attribute values.

4 Retrieval functions

The task of the retrieval function ~(pk, 0,) is to com-
pute relevance status values (RSVs) for query-object
pairs (ok, 0,). Then the objects can be ranked ac-
cording to descending RSVs for a query. This way,
a user will find the objects probably relevant at the
beginning of the ranked list.

Definition 13 A retrieval function is a mapping Q :
QxO-+IR.

Here we will discuss two different probabilistic
rerieval functions, one for the initial ranking and an-
other for an improved ranking based on relevance
feedback from the user. For both functions we give
only a brief description, for the details of the un-
derlying models the reader is referred to the original
publications.

In order to compute the RSV, the retrieval func-
tions use the indexing weights w(ci, tm(ai)) for the
conditions ci E 4: (the set of conditions specified in
the query). Now a simple linear retrieval function
can be defined as

Qlin(Qk3Om) = C Wk ’ W(Y,tm(Qi)).

c,cq;

Here Uik is a factor which reflects the importance
of the condition ci within the query qk. These factors
can be specified explicitely by the user (For the com-
bination with relevance feedback, see the discussion
below). In [Wong & Yao 891, it is shown that the
above formula can be given a utility-theoretic inter-
pretation: If ‘Llik denotes the utility of the condition
ci with respect to the query qk (and the underlying
definition of correctness), then @rin(qk) 0,) gives the
expected utility of object o, for the.query qk.

After the initial ranking process, the user is asked
to give relevance judgements for the top ranking ob-
jects. This relevance feedback data (which we re-
gard as a part ql of a vague query qk, see Def-
inition 6) can be used for a better weighting of
the query conditions. In the field of text re-
trieval, evaluations of relevance feedback methods
have shown significant improvements over the ini-
tial ranking (see e.g. [Robertson & Sparck Jones 761
[yu & Salton 761 [Robertson et al. 811). For our ap-
plication with probabilistic indexing weights, the
RPI model described in [Fuhr 89a] is most appro-
priate. This model yields a ranking according to
descending values of the probability of relevance
P(R]qk, tm). The corresponding retrieval function
is

@RPI(qk, %) =

Tik(l - Sik)

%k(l - Tik)
- 1

>
w(c;, L(0i)) + 1

I

In this formula, Tik gives the expectation of the
indexing weight of ci for an arbitrary object that is
jugded relevant with respect to qk. Similarly, sik
is the expectation of the indexing weight of ci for

703

an arbitrary object in the set of preselected objects
for qt. These ,factors can be estimated by means
of relevance feedback as follows: Let Ok denote the
set of preselected objects for qk (or a representative
sample hereof), and 0: is the set of objects judged
relevant for qk, that is, 0: = {om](om,R) E ql}.
Then we get

and

rik z 6 ’ c W(Ci,tm(%))
k O,EO,R

Sik a j&j ’ c W(Ci,tm(%))

%EOk

In [Croft 811, the linear retrieval function ~1;~ is
used in combination with relevance feedback weights
defined as

uik = log
Tik(1 - sit)

sik(l - rik)

It can be shown theoretically that this approach
does not yield a probabilistic ranking [Fuhr 89a].
However, as far as experimental comparisons are
available [Fuhr 89a] [Salton 871, no significant differ-
ences could be found.

With this kind of relevance feedback, we make dou-
ble use of the relevance data: The user enters rele-
vance judgements in order to get a better ranking
for his query. In addition, we collect his judgements
for a long-term improvement of the system by devel-
oping probabilistic indexing functions based on this
data.

5 Comparison with other ap-
proaches

There is growing interest in the issue of imprecision
in database. The collection of articles in [IEEE 891
gives a survey over past and current work in this
area. In the following, we will compare some of these
approaches with the model described in this paper.

A similar approach for vague queries in data-
bases is the VAGUE system developed by Motro
[Motro 881. This approach is based on the vec-
tor space model in information retrieval [Salton 711
[Wong et al. 871, but extended with plausible defi-
nitions for coping with Boolean query formulations.
In the VAGUE system, a number of different met-
rics for the comparison of attribute values and values

specified in the query are available. These metrics
can be used as elements of relevance descriptions in
our approach. In addition, we can consider multi-
dimensional metrics and values from nominal or or-
dinal scales, and all these values are finally mapped
onto probabilistic weights. The VAGUE system does
not use any relevance information: although it could
be extended according to the vector space model in
order to improve query-specific ranking. However,
there is no method for the improvement of the in-
dexing function (i.e. the metrics) based on relevance
information in the vector space model. Different
predicates have not been considered explicitly in the
VAGUE approach, but the possibility of choosing
a metrics (for the ‘similar’ predicate) could be ex-
tended easily for this purpose. With regard to miss-
ing or imprecise data, the VAGUE system can handle
null values only by defining appropriate distances.

