
DISTRIBUTED LINEAR HASHING AND PARALLEL PROJECTION IN
MAIN MEMORY DATABASES

C. Severance, S. Pramanik & P. Wolberg

Computer Science Department, Michigan State University
East Lansing, Michigan 48824

ABSTRACT

This paper extends the concepts of the distributed linear
hashed main memory file system with the objective of
supporting higher level parallel dambase operations. The
basic distributed linear hashing technique provides a high
speed hash based dynamic file system on a NUMA atchi-
tecture multi-processor system. Distributed linear hashing
has been extended to include the ability to perform high
speed parallel scans of the hashed file. The fast scan
feature provides load balancing to compensate for uneven
distributions of records and uneven processing speed
among different processors. These extensions are used to
implement a parallel projection capability. The perfor-
mance of distributed linear hashing and parallel projec-
tion is investigated.

1. INTRODUCTION

The availability of multi-processor computers with
large main memories has made main memory database
applications feasible. With a large number of processing
nodes, these systems can have a large amount of memory
at relatively low cost. The aggregate data transfer rate
between the memories and the processing nodes is also
very large for these systems.

While the aggregate performance and memory size
of these systems is very high, the central control struc-
tures used in traditional database systems will prevent the

system from achieving high levels of performance. Dis-
tributed linear hashing provides a technique for imple-
menting parallel main memory database systems which
minimize the adverse effect of these architectural con-
straints, while exploiting the NUMA architecture to
enhance performance of key based access to individual
records stored in a hash based file system.

To provide high speed access for operations which
must access all records in a database, fast scan exploits
the locality of data by using primarily local memory
references.

Relational projection can be viewed as composed
of two sub-tasks, scanning the input relation and creating
the ‘result relation. In the process of creating the output
relation any duplicate records created as a result of the
projection must be removed. The duplicate elimination
phase of projection is usually the time consuming part of
the projection operation.

Distributed linear hashing is implemented on the
BBN Butterfly. Fast scan has been added to support data-
base wide operations. We have implemented parallel pro-
jection with duplicate removal as an example application
using this file system. The performance of the hash file
system and parallel projection is shown.

1.1. Previous Work

Several hashing methods [Ghos 86, Wied87] for
dynamic files have been proposed since the mid 1970’s.
including extendible hashingm791, linear hashing
-1, and dynamic hashing [Lafs781. Complete reor-
ganization of the data file is avoided in these techniques
by allowing the directories to adjust to the records of the
overflowing buckets. These hashing methods reduce the
search time by minimizing the number of disk accesses.

Linear hashing as a search structure for databases
was developed by Litwin [Litw 801. A solution for con-
current linear hashing was proposed by C. S. Ellis lElli
871. Concurrent linear hashing adds a locking protocol
and extends the data structures to enhance concurrency of

Proceedings of the 16th VLDB Confcrcncc
Brisbane. Australia 1990

674

the entire linear hashed file. Like Litwin’s design, con-
current linear hashing of [Elli 871 was intended for a disk
environment.

Hash based accesses to main memory databases
have also been analyzed in [GLV 841. Parallel processing
in main memory databases has also been investigated in
lPrKi 88a, PrKi88bl. Parallel main memory data bases
are also explored in [SePr 901 and [Sev 901.

Previous efforts on projection in parallel or main
memory environments inchtde work in parallel algorithms
for relational operations [BBJW 831 and main memory
databases &eCa 861 and parallel projection of main
memory databases RoJa 871. Parallel projection in main
memory databases was also explored in [Wolb 891.

1.2. Linear Hashing

Before we describe the motivation for our approach
to design parallel main memory databases, we define two
important shared variables used in linear hashing called P
and M. These variables have significant impact on the
performance of concurrent accesses. The variable M is
the number of buckets and the variable P is the next
bucket to be split or merged. M and P are used in comput-
ing the proper bucket as follows:

bucket-number := key mod M,
if bucket-number c P then

bucket-number := key mod (M*.2)

These two variables are also used in database reorganiza-
tion. When a bucket in the database overflows or the data-
base exceeds a preset load factor, the bucket pointed to by
P is split and P is advanced by one. On.ce P reaches M-l,
instead of advancing P, it is set to zero and M is doubled
As records are deleted and buckets underflow, P is decre-
mented by one and the Pth. bucket is merged with the
P+Mth. bucket. Once P reaches zero as a result of
repeated merge operations, M is halved and P is set to one
less than the new value of M. The da&base is organized
in a linear fashion by only splitting or merging the Pth.
bucket.

