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ABSTRACT 

This paper extends the concepts of the distributed linear 
hashed main memory file system with the objective of 
supporting higher level parallel dambase operations. The 
basic distributed linear hashing technique provides a high 
speed hash based dynamic file system on a NUMA atchi- 
tecture multi-processor system. Distributed linear hashing 
has been extended to include the ability to perform high 
speed parallel scans of the hashed file. The fast scan 
feature provides load balancing to compensate for uneven 
distributions of records and uneven processing speed 
among different processors. These extensions are used to 
implement a parallel projection capability. The perfor- 
mance of distributed linear hashing and parallel projec- 
tion is investigated. 

1. INTRODUCTION 

The availability of multi-processor computers with 
large main memories has made main memory database 
applications feasible. With a large number of processing 
nodes, these systems can have a large amount of memory 
at relatively low cost. The aggregate data transfer rate 
between the memories and the processing nodes is also 
very large for these systems. 

While the aggregate performance and memory size 
of these systems is very high, the central control struc- 
tures used in traditional database systems will prevent the 

system from achieving high levels of performance. Dis- 
tributed linear hashing provides a technique for imple- 
menting parallel main memory database systems which 
minimize the adverse effect of these architectural con- 
straints, while exploiting the NUMA architecture to 
enhance performance of key based access to individual 
records stored in a hash based file system. 

To provide high speed access for operations which 
must access all records in a database, fast scan exploits 
the locality of data by using primarily local memory 
references. 

Relational projection can be viewed as composed 
of two sub-tasks, scanning the input relation and creating 
the ‘result relation. In the process of creating the output 
relation any duplicate records created as a result of the 
projection must be removed. The duplicate elimination 
phase of projection is usually the time consuming part of 
the projection operation. 

Distributed linear hashing is implemented on the 
BBN Butterfly. Fast scan has been added to support data- 
base wide operations. We have implemented parallel pro- 
jection with duplicate removal as an example application 
using this file system. The performance of the hash file 
system and parallel projection is shown. 

1.1. Previous Work 

Several hashing methods [Ghos 86, Wied87] for 
dynamic files have been proposed since the mid 1970’s. 
including extendible hashingm791, linear hashing 
-1, and dynamic hashing [Lafs781. Complete reor- 
ganization of the data file is avoided in these techniques 
by allowing the directories to adjust to the records of the 
overflowing buckets. These hashing methods reduce the 
search time by minimizing the number of disk accesses. 

Linear hashing as a search structure for databases 
was developed by Litwin [Litw 801. A solution for con- 
current linear hashing was proposed by C. S. Ellis lElli 
871. Concurrent linear hashing adds a locking protocol 
and extends the data structures to enhance concurrency of 
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the entire linear hashed file. Like Litwin’s design, con- 
current linear hashing of [Elli 871 was intended for a disk 
environment. 

Hash based accesses to main memory databases 
have also been analyzed in [GLV 841. Parallel processing 
in main memory databases has also been investigated in 
lPrKi 88a, PrKi88bl. Parallel main memory data bases 
are also explored in [SePr 901 and [Sev 901. 

Previous efforts on projection in parallel or main 
memory environments inchtde work in parallel algorithms 
for relational operations [BBJW 831 and main memory 
databases &eCa 861 and parallel projection of main 
memory databases RoJa 871. Parallel projection in main 
memory databases was also explored in [Wolb 891. 

1.2. Linear Hashing 

Before we describe the motivation for our approach 
to design parallel main memory databases, we define two 
important shared variables used in linear hashing called P 
and M. These variables have significant impact on the 
performance of concurrent accesses. The variable M is 
the number of buckets and the variable P is the next 
bucket to be split or merged. M and P are used in comput- 
ing the proper bucket as follows: 

bucket-number := key mod M, 
if bucket-number c P then 

bucket-number := key mod (M*.2) 

These two variables are also used in database reorganiza- 
tion. When a bucket in the database overflows or the data- 
base exceeds a preset load factor, the bucket pointed to by 
P is split and P is advanced by one. On.ce P reaches M-l, 
instead of advancing P, it is set to zero and M is doubled 
As records are deleted and buckets underflow, P is decre- 
mented by one and the Pth. bucket is merged with the 
P+Mth. bucket. Once P reaches zero as a result of 
repeated merge operations, M is halved and P is set to one 
less than the new value of M. The da&base is organized 
in a linear fashion by only splitting or merging the Pth. 
bucket. 