The issue of vague queries and imprecise or
missing data has also been addressed in the
context of fuzzy databases [Buckles & Petry 821
[Prade & Testemale 841. This approach offers so-
lutions to all the problems mentioned in this pa-
per. Regarding the theoretical foundations, both
approaches are orthogonal to each other: Whereas
probability theory deals with the uncertainty about
the occurrence of events (here: relevance and cor-
rectness), fuzzy logic focuses on the ambiguity in
describing events. Thus, while our approach aims
to estimate the probability of an object being rele-
vant to a query, fuzzy logic would compute a value
that resembles the degree of relevance of the object
w.r.t. the query. In [Bookstein 831, it is shown how
both approaches can be combined in the context of
information retrieval by regarding multivalued rele-
vance scales within a probabilistic model. But the
experimental results described in [Fuhr 89b] give no
evidence that multivalued relevance scales yield any
improvement (in terms of retrieval quality) over bi-
nary scales. So the question remains: Which of the
two approaches should be preferred for the kind of
applications discussed here? We think that the fol-
lowing two facts support the probabilistic view:

- For the probabilistic approach, it can be shown
theoretically that this method yields an opti-
mum retrieval quality (under certain assump-
tions), even for multivalued relevance scales
[Robertson 771 [Bookstein 831. Such a proof
does not exist for fuzzy theory. This theo-
retic statement is supported by experimental re-
sults from text retrieval, where the fuzzy model
yields significantly worse results in comparison
to the probabilistic and the vector space model
[Salton et al. 831 [Fuhr 881. Of course, the as-
sumptions underlying the probabilistic model
are only approximations to reality. But as they

704

are made explicit, they can be replaced by more
appropriate assumptions, and refined models
can be developed.

- The weights in the probabilistic approach all
have the explicit notion of probabilities. This
feature is the basis of our indexing and retrieval
approach, where the weights are derived from
relevance feedback information. Evaluations in
the field of text retrieval have shown significant
improvements of retrieval quality for relevance
feedback methods. In contrast, this kind of
adaptation to a single query as well as to a user
population is not possible in the fuzzy approach.
Similarly, the probabilistic interpretation of im-
precise attribute values forms a guideline for the
mapping of empirical data onto these values.

A simple ranking scheme for relational databases
has been proposed in [Lacroix & Lavency 871. This
approach is based on predicates from two-valued
logic. For the weighting of query conditions, prefer-
ences between the different conditions can be speci-
fied by the user: Two conditions can either have the
same weight, or one is preferred over the other. As
this kind of weighting can easily be considered by
the linear retrieval function described in the previ-
ous section, the approach from Lacroix and Lavency
can be regarded as a special case of our model.

For imprecise or missing data in combination with
predicates from two-valued logic, an approachsimilar
to ours is described in [Morrissey & Rijsbergen 871.
This model yields the same indexing weights as in our
approach, although no explicit probabilistic model is
described.

The problem of imprecise attribute ,values in the
form of null values or disjunctive information has
been discussed extensively in the database litera-
ture (see e.g. [Lipski 791 [Vsssiliou 791 [Reiter 841
[Imielinski & Lipski 841); [Imielinski 891 gives a brief
survey over this work. As all these approaches are
based on two-valued logic, the correct treatment
of imprecise values is obvious (e.g. in the proof-
theoretic approach [Reiter 841, it follows from the
axioms of first-order logic). However, as shown
in [Imielinski 861, the introduction of imprecise at-
tribute values can have drastic consequences on the
complexity of query processing. In [Codd 861, a
three-valued logic is used instead, in order to retrieve
‘maybe’ answers in addition to the correct answers
of a query. This approach can be regarded as a very
simple ranking mechanism.

is similar to our approach. Besides (stochsstically)
independent attributes as assumed here, Barbara
et al. also regard interdependent attributes, which
are not considered in the current formulation of our
approach. In order to cope with the probabilistic
weights, the relational operations projection, join
and selection are redefined in the PDM, but vague
queries are not regarded. With these features, a
combination of both approaches seems to be feasible:
The operations redefined for probabilistic databases
can be used for handling imprecise data in relational
databases and for deriving the answer relation. Then
our probabilistic model, which can be regarded as an
extension of the selection operation, is applied for the
ranking of the tuples in the answer set.