1.3. Motivation

The work by Ellis and Litwin is suitable for a disk
based system but there are a number of problems with this
approach when it is used for searching main memory
databases on a multi-processor NUMA system. The first
problem is the cost of accessing central variables such as
M and P, and the central locks associated with these

variables. In a multi-processor NUMA environment,
access to a central data structure may cause a hot spot
problem resulting in a serious performance degradation
with increasing degree of parallelism. We present a dis-
tributed linear hashing scheme where access to costly
centralized variables and locks ate reduced by using dis-
tributed variables and locks. The cost of maintaining con-
sistent copies is significantly reduced by using retry logic
which is based on the fact that these variables are updated
very seldom.

Database reorganization is single threaded in previ-
ous implementations of linear hashing. This is a problem
when a large number of parallel nodes are able to insert
records at a much faster rate than the database can be
reorganized. Experimental results have shown that even
if a processor continuously splits buckets sequentially, the
database can never be m-organized fast enough to keep
the load factor within a reasonable bound. We present
multi-threaded reorganization technique to solve these
problems. Here, multiple splits and merges are performed
concurrently by the processing nodes.

Distributed linear hashing with retry logic and
multi-threaded reorganization provides a high perfor-
mance hash based main memory database system with a
very high rate of continuous inserts and deletes. This type
of database system is useful for implementing temporary
files for main memory databases and relational operators
such as projection and join for main memory databases.
In this paper we give details of distributed linear hashing
scheme and its performance analysis.

The rest of the paper is organized as follows. Sec-
tion 2 describes the important features of distributed
linear hashing scheme. Section 3 describes an implemen-
tation of distributed linear hashing, on the BBN Butterfly,
called the KDL-RAMFILE system. Section 4 presents
performance analysis of the KDL system. Concluding
remarks are given in section 5.

2. DISTRIBUTED LINEAR HASHING

In linear hashing the records are distributed into
buckets which are normally stored on disk. In distributed
linear hashing, the buckets are stored in main memory.
Fast accesses to a record within a bucket is accomplished
through a hash directory. Two computations are used to
locate a mcord. Distributed linear hashing is used to
locate the bucket and an additional computation is per-
formed to find record chain within the bucket. One sim-
ple approach to this two dimensional address mapping is

675

to partition the hash address bits into two. One part
locates the directory and the other part finds the record
chain. A bucket consists of a hash directory and the
records point& by the hash directory. Note that the
records within a bucket can be placed in any memory
module by linking them through pointers. An index is
used to point to the bucket directories. The index expands
or contracts as needed by linear hashing. Figure 2.1
shows the access structure of a main memory distributed
linear hashed file. The index is cached in each processor.
Each entry in the directory points to the head of a record
chain. Collisions in a particular entry in the directory are
resolved by adding the record to the chain and tracking
collisions to determine the average non-empty chain
lengths. A directory is said to be overflowing or
underflowing when the average chain length for that
directory exceeds or falls below some predetermined
value. Directories are split or merged in linear order as
soon as some directory overflows or underflows. Splitting
is done by rehashing the records using hash function (key
mod 2*M) as in standard linear hashing.

In linear hashing bucket address computation
requires M and P for every access to a record. Accessing
these central variables for every record access will cause
a hot spot To avoid this problem, bucket address compu-
tation in distributed linear hashing does not use central
copies of M and P. Instead local copies of M and P,
called Local-M and Local-P. are used in each proczssor.
The techniques for maintaining distributed copies of these
variables at a significantly lower cost than the cost of
accessing central copies of these variables are described
in the folIowing sections. Central copies of M and P,
called Global-M and Global-P, are only used for data-
base reorganizttion. The Local-M and Local-P used in
the hash computations may at times be out of date causing
incorrect bucket address computation. To solve the prob-
lem of incorrect bucket address computation, retry logic
is used. The details of retry logic is described in the next
section.