1.3. Motivation 

The work by Ellis and Litwin is suitable for a disk 
based system but there are a number of problems with this 
approach when it is used for searching main memory 
databases on a multi-processor NUMA system. The first 
problem is the cost of accessing central variables such as 
M and P, and the central locks associated with these 

variables. In a multi-processor NUMA environment, 
access to a central data structure may cause a hot spot 
problem resulting in a serious performance degradation 
with increasing degree of parallelism. We present a dis- 
tributed linear hashing scheme where access to costly 
centralized variables and locks ate reduced by using dis- 
tributed variables and locks. The cost of maintaining con- 
sistent copies is significantly reduced by using retry logic 
which is based on the fact that these variables are updated 
very seldom. 

Database reorganization is single threaded in previ- 
ous implementations of linear hashing. This is a problem 
when a large number of parallel nodes are able to insert 
records at a much faster rate than the database can be 
reorganized. Experimental results have shown that even 
if a processor continuously splits buckets sequentially, the 
database can never be m-organized fast enough to keep 
the load factor within a reasonable bound. We present 
multi-threaded reorganization technique to solve these 
problems. Here, multiple splits and merges are performed 
concurrently by the processing nodes. 

Distributed linear hashing with retry logic and 
multi-threaded reorganization provides a high perfor- 
mance hash based main memory database system with a 
very high rate of continuous inserts and deletes. This type 
of database system is useful for implementing temporary 
files for main memory databases and relational operators 
such as projection and join for main memory databases. 
In this paper we give details of distributed linear hashing 
scheme and its performance analysis. 

The rest of the paper is organized as follows. Sec- 
tion 2 describes the important features of distributed 
linear hashing scheme. Section 3 describes an implemen- 
tation of distributed linear hashing, on the BBN Butterfly, 
called the KDL-RAMFILE system. Section 4 presents 
performance analysis of the KDL system. Concluding 
remarks are given in section 5. 

2. DISTRIBUTED LINEAR HASHING 

In linear hashing the records are distributed into 
buckets which are normally stored on disk. In distributed 
linear hashing, the buckets are stored in main memory. 
Fast accesses to a record within a bucket is accomplished 
through a hash directory. Two computations are used to 
locate a mcord. Distributed linear hashing is used to 
locate the bucket and an additional computation is per- 
formed to find record chain within the bucket. One sim- 
ple approach to this two dimensional address mapping is 
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to partition the hash address bits into two. One part 
locates the directory and the other part finds the record 
chain. A bucket consists of a hash directory and the 
records point& by the hash directory. Note that the 
records within a bucket can be placed in any memory 
module by linking them through pointers. An index is 
used to point to the bucket directories. The index expands 
or contracts as needed by linear hashing. Figure 2.1 
shows the access structure of a main memory distributed 
linear hashed file. The index is cached in each processor. 
Each entry in the directory points to the head of a record 
chain. Collisions in a particular entry in the directory are 
resolved by adding the record to the chain and tracking 
collisions to determine the average non-empty chain 
lengths. A directory is said to be overflowing or 
underflowing when the average chain length for that 
directory exceeds or falls below some predetermined 
value. Directories are split or merged in linear order as 
soon as some directory overflows or underflows. Splitting 
is done by rehashing the records using hash function (key 
mod 2*M) as in standard linear hashing. 

In linear hashing bucket address computation 
requires M and P for every access to a record. Accessing 
these central variables for every record access will cause 
a hot spot To avoid this problem, bucket address compu- 
tation in distributed linear hashing does not use central 
copies of M and P. Instead local copies of M and P, 
called Local-M and Local-P. are used in each proczssor. 
The techniques for maintaining distributed copies of these 
variables at a significantly lower cost than the cost of 
accessing central copies of these variables are described 
in the folIowing sections. Central copies of M and P, 
called Global-M and Global-P, are only used for data- 
base reorganizttion. The Local-M and Local-P used in 
the hash computations may at times be out of date causing 
incorrect bucket address computation. To solve the prob- 
lem of incorrect bucket address computation, retry logic 
is used. The details of retry logic is described in the next 
section. 