6 Conclusions

In this paper, we have described a probabilistic ap-
proach for handling vague queries and imprecise in-
formation in databases. The old database paradigm
of using two-valued logic is appropriate for the clas
sical application areas of databases, and for the re-
trieval interface to batch programs. For interactive
user interfaces of database systems, new retrieval
strategies must be implemented. In parallel, new
evaluation criteria for database systems should be
considered: Instead of measuring only the efficiency
of a system in retrieving answers to well-formed
queries, now the effectiveness of the system with re-
gard to supporting the user in solving his problems
should be regarded. From this point of view, a fast
system that retrieves only sets of answers for Boolean
queries may be of little value, because it forces the
user to submit a whole series of queries in order to
solve his problem.

As new application areas for database systems
arise, the concepts of vagueness and imprecise in-
formation become even more important. Technical
values are almost always of limited precision, and
approaches based on two-valued logic are not appro-
priate for solving the corresponding problems. When
new technical solutions are to be developed, the con-
cepts of vagueness and similarity play a central role
in this search process. Database systems can offer
an effective support for these new applications only
when they provide the appropriate concepts.

Probabilistic models for imprecise information in References
databases are described in [Cavallo & Pittarelli 871
and [Barbara et al. 901. The latter article outlines
a relational probabilistic data model (PDM) which

Ammersbach, K.; Fuhr, N.; Knorz, G. (1988).
Empirically Based Concepts for Materials Data

705

Systems. In: Proceedings of the 1988 CODATA
Conference. Karlsruhe, Germany.

Barbara, D.; Garcia-Molina, H.; Porter, D.
(1990). A Probabilistic Relational Data Model.
In: Bancilhon, F.; Thanos, C.; Tsichritzis, D.
(ed.): Advances in Database Technology - EDBT
‘90, pages 60-74. Springer, Berlin et al.

Beinke-Geiser, U.; Lust&, G.; Putze-Meier,
G. (1986). Indexieren mit dem System DAISY.
In: Lustig, G. (ed.): Aatomatische Indezcierung
zwischen Forschung und Anwendung, pages 73-97.
Olms, Hildesheim.

Biebricher, P.; Fuhr, N.; Knorz, G.; Lustig,
G.; Schwantner, M. (1988). The Automatic In-
dexing System AIR/PHYS - from Research to Ap-
plication. In: Chiaramella, Y. (ed.): 11th Interna-
tional Conference on Research and Development
in Information Retrieval, pages 333-342. Presses
Universitaires de Grenoble, Grenoble, France.

Bookstein, A. (1983). Outline of a General Prob-
abilistic Retrieval Model. Journal of Documenta-
tion 39(Z), pages 63-72.

Buckles, B.; Petry, F. (1982). A Fuzzy Repre-
sentation of Data for Relational Databases. Fuzzy
Sets and Systems 7, pages 213-226.

Cavallo, R.; Pittarelli, M. (1987). The The-
ory of Probabilistic Databases. In: Proceedings of
the 13th International Conference on Very Large
Databases, pages 71-81. Morgan Kaufman, Los Al-
tos, Cal.

Chow, C.; Liu, C. (1968). Approximating Discrete
Probability Distributions with Dependence Trees.
IEEE Transactions on Information Theory 14(3),
pages 462-467.

Codd, E. F. (1986). M issing Information (Appli-
cable and Inapplicable) in Relational Databases.
SIGMOD RECORD 15(4), pages 53-78.

Croft, W. (1981). Document Representation
in Probabilistic Models of Information Retrieval.
Journal of the American Society for Information
Science 92, pages 451-457.

Croft, W. B. (1986). Boolean Queries and Term
Dependencies in Probabilistic Retrieval Models.
Journal of the American Society for Information
Science 37(Z), pages 71-77.