Diroclay II&.X (cached in each pmcaaor)

\I I I I
. . .

I I I

I I

Figure 2.1: Access Structure for Distributed Linear Hash-
ing

2.1. Retry Logic Using Local-M and Local-P

Besides maintaining Local-M and Local-P in each
node, a directory contains a value for M. This M, called
Dir-M, is the value which was used in the hash computa-
tion to place the records into the directory during the most
recent split or merge. The value of Dir-M is used to
determine if a particular record belongs to this directory
regardless of the value of Local-M.

To find a record, the directory number is computed
fust using the record key value and Local-M stored at
that node. The directory indicated by the computation is
locked. The directory number is re-computed using the
record key value and the value for Dir-M stored in the
directory. If this computes to the same directory as the
one currently being locked, the proper directory has been
found, otherwise the process is mpeated by locking the
new directory.

The performance enhancement by retry logic over
that using central variables is described in section 4. Fig-
ure 2.2 shows the algorithm to find the correct directory
using retry logic.

dir-number := hash(key, Local-M, Local-P);
dir-pointer := dir&ck(dirnumber);
newdQutmber := key mod dir~inter.Dir-M

while (new~dir~number <> dir~number) do begin
dir_unlock(dir~nurnber)er);
dir-number = new-dir-number
dirpointer := dir&ck(dir-number);
new&r-number := key mod dir-pointer.Dir_hl

676

end

Figure 2.2: Retry Logic for Locating the Bucket for a
Given Key

The following section describes techniques for
maintaining the local copies of P and M in each proces-
sor.

2.2. Maintaining Copies of Local-P and Local-M

Local-M in each processor is maintained using a
central array of pointers to each copy. To double or halve
Global-M, a processor must have a lock on Global-P.
When the Global-M is updated, the processor updating
Global-M must also update all of the copies of Local-M
in all of the processors. Ibis technique for updating the
values for Local-M uses a very small amount of memory
bandwidth compared to the bandwidth requirements for a
shared value for M. The values are only updated when
the value for M is doubled or halved as a result of data-
base reorganization. In our experiment of a typical run of
inserting 500,ooO records, Global-M is modified in one
out of 50,ooO database insertions. During the period a
processor updates each copy of Local-M incorrect hash
computations may occur because of incorrect values of
Local-M. The retry logic described in the previous sec-
tion will recover from these incorrect computations.

Updating all Local-Ps every time. Global-P
changes is not efficient because Global-P changes quite
frequently. So each local processor updates local-P based
on the values for Dir-M in each directory which the pro-
cessor has to access during every normal database cpera-
tions. This technique keeps the Local-P values close to
the value for Global-P. Every time a key is mapped into a
directory address through Local-M and Local-P, the
Dir-M is compared with the value of Local-M. If the
directory number is higher than the Local-P of the pro-
cessor and the Dir-M is twice Local-M, Local-P of the
processor is too low and is set to the directory number. If
the directory number is lower than the Local-P of the pro-
cessor and the Dir-M is the same as Local-M, the
Local-P is too high and is set to the directory number.

2.3. Multi-threaded Reorganization

In concurrent linear hashing of EllislElli 871 and
sequential linear hashing of Litwin [Litw 801, P always
determines the next bucket to be split or the next bucket
to be merged. For example, if a split operation was in
progress, P always points to the directory being split.