Diroclay II&.X (cached in each pmcaaor) 

\I I I I 
. . . 

I I I 

I I 

Figure 2.1: Access Structure for Distributed Linear Hash- 
ing 

2.1. Retry Logic Using Local-M and Local-P 

Besides maintaining Local-M and Local-P in each 
node, a directory contains a value for M. This M, called 
Dir-M, is the value which was used in the hash computa- 
tion to place the records into the directory during the most 
recent split or merge. The value of Dir-M is used to 
determine if a particular record belongs to this directory 
regardless of the value of Local-M. 

To find a record, the directory number is computed 
fust using the record key value and Local-M stored at 
that node. The directory indicated by the computation is 
locked. The directory number is re-computed using the 
record key value and the value for Dir-M stored in the 
directory. If this computes to the same directory as the 
one currently being locked, the proper directory has been 
found, otherwise the process is mpeated by locking the 
new directory. 

The performance enhancement by retry logic over 
that using central variables is described in section 4. Fig- 
ure 2.2 shows the algorithm to find the correct directory 
using retry logic. 

dir-number := hash(key, Local-M, Local-P); 
dir-pointer := dir&ck(dirnumber); 
newdQutmber := key mod dir~inter.Dir-M 

while (new~dir~number <> dir~number) do begin 
dir_unlock(dir~nurnber)er); 
dir-number = new-dir-number 
dirpointer := dir&ck(dir-number); 
new&r-number := key mod dir-pointer.Dir_hl 
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end 

Figure 2.2: Retry Logic for Locating the Bucket for a 
Given Key 

The following section describes techniques for 
maintaining the local copies of P and M in each proces- 
sor. 

2.2. Maintaining Copies of Local-P and Local-M 

Local-M in each processor is maintained using a 
central array of pointers to each copy. To double or halve 
Global-M, a processor must have a lock on Global-P. 
When the Global-M is updated, the processor updating 
Global-M must also update all of the copies of Local-M 
in all of the processors. Ibis technique for updating the 
values for Local-M uses a very small amount of memory 
bandwidth compared to the bandwidth requirements for a 
shared value for M. The values are only updated when 
the value for M is doubled or halved as a result of data- 
base reorganization. In our experiment of a typical run of 
inserting 500,ooO records, Global-M is modified in one 
out of 50,ooO database insertions. During the period a 
processor updates each copy of Local-M incorrect hash 
computations may occur because of incorrect values of 
Local-M. The retry logic described in the previous sec- 
tion will recover from these incorrect computations. 

Updating all Local-Ps every time. Global-P 
changes is not efficient because Global-P changes quite 
frequently. So each local processor updates local-P based 
on the values for Dir-M in each directory which the pro- 
cessor has to access during every normal database cpera- 
tions. This technique keeps the Local-P values close to 
the value for Global-P. Every time a key is mapped into a 
directory address through Local-M and Local-P, the 
Dir-M is compared with the value of Local-M. If the 
directory number is higher than the Local-P of the pro- 
cessor and the Dir-M is twice Local-M, Local-P of the 
processor is too low and is set to the directory number. If 
the directory number is lower than the Local-P of the pro- 
cessor and the Dir-M is the same as Local-M, the 
Local-P is too high and is set to the directory number. 

2.3. Multi-threaded Reorganization 

In concurrent linear hashing of EllislElli 871 and 
sequential linear hashing of Litwin [Litw 801, P always 
determines the next bucket to be split or the next bucket 
to be merged. For example, if a split operation was in 
progress, P always points to the directory being split. 