Dathe, G. (1984). Peculiarities aFnd Pr$bz
of Materials Engineering Data. .
ings of the 9th International CODATA Confer-
ence, Jerusalem. North-Holland Physics Publish-
ing, Amsterdam.

Eastman, C. (1989). Approximate Retrieval: A
Comparison of Information Retrieval and Data-
base Management Systems. IEEE Data Engineer-
ing 12(Z), pages 41-45.

Faifit, S. (1990). Development of Indexing Func-
tions Based on Probabilistic Decision Frees (in
German). Diploma thesis, TH Darmstadt, FB In-
formatik, Datenverwaltungssysteme II (in prepa-
ration).

Fienberg, S. (1980). The Analysis of Cross-
Classified Categorial Data. MIT Press, Cam-
bridge, Mass., 2. edition.

Freeman, D. (1987). Applied Categorial Data Anal-
ysis. Dekker, New York.

Fuhr, N.; Buckley, C. (1990). Probabilistic Docu-
ment Indexing from Relevance Feedback Data. To
appear in: Proceedings of the 13th ACM-SIGIR
International Conference on Research and Devel-
opment in Information Retrieval.

Fuhr, N.; Miiller, P. (1987). Probabilistic Search
Term Weighting - Some Negative Results. In: van
Rijsbergen, C.; Yu, C. (ed.): Proceedings of the
1987 ACM Conference on Research and Develop-
ment in Information Retrieval, pages 13-18. ACM,
New York.

Fuhr, N. (1986). Rankingexperimente mit gewich-
teter Indexierung. In: Deutsche Gesellschaft fiir
Dokumentation (ed.): Deutscher Dokumentartag
1985, pages 222-238. K.G. Saur, Miinchen, New
York, London, Paris.

Fuhr, N. (1988). Probabilistisches’Indexing und
Retrieval. Dissertation, TH Darmstadt , Fach-
bereich Informatik. Available from: Fachinfor-
mationszentrum Karlsruhe, D-7514 Eggenstein-
Leopoldshafen, West Germany.

Fuhr, N. (1989a). Models for Retrieval with Prob-
abilistic Indexing. Information Processing and
Management 25(l), pages 55-72.

Fuhr, N. (1989b). Optimum Polynomial Retrieval
Functions Based on the Probability Ranking Prin-
ciple. ACM Transactions on Information Systems
7(J), pages 183-204.

IEEE. (1989). IEEE Data Engineering 12(Z). Spe-
cial Issue on Imprecision in Databases.

Imielinski, T.; Lipski, W. (1984). Incomplete
Information in Relational Databases. Journal of
the ACM 31(4), pages 761-791.

Imielinski, T. (1986). Query Processing in Deduc-
tive Databases with Incomplete Information. Tech-
nical report, Department of Computer Science,
Rutgers University.

Imielinski, T. (1989). Incomplete Information in
Logical Databases. IEEE Data Engineering 12(Z),
pages 29-40.

Jardine, N.; Sibson, R. (1977). Mathematical
Taxonomy. Wiley, London et al.

Knorz, G. (1983). Automatisches Indexieren
als Erkennen abstrakter Objekte. Niemeyer, Tii-
bingen.

706

Lacroix, M.; Lavency, P. (1987). Preferences:
Putting more Knowledge into Queries. In: Pro-
ceedings of the 13th International Conference on
Very Large Databases, pages 217-225. Morgan
Kaufman, Los Altos, Cal.

Lipski, W. (1979). On Semantic Issues Connected
with Incomplete Information Databases. ACM
Transactions on Database Systems 4(3), pages
262-296.

Morrissey, J.; van Rijsbergen, C. J. (1987). A
Formal Treatment of Missing and Imprecise In-
formation. In: Yu, C. T.; van Rijsbergen, C.
(ed.): Proceedings of the Tenth Annual ACM SI-
GIR Conference on Research & Development in
Information Retrieval, pages 149-156. ACM, New
York.

Motro, A. (1988). VAGUE: A User Interface to
Relational Databases that Permits Vague Queries.
ACM l’!ransactions on Ofice Information Systems
6(3), pages 187-214.

Pfeifer, U. (1990). Development of Log-Linear and
Linear-Iterative Indexing Functions (in German).
Diploma thesis, TH Darmstadt, FB Informatik,
Datenverwaltungssysteme II.