This forces all aspects of dambase reorganization to be
single thread& With retry logic it is not necessary to
complete a split or merge operation before another split or
merge operation can start In distributed linear hashing
with multithreaded split Global-P is moved before the
directory is merged or split. The updates to Global-P are
serialized but the actual database reorganization is per-
formed in parallel. The algorithm to implement this is
shown in Figure 2.3.

procedure multithreaded~split0
begin
if (lock-no-wait(GlobaI-P) = busy) return;
Tmp-P := Global-E
Global-P := Global-P + 1;
if (Global-P = Global-M) do begin

Global-P := 0;
double-M@

end
unlock(Split-P);
Perform-Split(Tmp-P);

end

Figure 2.3 Multithreaded split operations

In multithreaded split there are no lock waits while
a directory lock is held. When a busy lock on a central
variable is encountered the split is not performed. The
critical aspect of multithreaded splitting is that Global-P
is unlocked before the directory is actually split. The only
aspect of database reorganization which is single threaded
is the update to Global-P. After Global-P has been
unlocked another processor can lock Global-P and begin
a split operation on the following directory. Hash compu-
tation does not use the value for Global-P to compute the
proper directory for a given key so inaccuracies in
Global-P because of multithre.aded split do not alfect the
hash computations. Retry logic locates the proper direc-
tory regardless of the order of split completions because
the values for Dir-M in each bucket are maintained prop-
erly when the split directories are unlocked.

Multithreaded split allows database reorganization
to keep up with continuous insert operations regardless of
the number of processors. As more processors insert
records causing directories to overflow more processors
begin to split the directories to keep up with the incoming
records. Merge operations are multithreaded as well using
the same technique as split. Global-P is decremented and
M is halved if necessary before the actual merge is

677

pCXfONhXl.

3. THE KDL SYSTEM

We have developed a KDL-RAMFILE (Key
XGSS. Distributed Lock, RAMFILE) system which is
based on distributed linear hashing, as described in the
previous section. The KDL-RAMFILE system is
currently Operational on BBN’s Chrysalis [BBN 861, GP-
1000 [BBN 881 and ‘lC2000 systems.

3.1. Distributed Linear Hashing

The distributed linear hashing index and data
blocks are distributed randomly among the processors to
avoid any hot spot contention. The data structures were
extended to keep track of all the index and data blocks
which are stored on each processor. Using these data
structures a complete file scan is implemented using only
local memory accesses.

Fast scan consists of a loop that sequentially scans
each data block in a processor’s local memory. Load
balancing is a direct extension of fast scan. When a pro-
cessor has no more data blocks in its local memory, it
extends the scan to examine data blocks in other proces-
sors. Thus the KDL data block is the unit of work for load
balancing.

Because of load balancing, other processors may be
accessing a particular processor’s data blocks, in addition
to the processor that owns them. To provide exclusive
access to individual data blocks, each processor maintains
a variable, under exclusive access via a lock, that
specifies the address of the next unprocessed block in that
processor’s list of local data blocks. When a processor
has no more unprocessed blocks, this variable is cleared.

The KDLRAMFfLE system can be used for many
applications requiring a fast file system. One application
which has been implemented is parallel projection. Paral-
lel projection employs all of the important features of the
KDL-RAMFILE system.

3.2. Parallel Projection

We have implemented parallel projection using fast
scan and distributed linear hashing.

Fast scan is used to scan the input relation quickly
using a minimum of global memory resources. As each
record is amsed by fast scan, it is projected and inserted
into the output relation. As the records are inserted into
the output relation duplicates are detected by the KDL

system and discarded. The KDL system compares a
record to be inserted into the relation only when the
hashed key matches the key of a record already in the
database. This reduces the actual number of full record
comparisons relative to parallel sorting methods. The
duplicates am removed without the need for a separate
hash table or separate pass over the data for duplicate
removal. Because the KDL files are dynamic there is no
need to estimate the size of the output relation.

4. PERFORMANCE ANALYSIS

4.1. Experimental Details

The performance of the KDL-RAMFILE and the
performance of parallel projection using the
KDL-RAMFILE as an example application, are
presented. The goal of the KDL-RAMFILE performance
evaluation was to measure the maximum continuous
throughput of the database system. This implies that sys-
tem overhead such as creation of the application
processes, operating system overhead to initialize and ter-
minate tasks on each processor, are ignored. For parallel
projection the time to complete a projection was meas-
ured. Since projection requires creation of an output file,
the time to create this file is included in the total time for
parallel projection.