This forces all aspects of dambase reorganization to be 
single thread& With retry logic it is not necessary to 
complete a split or merge operation before another split or 
merge operation can start In distributed linear hashing 
with multithreaded split Global-P is moved before the 
directory is merged or split. The updates to Global-P are 
serialized but the actual database reorganization is per- 
formed in parallel. The algorithm to implement this is 
shown in Figure 2.3. 

procedure multithreaded~split0 
begin 
if ( lock-no-wait(GlobaI-P) = busy ) return; 
Tmp-P := Global-E 
Global-P := Global-P + 1; 
if ( Global-P = Global-M ) do begin 

Global-P := 0; 
double-M@ 

end 
unlock(Split-P); 
Perform-Split(Tmp-P); 

end 

Figure 2.3 Multithreaded split operations 

In multithreaded split there are no lock waits while 
a directory lock is held. When a busy lock on a central 
variable is encountered the split is not performed. The 
critical aspect of multithreaded splitting is that Global-P 
is unlocked before the directory is actually split. The only 
aspect of database reorganization which is single threaded 
is the update to Global-P. After Global-P has been 
unlocked another processor can lock Global-P and begin 
a split operation on the following directory. Hash compu- 
tation does not use the value for Global-P to compute the 
proper directory for a given key so inaccuracies in 
Global-P because of multithre.aded split do not alfect the 
hash computations. Retry logic locates the proper direc- 
tory regardless of the order of split completions because 
the values for Dir-M in each bucket are maintained prop- 
erly when the split directories are unlocked. 

Multithreaded split allows database reorganization 
to keep up with continuous insert operations regardless of 
the number of processors. As more processors insert 
records causing directories to overflow more processors 
begin to split the directories to keep up with the incoming 
records. Merge operations are multithreaded as well using 
the same technique as split. Global-P is decremented and 
M is halved if necessary before the actual merge is 
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pCXfONhXl. 

3. THE KDL SYSTEM 

We have developed a KDL-RAMFILE (Key 
XGSS. Distributed Lock, RAMFILE) system which is 
based on distributed linear hashing, as described in the 
previous section. The KDL-RAMFILE system is 
currently Operational on BBN’s Chrysalis [BBN 861, GP- 
1000 [BBN 881 and ‘lC2000 systems. 

3.1. Distributed Linear Hashing 

The distributed linear hashing index and data 
blocks are distributed randomly among the processors to 
avoid any hot spot contention. The data structures were 
extended to keep track of all the index and data blocks 
which are stored on each processor. Using these data 
structures a complete file scan is implemented using only 
local memory accesses. 

Fast scan consists of a loop that sequentially scans 
each data block in a processor’s local memory. Load 
balancing is a direct extension of fast scan. When a pro- 
cessor has no more data blocks in its local memory, it 
extends the scan to examine data blocks in other proces- 
sors. Thus the KDL data block is the unit of work for load 
balancing. 

Because of load balancing, other processors may be 
accessing a particular processor’s data blocks, in addition 
to the processor that owns them. To provide exclusive 
access to individual data blocks, each processor maintains 
a variable, under exclusive access via a lock, that 
specifies the address of the next unprocessed block in that 
processor’s list of local data blocks. When a processor 
has no more unprocessed blocks, this variable is cleared. 

The KDLRAMFfLE system can be used for many 
applications requiring a fast file system. One application 
which has been implemented is parallel projection. Paral- 
lel projection employs all of the important features of the 
KDL-RAMFILE system. 

3.2. Parallel Projection 

We have implemented parallel projection using fast 
scan and distributed linear hashing. 

Fast scan is used to scan the input relation quickly 
using a minimum of global memory resources. As each 
record is amsed by fast scan, it is projected and inserted 
into the output relation. As the records are inserted into 
the output relation duplicates are detected by the KDL 

system and discarded. The KDL system compares a 
record to be inserted into the relation only when the 
hashed key matches the key of a record already in the 
database. This reduces the actual number of full record 
comparisons relative to parallel sorting methods. The 
duplicates am removed without the need for a separate 
hash table or separate pass over the data for duplicate 
removal. Because the KDL files are dynamic there is no 
need to estimate the size of the output relation. 

4. PERFORMANCE ANALYSIS 

4.1. Experimental Details 

The performance of the KDL-RAMFILE and the 
performance of parallel projection using the 
KDL-RAMFILE as an example application, are 
presented. The goal of the KDL-RAMFILE performance 
evaluation was to measure the maximum continuous 
throughput of the database system. This implies that sys- 
tem overhead such as creation of the application 
processes, operating system overhead to initialize and ter- 
minate tasks on each processor, are ignored. For parallel 
projection the time to complete a projection was meas- 
ured. Since projection requires creation of an output file, 
the time to create this file is included in the total time for 
parallel projection. 