Prade, H.; Testemale, C. (1984). Generalizing
Database Relational Algebra for the Treatment
of Incomplete/Uncertain Information and Vague
Queries. Information Science 34, pages 115-143.

Quinlan, J. (1986). The Effect of Noise on Con-
cept Learning. In: Michalski, R.; Carbonell, J.;
Mitchell, T. (ed.): Machine Learning: An Artifi-
cial Intelligence Approach , Vol.II, pages 149-166.
Morgan Kaufmann, Los Altos, California.

Reiter, R. (1984). Towards a Logical Reconstruc-
tion of Relational Database Theory. In: Brodi?,
M.; Mylopoulos, J.; Schmidt, J. (ed.): On Con-
ceptual Modelling, pages 191-233. Springer, New
York et al.

van Rijsbergen, C. (1977). A Theoretical Ba-
sis for the Use of Co-Occurrence Data in Infor-
mation Retrieval. Journal of Documentalion 33,
pages 106-119.

van Rijsbergen, C. (1979). Information Retrieval.
Butterworths, London, 2. edition.

Robertson, S.; Sparck Jones, K. (1976). Rel-
evance Weighting of Search Terms. Journal of
the American Society for Information Science 27,
pages 129-146.

Robertson, S. (1977). The Probability Ranking
Principle in IR. Journal of Documentation 33,
pages 294-304.

Robertson, S.; Van Rijsbergen, C.; Porter,
M. (1981). Probabilistic Models of Indexing and
Searching. In: Oddy, R.; Robertson, S.; Van Ri-
jsbergen, C.; Williams, P. (ed.): Information Re-
trieval Research, pages 35-56. Butterworths, Lon-
don.

Salton, G.; Voorhees, E. (1985). Automatic As-
signment of Soft Boolean Operators. In: Proceed-
ings of the 8th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 54-69. ACM, New York.

Salton, G. (ed.)(1971). The SMART Retrieval Sys-
tem - Experiments in Automatic Document Pro-
cessing. Prentice Hall, Englewood Cliffs, New Jer-
sey.

Salton, G. (1987). Private communication.
Salton, G.; Fox, E.; Wu, H. (1983). Extended

Boolean Information Retrieval. Communications
of the ACM 26, pages 1022-1036.

Schneider, R.; Kriegel, H.-P.; Seeger, B.;
Heep, S. (1989). G eometry-Based Similarity Re-
trieval of Rotational Parts. In: Proceedings 2nd
International Conference on Data and Knowledge
Systems for Manufacturing and Engineering.

Tietze, A. (1989). Approximation of Discrete
Probability Distributions by Dependence Trees and
their Application as Indexing Functions (in Ger-
man). Diploma thesis, TH Darmstadt, FB Infor-
matik, Datenverwaltungssysteme II.

Vassiliou, Y. (1979). Null Values in Database Man-
agement - a Denotational Semantics Approach. In:
Proceedings of the ACM SIGMOD Internataonal
Conference on the Management of Data. ACM,
New York.

Westbrook, J.; Rumble, J. (ed.)(1983). Com-
puterized Materials Data Systems, Gaithersburg,
Maryland 20899, USA. National Bureau of Stan-
dards.

Wong, A.; Chiu, D. (1987). Synthesizing Sta-
tistical Knowledge from Incomplete Mixed-Mode
Data. IEEE Transactions on Pattern Analysis and
Machine Intelligence 9(6), pages 796-805.

Wong, S.; Yao, Y. (1989). A Probability Distribu-
tion Model for Information Retrieval. Information
Processing and Management 25(l), pages 39953.

Wong, S.; Ziarko, W.; Raghavan, V.; Wong,
P. (1987). On Modeling of Information Retrieval
Concepts in Vector Spaces. ACM Transactions on
Database Systems 12(2), pages 299-321.

Yu, C.; Salton, G. (1976). Precision Weighting.
An Effective Automatic Indexing Method. Journal
of the ACM 23, pages 76-88.

Yu, c.; Buckley, C.; Lam, K.; Salton, G.
(1983). A Generalized Term Dependence Model
in Information Retrieval. Information Technology:
Research and Development 2, pages 129-154.

Zadeh, L. (1965). Fuzzy Sets. Information and
Control 8, pages 338-353.

707