The total number of database operations per second
were measured while varying the number of processors.
Under ideal conditions, the total number of operations per
second should increase linearly as the number of proces-
sors are increased. Total number of operations per
second was chosen over the number of effective proces-
sors because it shows the speedup while allowing quanti-
tative comparison between different types of runs on the
same graph. For the KDL-RAMFILE performance, the
operations are record read, writes, and deletes. For paral-
lel projection the operations are record projections. The
KDL-RAMFILE performance tests were conducted on a
GPlOOO running the Chrysalis operating system [BBN
861. The parallel projection performance tests were con-
ducted on a TC2ooO running the nK operating system.

4.2. Performance impact of Local-P and Local-M

This section examines the performance impact of
distributing the global variables as described in section 2.
It should be noted that Local-P and Local-M are used
only for hash address computation. Global-P and
Global-M are used for database reorganization. We will

678

compare the performance of two different models of dis-
tributed linear hashing with standard linear hashing.
These schemes are defined in terms of the type of vari-
ables used in computing the hash addresses:

Scheme 1: Local-P, Local-M, Dir-M
Scheme 2: Global-P, Local-M, Dir-M
Scheme 3: Global-P, Global-M

Note that schemes 1 and 2 use retry logic while scheme 3
is the standard linear hashing scheme accessing global
variables. The performance of the three schemes for con-
tinuous read operations is shown in Figure 4.1. The
figure shows that the overall performance improves for
scheme 3 using global data structures, protected by cen-
tral locks, until about 10 nodes. Then the overhead of the
hot spots caused by these global data structures begins to
dominate the computation, and performance stops
improving. Similar performance degradation has been
observed for BBN’s implementation of parallel main
memory file system, called RF-RAMFILE system, where
central lock structure has been used [BBN 861. The per-
formance of RF-RAMFILE system levels off after 15
nodes doing continuous activity. Figure 4.1 shows that
Scheme 2 maintains linear performance for up to 40
nodes. We have observed that avoiding the use of central
locks and Global- M for hash address computation
reduces the amount of central memory accesses
significantly (by about 75% in our experiment). In the
implementation using scheme 3 each database operation
accesses the lock twice and the values for Global-P and
Global-M. In the implementation using scheme 2 mete is
only a single global access per operation. Thus the per-
formance is impacted by the remaining central accesses at
a high level of parallelism. The implementation using
scheme 1 has the best performance at high levels of paral-
lelism because it never accesses global variables. So per-
formance of scheme 1 is only limited by the performance
of the memory sharing network under random memory
access patterns. Figure 4.1 shows that performance is still
improving for scheme 3 at 80 processors.

Insert operations require database reorganization
and updating global information.

Op 120000-
pe
e r
r 80000-
a s
t e
ic 400()-
00
nn
sd o-

Record length=10

chain length=2.0

Scheme 2

I I I I I I I I I I I‘
0 10 20 30 40 50 60 70 80 90 100

of Nodes

Figure 4.1 Read performance of different implementa-
tions

Figure 4.2 shows the performance comparisons of the
three schemes when performing continuous insert opera-
tions. Scheme 1 maintains performance improvement
until 15 processors where the memory conflicts limit any
additional performance improvement.

GP
pe 80000

Rcund length=10 Scheme 1

chain leqth=2.0 /
e r *-

r Scheme 2

a s
te 40000
i c
00

: ; oj fi..I...I...;...I;I:“_’ I

0 lo 20 30 40 50 60 70 80 90 100
of Nodes

Figure 4.2 Insert performance

Scheme 1 and 2 continue to show performance
improvement at higher level of parallelization. However,
the performance of these two schemes is much closer for
inserts than for reads. At 50 nodes and below, the imple-
mentation using scheme 2 performs as well and at times
performs better than scheme 1. Above 50 nodes perfor-
mance continues to improve for scheme 1 while for
scheme 2 it begins to level off.

679

There are several reasons for this performance
characteristics. (1) Insert operations are inherently slower
because they include database reorganization. (2) Tbe
database reorganization makes use of the global variables.
This means that when performing inserts even scheme 1
will have to access global data structures causing some
memory contention. (3) As the database is reorganized,
the value for Global-P is changing causing the indepen-
dent copies of Local-P to become inaccurate. This causes
incorrect directory to be locked requiring additional direc-
tory locks due to retry logic.