The total number of database operations per second 
were measured while varying the number of processors. 
Under ideal conditions, the total number of operations per 
second should increase linearly as the number of proces- 
sors are increased. Total number of operations per 
second was chosen over the number of effective proces- 
sors because it shows the speedup while allowing quanti- 
tative comparison between different types of runs on the 
same graph. For the KDL-RAMFILE performance, the 
operations are record read, writes, and deletes. For paral- 
lel projection the operations are record projections. The 
KDL-RAMFILE performance tests were conducted on a 
GPlOOO running the Chrysalis operating system [BBN 
861. The parallel projection performance tests were con- 
ducted on a TC2ooO running the nK operating system. 

4.2. Performance impact of Local-P and Local-M 

This section examines the performance impact of 
distributing the global variables as described in section 2. 
It should be noted that Local-P and Local-M are used 
only for hash address computation. Global-P and 
Global-M are used for database reorganization. We will 
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compare the performance of two different models of dis- 
tributed linear hashing with standard linear hashing. 
These schemes are defined in terms of the type of vari- 
ables used in computing the hash addresses: 

Scheme 1: Local-P, Local-M, Dir-M 
Scheme 2: Global-P, Local-M, Dir-M 
Scheme 3: Global-P, Global-M 

Note that schemes 1 and 2 use retry logic while scheme 3 
is the standard linear hashing scheme accessing global 
variables. The performance of the three schemes for con- 
tinuous read operations is shown in Figure 4.1. The 
figure shows that the overall performance improves for 
scheme 3 using global data structures, protected by cen- 
tral locks, until about 10 nodes. Then the overhead of the 
hot spots caused by these global data structures begins to 
dominate the computation, and performance stops 
improving. Similar performance degradation has been 
observed for BBN’s implementation of parallel main 
memory file system, called RF-RAMFILE system, where 
central lock structure has been used [BBN 861. The per- 
formance of RF-RAMFILE system levels off after 15 
nodes doing continuous activity. Figure 4.1 shows that 
Scheme 2 maintains linear performance for up to 40 
nodes. We have observed that avoiding the use of central 
locks and Global- M for hash address computation 
reduces the amount of central memory accesses 
significantly (by about 75% in our experiment). In the 
implementation using scheme 3 each database operation 
accesses the lock twice and the values for Global-P and 
Global-M. In the implementation using scheme 2 mete is 
only a single global access per operation. Thus the per- 
formance is impacted by the remaining central accesses at 
a high level of parallelism. The implementation using 
scheme 1 has the best performance at high levels of paral- 
lelism because it never accesses global variables. So per- 
formance of scheme 1 is only limited by the performance 
of the memory sharing network under random memory 
access patterns. Figure 4.1 shows that performance is still 
improving for scheme 3 at 80 processors. 

Insert operations require database reorganization 
and updating global information. 
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# of Nodes 

Figure 4.1 Read performance of different implementa- 
tions 

Figure 4.2 shows the performance comparisons of the 
three schemes when performing continuous insert opera- 
tions. Scheme 1 maintains performance improvement 
until 15 processors where the memory conflicts limit any 
additional performance improvement. 
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Figure 4.2 Insert performance 

Scheme 1 and 2 continue to show performance 
improvement at higher level of parallelization. However, 
the performance of these two schemes is much closer for 
inserts than for reads. At 50 nodes and below, the imple- 
mentation using scheme 2 performs as well and at times 
performs better than scheme 1. Above 50 nodes perfor- 
mance continues to improve for scheme 1 while for 
scheme 2 it begins to level off. 
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There are several reasons for this performance 
characteristics. (1) Insert operations are inherently slower 
because they include database reorganization. (2) Tbe 
database reorganization makes use of the global variables. 
This means that when performing inserts even scheme 1 
will have to access global data structures causing some 
memory contention. (3) As the database is reorganized, 
the value for Global-P is changing causing the indepen- 
dent copies of Local-P to become inaccurate. This causes 
incorrect directory to be locked requiring additional direc- 
tory locks due to retry logic. 