The percentage of retries required for scheme 2 is
very small. At 80 processors 3 out of 1000 bucket
accesses will have to be retried because the value for P is
inaccurate. For scheme 1, retry percentage ranges from 4
to 7.

Unlike the overhead of accessing global data struc-
tures, the overhead of retry logic does not result from hot
spot accesses. Retry logic uses only the bucket locks and
bucket locks are randomly distributed among the proces-
sors. However, retry logic causes some additional rundom
memory references but the bandwidth of random memory
references for Butterfly type architecture increases with
the number of processors. Thus the overhead of retry
logic remains steady with increasing number of proces-
sors. This allows the overall system performance to
improve as additional processors are added.

43. Performance of Multi-Threaded Database Reor-
ganization

All of the performance figures given above include
cost of database reorganization for continuous insert and
delete operations. Under continuous insert or delete
loads, the dambase is being reorganized continuously to
maintain the desired maximum allowed chain length.
Distributed linear hashing allows this database reorgani-
zation to be performed in a parallel fashion. This allows
the reorganization to keep up with the insert or delete
operations. Figure 4.3 compares the average chain
lengths for single and multi-threaded reorganization under
continuous inserts. Both implementations are trying to
maintain a maximum chain length of 2.0 records.

C

h

A;
V

n
e

2
e

‘n
eg

t
h

40-
maximum Chain length=2.0

I

30

1

Record length=10

20

1/J

Single thread4

10
Multi-lhream

0
.

1
I I I I Ii 1 I I I

0 10 20 30 40 50 60 70 80 90 100
of Nodes

Figure 4.3 Chain length control using multi-threaded reor-
ganization

The multi-threaded database reorganization is able
to maintain the desired chain length regardless of the
number of processors. The single threaded implementa-
tion cannot keep up with the required reorganization
above 10 processors.

4.4. Performance of Parallel Projection

Parallel projection takes advantage of the fast scan
feature of KDL for reading input records and the distri-
buted hashing structure for duplicate removal. The effec-
tiveness of fast scan’s load balancing was tested by com-
paring runs with and without load balancing. We com-
pared performance with an even distribution of records
among processors, and an uneven distribution of records
among processors. For the uneven distribution of records,
the number of records processed by each processor was a
uniform random number between zero and the number of
records processed in the even distribution case.

For an even distribution of records, performance
improved slightly at higher numbers of nodes because
load balancing offsets the speed differential among pro-
cessors due to variations in memory conflicts among the
processors [Figure 4.41. These memory conflicts increase
as the number of nodes used increases, so the perfor-
mance improvement in the even distribution case should
be even greater as more nodes are used.

As expected, load balancing provided a dramatic perfor-
mance improvement with an uneven distribution of
records because there will be some processors with rela-
tively few records that will assist those processors with

680

more records Figure 4.51.
24wooc 1

e r
r
a s
t e
i c
00

160000-

12OOOO -

80000-

OP
pe
e r
r
a s
t e
i c
00
nn
Sd

nn 40000-

Sd o-
I I I I I I I I # of Nodes

~o%dlqdia~
. 20% &ptic.atc!a
---- 50% duplicatn

0 5 10 15 20 25 30 35 40

of Nodes

Figure 4.4 Performance with an even distribution of
records

op 24W00

p e 200000
__ with load balancing
.wih~~tlcadLnlmcing I

e r
r 160000 A I
f E A..... ;..I
00

nn 40000 1 //.:‘..

sd

0 5 10 15 20 25 30 35 40

of Nodes

Figure 4.5 Performance with an uneven distribution of
records

To test processing of duplicate records, each pro-
cessor created duplicates by copying existing records
from other processors. Runs with 0%. 20%, 50% dupli-
cates were made [Figure 4.61. The performance improves
with increasing number of duplicates, even though dupli-
cate removal requires global memory references to com-
pare records when two records have keys that match. This
cost is more than offset by the reduction in cost of creat-
ing the output file, which is smaller because of discarded
duplicate records.