The percentage of retries required for scheme 2 is 
very small. At 80 processors 3 out of 1000 bucket 
accesses will have to be retried because the value for P is 
inaccurate. For scheme 1, retry percentage ranges from 4 
to 7. 

Unlike the overhead of accessing global data struc- 
tures, the overhead of retry logic does not result from hot 
spot accesses. Retry logic uses only the bucket locks and 
bucket locks are randomly distributed among the proces- 
sors. However, retry logic causes some additional rundom 
memory references but the bandwidth of random memory 
references for Butterfly type architecture increases with 
the number of processors. Thus the overhead of retry 
logic remains steady with increasing number of proces- 
sors. This allows the overall system performance to 
improve as additional processors are added. 

43. Performance of Multi-Threaded Database Reor- 
ganization 

All of the performance figures given above include 
cost of database reorganization for continuous insert and 
delete operations. Under continuous insert or delete 
loads, the dambase is being reorganized continuously to 
maintain the desired maximum allowed chain length. 
Distributed linear hashing allows this database reorgani- 
zation to be performed in a parallel fashion. This allows 
the reorganization to keep up with the insert or delete 
operations. Figure 4.3 compares the average chain 
lengths for single and multi-threaded reorganization under 
continuous inserts. Both implementations are trying to 
maintain a maximum chain length of 2.0 records. 
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Figure 4.3 Chain length control using multi-threaded reor- 
ganization 

The multi-threaded database reorganization is able 
to maintain the desired chain length regardless of the 
number of processors. The single threaded implementa- 
tion cannot keep up with the required reorganization 
above 10 processors. 

4.4. Performance of Parallel Projection 

Parallel projection takes advantage of the fast scan 
feature of KDL for reading input records and the distri- 
buted hashing structure for duplicate removal. The effec- 
tiveness of fast scan’s load balancing was tested by com- 
paring runs with and without load balancing. We com- 
pared performance with an even distribution of records 
among processors, and an uneven distribution of records 
among processors. For the uneven distribution of records, 
the number of records processed by each processor was a 
uniform random number between zero and the number of 
records processed in the even distribution case. 

For an even distribution of records, performance 
improved slightly at higher numbers of nodes because 
load balancing offsets the speed differential among pro- 
cessors due to variations in memory conflicts among the 
processors [Figure 4.41. These memory conflicts increase 
as the number of nodes used increases, so the perfor- 
mance improvement in the even distribution case should 
be even greater as more nodes are used. 

As expected, load balancing provided a dramatic perfor- 
mance improvement with an uneven distribution of 
records because there will be some processors with rela- 
tively few records that will assist those processors with 
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more records Figure 4.51. 
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Figure 4.4 Performance with an even distribution of 
records 
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Figure 4.5 Performance with an uneven distribution of 
records 

To test processing of duplicate records, each pro- 
cessor created duplicates by copying existing records 
from other processors. Runs with 0%. 20%, 50% dupli- 
cates were made [Figure 4.61. The performance improves 
with increasing number of duplicates, even though dupli- 
cate removal requires global memory references to com- 
pare records when two records have keys that match. This 
cost is more than offset by the reduction in cost of creat- 
ing the output file, which is smaller because of discarded 
duplicate records. 

Figure 4.6 Performance with different percentages of 
duplicates 

5. CONCLUSION 

Distributed linear hashing is shown to have excel- 
lent performance as a main memory database on a 
NUMA architecture system. Distributed techniques have 
been employed to minimize the use of central variables 
and locks. The additional fixed overhead of the retry 
logic for these distributed techniques is small compared to 
the cost of accessing central data structures at high levels 
of parallelism. 

Distributed linear hashing is an effective platform 
for implementation of parallel projection of main memory 
data bases on a general purpose NUMA architecture sys- 
tem. Fast scan is an important extension to distributed 
linear hashing to support parallel projection. 

Performance has been analyzed by building a work- 
ing main memory file system on BBN’s Butterfly parallel 
processor. The file system has been used to implement 
high performance parallel projection with duplicate remo- 
Vd. 
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