Figure 4.6 Performance with different percentages of
duplicates

5. CONCLUSION

Distributed linear hashing is shown to have excel-
lent performance as a main memory database on a
NUMA architecture system. Distributed techniques have
been employed to minimize the use of central variables
and locks. The additional fixed overhead of the retry
logic for these distributed techniques is small compared to
the cost of accessing central data structures at high levels
of parallelism.

Distributed linear hashing is an effective platform
for implementation of parallel projection of main memory
data bases on a general purpose NUMA architecture sys-
tem. Fast scan is an important extension to distributed
linear hashing to support parallel projection.

Performance has been analyzed by building a work-
ing main memory file system on BBN’s Butterfly parallel
processor. The file system has been used to implement
high performance parallel projection with duplicate remo-
Vd.

681

6. BIBLIOGRAPHY

[BBJW 831 Britton, D., Boral, H., Dewitt, D., and Wil-
kinson, W. “Parallel algorithms for the execution
of relational dambase operations*‘. ACM Trans.
Database Syst. 8,3 (Sept. 1983). 324-353.

[BBN 883 GP-1000 Tutorial, BBN Advanced Computers,
Inc., 1987

[BBN 861 Chrysalis Programmers Guide, BBN Advanced
Computers, Inc., 1986.

[Elli 871 Ellis, C., “Concurrency in Linear Hashing”,
ACM Trans. on Database Systems, June 1987

[FNpS 791 Fagin, R., Nievergelt, J., Pippenger, N.,
Strong, HR., “Extendible Hashing - A Fast Access
Method for Dynamic Files”, ACM TODS, 1979,
Vol. 4(3), pp. 315344.

[Ghos 861 Ghosh, S. P., “Database Organization for Data
Management”“, Second Edition, Academic Press,
1986

[GLV 841 Garcia-Molina H, Lipton R, Valdes J, “A mas-
sive memory machine”“, IEEE Transaction on
Computers, Vol. c-33, No. 5, May 1984

[Lars 781 Larson, P.A., “Dynamic Hashing”, BIT, 1978,
Vol. 18(2), pp. 184-201.

liars 801 Larson, P.A., “Linear Hashing with Partial
Expansions”, Proc. 6th VLDB Conference, 1980,
pp. 224-232.

lLeCa 861 Lehman, TJ., Carey, M., “Query Processing
in Main Memory DBMS”“, Proc. 1986 SIGMOD,
pp. 239-250.

Kitw 803 Litwin, W., “Linear Hashing: A New Tool for
File and Table Addressing”, Proc. 6th VLDB
Conference, 1980. pp. 212-223.

[PrKi 88a] Pramanik S, Kim M, “Generalized Parallel
Processing models for Database Systems”, Int.
Conference on Parallel Processing, 1988.

[PrKi 88b] Pramanik S, Kim M, “Optimal File Distribu-
tion For PartiaI Match Retrieval”, Proc. ACM SIG-
MOD Conf., 1988.

[PrKi 891 Pramanik S, Kim M, “Parallel Processing of
Large Node B-trees”, To appear in IEEE Transac-
tion on Computers.

FoJa 871 Rosenau, T., Jajodia, S. “Parallel relational
database operations on the Butterfly parallel proces-
sor: projection results”, Naval Research Laboratory
report (July 1987).

[SePr 901 Severance C, Pramanik S, Rosenau T, “A High
Speed KDL-RAM File System for Parallel Comput-
ers”, Proc. PARBASE-90, IEEE Computer Society
Press, 1990, pp 195-203.

[Sev 901 Severance C, A Linear Hashed Main Memory
Database in a Non-unjform Multi-processor Sys-
tem,, M.S. Thesis, Michigan State University,
February 1990. Available ai; Technical Report
MSU-CPS-DB-290.

[wied 871 Wiederhold G, File Organization for Database
Design, McGraw-Hill, New York, 1987;

wolb 891 Wolberg P, “An Application of Distributed
Linear Hashing to Relational Projection in a Multi-
Processor Main Memory Data-“, Technical
Report, Computer Science Department, Michigan
State University, Dec. 17,1989.

682

